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Some infinite products with interesting
continued fraction expansions

by C. G. PINNER1, A. J. VAN DER POORTEN2 AND N. SARADHA3

RÉSUMÉ. We display several infinite products with interesting continued
fraction expansions. Specifically, for various small values of k - necessarily
excluding k = 3 since that case cannot occur, we display infinite products
in the field of formal power series whose truncations yield their every k-th
convergent.

1. Introduction

Let  ... be a sequence of rational integers, and let F(x) be
the infinite product

with continued fraction expansion ~ao(x~ , ai(z) , ... ] . In [1] it is shown

that for n = 0, 1, 2, ... each truncation

is a convergent of F( x ~ if, and only if,
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Moreover, then the degree of the subsequent partial quotient is given
by

Furthermore, one sees that the truncations provide precisely every sec-
ond convergent if, and only if,

for n = 0, 1, 2, .... In fact, given (5), the partial quotients of F(x)
can readily be listed explicitly and are of rapidly increasing degree. Hence-
forth, we only consider products for which (3) is satisfied. So their every
truncation yields a convergent.

Here we will be concerned with classes of infinite products whose contin-
ued fraction expansions have the property that those convergents arising
from the truncations of the product are again separated by some few con-
vergents. In this context we say that two consecutive truncations 
and of our product are k -apart if, as suggested by the nota-
tion, there are exactly k - 1 intermediate convergents. Our aim is to use
the above mentioned 2-apart examples to construct additional products
with truncations a fixed bounded distance apart. We shall explicitly give
examples with regular gaps of size 4 , 5 , 6 and 8. We also illustrate how
the matrix interpretation of continued fractions can be nicely employed to
cleanly generate the partial quotients of the products we study.

2. Terminology

We use the terminology of [1] and [2]. Namely, given a field K, we let
L = lI~((~-1 )) denote the field of formal Laurent series in x-1 over K.
Then each F E L is of shape

and we say that the degree of F is deg F = d. The integral part of F,
denoted is the polynomial
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in K[x]. A series F E L has a unique continued fraction expansion denoted
by

where the partial quotients ch are polynomials in x , and have degree at
least 1 for h &#x3E; 1. From the general theory of continued fractions we have
the fundamental correspondence whereby for h = o, l, 2, ...

if, and only if,

defining the convergents ph/qh by products of certain matrices. Further,
on setting

we observe that for c E 7~ ,

B /

Then we may write formally that,

, - , , /

whence if ~2013~ denotes the correspondence between matrix products and
continued fractions we have

The correspondence between continued fractions and the so called R-L
sequences is particularly convenient in studying the multiplication or divi-
sion of a continued fraction by a rational quantity. This is illustrated in
detail in [1]. We assume the relevant terminology here.
We also recall from [2] that a rational function p( x) / q( x) is a convergent

Phlqh to F if, and only if,

and that the degree of the next partial quotient is then given by

In the sequel we suppose K to be a field of characteristic zero.
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3. The Examples Revealed

As mentioned above, we already know a class of infinite products such that
the truncations are always 2-apart; namely

where A = (Ao, al, ... ~ satisfies the conditions

for all n &#x3E; 0. It transpires that we can use such known cases to construct
a slue of new examples with the property we want. In particular if

then the truncations of G (although in general no longer 2-apart) will still
be of bounded distance apart:

THEOREM 1. Let

where

Then for a~I n = 0, 1, 2, ... , the successive truncations of G(x)

are convergents of G at most (2r + 2) -apart.

Proof. By criterion (3) it follows that the stated truncations certainly are
convergents and further that
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Moreover the condition 2Ài.1 I Ài+1 leads to a, so to speak, gratuitous inter-
mediate convergent

with

as may be readily checked with an appeal to (6). Between them these two
partial quotients soak up most of the available degree and (as the remaining

are of degree at least one) we obtain

Note: we see at once the the truncations are 2-apart if and only if

,6;-- v

and that otherwise (since by degree considerations j # 1 1~ - 1 )
we must have separation k &#x3E; 4. We shall see later that there are in fact
no 3-apart examples. Since one can envisage cases were all the remaining
quotients are indeed linear the bound 2r + 2 seems reasonably precise; we
shall see cases where this bound is sharp when r = 1, 2 or 3.

Not surprisingly, the phenomenon of one product inheriting the bound-
edness property from another is rather more general:

THEOREM 2. If F(x) and G(x) are infinite products (whose truncations
are all convergents) which differ only by a factor consisting of a rational
function 

, ,1"/ ’B

then the truncations of G(x) are of bounded distance apart if, and only if,
the truncations of F(x) are of bounded distance apart.

The result is immediate from the following (admittedly rough) bound:
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LEMMA 1. Suppose that pilqi and are convergents to a Laurent
series F(x) such that

are convergents to

Then

Proof. The proof employs a similar degree counting argument:
We suppose that there are M + 1 convergents (0  j  M)

to G(x) with

Further suppose that there are N convergents (1  j  N)
to F(x) with 0  n(j)  k and deg &#x3E; deg fg. Now since

we see from criterion (6) that

all are convergents to G with

and plainly
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these convergents monopolise most of the available degree. Hence, as the
remaining convergents are at worst linear we see that

The bound follows at once since trivially N  k and t  M .

Notice that we made no prior assumption here about the nature of F(x);
for example we might consider products

with

to ensure that the ’truncations’

are convergents (needless to say we shall do no such thing here).

4. The Transduction Process Justified

We saw in Theorem 1 that examples with the desired property could be
obtained by multiplying a product known to have bounded gaps (for exam-
ple the 2-apart products) by a rational function. In this section we show
how the matrix formulation alluded to in §2 can be used to generate the
new quotients from the old.

We suppose that

where
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so that in terms of the matrix equivalence

Hence we may obtain the b2’s from the Ci’8 by passing the multiplying
matrix through the and L~’s term by term. At each stage this amounts
to multiplying each RC or L’ on the left by a matrix of determinant f g of
the form

where deg C  deg A . By applying Euclid’s algorithm to the rows of the
resulting matrix (that is to say by writing

where d = or d’ = [0/6] and so on) we output a successsion of
Rd~’s and Ld’s until we are left once again with a matrix

In the special case that all the ci’s i &#x3E; 1 have deg ci &#x3E; deg fg (as will
be the case in all of our examples) the procedure can be described fairly
concretely:

As deg co may well be zero the first transduction can be atypical. De-
noting by pi/qi the convergents to coflg = [do ? ... , dr] where co f =
a( x )Pr and g = a(z)qr we see that

where deg C  deg A .
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The general transition through an Lc is particularly simple:

, , ,,/

with deg C’ = deg (Bci + C - A  deg A .
The general passage through an Rc is a little more complicated and

breaks down most naturally into two parts:
We first let pilqi denote the convergents to A/C = [eo , el , ... , et]

where A = ti(x)pt and C = and observe that

where u = + (-l)’Bpt-, and v = (-1)t-lBpt; of course there is the
convention that 

/-. -B/ B / -.  B

so that if C = 0 we and do nothing. Hence if we let 
denote the convergents to u/v = [ho , ... , with u = A(x)p’ s and
v = we obtain
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where deg C’  deg A’ .

So as we pass through successive R’s and L’s the R’s of the output
are always followed by L’s and vice versa. Moreover due to the condition
deg ci &#x3E; deg f g = deg AB we see that (with the possible exception of the
very first output do ) all our outputs are of degree greater then or equal
to one. Hence in this case we are indeed obtaining (term by term) the
legitimate expansion bo, bl, ... of G(x) . Since our output is never less

then our input we can (by feeding the output back in as input) use this
approach on F(x) satisfying a functional equation of the form:

We shall begin the next section with just such an example.
Of course the described process still functions if we allow the possibility

of input quotients with deg ei = deg f g . In that case the output is still
sustainable but may well now contain rogue constant terms - although
techniques do exist for individually removing such illegalities relying on the
observations that

Input containing terms ei with deg ei  deg( f g) is more problematical;
not only is the above program no longer quite suitable but there genuinely
seems no way of preventing the possibility of R ’s followed R’s or L’s by L’s
so that (with the danger of wholescale back-tracking through cancellation)
we no longer have any right to assume that the output we produce from a
finite number of transductions bears much relation to the final expansion.

Note that with the exception of the two possibly large quotients l BCA+C J
and ho = the remaining quotients produced in passing through an

are (by considering the degree of the denominators C and v )
of limited degree; a phenomenon that we have already encountered in the
case described in Theorem 1. In fact since the sum of their degrees is at
most 2 deg f g we see that each L’i RCi+l produces at most 2 deg f g + 2 of
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output. More careful analysis of common factors could no doubt be used
to recover the bound of Theorem 1 in this way. When we are interested
in truncations we can (by considering the potentially large degree of the
subsequent partial quotient) use these observations to locate their position
in the output; if the truncation is (as indicated) the (n + l)-st
convergent to F(z) then when n is even the expansion for the truncation
convergent fp,,Igq,, to G(x) corresponds simply to the output generated
by passing through When n is odd we need in addition the

eo, el, ... , et produced (when C ~ 0) in partially passing through 
Of course the former situation is preferable and indeed when F(x) is our

familiar 2-apart product we can arrange for the truncations to be exactly
the ’even convergents’ (at the expense of a tolerably illegal and in some
ways preferable expansion as we shall see below).

Although the cases are somewhat limited in form we are faced with
potentially infinitely many different possibilities for the transition matrix

We would hope that the transduction process produces, if not aCc B)’
finite set, then at least only matrices of a similar enough shape that we can
avoid simply performing transitions ad infinitum. In the next section we
see this technique in action.

5. The Matrices in Action

As mentioned earlier, it was shown in [2] that any infinite product of the
form

where A _ (Ao, Ail, ... ) satisfies

has truncations 2-apart with expansion

where
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and

We begin this section by using the method of transduction described above
to give an alternative proof of this fact:

From the functional equation

we see that

The trivial observation bo(x; A’) = 1 entails that the initial transition yields

Now since Aj ) I we see that F(x; A’) is a polynomial in XÀl and so
possesses partial quotients with Àl &#x3E; 2Ao for all i &#x3E; 1.

Hence from our previous comments we are allowed to read off the bi(x; A)
directly from our output as it is generated term by term. Thus we obtain
bo(x; A) = 1, b1(x; A) = and we proceed to the next transition armed
with the knowledge that A’) = XÀl and the assumption that 2AO I À1:

Therefore + + 1) and at the next stage
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Hence b3(x; A) and b4(x; A) are of the stated form.
From this point onwards the transition matrix moves through the R’s

and L’s unchanged. In particular under the assumption (as we have just
seen for N = 1) that 1) divides b2N.+.2(x; A’) we obtain at the
N-th subsequent stage

and

A simple induction argument leads at once to the relations

and the stated formulae for b2N+l(x; A) and A). Our previous
comments or simple degree considerations show us that the truncations are
always 2-apart.

From now on we will assume such an expansion which (in the manner
of [2]) it will prove convenient to write in the slightly illegal form

, - - I -

with

We use this to generate the quotients of
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where

with

From the functional equation

we obtain the matrix correspondence

where the ci all are polynomials in and hence of degree deg ci &#x3E; Ao &#x3E;

2r . In particular (from our earlier analysis) it is clear that (once we have
safely passed through the initial we are allowed to read off
the ai from the output, transition by transition. Of course in general we
cannot expect our transition matrix to remain constant as occurred in the
above example; however we can hope that it changes in a fairly predictable
manner.

THEOREM 3. Let

with Ai satisfying (12). Then the truncations of G are eventually 4-apart
(the initial gap is 3) with partial quotients ai given by
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for n &#x3E; 1. The first 5 irregular partial quotients are given implicitly below.

Proof. We first note the general matrix transition formulae

Passing the multiplier through the first three terms gives us the first five
partial quotients ao , ... , a4 :

Now applying the above formulae with A = 4 , D = 4 , Bo - - 2 we see
B 

that passage through the n-th block LC2n+l RC2n+2 takes the form

with Bn = Bn-1 - tC2nH( -1) = - Hence the alleged
partial quotients. Moreover by previous comments or by simple degree
considerations we see that the truncations coincide exactly with the finite
continued fraction expansions produced by these transitions and hence are
all (bar the first) four-apart.
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THEOREM 4. Let

with Ai satisfying (12). Then

(i) if 4 I Àl then the truncations are eventually 2-apart (initial gap 5)
with partial quotients

(ii) then the truncations are eventually 6-apart (initial gap 5~
with partial quotients

for n &#x3E; 1 where

The first 8 or 13 partial quotients can be discovered below. -,

Proof. In both cases the initial transitions produce the first 7 quotients

In the first case when 4 I Àl we need only one further atypical transition
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after which the transition matrix remains unchanged with

for n &#x3E; 1. The stated quotients are then immediate.

When 4 t Ai we require two further irregular transitions

before the process settles down with

for n &#x3E; 2, where

The given partial quotients then follow fairly easily.

THEOREM 5. Let
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with Ai satisfying (12).
(i) If (3, Aj ) = 1 for all i then the truncations of G all are 5-apart with

partial quotients

for n &#x3E; 1. The first seven atypical partial quotients can be found below.

(ii) If 3 I AN for some N &#x3E; 1 (where we take N to be minimal) then
the truncations of G(x) are eventually (after the N’th truncation) 2 -apart
with partial quotients

for n &#x3E; 1. The first (5N -~- 2) quotients are as in case (i) , and a5N+2 can
be found below.

Proof. If for any i we experience four basic transition matrices:
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After the initial transitions

we have the following identities:
If n is odd

and

and

So each time we pass through a block we output 5 partial
quotients and if n is even (respectively odd) either an A (respectively C)
if An * 4 (mod 6) or a B (respectively D ) if 2 (mod 6). The stated
quotients can be read off and then degree considerations confirm that the
truncations do indeed occur as every fifth convergent.
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Now if 3 1 AN for some N &#x3E; 1 (assumed minimal) then the process
remains the same until we hit L C2N +1 . In particular the ao, a1, ... , a5N+1
are generated as above. Writing

we see that

after which the transition matrix remains unchanged with

for n &#x3E; N . The stated partial quotients are then evident and degree
considerations or otherwise show that the truncations are indeed 2-apart
as claimed.

THEOREM 6. Let

with Ai satisfying (12). The the truncations of G are eventually 4-apart
(the initial gap is 6~ with partial quotients
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The first nine partial quotients ao, ... , a8 can be found 

Proof. If Ao is odd and 6 ! I A, then we have the following transition
relations:

Here we have to endure some rather painful initial transitions:

if Ao T 1 (mod 6) and

if Ao m 5 (mod 6), where!3o = - 3 (~1 ~~0~ .
Hence after passing through the k -th block we output 4

partial quotients and a transition matrix of the form
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where f3k == f3k-l - 3 czk+s(-1) _ -Àk+1/2k3Ào. This makes the theorem
evident.

Notice that we have covered here all cases of (11) with r = 1 or 2 and
a number of cases when r = 3. The remaining cases with r = 3 become
rather too unwieldy to handle by locating the quotients in this way (when
2 r Ao and 3 ~ not only do we have to force through multiplication
by the two polynomials (x + 1) and (x2 - x + 1) but, as we have seen
before, the multiple factor (x-~-1)2 in (1-~x-3)(1-f-x-~°) spawns unwieldy
constants). These missing cases will be given in §6 and are found by
considering convergents, as opposed to evaluating partial quotients.

6. The Convergents Considered

Given the convergents and pn+h/qn+h and the intermediate partial
quotients an+1, ... , an+h it is fairly easy to retrieve the missing convergents

Pn+h-1 /qn+h-1 in the following manner:
We define

and observe that s(r, m) can be straightforwardly written in terms of aT+2,
... , by means of the easily proved iteration relation

where, as is well known,

It is not hard to then show (by induction on r ) that the intermediate pn+r ’s
and qn+r’s, 1  r  t~ - 1 are given by;

If the reader should object that knowing pn /qn and Pn+h/qn+h can only
determine pn, qn and pn+h, qn+ h up to a constant we observe that to obtain

we need only determine the ratio of the leading coefficients of
and Pn and this is simply the product of the leading coeflicients of

the an+1,... , an+h.
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In fact not only must the missing convergents Pn+r/qn+r be of a special
form but conversely given polynomials A and B with deg AB  deg S(n, h)
such that

.&#x26;.......

satisfies

then p/q is an intermediate convergent for some 0  i  h

This fact is an easy consequence of criterion (6) since

where clearly

Hence in order to find the (n + i)-th missing convergent it is necessary and
sufficient to look for polynomials A, B (sharing no superfluous common
factors) with

and

giving

with

The limited form of the intermediate convergents allowed by (14) enables
us to determine quite precis·ly when we can have very small gaps :
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TH.EOREM 7. Let

with the Ai E I~ satisfying

Then the truncation convergents

are

(i) 2-apart if and only if

with intermediate convergent

(ii) 3-apart only in the special case

where X = 

We immediately obtain the following:

COROLLARY 1. The infinite product

has truncations which are eventually 2-apart (that is, from the 
truncation onwards) if and only if
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There are no infinite products of the form (15) whose truncations (except
possibly the first) are ever three-apart.

Proof. We suppose that p and p are constants such that

so that

Now if h = 2 we see from (14) that the middle convergents are necessarily
given by

For the first of these to be a polynomial we require that jib,, = p; sub-
stituting this in the second gives the stated criterion. Conversely if such
a condition is satisfied then by appealing to our previous comments or to
criterion (6) we see that the given fraction is an intermediate convergent
and moreover by degree considerations that it is the only one.

Now if h = 3 the equations (13) and (14) produce

and
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From the equations for pm+2 we see that

for some polynomials A(x) and B(~). However since

we see that A, B are both in fact non-zero constants. Hence substituting
these expressions for am+2 and back into (16) we obtain an expres-
sion of the form

In view of the rapid increase of the Ài &#x3E; 2 ~2.- o ~~ , comparison of the
number of terms on the right shows that such a relation is only possible if
n = 1. Finally substituting for am+3 in q?.",.+1 gives

from which one easily deduces that ao I Ai . An obvious change of variable
reduces this to the case ( 1 + X-I )(1 + cX -~‘) which as we have seen is
2-apart and when c ~ (- 1)~ is easily checked to be 3-apart
with expansion:

where b = (-I) A c.

Our examples have featured constant gaps between the truncations; lest
the reader be misled into believing that this is generally so we give the
following nice counter-example:
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THEOREM 8. Let

with the Ai satisfying (12) and

Then the truncation convergents

are 5-apart when m - 3 (mod 4), 6-apart when rra - 2 (mod 4), 7 -apart
when m - 0 (mod 4) and 8-apart when m - 1 (mod 4) with intermediate
convergents:

with u(x) = 1 - x -~- x2 - x3 , and 1 - x .

Proof. The above expressions may appear formidable but the process for
obtaining them is fairly simple. Previous remarks guarantee us the stated
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convergent pN+k/qN+k . Hence to find the convergents between 
and PN+k/qN+k it is enough to find polynomials Ai, Bi with deg AjBj  3
such that the stated denominators are polynomials. Thus starting with
A1 = 1 we find successive with deg Aj = 4 - deg Bj -1 until we

have filled in the gap (that is, E(4 - degAjBj) = 4). Similarly for the
Of course we have made things here simple by choosing the Ai

such that for a root of we have

Note that it is not hard to see that a judicious replacement of a subsequence
of the Ai by Am m 6 ~ 2"~+2 (mod 10) can even inject an appearance of utter
randomness in these different spacings.

As promised, we conclude with the remaining r = 3 cases:

THEOREM 9. Let

with Ai satisfying (12).
Then the truncation convergents

are

(i) 8-apart if with intermediate convergents:
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where - and k are the constants

Proof. As before, the proof amounts to tediously finding Ai, BZ such that
the denominators are polynomial and so that the various degrees add up.
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