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On the discrepancy of Markov-normal sequences

par M.B. LEVIN

RÉSUMÉ. On construit une suite normale de Markov dont la dis-
crépance est O(N-½ log2 N), améliorant en cela un résultat don-
nant l’estimation O(e- c(log N)1/2).

ABSTRACT. We construct a Markov normal sequence with a dis-

crepancy of O(N-½ log2 N). The estimation of the discrepancy
was previously known to be O(e-c(log N)½).

A number a E (0, 1) is said to be normal to the base q, if in a q-ary
expansion of a,

each fixed finite block of digits of length k appears with an asymptotic
frequency of q-’‘ along the sequence Normal numbers were intro-
duced by Borel (1909). Borel proved that almost every number (in the
sense of Lebesgue measure) is normal to the base q. But only in 1935 did
Champernowne give the explicit construction of such a number, namely

obtained by successively concatenating all the natural numbers.
Let P = be an irreducible Markov transition matrix,

the stationary probability vector of P and p its probability
measure.

A number a (sequence is said to be Markov-normal if in a q-ary
expansion of a each fixed finite block of digits appears with an

asymptotic frequency Of 
According to the individual ergodic theorem 71- ost all sequences (num-

bers) are normals.
Markov normal numbers were introduced by Postnikov and Piatecki-

Shapiro [1]. They also obtained, by generalizing Champernowne’s method,
the explicit construction of these numbers. Another Champernowne con-
struction of Markov normal numbers was obtained in Smorodinsky-Weiss

Manuscrit regu le 7 fevrier 1995.
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[2] and in Bertrand-Mathis [3] . In [4] Chentsov gave the construction of
Markov normal numbers using completely uniformly distributed sequences
(for the definition, see [5]) and the standard method of modelling Markov
chains. In [6] Shahov proposed using a normal periodic systems of dig-
its (for the definition, see [5]) to construct Markov normal numbers. In

[7] he obtained the estimate of discrepancy of the sequence be

In this article we construct a Markov normal sequence with
the discrepancy of sequence equal to O(N-1/2Iog2 N).

Let be a sequence of real numbers, p - measure on [0,1). The
quantity

is called the discrepancy of 
The sequence is said to be p - distributed in [0, 1) if N) - 0.

Let the measure /.i be such that

where (0, 1, ..q - I) , 1~ = 1, 2, ....
It is known that if and only if a is Markov normal number, the sequence

is it-distributed.
The discrepancy satisfies D (,u, N ) - for
almost all a.
The following facts are known from the theory of finite Markov chains [8,9]:

Let a Markov chain have d cyclic class C1, ..., Cd. We enumerate the
states el, ..., eq of the Markov chain in such a way, that if ei E Cm, ej E Cn
and i &#x3E; j, then m &#x3E;_n. Here matrix P_ has d 2 blocks where

Pi,j = 0 except for Matrix Pd has a block-diagonal
structure. Let Pl , ..., Pd be the block diagonal of matrix pd. There exists
a number l~o such that all the elements of matrices Pk° (i = 1, ..., d) are
greater than zero [9, ch. 4]. Let () be the minimal element of these matrices,
and the i j element of matrix P~, k = 1, 2, ....
It is evident that

where we choose minimum values for i, j so that ez, e~ are included in the
same cyclic class.
Let f ( j ) be the number of cyclic class states ej (ej E = 0, ..., q -1 ) .
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According to [9, ch.4] we obtain

We have, from the irreduciblity of matrix P, that

We use matrices P,, = with the rational elements

and we choose as follows:
Let i be fixed and be greater than zero. Then we denote

It is evident that

If kl is sufficiently large, then using (3) and (6)-(8), we obtain

where we choose minimum values for i, j so that belong to the same
cyclic class.

It is evident that Pn (n &#x3E; kl) is an irreducible matrix with a d-cyclic
class.

Applying (3),(4) and (9) we obtain

where n &#x3E; ki, and is the stationary probability vector of Pn.
According to [7, 10] there exist integers &#x3E; 0, such

that
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If k1 is sufficiently large, then applying (5)-(8) and (11), we obtain

Let the measure J-tn on [0, 1) be such that

where the O-constant depends only on P.
Proof. It follows from (2), (5) and (6) that

We apply (2), (14) and obtain

= 0, then PCiCj = 0 and according to (5), (7), (8), (11) we
have (n) = 0 (pn) and

. , , . _..

where
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and vk = ck+1 or b.
On the basis of (5), (7), (8) and (11) we deduce that

where If  2qB /p’ .
It is easy to compute that

Hence and from (17) - (20) we obtain

and formula (15) is proved. Statement (16) is proved analogously. o
We obtain the Markov normal number a = dld2 ... by concatenating

blocks an = (aI, ..., aA2n),where ai E (0, 1 , ..., q -1~, i = 1, 2, ...

We choose the numbers ai as follows:
Let

We set ao = i, if bo E Si, i = 0, ..., q -1. If we choose the numbers
ao, ..., ak-1, then we set
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We choose cvn (and consequently an(cvn)) such that

Proof. (To follow later.)

Let

Every natural N can be represented uniquely in the following form with
integers k

For Q = 0 we use the symbols M) and a, M) .

THEOREM 1. Let the number a be defined by (21), (23), (2l~) and (27).
Then a is Markov-normal and the following estimate is true:

where the O-constant depends only on P.
Proof. Using (29), (30) and (31), we obtain

According to (21), (24) and (25) we have

It follows from (31) that
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It is evident that

We apply (31) and obtain

On the basis of (26)-(28), Lemma 1 and Lemma 2 we deduce that

According to (34) we have for M  A.,,. - r

It follows from (31) that

It is evident from this that statement (35) is valid both for M  A2,. - 2r
as well as for M E [A2, - 
Substituting (35) into (33) and bearing in mind (30) we deduce

Using (29), (30) and (5) we obtain

Hence and from (1), (31) the statement of the theorem follows. N
We denote

It is easy to see that
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Then

Proof. According to (36) we have

Using (37), we obtain

From (39) and (40) we give the assertion of the lemma. m

LEMMA 4. Let 0  u2  A2,,, M &#x3E;- 0 i, j = 0, ..., q -1, n &#x3E; k1-
Then

where the constant in symbol 0 depends only on P.
Proof. Let Nl = (ul/d, N2 = [U2/d]. We change the variable x = dy + z
and obtain according to (13)

Let

It follows that
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Applying (13), (10), we obtain

where 1,El  1, z, = f (j) - f (a).
Substituting this formula into (41), we obtain according to (13), that

where

It is known that

Using (40) we get

Hence and from (42-44) the assertion of the lemma follows
We consider further that ai, i =1, 2, ... is the sign of the number 
It follows from (25), that

Hence and from (45) we get
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LEMMA 5. Let n 

where

Then

Proof. It follows from (46) and Lemma 3 that

Changing the order of summation and applying the Cauchy inequality

we obtain that

We change the variable b to cr and assume, on the right-hand side, the
summation on cz, i = 1, ..., r - 1.
It is evident that
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We denote by S(cvn) the right-hand side of formula (52).
It is evident that S(wn) does not depend on M and In.
Applying (26), we obtain

and

Changing the order of summation and using (51), we obtain

Hence and from (47)-(49) we deduce formula (50).

LEMMA 6. Let n &#x3E; kl. Then

Proof. Applying (49) and (22), we get

According (23), we obtain

It follows that
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where

It is obvious that

Hence and from (55) we obtain, changing the order of summation

According to (53), (36) and (22), we have

Applying (7) and (11) ,we obtain

On the basis of (54) and (14) the lemma is proved. m

Proof. Let y &#x3E; x.

Applying (48) and (22), we obtain 

As in the proof of Lemma 6, we get

where
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As in (56), we have

Hence and from (59), changing the order of summation, we obtain

Using (53), (36) and (22), we get

Applying (7) and (11), we obtain

It follows from (58), that

Similarly for x  y. According (14) the lemma is proved

LEMMA 8. Let n &#x3E; kl, )y - r. Then

Pro of. L et y &#x3E; x .
As in the proof of Lemma 6 and Lemma 7, we get

It follows from (12), that

Similairly for x  y. According to (14) the lemma is proved.

LEMMA 9. Let n &#x3E; ki. Then
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Proof. Applying (47) and Lemma 6, we obtain

where

Let

According to Lemma 8, (12) and (14) we obtain

It follows from Lemma 7 that

Changing the variable y to yl = y - x - r and applying Lemma 3, we obtain

Similarly estimate is valid for B3.
Hence and from (61)-(62) we obtain the assertion of the lemma.
Proof of Lemma 2. Substituting (60) into (50) and bearing in mind (5), we
deduce

Lemma 2 is proved.
Remark. By a similar method and the method in [12] a Markov normal
vector for the multidimensional case can be be constructed. By the method
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in [12] one can reduce the logarithmic multiplier in (32) to 0(log N3/2). To
reduce the logarithmic multiplier forther see [15].
Problem. According to [12-14] the Borel and Bernoulli normal numbers ex-
ist with discrepancy 0(~V’~~). It would be interesting to know whether
Markov normal numbers exist with discrepancy O(N-C) where c &#x3E; 1/2.
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