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Automaticity IV: Sequences, Sets, and Diversity

par JEFFREY SHALLIT

RÉSUMÉ. Dans cet article nous étudions la complexité de la de-
scription (i) de suites sur un alphabet fini et (ii) de sous-ensembles
de l’ensemble N des entiers naturels.

Soit (s(i))i~0 une suite sur un alphabet fini 0394. Nous définissons
la k-automaticité de s, notée Ask(n), comme le plus petit nombre
possible d’états d’un automate déterministe qui, pour tout i tel
que 0 ~ i ~ n, prend l’expression de i en base k comme entrée
et calcule s(i). Nous donnons des exemples de suites qui ont
une grande automaticité dans toutes les bases k; par exemple
nous montrons que la k-automaticité de la fonction caractéristique
des nombres premiers satisfait Ask (n) = 03A9(n1/43) pour tout k &#x3E;

2, rendant ainsi quantitatif le théorème classique de Minsky et
Papert suivant lequel l’ensemble des nombres premiers exprimés
en base 2 n’est pas régulier.

Nous donnons des exemples de suites dont la k-automaticité
est petite dans toute base, ainsi que des exemples de suites dont
la k-automaticité est petite dans certaines bases et grande dans
d’autres. Nous obtenons aussi des bornes pour l’automaticité de

certaines suites qui sont des points fixes d’homomorphismes, par
exemple les mots infinis de Fibonacci et de Thue-Morse.

Enfin nous définissons un concept voisin, appelé diversité, et
nous donnons des exemples de suites ayant une diversité élevée.

ABSTRACT. This paper studies the descriptional complexity of (i)
sequences over a finite alphabet; and (ii) subsets of N (the natural
numbers).

If (s (i )) i ~0 is a sequence over a finite alphab et 0394, then we define
the k-automaticity of s, Aks(n), to be the smallest possible number
of states in any deterministic finite automaton that, for all i with
0 ~ i ~ n, takes i expressed in base k as input and computes s(i).
We give examples of sequences that have high automaticity in all
bases k; for example, we show that the characteristic sequence of
the primes has k-automaticity Aks(n) = 03A9(n1/43) for all k ~ 2,
thus making quantitative the classical theorem of Minsky and
Papert that the set of primes expressed in base 2 is not regular.

Research supported in part by a grant from NSERC.
Manuscrit regu le 5 avril 1996.
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We give examples of sequences with low automaticity in all
bases k, and low automaticity in some bases and high in others.
We also obtain bounds on the automaticity of certain sequences
that are fixed points of homomorphisms, such as the Fibonacci
and Thue-Morse infinite words.

Finally, we define a related concept called diversity and give
examples of sequences with high diversity.

1. Introduction and Definitions

In this paper, I study the descriptional complexity of (i) sequences over
a finite alphabet; and (ii) subsets of N (the natural numbers).

In 1972, Cobham [5] introduced the notion of what is now called a k-
automatic sequence. (In the literature, one can also find the terms k-
recognizable sequence and uniform tag sequence.) Roughly speaking, a
sequence over a finite alphabet is k-automatic if and only if s(i)
is a finite-state function of the base-k representation of i.

However, most sequences are not k-automatic for any k. Instead of

simply saying that a sequence is not k-automatic, we can measure quanti-
tatively how "close" a sequence is to being k-automatic using the concept
of automaticity studied in previous papers of the author and co-authors
[26, 27, 20, 10]. In addition to its evident intrinsic interest, automaticity
has proved useful in obtaining nontrivial lower bounds in computational
complexity theory; see [7, 8, 16, 17].
More formally, define a deterministic finite automaton with output

(DFAO) M to be a 6-tuple, (Q, E, 8, qo, 0, T), where Q is a finite set of
states, E is a finite input alphabet, qo is the start state, and A is a finite
output alphabet. The map 8 : Q x E -~ Q is called the transition function,
and is extended in the obvious way to a map 8 : Q x E* 2013~ Q. The map
r : Q -~ A is the output function. On input w E E*, the machine M
outputs the single symbol r(8(qo,w)). For more on these concepts, see, for
example, [15].

Let k be an integer &#x3E; 2 and define Ek = {0,1, ... , k-l~. If w E Ek, then
by I mean w evaluated as a base-k integer, that is, if w = wlw2 ... wv,.,
then = If n &#x3E; 0 is an integer, then by (n)k I mean
the default base-k representation of n - that is, one not containing leading
zeroes. Note that (O)k = e, the empty string.

Suppose is a sequence over the finite alphabet A. If there exists
a DFAO M such that for all i &#x3E; 0, we have s(i) = r(8(qo, w R)) for all
w E Ek such that [w]k = i, then the sequence is said to be k-
automatic. (Here wR is the reverse of the string w.) Note that the slightly
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awkward definition results from the problem of "leading zeroes" input, and
our convention that the machine M reads the input number starting with
the least significant digit.

Here is one alternate definition of k-automatic sequences. Define the

k-fiber of the sequence a to be

Then is a regular set for all a E Ll if and only if the sequence
is k-automatic.

Another alternate definition of k-automatic sequences can be given in
terms of a set called the k-kernel. Let (s(n))n&#x3E;o be a sequence over a finite
alphabet. The k-kernel of which we denote by K:, is defined as
follows:

Eilenberg [9, Proposition 3.3, p. 107] proved that a sequence is k-automatic
if and only if its k-kernel is finite.

Given a sequence we can define its k-automaticity as

follows: is the smallest possible number of states in any DFAO
M = (Q, E, ð, such that for all i with 0  i  n, we have s (i)

for all u~ E ~~ with [w]k = i. We emphasize that the automa-
ton is fed with the digits of i, starting with the least significant digit. This
convention is actually important to specify, since it is known that there are
languages of low automaticity whose reversal has high automaticity; see
[10].
There is another way to define k-automaticity. Suppose we define the

n-truncated k-kernel of the sequence s, as follows:

The n-truncated k-kernel consists of finite sequences. Call two such se-

quences v, w E n-dissimilar if there exists a position j for which
both v(j) and w ( j ) are defined and v(j) ~ w(j). (Note that under this
definition, if v is a prefix of w, then v and w are similar.) Then is

defined to be the maximum number of pairwise n-dissimilar sequences in
K~ (n) . It is not hard to see that this definition is identical to the previous
one; see [27]. Note that the condition m  (n - a)/k’ is equivalent to
kim + a  n; in other words, the variable that is bounded by n is not m
but the "true" variable kim + a.
The following basic results on automaticity are easy to prove [27]:

PROPOSITION 1. Let sequence over a finite alphabet A. Then
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(b) A~ (n) = 0(1) if and only if s is k-automatic;
(c) There exists an absolute constant c such that if s is not k-automatic,

then As (n) &#x3E;_ c logk n for infinitely many n.
(d) For any sequence s we have = n) .
As parts (b) and (c) of this theorem show, if a sequence is not k-

automatic, then its k-automaticity must be greater than c logk n infinitely
often. This suggests studying sequences that are not k-automatic, but
which are "as close as possible" to k-automatic. We say that a sequence

is k-quasiautomatic if = 0(log n). We then have the fol-
lowing theorem, whose proof is easy and is omitted:

PROPOSITION 2. A sequence is k-quasiautomatic if and only if it
is ke-quasiautomatic f or all e &#x3E; 1.

So far we have discussed the k-automaticity of sequences, but the same
terminology can be used for sets of non-negative integers. We say a set S C
N is k-automatic if its characteristic sequence is k-automatic.

Similarly, if S is a set, then by AS (n) we mean Axs (n).
2. Classical sets with high automaticity in all bases

In this section, we examine two classical sets (the primes, the square-
free numbers) and show that their characteristic sequences have high k-
automaticity (that is, Q(n") for some e &#x3E; 0) in all bases k &#x3E; 2. (By f = 0(g)
we mean there exist positive constants c, no such that f (n) &#x3E; cg(n) for all
n &#x3E; no . ) For the primes, our results can be viewed as making quantitative
the classical result of Minsky and Papert [19] that the primes expressed in
base 2 cannot be accepted by a finite automaton.
Our method is based on the following useful lemma:

LEMMA 3. Let (s(i))i&#x3E;o be a sequence over a finite alphabet A, and suppose
that there exists a constant d such that for all r, a, b with r &#x3E; 2, 1 
a, b  r, a ~ b, and gcd(r, a) = gcd(r, b) = 1, there exists a non-negative
integer m = 0(rd) such that s(rm + a) ~ s(rm + b). Then 

f or 2, where the implied constant in the
big-Q does not depend on k.

Proof. Since m = 0(rd), there exists a constant c such that m ~ crd -1
for all r &#x3E; 2. Let i = L(10gk n - logk c)/(d + Then

Put r = k’. It follows that there exists m  such that 

s(kim + b). However, kim + a  1~i = c . (n/c) = n,
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and the same bound holds for It follows that the two subsequences
~s(k~t + a) )t&#x3E;o and are n-dissimilar. Since a, b were arbitrary
integers relatively prime to r, we know that there are at least cp(ki) pairwise
n-dissimilar sequences, where cp is Euler’s phi-function.
By [21, Theorem 15], we know that p(n) &#x3E; n/(5loglogn) for n &#x3E; 3.

Hence

Thus As (n) _ 
We first examine the automaticity of the characteristic sequence of the

primes. We need the following lemmas.

LEMMA 4. For all x &#x3E; 1 we have ez/3, where the product is
over primes only.

Proof. Let ~9(x) _ log p, where the sum is over primes only. We know
that t9(x)  1.000081x for x &#x3E; 0 [22, p. 360], and .84x 101

[21, Theorem 10]. It follows that lOg p &#x3E; 1.68x -1.000081x &#x3E; x~3
for x &#x3E; 101/2. Now it is easily verified by computer or hand calculation
that logp &#x3E; X13 for 1  x  101/2.

It follows that &#x3E; for all x &#x3E; 1.

LEMMA 5. Given integers k, l &#x3E; 1 with gcd(k, l) =1, there exists a prime
p = km + 1 with m = O(max(k,I)11/2). The constant in the big-0 is
independent of k and l .

Proof. Choose x = max(1,I/k,310gl). Then from the previous lemma
we have so there exists a prime qfl with x  q  2~.
Now q &#x3E; so kq &#x3E; l, and = 1. Hence by Heath-Brown’s
version of Linnik’s theorem [14], there exists a prime p =- 1 (mod kq)
with p = Q((~q)11/2). Since q  2~ = we have

p = O(max(111/2, (~ log l)11/2’ ~11/2)),
Hence m = (p - l)~~ = O(nlaX(lll/2~-1’ ~9/2(lOgl)11/2)’ ~9/2)’ and the

result follows.

LEMMA 6. Given integers r,a,b with r &#x3E;_ 2, gcd(r,a) = gcd(r, b) - 1~
1 ~ a, b  r, and a ~ b, there exists m = O(r165/4) such that rm + a is
prime and rm + b is composite.
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Proof. We use a trick suggested by papers of Hartmanis and Shank [12]
and Allen [1].
By Heath-Brown’s version of Linnik’s theorem [14], there exists mo =

0(r9/2) such that p = rmo + a is a prime. Define q = rmo + b. Then

q = If q is composite, we’re done, and mo = ~ (r9 /2 ) . Otherwise,
assume q is prime. Now, in Lemma 5, take k = qr and 1 = qr + p. Then
there exists mi = 0((qr + p)11/2) = O(r143/4) such that (qr)ml + (qr + p)
is prime. However, t = (qr)ml + (qr + q) is composite, since q I t and q  t.

Take m = qml + q + mQ. Then m = 0(rls5/4).

THEOREM 7. The set P o f prime numbers has k-automaticity 
~ (nl/43 ) for all integers l~ &#x3E; 2.

Proof. Combine Lemmas 3 and 6.

We note that the constant 1/43 in Theorem 7 is not optimal. Indeed, the
constant 11/2 in Lemma 5 is almost certainly not optimal. Wagstaff [31]
has provided a heuristic model that predicts that the least prime congruent
to 1 (mod k) is If this prediction were true, it
would improve the constant 1/43 in Theorem 7 to 1/(2 + E) .
We now turn to providing a lower bound on the k-automaticity of the

squarefree numbers. Recall that a number n is said to be squarefree if t21n
for all integers t &#x3E; 1.

LEMMA 8. Let defined as follows:

Then for all e &#x3E; 0, and r, a, b such that r &#x3E; 2, 1  a  r, and 0  b  r

with gcd(a,r) squarefTee and a :0 b, there exists an m = O(r13/9+E) such
that rm + a is squarefree and rrri + b is not squarefree.

Proof. Let q be the least prime not dividing rib - Since rib - at I  r2,
by the prime number theorem we have q = O(logr2) = O(logr). Now
rk + b - 0 (rrzod qz) if and only if k = (mod Let c be such that
0  c  q2 and c - (mod q 2). Consider the arithmetic progression

We have gcd (r q 2, rc + a) is squarefree, because any prime divisor of rq2
and rc + a must be a divisor of r or q2. implies
t a, and we know gcd(r, a) is squarefree by hypothesis. On the other hand,
rc + a = 0 (mod q) implies that rc m -a (mod q). But rc - -b (mod q),
so a - b (mod q), a contradiction since qfa - b. Hence q2J gcd(rq2, rc + a).
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Then, by a result of Heath-Brown [13], there exists an mo = O(r13/9+E)
such that (rq2)mo+(rc+a) is squarefree. Take m = q2mo +c. Then rm+a
is squarefree, but rm + b is divisible by q2.

THEOREM 9. The set S of squarefree numbers has k-automaticity 
S~ (n2~5 ) for all k &#x3E; 2.

Proof. Apply Lemma 3 with d = 13/9 +6. ’

Again, the constant 2/5 in Theorem 9 is not optimal.

3. A set with low automaticity in all bases

In this section I give an example of a sequence that is k-quasiautomatic
for all k 2:: 2.

THEOREM 10. Define a(l) = 1, and a(i + 1) = a(i) + 
for i &#x3E; 1. Then the set A = ~a(i) : i &#x3E; not k-automatic, but is
k-quastautomatic f or all k &#x3E; 2.
The sequence (a(i)) begins

1,3,39,331815,114126085737676800331815,...

Proof. First, we note the following observation. Suppose there exists an
infinite string w = * over Ek = {0,1,... , ~ 2013 1} such that all
but finitely many members s of a set S have the "prefix property", that
is, (s)’ is a prefix of w. Then = O(logn). To see this, note that in
this case we can write S = Sl U S2, where S, is finite and 82 has the prefix
property. To build an automaton that accepts all the base-k representations
of elements of 82 n ~0, n~, we simply create a linear chain of nodes, with
transitions between them labeled with the symbols of w. The accepting
states correspond to the members of S2, and of course we need a single dead
state in addition to handle the other transitions. The resulting automaton
has 1092 n + 0 (1) states.

Since Sl is finite, we can accept it with a finite automaton. The result
now follows because we can accept Sl U S2 using a direct product construc-
tion.
The construction of the sequence should now be clear. For bases

k &#x3E; 2, the sequence has the property that (a(i))’ is a prefix of (a(i + 1))~
provided i &#x3E; 1~ -1. Hence the observation of the previous two paragraphs
applies, and the automaticity of A is O (log n) for all k &#x3E; 2. Note, however,
that the constant in the big-0 depends on k.

To show that A is not k-automatic for any k, it suffices to show that
= oo. But this follows, since from the recurrence we have

a(i) &#x3E; i!. 0
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4. Automaticity of fixed points of homomorphisms

Let cp be a homomorphism from A* to A*. If there is a symbol a E 0
such that cp(a) = ax for some x E A*, then

is a fixed point of p; that is, cp(y) = y. If further cp is nonerasing (i.e.,
p(b) ~ E for all b E A), then y is infinite. If Icp(b)1 = k for all b E A,
then ~p is said to be k-uniform. A 1-uniform homomorphism is called a
coding. A well-known theorem of Cobham [5] states that is the

image (under a coding) of a fixed point of a k-uniform homomorphism if
and only if is k-automatic.

A natural problem is to determine the automaticity of fixed points of
non-uniform homomorphisms. In particular, are there fixed points of homo-
morphisms which are quasi-automatic, but not automatic? This question
was raised by the author in 1992 in the context of the fixed point 
of the homomorphism 1 - 121; 2 - 12221. The sequence (tn) and its
relationship to the classical Thue-Morse sequence was studied by Allouche
et al. [2]. Computation strongly suggests that (tn) is 2-quasiautomatic. For
example, = for 0  n  1864134, but not for n = 1864135.
Although we are not yet able to prove the 2-quasiautomaticity of (tn), it
is possible to prove that it is not 2-automatic [24]. (This last result was,
according to J.-P. Allouche (personal communication), also proved by M.
Mkaouar.)
We now give three examples. First, we exhibit a homomorphism whose

fixed point is 2-quasiautomatic, but not 2-automatic. Next, we give a ho-
momorphism whose fixed point is 2-automatic, but not k-quasiautomatic
for any odd k. Finally, we use some simple theorems of Diophantine
approximation to exhibit a homomorphism whose fixed point is not k-

quasiautomatic for any k &#x3E; 2.

THEOREM 11. Let = cba, = aa, and = b. Let (si)i&#x3E;o be the
fixed point of ’P beginning with c. Let X = f 2i + j : j &#x3E; 0~. Then

(a) so = c and si = b if and onlyifi E X;
(b) (si)i&#x3E;o is not 2-automatic.
(c) 2-quasiautomatic.

Proof. Part (a) follows easily from the observation that
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For part (b), it sufhces to show that L = F2 (s, b) is not a regular set. It
is easy to see that

Now a routine argument using the pumping lemma [15] completes the proof.
Finally, for part (c), it suffices to construct an automaton with output

with 0(log n) states that generates the terms of the sequence (si) correctly
for all i  n. We sketch the construction of such an automaton, leaving the
details to the reader. Let E:5n = If L is a language, we say that
L’ is an nth-order approximation to L if L fl E:5n = L’ n ~~n. The basic
idea of our construction is that it suffices to concentrate on Ll = ~’2(s, b)R
and create an automaton accepting a (1 + hog2 nJ )th order approximation
to LR. This is easy, since strings in LR begin with a short sequence of bits
which are followed by many zeroes and then a 1.

The state set consists of four parts. The first part is A = ~qw : w E
(0 + This part of the automaton forms a binary tree
that can handle all possible strings of length [log2 log2 nJ + 1. The tran-
sitions between states in the first part are given by 8(qw, e) = qwe for

Iwl :5 Llog2log2 nJ and e E {0?1}’ The output function for the states
in A is given by = c, r(qw) = b if X, and = a for all
other w.
The second part of the automaton consists of a linear chain of states,

B = fpi : 0  ’  L’092 The transitions between states in the second

part are given by b(pz, 0) = pi-i for 2  i  hog2 n ] , I b(pl,1) = po, and
6 (po, 0) = po. The output function for these states is = a for i ~ 0,
and r(po) = b.
The third part of the state set is C = fp’ : 0  i  L’092 a copy of

B. The output function for these states is r(p~) = b for all i.
The fourth and final part consists of a single dead state d. We set

b(d, e) = d for e E ~0,1~, and T(d) = a.
The start state is qe. We leave to the reader the task of specifying the

connections between the different groups of states, observing that transi-
tions 6(qw, 0) for L’092 log2 nj + 1 that are not self-loops go to a state
in C if [wR]2 E X, and otherwise go to a state in B. As an example,
the machine in Figure 1 computes (si) correctly for all i  28. The total
number of states needed is IAI + IBI + 1  6 log2 n.

Next, we exhibit a homomorphism whose fixed point is 2-automatic, but
has high k-automaticity for all odd k.

Define ~p(0) = 01; p(1) = 00, and consider the fixed point (p(i))i&#x3E;o
starting with 0. It is easy to see that p(i) = v2(i + 1) mod 2, where v2(n)
is the exponent of the highest power of 2 which divides n.
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FIGURE 1. Automaton computing s(i) for 0  i  256. The

input is the base-2 expansion of i, starting with the least
significant bit. The output is s(i). The states are labeled
with the name of the state, followed by a slash, followed
by the output associated with that state. All unmarked
transitions go to the dead state, labeled d/a.

We first give two simple lemmas:

LEMMA 12. Let be a sequence over a finite alphabet A, and sup-
pose that there exists a constants d such that for all r, a, b with r &#x3E; 2,
0  a, b  r, and a ~ b, there exists a non-negative integer m = 0(rd) such
that s(rm + a) s(rm + b) . Then = f2(nl/(d+l) k for all k &#x3E; 2,( s ) I ) J -

where the implied constant in the big-Q does not depend orc k.

Proof. Exactly the same as the proof of Lemma 3.

LEMMA 13. Suppose r is odd and 1  a  b  r. Therc there exists m such
that 0  m  4r and v2 (rm + a) fl v2 (rm + b) (mod 2).

Proof. Let b - a = 2C .t, where t is odd. Let m - (2c+l-b)r-l (mod 2~+2);
the definition is meaningful since r is odd. Then rm+b == (mod 2~+2),
so v2 (rm + b) = c + 1. On the other hand,

Since t is odd, we have + a) = c. Now 2c  r, so 2c+2  4r, and
0~tm.2~. *
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Now we can state and prove our theorem on the k-automaticity of 

THEOREM 14. If p(i) = v2(i + 1) mod 2, then is 2-automatic. If
k &#x3E; 3 is odd, then A(n) = P(nl/2 Ik)p

Proof. The fact that p is 2-automatic follows from the fact that the defining
homomorphism p is 2-uniform; see [5].
To get the automaticity bound for odd l~, simply combine Lemmas 12

and 13.

As a corollary, we can obtain a lower bound for the automaticity of the
Thue-Morse sequence in all odd bases. Let sk (i) denote the sum of the digits
of i when expressed in base J~. Then the Thue-Morse sequence is
defined as follows: t(i) = s2 (z) mod 2.

It is easy to see that the Thue-Morse sequence is 2-automatic. However,
we have the following

THEOREM 15. Let k &#x3E; 3 be an odd integer. Then = O(nl/4/k1/2).

Proof. Our proof is based on the following identity, which is well-known
and easily proved by considering the base-2 expansion of i + 1:

Taking this modulo 2, we obtain

where p is the function defined in Theorem 14.
Let M~ _ be a DFAO computing t(i) for all i with

0  i  n, and assume that ~In has states. Now consider and
create a slightly modified automaton M’ = (Q’, ~~, b’, qo, a, T’) such that
on input w with [W’lk = i, M’ computes the shifted sequence t(i + 1) for
0  i  n. This can be achieved as follows: define Q’ = Q x ~0,1}, where
the second component of every state denotes a carry to be propagated, and
let qo = [qo,1]. Define

Also define r’([~0]) = r(q) and T’([~l]) = T(S(q,1)). We leave it to
the reader to verify that the construction does indeed compute the shifted
sequence. Clearly IQ’I = 21QI.
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We now implement equation (2) by forming the direct product of the
automata and M’, and using an output function that computes the
function p(i) correctly for all i with 0  i  n. It follows that

Since ~p (n) = O(n1/2/k), the desired result follows.

We now turn to the third problem: finding a fixed point of a homomor-
phism of high automaticity in all bases. Our methods are based on the

theory of Diophantine approximation [4] and Sturmian words (also called
characteristic words or Christoffel words). For a survey on Sturmian words,
see [3]. First, we introduce some notation.

If a is a real irrational number, we can expand it uniquely as an infi-
nite continued fraction, a = [ao, a1, a2, ... ]. The ai are called the partial
quotients of a. We say the partial quotients of a are bounded by B if
ai  B for all 2 &#x3E; 1. (For a survey on bounded partial quotients, see [25].)
We define pn/qn = [ao, a1, ... , an], and call pn/qn the nth convergent to a.
We define a~, the nth complete quotient, to be an+ 1, ... ] . We define
~a~ = a - the fractional part of a, and = min(a - [a] - a),
the distance to the nearest integer.
We then have

LEMMA 16. Let a be an irrational real number, 0  a  1, with partial quo-
tients bounded by B. Let the numbers. 0, ~a~, ~2a~, ... , Ital, 1 be arranged
in ascending order and let them be labeled ,Pt+t. Then

Proof. Let be the convergents to a. It is a consequence of the
three-distance theorem (also called Steinhaus’ conjecture) that

where  qk. See, for example, [18, Exercise 6.4.8]. (Also see, for
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example, [29, 30, 28].) Now we know

and the result follows.

Our next lemma is a version of the inhomogeneous approximation theo-
rem. Unlike the traditional versions of this theorem, the requirement that
a has bounded partial quotients allows us to bound the size of the integers
that effect the desired approximation.

LEMMA 17. Let a be an irrational real numbers, 0  a  1, with partial
quotients bounded by B. Let 0  ,Q  1 be a real number. Then for all
N &#x3E; 1 there exist integers p, q with 0   (B + 2)N2 such that

N

Proof. By Dirichlet’s theorem (see, e.g., [4, Theorem I]), there exist integers
n, r with 1  n  N and 0  r  N, such that rl [  1/N. Choose k
such that  N  qk, where are the convergents to a. Then,
as in the previous theorem,

Without loss of generality, assume na - r &#x3E; 0, and set p’ = L8/(na - r) J .
Then 0  p’  (B + 2)N, and 0  # - (na - r)p’  1/N. Hence Ip’na -
p’r - ,81  1/N. Now set p = p’n, q = p’r; then p, Iql  (B + 2)V. N
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The next lemma shows that Sturmian sequences corresponding to real
numbers with bounded partial quotients have the property that for all pairs
of subsequences of the form with c ~ d, there is a small
witness i = m that shows that these subsequences are different.

LEMMA 18. Let 0  a  1 be an 2rrational reat number with partial quo-
tients bounded b y B. Define the Sturmian word by 8i = L(i +

for i &#x3E; 1. Let r &#x3E; 2 be an integer. Then for all integers c, d
with 0  c, d  r, c ~ d, there exists an integer m with 0  m  4(B+2)3r3
such that 8rm+c 7- 

Proof. We use the "circular representation" for intervals in [0, 1), identify-
ing the point 0 with the point 1, and considering each point modulo 1. Thus,
for example, the interval we write as (2/3,1/3) is really (2~3,1) U (o,1/3).
See, for example, [11, §3.8, §23.2].

It is easy to see that si = 1 - {ia~ E [1 - a,1). Hence if we could find
m such that

it would follow that s,,,+, 0 
Now

We have + A(Id) 1, where p is Lebesgue measure; hence these
intervals have nontrivial intersection whenever c # d. In fact, the endpoints
of these intervals are precisely of the form 1-ia} for some i with 0  i  r.

Let po, pi , ... , denote the points 0, fal, ~2a~, ... , arranged
in increasing order. It follows that and by
Theorem 16, we know this quantity is bounded below by B 12 r(B+2)r
Now let m’ be the midpoint of the interval I, n Id. To find m with

Srm+d, it suffices to find integers m, t with

By a folklore result (see, e.g., [23]), since a has partial quotients bounded
by B, we know that ra has partial quotients bounded by r(B + 2). By
Theorem 17, it follows that such an m exists with m  r(B + 2)(2(B +
2)r)2 = 4(B + 2)3r3. N
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THEOREM 19. Let 0  a  1 be an irrational real number with bounded

partial quotients. Let si = L(i + 1)aj - LiaJ for i _&#x3E; 1. Then for all k &#x3E;_ 2,
the k-automaticity of the sequence (Si)i21 is O(nl/4/k).

Proof. Combine Lemmas 12 and 18.

It now follows from this result, for example, that the fixed point of the
homomorphism 1 ~ 10, 0 - 1 is not k-quasiautomatic. This follows
because this fixed point can be obtained as a Sturmian sequence by setting
a = (J5 - 1)/2. It is known for which a the corresponding Sturmian
sequence is the fixed point of a homomorphism; see [6].

5. Diversity
As we have seen in Section 1, a sequence is k-automatic if and only if its

k-kernel (defined in Eq. (1)) is finite. The most spectacular way a sequence
can fail to be k-automatic is for all the sequences in the k-kernel to be

distinct; we call such a sequence strongly Results of the previous
sections suggest that the property of strong diversity and related properties
deserve further study.
We make the following definitions:

DEFINITIONS 20. A sequence weakly k-&#x26;verse if the p(k) sub-
sequences gcd(a, k) =1,1  a  l~~ are all distinct. A
sequence is weakly diverse if it is weakly k-dzverse for all 1 &#x3E; 2.
A sequence (s(I))j&#x3E;o is if the k subsequences {(s(ki + 

0  a  k} are all distinct. A sequence is diverse if it is k-diverse for all
k &#x3E; 2.
A sequence strongly k-diverse if the subsequences ( (s(k’ . j +

a))i&#x3E;o : 0  a  01 are all distinct. A sequence is strongly diverse
if it is strongly k-diverse for all l~ &#x3E; 2.
A sequence is maximally diverse if the subsequences + a) )j&#x3E;o :

0  a  k, 1~ &#x3E; 1} are all distinct.
The results of previous sections can now be rephrased in the language

of diversity. In Section 2 we showed that the characteristic sequences of
the primes and squarefree numbers are weakly diverse. In Section 4 we
showed that the sequence (v2(i + 1))i&#x3E;o is k-diverse for all odd 1~, and we
also showed that if a is a real number with bounded partial quotients, then

is diverse.
We now give an example of a sequence that is strongly k-diverse for

k = 2. Consider the set X = {2~ + j : j &#x3E; 0} introduced in Theorem 11,
and let be the characteristic sequence of this set. Then we have
the following theorem:
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THEOREM 21. The sequence strongly 2-diverse.

Proof We must show that, given any four integers j, k, a, b 0,
0  a  2~, 0  b  2k, and (j, a) 54 (k, b), there exists n &#x3E; 0 with

C23n+a 0 Without loss of generality, assume j  k and if j = k,
then a  b. Let no = and set n = 2noo23_;+a + no. Then + a =

+ no 2~ + a = 2’ + i for i = no 2~ + a. Hence C23n+a = 1.
It remains to show = 0. To see this, it suffices to show that

To prove the first inequality, it suffices to show that

There are three cases to examine.

(i) If k = j, then this inequality follows from the assumption that a  b.

(ii) + 1, then we must show a - b + 1  = no2k-l.
Since a  2j = 2k-17 it suffices to show 2k-l  no (2~ - 2k-1) = no2k-l,
which is true since no &#x3E; 2.

(iii) If k &#x3E; j + 2, then we must show l~ - j + 2i  no (2 k - 2~). Now
l~ - j  2 k  2 k, and 2i  2k - 2 ~ 2j provided 2k &#x3E; 3 ~ 2j, which is true

+ 2. Adding these inequalities, we find 1~ - j + 2i  2 (2k - 2~ ) 
no (2k - 2j ), as desired.
To prove the second inequality, we must show

There are two cases to consider.

(i) If 1~ = j, we must show b - a  2noo2j+a + 1. Since b  2k, it suffices
to show 2k  2no + 1 and for this it suffices to take no &#x3E; k.

(ii) If k &#x3E; j, then no(2 k -2j)+j-k+b-a  no(2 k -2j)+2 k  (no+1)2 k
Thus it suffices to show (no + 1)2k  2n°. Choose no &#x3E; 2k+r. Then

 2 no provided no &#x3E; 2, which it is, since no &#x3E; 2 k+l
0

We now show the following:

THEOREM 22. Almost all sequences over (0, 1) are maximally diverse.
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Proof. Since the set of pairs ~(1~, a) : 0  a  1~, l~ &#x3E; 1} is countably
infinite, it suffices to show that if (k, a) ~ (1, b), then the set of sequences

for which s(ki + a) = s(li + b) for all i &#x3E; 0 is of measure zero.

Let g = If gfb - a, or if k = l and and a ~ b, then the linear
progressions (ki + and + b)j&#x3E;o contain no terms at all in common.
Therefore the subsequences and are independent
and hence the probability that they are identical is 0.

Otherwise, assume 1~ a. In order that (k/g)i - (t/g) j =
(b - a)/g, we must have i = (l/g)i’ + io, and j = + jo, for some
constants io, jo. Since k :A 1, at least one of llg, k/g must be different from
1. Without loss of generality, assume it is Choose a constant il ~ io;
then the set

contains no terms in common with

Hence the subsequences io) + and io) +
are independent, and so the probability that they are identical is

zero.

Although almost all 0,1-sequences are maximally diverse, it is not so easy
to prove that any individual sequence has the maximally diverse property.
We now give some examples of maximally diverse sequences.

Let a be a real irrational number with 0  a  1. Recall the definition
of the Sturmian infinite word from Section 4:

THEOREM 23. All Sturmian sequences are maximally diverse.

Proof. We must show that given j, k &#x3E; 1, 0  a  j, 0  b  k, and
(j, a) # (k, b), there exists an n &#x3E; 0 such that Skn+b-

It is easy to see that sn =1 4==~ ~na} E [1- a, 1). Hence it suffices to
exhibit n such that

First, let us consider the case j = k. We have In this case, we
have = 1, and since b, these intervals must have nontrivial
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intersection. Define I = Ia nIb; then p(1) &#x3E; 0. It now suffices to choose n
such that ~ jna} E I. Such an n exists by Kronecker’s theorem (e.g., [11,
Theorem 438]).

Second, let us consider the l~. Without loss of generality, let us
assume j  k. Define p(I), the projection of an ordinary interval I, to be
p (I ) = E I } . Thus, for example, p([e,7r)) = [e - 2, ~r - 3).

Consider Ia, and let its left and right endpoints be t and u respectively.
If h "wraps around" 0, then choose u E [l, 2) so that p([t, u)) = Ia. Define
Io and 11 

I claim that p(Ii) &#x3E; For if Ia contained a subinterval of measure
&#x3E; then 7i = [0,1), and so =1 &#x3E; Otherwise,Ia contains
no subinterval of measure so ti(I,,)  In this case, 

&#x3E; 

Now + =1. Hence tc(h) + &#x3E; 1 and so II and Ib have
nontrivial intersection. Let I, n 76; then &#x3E; 0. By our definition
of Io and I,, there is an interval 13 g Io such that if 13 = [v, w], then
[kv, kw] C 12. Also, since 13 g Io, it is clear that Uv, jwl 9 1.. Again, by
Kronecker’s theorem, we can find n such that inal E 13. For this n we

have ~ jna} E 7~ and ~kna} E 12 C Ib, as desired.
If a sequence is diverse, then we know that for all r, a, b with

0  a, b  r and b, there exists an m such that d(rm+a) i= d(rm+ b).
If there is a function f such that m = 0 ( f (n) ), then f (n) is said to be
a diversity measure for d. In a previous section we showed, for example,
that the diversity measure for Sturmian sequences corresponding to real
numbers with bounded partial quotients is 0(r3).
We now show that the diversity measure for almost all sequences is low:

THEOREM 24. Almost all binary sequences have the property that for all
r &#x3E; 1, and for all a, b with 0  a, b  r and a ~ b, there exists m = O(log r)
such that Srm+a 0 srm+b .

Proof. By Theorem 22, we may restrict our attention to sequences that
are diverse.
We have

It follows that
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Choose f (r) - r4log2rl; then r~ 21~2~f~r~ = 0(r-2). (Here f = 0(g)
means f = 0(g) and g = 0( f ).) Then r~ 21~ 2-f ~r~ converges. Hence
by the Borel-Cantelli lemma, with probability 1 at most finitely many of
the events of the form (3) occur. That is, with probability 1, the event

V pairs (a, b) 3m  r 4log2 r~ such that Srm+b

occurs all but finitely many times. Hence with probability 1 we have m =
0(log r).

Interestingly enough, I do not know a single expticit example of a diverse
sequence with diversity measure 0 (log n).
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