JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANTANAS LAURINČIKAS

Limit theorem in the space of continuous functions for the Dirichlet polynomial related with the Riemann zeta-funtion

Journal de Théorie des Nombres de Bordeaux, tome 8, n° 2 (1996), p. 315-329

http://www.numdam.org/item?id=JTNB_1996__8_2_315_0

© Université Bordeaux 1, 1996, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Limit Theorem in the space of continuous functions for the Dirichlet polynomial related with the Riemann zeta-funtion

par Antanas LAURINČIKAS*

RÉSUMÉ. Dans cet article on prouve un théorème limite dans l'espace des fonctions continues pour le polynôme de Dirichlet

$$\sum_{m \leq T} rac{d_{\kappa_T}(m)}{m^{\sigma_T + it}},$$

où $d_{\kappa_T}(m)$ sont les coefficients du développement en série de Dirichlet de la fonction $\zeta^{\kappa_T}(s)$ dans le demi-plan $\sigma>1,\ \kappa_T=(2^{-1}\log l_T)^{-\frac{1}{2}},\ \sigma_T=\frac{1}{2}+\frac{\log^2 l_T}{l_T},\ l_T>0,\ l_T\leq \log T$ et $l_T\to\infty$ lorsque $T\to\infty$.

ABSTRACT. A limit theorem in the space of continuous functions for the Dirichlet polynomial

$$\sum_{m \leq T} \frac{d_{\kappa_T}(m)}{m^{\sigma_T + it}},$$

where $d_{\kappa_T}(m)$ denote the coefficients of the Dirichlet series expansion of the function $\zeta^{\kappa_T}(s)$ in the half-plane $\sigma>1, \kappa_T=(2^{-1}\ln l_T)^{-1/2},\ \sigma_T=\frac{1}{2}+\frac{\ln^2 l_T}{l_T}$ and $l_T>0,\ l_T\leq \ln T$ and $l_T\to\infty$ as $T\to\infty$, is proved.

Let s be a complex variable and $\zeta(s)$, as usual, denote the Riemann zeta-function. To study the distribution of values of the Riemann zeta-function the probabilistic methods can be used, and the obtained results usually are presented as the limit theorems of probability theory. The first theorems of this type were obtained in [1],[2], and they were proved in [3]-[5] using other methods. In modern terminology we can formulate it as follows. Let

Manuscrit reçu le 20 octobre 1993

^{*}This paper has been written during the author's stay at the University Bordeaux I in the framework of the program "S&T Cooperation with Central and Eastern European Countries".

C be the complex space and let $\mathcal{B}(S)$ denote the class of Borel sets of the space S. Let meas $\{A\}$ be the Lebesgue measure of the set A and

$$\nu_T^t(...) = \frac{1}{T} \text{meas}\{t \in [0, T], ...\}$$

where in place of dots we write the conditions which are satisfied by t. We define the probability measure

$$P_T(A) = \nu_T^t(\zeta(\sigma + it) \in A), \quad A \in \mathcal{B}(\mathbf{C})$$

THEOREM A. For $\sigma > \frac{1}{2}$ there exists a probability measure P on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ such that P_T converges weakly to P as $T \to \infty$.

More general results were obtained in [6]. Let M denote the space of functions meromorphic in the half-plane $\sigma > \frac{1}{2}$, equipped with the topology of uniform convergence on compacta. Define the probability measure

$$Q_T(A) = \nu_T^{\tau}(\zeta(s+i\tau) \in A), \quad A \in \mathcal{B}(M).$$

THEOREM B. There exists a probability measure Q on $(M, \mathcal{B}(M))$ such that Q_T converges weakly to Q as $T \to \infty$.

Note that the explicit form of the measure Q can be indicated, and, obviously, Theorem A is a corollary of Theorem B.

The situation is more complicated when σ depends on T and tends to $\frac{1}{2}$ as $T \to \infty$, or $\sigma = \frac{1}{2}$. It turns out that in this case some power norming is necessary. Let $l_T > 0$ and let l_T tend to infinity as $T \to \infty$, or $l_T = \infty$. We take

$$\tilde{\sigma}_T = \frac{1}{2} + \frac{1}{l_T}, \quad \kappa = \kappa_T = \begin{cases} (2^{-1} \log l_T)^{-1/2}, & l_T \le \log T, \\ (2^{-1} \log \log T)^{-1/2}, & l_T \ge \log T. \end{cases}$$

The case $l_T = \infty$ corresponds to $\tilde{\sigma}_T = \frac{1}{2}$.

The function

$$w(au,k) \! \stackrel{\mathrm{def}}{=} \int\limits_{\mathbf{C} \setminus \{0\}} \mid s \mid^{i au} e^{ik\mathrm{arg}s} \, dP \quad au \in \mathbb{R}, k \in \mathbf{Z},$$

is called the characteristic transform of the probability measure P on the space $(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ [7]. The lognormal probability measure on $(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ is defined by the characteristic transform

$$w(\tau, k) = \exp\left\{-\frac{\tau^2}{2} - \frac{k^2}{2}\right\}.$$

THEOREM C. The probability measure

$$\nu_T^t(\zeta^{\kappa_T}(\tilde{\sigma_T}+it)\in A), \quad A\in\mathcal{B}(\mathbf{C}),$$

converges weakly to the lognormal probability measure as $T \to \infty$.

Here if $\zeta(s) \neq 0$, $a \in \mathbb{R}$, then $\zeta^a(s)$ is understood as $\exp\{a \log \zeta(s)\}$ where $\log \zeta(s)$ is defined by continuous displacement from the point s=2 along the path joining the points 2, 2+it and $\sigma+it$.

When $\tilde{\sigma}_T = \frac{1}{2}$ Theorem C was proved by A.Selberg (unpublished), see also [8], and for different form of l_T , it was obtained in [8]–[10], [5].

Now it arises the problem to obtain some results of the kind of Theorem C in the space of continuous functions.

Let $C_{\infty} = C \cup \{\infty\}$ be the Riemann sphere and let $d(s_1, s_2)$ be a metric on C_{∞} given by the formulae

$$d(s_1, s_2) = \frac{2 |s_1 - s_2|}{\sqrt{1 + |s_1|^2} \sqrt{1 + |s_2|^2}}, \quad d(s, \infty) = \frac{2}{\sqrt{1 + |s|^2}}, \quad d(\infty, \infty) = 0.$$

Here $s, s_1, s_2 \in \mathbb{C}$. This metric is compatible with the topology of \mathbb{C}_{∞} . Let $C(\mathbb{R}) = C(\mathbb{R}, \mathbb{C}_{\infty})$ denote the space of continuous functions $f : \mathbb{R} \to \mathbb{C}_{\infty}$ equipped with the topology of uniform convergence on compacta. In this topology, sequence $\{f_n, f_n \in C(\mathbb{R})\}$ converges to the function $f \in C(\mathbb{R})$ if

$$d(f_{n(t)}, f(t)) \to 0$$

as $n \to \infty$ uniformly in t on compact subsets of \mathbb{R} .

The functional analogue of the probability measure in Theorem C is the measure

(1)
$$\nu_T^{\tau}(\zeta^{\kappa_T}(\tilde{\sigma}_T + it + i\tau) \in A), \quad A \in \mathcal{B}(C(\mathbb{R})).$$

Does this measure converge weakly as $T \to \infty$ to some probability measure on $(C(\mathbb{R}), \mathcal{B}(C(\mathbb{R})))$? At this moment this question is open and it seems to be very difficult.

In the proof of Theorem C an inportant role is played by the Dirichlet polynomial

$$S_u(s) = \sum_{m \le u} \frac{d_{\kappa}(m)}{m^s}$$

where $d_{\kappa}(m)$ denote the coefficients of the Dirichlet series expansion of the function $\zeta^{\kappa}(s)$ in the half-plane $\sigma > 1$ (see [11], [12]). Therefore the aim of this paper is to prove the limit theorem in the space of continuous functions for $S_u(s)$. This theorem will be the first step to study the weak convergence of the probability measure (1).

Now let
$$l_T \leq \log T$$
, $\sigma_T = \frac{1}{2} + \frac{\log^2 l_T}{l_T}$, and let

$$P_{T,S_u}(A) = \nu_T^{\tau}(S_u(\sigma_T + it + i\tau) \in A), \quad A \in \mathcal{B}(C(\mathbb{R})).$$

Moreover we suppose that

$$l_{T+U} - l_T = \frac{BU}{T}$$

for all U > 0 as $T \to \infty$. Here B denotes a number (not always the same) which is bounded by a constant.

THEOREM There exists a probability measure P on $(C(\mathbb{R}), \mathcal{B}(C(\mathbb{R})))$ such that P_{T,S_T} converges weakly to P as $T \to \infty$.

Proof of the theorem is based on the following probability result. Let S_1 and S_2 be two metric spaces, and let $h: S_1 \to S_2$ be a measurable function. Then every probability measure P on $(S_1, \mathcal{B}(S_1))$ induces on $(S_2, \mathcal{B}(S_2))$ the unique probability measure Ph^{-1} defined by the equality $Ph^{-1}(A) = P(h^{-1}A), A \in \mathcal{B}(S_2)$.

Now let h and h_n be the measurable functions from S_1 into S_2 and

$$E = \{x \in S_1 : h_n(x_n) \underset{n \to \infty}{\not\to} h(x) \text{ for some } x_n \underset{n \to \infty}{\to} x\}.$$

LEMMA1. Let P and P_n be the probability measures on $(S_1, \mathcal{B}(S_1))$. Suppose that P_n converges weakly to P as $n \to \infty$ and that P(E) = 0. Then the measure $P_n h_n^{-1}$ converges weakly to Ph^{-1} as $n \to \infty$.

Proof. This lemma is Theorem 5.5 from [13].

Let γ denote the unit circle on complex plane, that is $\gamma = \{s \in \mathbb{C} : |s| = 1\}$. We put

$$\Omega = \prod_{p} \gamma_{p}$$

where $\gamma_p = \gamma$ for each prime p. With the product topology and pointwise multiplication the infinite-dimentional torus Ω is a compact Abelian topological group. Let P be a probability measure on $(\Omega, \mathcal{B}(\Omega))$.

The Fourier transform $g(\underline{k})$ of the measure P is defined by the formula

$$g(\underline{k}) = \int_{\Omega} \prod_{p} x_{p}^{k_{p}} dP.$$

Here $\underline{k} = (k_2, k_3, ...)$ where only a finite number of integers k_p are distinct of zero, and $x_p \in \gamma$.

LEMMA 2. Let $\{P_n\}$ be a sequence of probability measures on $(\Omega, \mathcal{B}(\Omega))$ and let $\{g_n(\underline{k})\}$ be a sequence of corresponding Fourier transforms. Suppose that for every vector \underline{k} the limit $g(\underline{k}) = \lim_{n \to \infty} g_n(\underline{k})$ exists. Then there exists a probability measure P on $(\Omega, \mathcal{B}(\Omega))$ such that P_n converges weakly to P as $n \to \infty$. Moreover, $g(\underline{k})$ is the Fourier transform of P.

Proof. The lemma is the special case of the continuity theorem for compact Abelian group, see, for example, [14].

Let

$$Q_T(A) = \nu_T^{\tau}((p_1^{i\tau}, p_2^{i\tau}, ...) \in A), \quad A \in \mathcal{B}(\Omega).$$

LEMMA 3. The probability measure Q_T converges weakly to the Haar measure m on $(\Omega, \mathcal{B}(\Omega))$ as $T \to \infty$.

Proof. The Fourier transform $g_T(\underline{k})$ of the measure Q_T is given by

$$g_T(\underline{k}) = \int_{\Omega} \prod_{p} x_p^{k_p} dQ_T = \frac{1}{T} \int_{0}^{T} \prod_{j=1}^{\infty} p_j^{ik_j \tau} d\tau =$$

$$= \begin{cases} 1 & \text{if } \underline{k} = \underline{0}, \\ \exp\{iT \sum_{j=1}^{\infty} k_j \log p_j\} - 1 \\ \frac{iT \sum_{j=1}^{\infty} k_j \log p_j} & \text{if } \underline{k} \neq \underline{0}. \end{cases}$$

Here $x_p \in \gamma, \underline{k} = (k_1, k_2, ...)$. By definition of the Fourier transform of probability measure on $(\Omega, \mathcal{B}(\Omega))$, only a finite number of k_j are distinct from zero. Since the logarithms of prime numbers are linearly independent over the field of rational numbers, we find that

$$g_T(\underline{k})
ightarrow \left\{egin{array}{ll} 1 & if \underline{k} = \underline{0}, \ 0 & if \underline{k}
eq \underline{0} \end{array}
ight.$$

as $T \to \infty$. In view of Lemma 2, this proves the lemma.

We define the function $h_T: \Omega \to C(\mathbb{R})$ by the formula

(3)
$$h_T(t; e^{i\eta_1}, e^{i\eta_2}, \ldots) = \sum_{k \le T} \frac{d_{\kappa}(k)}{k^{\sigma_T + it} \prod_{p_j^{\alpha_j} \parallel k} e^{i\alpha_j \eta_j}}.$$

Here $p^{\alpha} \parallel k$ means that $p^{\alpha} \mid k$ but $p^{\alpha+1} \nmid k$. Then, clearly,

(4)
$$S_T(\sigma_T + it + i\tau) = h_T(t; p_1^{i\tau}, p_2^{i\tau}, ...).$$

Let, for brevity,

$$h_T(t; e^{i\tau_1}, e^{i\tau_2}, \ldots) = S_T(\sigma_T + it + i\underline{\tau}),$$

and let

$$Z_{nk}(it,\underline{\tau}) = S_{n+k}(\sigma_{n+k} + it + i\underline{\tau}) - S_n(\sigma_n + it + i\underline{\tau}).$$

Let K be a compact subset of \mathbb{R} . For every $\epsilon > 0$ we define the set A_{nk}^{ϵ} by

$$A_{nk}^{\epsilon}(K) = \{(e^{i\tau_1}, e^{i\tau_2}, \dots) : \sup_{t \in K} | Z_{nk}(it, \underline{\tau}) | \ge \epsilon \}$$

and we put

$$A_k^{\epsilon}(K) = \bigcap_{l=1}^{\infty} \bigcup_{n>l} A_{nk}^{\epsilon}.$$

LEMMA 4. $m(A_k^{\epsilon}(K)) = 0$ for every $\epsilon > 0, K$, and $k \in \mathbb{N}$.

Proof. By the Chebyshev inequality

(5)
$$m(A_{nk}^{\epsilon}(K)) \leq \frac{1}{\epsilon^2} \int_{\Omega} \sup_{t \in K} |Z_{nk}(it, \underline{\tau})|^2 dm.$$

Using the Cauchy formula, we have that

$$Z_{nk}^2(it,\underline{\tau}) = \frac{1}{2\pi i} \int_{t} \frac{Z_{nk}^2(z,\underline{\tau})}{z - it} dz$$

where L denotes the restangle, enclosing the set $iK = \{ia, a \in K\}$, with the sides $\sigma = -\frac{1}{l_{n+k}} + it$, $\sigma = \frac{1}{l_{n+k}} + it$, and with two other sides parallel

to the real axis. Moreover, we suppose that the distance of L from the set iK is $\geq \frac{1}{l_{n+k}}$. From this equality it follows that

$$\sup_{t\in K} |Z_{nk}(it,\underline{\tau})|^2 = Bl_{n+k} \int_{L} |Z_{nk}(z,\underline{\tau})|^2 |dz|.$$

Hence, having in mind the inequality (5), we obtain that

(6)
$$m(A_{nk}^{\epsilon}) = \frac{Bl_{n+k}}{\epsilon^2} \int_{L} |dz| \int_{\Omega} |Z_{nk}(z,\underline{\tau})|^2 dm =$$
$$= \frac{Bl_{n+k} |L|}{\epsilon^2} \sup_{z \in L} \int_{\Omega} |Z_{nk}(z,\underline{\tau})|^2 dm$$

where |L| is the length of L. From the definitions of $Z_{nk}(z,\underline{\tau})$ and $S_n(\sigma_n + z + i\tau)$ we have that, for z = u + iv,

$$\begin{split} Z_{nk}(z,\underline{\tau}) &= \sum_{l \leq n+k} \frac{d_{\kappa_{n+k}}(l)}{l^{\sigma_{n+k}+u+iv} \prod\limits_{p_j^{\alpha_j} \parallel l} e^{i\alpha_j \tau_j}} - \sum_{l \leq n} \frac{d_{\kappa_n}(l)}{l^{\sigma_n+u+iv} \prod\limits_{p_j^{\alpha_j} \parallel l} e^{i\alpha \tau_j}} = \\ &= \sum_{n < l \leq n+k} \frac{d_{\kappa_{n+k}}(l)}{l^{\sigma_{n+k}+u+iv} \prod\limits_{p_j^{\alpha_j} \parallel l} e^{i\alpha_j \tau_j}} + \\ &+ \sum_{l \leq n} (\frac{d_{\kappa_{n+k}}(l)}{l^{\sigma_{n+k}+u+iv} \prod\limits_{p_j^{\alpha_j} \parallel l} e^{i\alpha_j \tau_j}} - \frac{d_{\kappa_n}(l)}{l^{\sigma_n+u+iv} \prod\limits_{p_j^{\alpha_j} \parallel l} e^{i\alpha_j \tau_j}}) \stackrel{def}{=} V + W. \end{split}$$

Since

$$|a+b|^2 \le 2(|a|^2 + |b|^2),$$

hence we find that

(7)
$$|Z_{nk}(z,\tau)|^2 \le 2(|V|^2 + |W|^2).$$

The properties of the Haar measure m imply the equality

$$\int_{\Omega} |V|^{2} dm = \sum_{n < l \le n+k} \frac{d_{\kappa_{n+k}}^{2}(l)}{l^{2(\sigma_{n+k}+u)}} + \sum_{\substack{n < l_{1} \le n+k \\ n < l_{2} \le n+k \\ l_{1} \neq l_{2}}} \frac{d_{\kappa_{n+k}}(l_{1}) d_{\kappa_{n+k}}(l_{2})}{l^{\sigma_{n+k}+u+iv} l_{2}^{\sigma_{n+k}+u-iv}} \times \int_{\Omega} \frac{\prod_{\substack{p_{j}^{\alpha_{j}} || l_{2} \\ \Omega}} e^{i\alpha_{j}\tau_{j}}}{\prod_{\substack{p^{\alpha_{j}} || l_{2} \\ \Omega}} e^{i\alpha_{j}\tau_{j}}} dm = \sum_{n < l \le n+k} \frac{d_{\kappa_{n+k}}^{2}(l)}{l^{2(\sigma_{n+k}+u)}}.$$

By a similar manner we find that

(9)
$$\int_{\Omega} |W|^2 dm = \sum_{l \le n} \left(\frac{d_{\kappa_{n+k}}(l)}{l^{\sigma_{n+k}+u}} - \frac{d_{\kappa_n}(l)}{l^{\sigma_n+u}} \right)^2.$$

From the definition of the contour L it follows that

$$(10) -\frac{1}{l_{n+k}} \le u \le \frac{1}{l_{n+k}}$$

for $z = u + iv \in L$. Then (8) together with (2) and the well-known estimate

$$\sum_{m \le x} \frac{1}{m} = \log x + \gamma_0 + \frac{B}{x},$$

where γ_0 is the Euler constant, yields

$$\int_{\Omega} |V|^2 dm = Bn^{-\frac{2\log^2 l_{n+k} - 1}{l_{n+k}}} \sum_{n < l \le n+k} \frac{1}{l} = Be^{\frac{-\log n \log^2 l_n}{l_n}} \left(1 + \frac{Bk}{n}\right) \times e^{-\frac{\log n \log^2 l_n}{l_n}} \left(1 + \frac{Bk}{n}\right) = e^{-\frac{\log n \log n}{l_n}} \left(1 + \frac{Bk}{n}\right) = e^{-\frac{\log n$$

(11)
$$\times \left(\log \frac{n+k}{n} + \frac{B}{n}\right) = \frac{Bk}{n}e^{-c_1} \frac{\log n \log^2 l_n}{l_n}$$

for $n \geq n_0$. Here we have used the inequality $0 < d_{\kappa_{n+k}}(l) < 1$, $n \geq n_0$, which follows trivially from the multiplicativity of $d_{\kappa_{n+k}}(m)$ and from the inequality $0 < d_{\kappa_{n+k}}(p^{\alpha}) < 1$, $n \geq n_0$, implied by the formula [11], [12]

(12)
$$d_{\kappa}(p^{\alpha}) = \frac{\kappa(\kappa+1)\dots(\kappa+\alpha-1)}{\alpha!}.$$

From the asymption on l_T we deduce that, for $n \geq n_0$,

(13)
$$\sigma_{n+k} = \sigma_n (1 + \frac{Bk}{n}),$$

$$\log l_{n+k} = \log \left(l_n + \frac{Bk}{n} \right) = \log l_n \left(1 + \frac{Bk}{nl_n} \right) =$$

$$= \log l_n + \frac{Bk}{nl_n} = \log l_n \left(1 + \frac{Bk}{nl_n \log l_n} \right).$$

Thus,

$$\kappa_{n+k} = (2^{-1} \log l_{n+k})^{-\frac{1}{2}} = \kappa_n \left(1 + \frac{Bk}{n l_n \log l_n} \right)^{-\frac{1}{2}} =$$

$$= \kappa_n \left(1 + \frac{Bk}{n l_n \log l_n} \right) \stackrel{\text{def}}{=} \kappa_n (1 + r_{nk}).$$

Consequently, in view of (12), for $n \ge n_0$,

$$d_{\kappa_{n+k}}(p^{\alpha}) = \frac{\kappa_n(1+r_{nk})(\kappa_n(1+r_{nk})+1)\dots(\kappa_n(1+r_{nk})+\alpha-1)}{\alpha!} =$$

$$= \frac{\kappa_n(1+r_{nk})(\kappa_n+1)\left(1+\frac{\kappa_n r_{nk}}{\kappa_n+1}\right)\dots(\kappa_n+\alpha-1)\left(1+\frac{\kappa_n r_{nk}}{\kappa_n+\alpha-1}\right)}{\alpha!} =$$

$$= d_{\kappa_n}(p^{\alpha})\prod_{j=1}^{\alpha}\left(1+\frac{Br_{nk}}{j}\right) =$$

$$= d_{\kappa_n}(p^{\alpha})(1+Br_{nk}\log\alpha).$$

Hence, for $m \leq n$,

$$d_{\kappa_{n+k}}(m) = \prod_{p^{\alpha} \parallel m} d_{\kappa_{n+k}}(p^{\alpha}) =$$

$$= d_{\kappa_n}(m) = \prod_{p^{\alpha} \parallel m} (1 + Br_{nk} \log \alpha) =$$

$$= d_{\kappa_n}(m) \exp\{Br_{nk} \sum_{p^{\alpha} \parallel m} \log \alpha\} =$$

$$= d_{\kappa_n}(m) \exp\{Br_{nk} \log \log n \sum_{p^{\alpha} \parallel m} 1\} =$$

$$= d_{\kappa_n}(m) \exp\{Br_{nk} \log \log n \log n\} =$$

$$= d_{\kappa_n}(m)(1 + Br_{nk} \log \log n \log n).$$
(14)

Therefore, from (9), (13) and (14) we have that

(15)
$$\int_{\Omega} |W|^2 dm = \frac{Bk^2 \log^2 n \log^2 \log n}{n^2 l_n^2 \log^2 l_n} \sum_{l \le n} \frac{d_{\kappa_n}^2(l)}{l^{2(\sigma_n + u)}}.$$

Repeating the proof of Lemma 3 from [10] and taking into account (10), we see that

$$\sum_{l \le n} \frac{d_{\kappa_n}^2(l)}{l^{2(\sigma_n + u)}} = B.$$

Consequently, this and (15) give the estimate

$$\int_{\Omega} |W|^2 dm = \frac{Bk^2 \log^2 n \log^2 \log n}{n^2 l_n^2 \log^2 l_n}.$$

From this, (6), (7) and (11) we find that

$$m(A_{nk}^{\epsilon}(K)) = \frac{Bk^2}{\epsilon^2} \left(\frac{1}{n} e^{-c_1 \frac{\log n \log^2 l_n}{l_n}} + \frac{\log^2 n \log^2 \log n}{n^2 l_n^2 \log^2 l_n} \right)$$

for every $\epsilon > 0$ and $k \in \mathbb{N}$. Thus it follows from the definition of the set $A_{nk}^{\epsilon}(K)$ that

$$m(A_k^{\epsilon}(K)) = \lim_{l \to \infty} m(\bigcup_{n>l} A_{nk}^{\epsilon}(K)) =$$

$$=\lim_{l\to\infty}\frac{Bk^2}{\epsilon^2}\sum_{n>l}\left(\frac{1}{n}e^{-c_1}\frac{\log n\log^2\,l_n}{l_n}+\frac{\log^2 n\log^2\log n}{n^2l_n^2\log^2\,l_n}\right)=0.$$

The lemma is proved.

Proof of Theorem. We will deduce the theorem from lemmas 1, 3 and 4. Let

$$(e^{i\tau_1(T)}, e^{i\tau_2(T)}, \ldots)$$

converges to

$$(e^{i\tau_1},e^{i\tau_2},\ldots)$$

as $T \to \infty$, and let E denote the set $\{(e^{i\tau_1}, e^{i\tau_2}, ...)\}$ of elements of Ω such that

$$h_T(t; e^{i\tau_1(T)}, e^{i\tau_2(T)}, ...)$$

does not converge to some function $h(t; e^{i\tau_1}, e^{i\tau_2}, ...)$ as $T \to \infty$. In order to prove the theorem we must show that m(E) = 0. Since Ω is compact, it is separable. Consequently [13], $E \in \mathcal{B}(\Omega)$.

Let E_1 denote the set $\{(e^{i\tau_1},e^{i\tau_2},...)\}$ such that

$$h_T(t;e^{i au_1},e^{i au_2},...)$$

does not converge to some function $h(t; e^{i\tau_1}, e^{i\tau_2}, ...)$ as $T \to \infty$. We will prove that $m(E_1) = 0$. First we consider the sequence $h_n(t; e^{i\tau_1}, e^{i\tau_2}, ...)$.

Note that there exists a sequence $\{K_j\}$ of compact subsets of $\mathbb R$ such that

$$\mathbb{R} = \bigcup_{j=1}^{\infty} K_j,$$

 $K_j \subset K_{j+1}$, and if K is as compact of \mathbb{R} then $K \subset K_j$ for some j. Let

$$\rho_j(f,g) = \sup_{t \in K_j} d(f(t), g(t))$$

for $f, g \in C(\mathbb{R})$. Then

$$\rho(f,g) = \sum_{j=1}^{\infty} 2^{-j} \frac{\rho_j(f,g)}{1 + \rho_j(f,g)}$$

is a metric in $C(\mathbb{R})$.

Since $C(\mathbb{R})$ is a complete metric space, we have that every fundamental sequence is convergent. Thus it follows from the definition of the fundamental sequence that

$$\begin{split} & m((e^{i\tau_1},e^{i\tau_2},\ldots):h_n(t;e^{i\tau_1},e^{i\tau_2},\ldots)\not\to) = \\ & = m((e^{i\tau_1},e^{i\tau_2},\ldots):(e^{i\tau_1},e^{i\tau_2},\ldots)\in\bigcup_{\epsilon>0}\bigcup_{j=1}^{\infty}\bigcup_{k=1}^{\infty}A_k^{\epsilon}(K_j)). \end{split}$$

Thus, by Lemma 4,

(16)
$$m((e^{i\tau_1}, e^{i\tau_2}, ...) : h_n(t; e^{i\tau_1}, e^{i\tau_2}, ...) \not\rightarrow) = 0.$$

From the definition of the function h_T , using the estimates of types (13) and (14), we find that

$$h_T(t;e^{i\tau_1},e^{i\tau_2},\ldots) = \sum_{k \leq [T]} \frac{d_{\kappa_{[T]}}(k)}{k^{\sigma_{[T]}+it} \prod\limits_{p_i^{\alpha_j} \parallel k} e^{i\alpha_j\tau_j}} + \frac{B}{T^{1/4}}$$

uniformly in $t \in \mathbb{R}$ and in $(e^{i\tau_1}, e^{i\tau_2}, ...) \in \Omega$. Therefore, in view of (16), $m(E_1) = 0$.

We have shown that there exists a function h such that for almost all $(e^{i\tau_1}, e^{i\tau_2}, ...) \in \Omega$

(17)
$$\sum_{k \leq T} \frac{d_{\kappa_T}(k)}{k^{\sigma_T + it} \prod_{p_i^{\alpha_j} \parallel k} e^{i\alpha_j \tau_j}} \underset{T \to \infty}{\longrightarrow} h(t; e^{i\tau_1}, e^{i\tau_2}, \ldots)$$

uniformly in t on compact subsets of \mathbb{R} . Similarly as above in the case of the variable t it can be proved using the Cauchy formula that for almost all $(e^{i\tau_1}, e^{i\tau_2}, \dots) \in \Omega$ the relation (17) is valid uniformly in τ_1 on compact subsets of \mathbb{R} , uniformly in τ_2 on compact subsets of \mathbb{R} , Since the family of sets of m-measure one is closed under countable intersection, hence we have that (17) is true for almost all $(e^{i\tau_1}, e^{i\tau_2}, \dots) \in \Omega$ uniformly in t on compact subsets of \mathbb{R} , the convergence being uniform in τ_j on compact subsets of \mathbb{R} , $j = 1, 2, \dots$

Since, for every M > 0,

$$m(|\sum_{k \leq T} \frac{d_{\kappa_T}(k)}{k^{\sigma_T + it} \prod_{p_j^{\alpha_j} \parallel k} e^{i\alpha_j \tau_j}}| \geq M) \leq \frac{1}{M^2} \int_{\Omega} \left| \sum_{k \leq T} \frac{d_{\kappa_T}(k)}{k^{\sigma_T + it} \prod_{p_j^{\alpha_j} \parallel k} e^{i\alpha_j \tau_j}} \right|^2 dm =$$

$$= \frac{1}{M^2} \sum_{k \leq T} \frac{d_{\kappa_T}^2(k)}{k^{2\sigma_T}} = \frac{B}{M^2}$$

in view of the estimate

$$\sum_{k \le T} \frac{d_{\kappa_T}^2(k)}{k^{2\sigma_T}} = B,$$

we have that $h(t; e^{i\tau_1}, e^{i\tau_2}, ...) \neq \infty$ for almost all $(e^{i\tau_1}, e^{i\tau_2}, ...) \in \Omega$.

The relation (17) and the uniform convergence imply that for almost all $(e^{i\tau_1},e^{i\tau_2},\ldots)\in\Omega$

$$\sum_{k \leq T} \frac{d_{\kappa_T}(k)}{k^{\sigma_T + it} \prod_{p_i^{\sigma_j} \parallel k} e^{i\alpha_j \tau_j(T)}} \underset{T \to \infty}{\longrightarrow} h(t; e^{i\tau_1}, e^{i\tau_2}, \ldots)$$

uniformly in t on compact subsets of \mathbb{R} . This yields m(E) = 0. The latter equality together with Lemmas 1 and 3 proves the theorem.

Now let $n_T = T^{\frac{\kappa_T}{2}}$.

COROLLARY. There exists a probability measure P on $(C(\mathbb{R}), \mathcal{B}(C(\mathbb{R})))$ such that $P_{T,S_{n_T}}$ converges weakly to P as $n \to \infty$.

Proof. Let K be a compact subset of \mathbb{R} . Denote by $Z_T(it+i\tau)$ the difference

$$S_T(\sigma_T + it + i\tau) - S_{n_T}(\sigma_T + it + i\tau) = \sum_{n_T < k \le T} \frac{d_{\kappa_T}(k)}{k^{\sigma_T + it + i\tau}}.$$

Let $\epsilon_T = (\log l_T)^{-1}$. Then

(18)
$$\nu_T^{\tau}(\sup_{t \in K} |Z_T(it + i\tau) \ge \epsilon_T) \le \frac{1}{\epsilon_T^2 T} \int_0^T \sup_{t \in K} |Z_T(it + i\tau)|^2 d\tau.$$

In view of the Cauchy formula

$$\sup_{t \in K} \mid Z_T(it + i\tau) \mid = Bl_T \int_L \mid Z_T(z + i\tau) \mid^2 \mid dz \mid$$

where L is the contour similar to that in the proof of Lemma 4. Hence we find by the Montgomery–Vaughan theorem for trigonometrical polynomials [15], [12] that

$$\int_{0}^{T} \sup_{t \in K} |Z_{T}(it+i\tau)|^{2} d\tau = Bl_{T} \sup_{z \in L} \int_{0}^{T} |Z_{T}(z+i\tau)|^{2} d\tau =$$

$$= Bl_T T \sup_{z \in L} \sum_{n_T < k \le T} \frac{d_{\kappa_T}^2(k)}{k^{2\sigma_T + 2u}} = Bl_T T^{1 - \kappa_T} \frac{c_2 \log^2 l_T}{l_T} \sum_{n_T < k \le T} \frac{d_{\kappa_T}^2(k)}{k} =$$

$$=BT^{1-\kappa_{n}}\frac{c_{2}\log^{2}\,l_{T}}{l_{T}}\log\,T\sum_{k\leq T}\frac{1}{k}=BT^{1-c_{3}}\frac{\log^{\frac{3}{2}}\,l_{T}}{l_{T}}\log^{2}\,T.$$

From this and from (18) we deduce that

(19)
$$\nu_T^{\tau}(\sup_{t \in K} | Z_T(it + i\tau) | \ge \epsilon_T) = o(1)$$

as $T \to \infty$. Clearly, from the definition of the metric ρ , for $\epsilon > 0$,

$$\nu_T^{\tau}(\rho(S_T(\sigma_T + it + i\tau), S_{n_T}(\sigma_T + it + i\tau)) \ge \epsilon) \le \epsilon$$

$$\leq \frac{1}{\epsilon T} \int_{0}^{T} \rho(S_{T}(\sigma_{T} + it + i\tau), S_{n_{T}}(\sigma_{T} + it + i\tau)) d\tau \leq$$

$$\leq \frac{1}{\epsilon} \sum_{j=1}^{\infty} 2^{-j} \frac{1}{T} \int_{0}^{T} \frac{2 \sup_{t \in K_{j}} |Z_{T}(it + i\tau)|}{1 + 2 \sup_{t \in K_{j}} |Z_{T}(it + i\tau)|} d\tau =$$

$$= \frac{1}{\epsilon} \sum_{j=1}^{\infty} 2^{-j} \frac{1}{T} \left(\int_{0}^{T} + \int_{0}^{T} |Z_{T}(it + i\tau)| \leq \epsilon_{T} \right) \times \sup_{t \in K_{j}} |Z_{T}(it + i\tau)| \geq \epsilon_{T}$$

(20)
$$\times \frac{2 \sup_{t \in K_j} |Z_T(it + i\tau)|}{1 + 2 \sup_{t \in K_j} |Z_T(it + i\tau)|} d\tau.$$

By (19) the second integral in the latter formula is o(T) as $T \to \infty$, and the first integral trivially is $B\epsilon_T T$. Hence and from (20)

$$\nu_T^{\tau} = (\rho(S_T(\sigma_T + it + i\tau), S_{n_T}(\sigma_T + it + i\tau)) \ge \epsilon) = o(1)$$

as $T \to \infty$ for every $\epsilon > 0$. Thus, the corollary follows from Theorem and Theorem 4.1 from [13]: Let (S, ρ) be a separable space and X_n and Y_n he S-valued random elements. If $X_n \xrightarrow[n \to \infty]{\mathcal{D}} X$ and $\rho(X_n, Y_n) \xrightarrow[n \to \infty]{P} 0$, then $Y_n \xrightarrow[n \to \infty]{\mathcal{D}} X$.

Acknowledgement. For the warm hospitality during our stay at the University Bordeaux I we express our deep gratitude to Prof. M. MENDÈS FRANCE, Prof. M. BALAZARD and to their colleagues. We also would like to thank Prof. J.-P. ALLOUCHE and the referee for several helpful remarks.

REFERENCES

[1] H. Bohr and B. Jessen, Über die Wertverteilung der Riemannschen Zeta funktion, Ernste Mitteilung, Acta Math. 51 (1930), 1-35.

- [2] H. Bohr and B. Jessen, Über die Wertverteilung der Riemannschen Zeta funktion, Zweite Mitteilung, Acta Math. 58 (1932), 1-55.
- [3] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta-function, Trans.Amer.Math.Soc. 38 (1935), 48–88.
- [4] V. Borchsenius and B. Jessen, Mean motions and values of the Riemann zetafunction, Acta Math. 80 (1948), 97-166.
- [5] A. Laurinčikas, Limit theorems for the Riemann zeta-function on the complex space, Prob. Theory and Math. Stat., 2, Proceedings of the Fifth Vilnius Conference, VSP/Mokslas (1990), 59-69.
- [7] A.P.Laurinčikas, Distribution of values of complex-valued functions, Litovsk. Math. Sb. 15 Nr.2 (1975), 25-39, (in Russian); English transl. in Lithuanian Math. J., 15, 1975.
- [8] D. Joyner, Distribution Theorems for L-functions, John Wiley (986).
- A.P. Laurinčikas, A limit theorem for the Riemann zeta-function close to the critical line. II, Mat. Sb., 180, 6 (1989), 733-+749, (in Russian); English transl. in Math. USSR Sbornik, 67, 1990.
- [10] A. Laurinčikas, A limit theorem for the Riemann zeta-function in the complex space, Acta Arith. 53 (1990), 421-432.
- [11] D. R. Heath-Brown, Fractional moments of the Riemann zeta-function, J.London Math. Soc. 24(2) (1981), 65-78.
- [12] A.Ivič, The Riemann zeta-function John Wiley, 1985.
- [13] P. Billingsley, Convergence of Probability Measures, John Wiley, 1968.
- [14] H.Heyer, Probability measures on locally compact groups, Springer-Verlag, Berlin-Heidelberg-New York (1977).
- [15] H. L. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. 8(2) (1974), 73-82.

Antanas LAURINČIKAS Department of Mathematics Vilnius University Naugarduko 24 2006 Vilnius, Lithuania