JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

HENRYK IWANIEC

On the order of vanishing of modular L-functions at the critical point

Journal de Théorie des Nombres de Bordeaux, tome 2, n° 2 (1990), p. 365-376

http://www.numdam.org/item?id=JTNB 1990 2 2 365 0>

© Université Bordeaux 1, 1990, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

On the order of vanishing of modular L-functions at the critical point

par HENRYK IWANIEC

1. Introduction

The nonvanishing of L-functions at special points is an attractive area of research in contemporary number theory, see [7]-[11]. One example is the Rankin-Selberg zeta-function $L(f \otimes g_j, s)$ associated with a holomorphic cusp form f of weight 2 and Maass cusp forms g_j of eigenvalue $\lambda_j = s_j(1-s_j)$. In this case the nonvanishing of $L(f \otimes g_j, s)$ at $s = s_j$ plays a rôle in the work of R. Phillips and P.Sarnak [6] on deformations of groups and was proved to be true for infinitely many cusp forms g_j by J.-M. Deshouillers and H. Iwaniec [3]. Another example is the Birch-Swinnerton-Dyer conjecture which asserts that the rank of the group of rational points on an elliptic curve E defined over $\mathbb Q$ is equal to the order of vanishing of the associated Hasse-Weil L-function L(s,E) at s=1 (the center of the critical strip).

Recently V.A. Kolyvagin [4] has proved that the group of rational points on a modular elliptic curve E is finite if $L(1, E) \neq 0$ and that the L-function $L(s, E, \chi_d)$ twisted by a suitable real character χ_d has simple zero at s = 1. The latter condition was subsequently proved to hold true for infinitely many discriminants d by D. Bump, S. Friedberg and J. Hoffstein [2] and independently by K. Murty and R. Murty [5]. In these notes we establish (from scratch) quantitative results on Kolyvagin's condition.

2 - Statement of results

Let E be a modular elliptic curve defined over \mathbb{Q} and

$$L(s, E) = \sum_{1}^{\infty} a_n n^{-s}$$

be the Hasse-Weil L-function associated with E. Thus

$$f(z) = \sum_{1}^{\infty} a_n e(nz)$$

is a cusp form of weight 2 which is a newform of level N, where N is the conductor of E. The L-function is entire and it satisfies the functional equation

$$\left(\frac{\sqrt{N}}{2\pi}\right)^{s}\Gamma(s)L(s,E) = w\left(\frac{\sqrt{N}}{2\pi}\right)^{2-s}\Gamma(2-s)L(2-s,E),$$

where $w = \pm 1$. We are interested in curves E for which $L(1, E) \neq 0$, so the functional equation holds with the sign w = 1. The twisted L-function

$$L(s, E, \chi_d) = \sum_{1}^{\infty} a_n \chi_d(n) n^{-s},$$

where χ_d is a real primitive character to modulus d prime to N is also entire and it satisfies the functional equation

(1)
$$\left(\frac{d\sqrt{N}}{2\pi}\right)^s \Gamma(s)L(s, E, \chi_d) = w_d \left(\frac{d\sqrt{N}}{2\pi}\right)^{2-s} \Gamma(2-s)L(2-s, E, \chi_d)$$

with the sign $w_d = w\chi_d(-N)$. In the sequel we let d range over the set

$$\mathcal{D} = \{d : 0 < d \equiv -\nu^2 \pmod{4N} \text{ for some } \nu \text{ prime to } 4N\}$$

and we let $\chi_d(n) = (\frac{-d}{n})$ be the Kronecker symbol. Thus if d is squarefree χ_d is the primitive character to the modulus d which is associated with the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$. Every prime dividing N splits in $\mathbb{Q}(\sqrt{-d})$. Moreover we have $w_d = -1$, so by (1) it follows that

$$(2) L(1, E, \chi_d) = 0.$$

Our aim is to prove that $L(s, E, \chi_d)$ has a simple zero at s = 1, i.e. $L'(1, E, \chi_d) \neq 0$ for infinitely many d in \mathcal{D} . To this end we shall evaluate two sums of type

(3)
$$S_4(Y) = \sum_{d \in \mathcal{D}, d < Y} |L'(1, E, \chi_d)|^4$$

and

(4)
$$S_1(Y) = \sum_{d \in \mathcal{D}} {}^{\flat} L'(1, E, \chi_d) F(d/Y),$$

where \sum^{b} means that the summation is restricted to squarefree numbers and F is a smooth function, compactly supported in \mathbb{R}^{+} with positive mean value.

THEOREM. For any $\epsilon > 0$ and $Y \geq 1$ we have

$$(5) S_4(Y) << Y^{2+\epsilon}$$

and

(6)
$$S_1(Y) = \alpha Y \log Y + \beta Y + O(Y^{13/14+\epsilon})$$

with some constants $\alpha \neq 0$ and β which depend on the curve E and the test function F.

COROLLARY. Suppose $\epsilon > 0$ and $Y > c(\epsilon)$. Then $L'(1, E, \chi_d) \neq 0$ for at least $Y^{2/3-\epsilon}$ real primitive characters χ_d to modulus $d \in \mathcal{D}, d \leq Y$.

3. Estimates for the coefficients of f

The Fourier coefficients a_n of the cusp form f are multiplicative. More exactly, for Re s > 3/2 we have the Euler product

(7)
$$L(s, E) = \prod_{p} (1 - \alpha_p p^{-s})^{-1} (1 - \beta_p p^{-s})^{-1}$$

with $\alpha_p = 0, \pm 1, \beta_p = 0$ if p|N and $|\alpha_p| = |\beta_p| = p^{1/2}$ if $p \nmid N$. In the latter case the result was proved by M. Eichler and P. Deligne. It yields the following bound for the coefficient a_n (known as the Ramanujan conjecture)

$$|a_n| \le n^{1/2} \tau(n),$$

where $\tau(n)$ denotes the divisor function, $\tau(n) \ll n^{\epsilon}$. This bound can be slightly improved on average. Indeed, arguing as G. Hardy and E. Hecke with Parseval's formula and using the boundedness of yf(z) we get

$$(9) \qquad \sum_{m < M} |a_m|^2 \ll M^2.$$

Similarly we get

(10)
$$\sum_{m \le M} a_m e(\alpha m) \ll M \log M$$

for any real α and $M \geq 2$, the implied constant depending on f only. In this section we derive three variations on (10).

LEMMA I. Let α be real and ψ be a periodic function of period r. We then have

(11)
$$\sum_{m < M} a_m \psi(m) e(\alpha m) << \Psi M \log M,$$

where

$$\Psi = \frac{1}{r} \sum_{a \pmod{r}} |\sum_{b \pmod{r}} \psi(b) e(\frac{ab}{r})|.$$

Moreover, if $|\psi| \leq 1$ and s is a positive integer then we have

(12)
$$\sum_{m \leq M, (m,s)=1} a_m \psi(m) e(\alpha m) \ll \tau(s) r^{\frac{1}{2}} M \log M$$

and

(13)
$$\sum_{m \leq M, (m,s)=1}^{\flat} a_m \psi(m) e(\alpha m) \ll \tau(s) r^{\frac{1}{2}} M (\log M)^7$$

PROOF: The sum on the left-hand side of (11) is equal to

$$\frac{1}{r} \sum_{a \pmod{r}} \left(\sum_{b \pmod{r}} \psi(b) e(\frac{ab}{r}) \right) \sum_{m \leq M} a_m e((\alpha - \frac{a}{r})m),$$

whence the inequality (11) follows by (10). If $|\psi| \leq 1$ we obtain $\Psi \leq r^{1/2}$. by Cauchy's inequality. For the proof of (12) we can assume that (r,s)=1by changing ψ suitably. Then we apply (11) for $\psi \chi_0$ in place of ψ , where χ_0 is the principal character to the modulus s. We obtain

$$\Psi = \frac{1}{rs} \sum_{a \pmod{r}} |\sum_{b \pmod{r}} \psi(b)e(\frac{ab}{r})|$$

$$\sum_{c \pmod{s}} |\sum_{d \pmod{s}} \chi_0(d)e(\frac{cd}{s})| \ll \frac{r^{\frac{1}{2}}}{s} \sum_{c \pmod{s}} \sum_{d \mid (c,s)} d = \tau(s)r^{\frac{1}{2}},$$

which gives (12). Finally we derive (13) from (12). The sum on the lefthand side of (13) is equal to

$$\sum_{\substack{\nu^2 m \leq M, (\nu m, s) = 1}} \sum_{\mu(\nu) a_{\nu^2 m} \psi(\nu^2 m) e(\alpha \nu^2 m)} \mu(\nu) a_{\nu^2 m} \psi(\nu^2 m) e(\alpha \nu^2 m)$$

$$= \sum_{\substack{(\nu, s) = 1 \ \nu^2 \lambda \leq M}} \sum_{\substack{\mu(\nu) a_{\nu^2 \lambda} \\ \nu^2 \lambda \leq M}} a_m \psi(\nu^2 \lambda m) e(\alpha \nu^2 \lambda m)$$

$$\ll \tau(s) r^{\frac{1}{2}} M(\log M) \sum_{\substack{(\nu, s) = 1 \ \lambda \mid \nu^{\infty} \\ \nu^2 \lambda \leq M}} \sum_{\substack{(\mu, \nu, s) = 1 \ \lambda \mid \nu^{\infty} \\ \nu^2 \lambda \leq M}} |a_{\nu^2 \lambda}| \frac{\tau(\nu)}{\nu^2 \lambda}.$$

Hence (13) follows by (8).

4. Approximate formulas for $L'(1, E, \chi_d)$

We shall express $L'(1, E, \chi_d)$ in terms of the rapidly convergent sums

$$\mathcal{A}(X,\chi) = \sum_{1}^{\infty} a_n \chi(n) n^{-1} V(\frac{2\pi n}{X}),$$

where V is the incomplete gamma function defined by

$$V(X) = \int_{X}^{\infty} e^{-t} t^{-1} dt = \frac{1}{2\pi i} \int_{(3/4)} \frac{\Gamma(s)}{s} X^{-s} ds.$$

We have

$$\mathcal{A}(X,\chi_d) = \frac{1}{2\pi i} \int_{(3/4)} L(1+s,E,\chi_d) \frac{\Gamma(s)}{s} (\frac{2\pi}{X})^s ds.$$

Moving the integration to the line Re s=-3/4 we pass a simple pole at s=0 with residuum $L'(1,E,\chi_d)$ by virtue of (2). On the other hand the integral over the line Res =-3/4 is equal to $-\mathcal{A}(d^2NX^{-1},\chi_d)$ by the functional equation (1). This gives

(14)
$$L'(1, E, \chi_d) = A(X, \chi_d) + A(d^2 N X^{-1}, \chi_d)$$

for any X > 0 and d in \mathcal{D} which is squarefree. In particular we have

(15)
$$L'(1, E, \chi_d) = 2\mathcal{A}(d\sqrt{N}, \chi_d).$$

By (9) we infer trivially that $\mathcal{A}(X,\chi_d) \ll X^{1/2}$ for any X > 0 and inserting this to (14) we obtain

(16)
$$L'(1, E, \chi_d) = A(X, \chi_d) + O(dX^{-1/2}).$$

5. Estimation of the fourth moment of $L'(1, E, \chi_d)$

By the large sieve inequality (see [1]) together with (8) we get

$$\sum_{d \le Y} \sum_{\chi \pmod{d}} {}^* |\mathcal{A}(X, \chi)|^4 << (X + Y)^{2+\epsilon}.$$

On the other hand by (14) we have for any $d \in \mathcal{D}, d \leq Y, d$ squarefree that

$$|L'(1, E, \chi_d)|^4 \ll \int_1^{NY} |\mathcal{A}(X, \chi_d)|^4 X^{-1} dX.$$

Combining both results we infer the upper bound (5) for $S_4(Y)$.

6. An approximate formula for the first moment of $L'(1, E, \chi_d)$

By (15) we obtain

$$S_1(Y) = 2 \sum_{d \in \mathcal{D}} {}^{\flat} \mathcal{A}(d\sqrt{N}, \chi_d) F(\frac{d}{Y}).$$

Now we relax the condition that d is squarefree by introducing the factor $\sum_{a^2|d} \mu(a)$, then we split the sum according to whether $a \leq A$ or a > A and in the latter case we return to squarefree numbers by extracting square divisors of $a^{-2}d$. We obtain $S_1(Y) = S + R$, say, where

$$S = 2 \sum_{a \le A, (a,4N)=1} \mu(a) \sum_{d \in \mathcal{D}} \mathcal{A}(a^2 d\sqrt{N}, \chi_{a^2 d}) F\left(\frac{a^2 d}{Y}\right)$$

and

$$R = 2 \sum_{(b,4N)=1} \left(\sum_{a|b,\ a>A} \mu(a) \right) \sum_{d \in \mathcal{D}} {}^{\flat} \mathcal{A}(b^2 d\sqrt{N},\ \chi_{b^2 d}) F\left(\frac{b^2 d}{Y}\right).$$

Here A is a large number to be chosen later. In the term $\mathcal{A}(X,\chi_{b^2d})$ with $X=b^2d\sqrt{N}$ we return to $L'(1,E,\chi_d)$ by reversing the arguments as follows

$$\mathcal{A}(X,\chi_{b^2d}) = \sum_{(n,b)=1} a_n \chi_d(n) n^{-1} V\left(\frac{2\pi n}{X}\right)$$

$$= \sum_{k|b} \sum_{\ell|b} \alpha_k \beta_\ell \chi_d(k\ell) \frac{\mu(k)\mu(\ell)}{k\ell} \mathcal{A}\left(\frac{X}{k\ell},\chi_d\right)$$

$$= L'(1,E,\chi_d) \prod_{p|b} \left(1 - \chi_d(p) \frac{\alpha_p}{p}\right) \left(1 - \chi_d(p) \frac{\beta_p}{p}\right) + \mathcal{O}(\tau(b)dX^{-\frac{1}{2}})$$

the second line being obtained by (7) and the third line by (16). Finally applying (5) and the Hölder inequality we conclude that

$$(17) R << \sum_{b} \left(\sum_{a \mid b, a > A} 1 \right) \left(b^{-\frac{5}{2}} Y^{\frac{5}{4}} + b^{-4} Y^{\frac{3}{2}} \right) Y^{\epsilon} << \left(A^{-\frac{3}{2}} Y^{\frac{5}{4}} + A^{-3} Y^{\frac{3}{2}} \right) Y^{\epsilon}.$$

7. A transformation of S

It remains to evaluate S. For (a, 4N) = 1 and $d \in \mathcal{D}$ we have

$$\mathcal{A}(a^2d\sqrt{N},\chi_{a^2d}) = \sum_{(n,a)=1} a_n n^{-1} \chi_d(n) V(2\pi n/a^2 d\sqrt{N}).$$

Every n can be written uniquely as the product $n = k\ell^2 m$, where k has prime factors in 4N, ℓm is prime to 4N and m is squarefree. For n written this way and d in \mathcal{D} we have $\chi_d(n) = \chi_d(m)$ subject to $(d, \ell) = 1$. The last condition is detected by the familiar formula of Möbius giving

$$S = 2 \sum_{\substack{a \le A \\ (a,4N)=1 \ (n,a)=1}} \mu(a) \sum_{\substack{n=k\ell^2 m \\ (n,a)=1}} a_n n^{-1} \sum_{q|\ell} \mu(q) \sum_{dq \in \mathcal{D}} \chi_{dq}(m) F\left(\frac{a^2 dq}{Y}\right) V\left(\frac{2\pi n}{a^2 dq \sqrt{N}}\right).$$

Next, by means of Gauss sums we write

$$\chi_d(m) = \overline{\epsilon}_m m^{-\frac{1}{2}} \sum_{2|r| < m} \chi_{Nr}(m) e(\frac{\overline{4N}rd}{m}),$$

where $\epsilon_m = 1$ if $m \equiv 1 \pmod{4}$, $\epsilon_m = i$ if $m \equiv -1 \pmod{4}$ and $4N\overline{4N} \equiv 1 \pmod{m}$. This gives

$$S = 2 \sum_{\substack{a \le A \\ (a,4Nn)=1}} \sum_{m} \mu(a) a_n n^{-1} \overline{\epsilon}_m m^{-\frac{1}{2}} \sum_{q \mid \ell} \mu(q) \sum_{2 \mid r \mid < m} \chi_{Nrq}(m) \sum_{d} ,$$

where

$$\sum_{d} = \sum_{dq \in \mathcal{D}} F(\frac{a^2 dq}{Y}) V(\frac{2\pi n}{a^2 dq \sqrt{N}}) e(\frac{\overline{4N}rd}{m}).$$

We put $\Delta = \min(1/2, a^2qY^{r-1})$ and split $S = S_0 + S_1 + S_2$, where S_0, S_1, S_2 denote the partial sums restricted by the conditions $r = 0, 0 < |r| < \Delta m$, $\Delta m \le |r| < m/2$ respectively.

8. Estimates for S_2 and S_1

372

LEMMA 2. Suppose g(x) is a smooth and integrable function on \mathbb{R} with derivatives $g^{(j)}(x) << (|x|+X)^{-j}$ for all $j \geq 1$ the implied constant depending on j only. Suppose α is real and q is a positive integer such that αq is not an integer. We then have

(18)
$$\sum_{n \equiv v \pmod{q}} g(n)e(\alpha n) \ll \frac{X}{q} \left(\frac{q}{X||\alpha q||}\right)^{j}$$

for any $j \geq 2$, the implied constant depending on j only.

PROOF: By Poisson's formula the sum is equal to

$$\frac{1}{q} \sum_{u=-\infty}^{\infty} e\left(\frac{uv}{q}\right) \hat{g}\left(\alpha - \frac{u}{q}\right) ,$$

where $\hat{g}(y)$ denotes the Fourier transform of g(x). We have $\hat{g}(y) \ll X(Xy)^{-j}$ by the partial integration j times, whence (18) follows by trivial summation over u.

To estimate S_2 we sum over d first by an appeal to (18). For any $j \geq 2$ we get $\sum_{d} \ll (n+Y)^{-j}$, whence $S_2 \ll 1$.

To estimate S_1 we sum over m first using (13) and partial summation together with the relation

$$e\left(\frac{\overline{4N}rd}{m}\right) = e\left(\frac{rd}{4Nm} - \frac{\overline{m}rd}{4N}\right)$$

and then we sum over r trivially getting

$$\begin{split} \sum_{0<|r|<\Delta m} & \sum_{m} a_m \ n^{-1} \overline{\epsilon}_m \ m^{-\frac{1}{2}} \ \chi_{Nrq}(m) V\left(\frac{2\pi n}{a^2 dq \sqrt{N}}\right) e\left(\frac{\overline{4N} r d}{m}\right) \\ << k^{-\frac{3}{2}} \ell^{-3} a^3 q^2 Y^{\epsilon-\frac{1}{2}} \ . \end{split}$$

Hence we conclude that

$$S_1 << \sum_{a \leq A} \sum_{k\ell^2} \sum_{q \mid \ell} \sum_{d} F\left(\frac{a^2 dq}{Y}\right) k^{-\frac{3}{2}} \ell^{-3} a^3 q^2 Y^{\epsilon - \frac{1}{2}} << A^2 Y^{\epsilon + \frac{1}{2}}.$$

9. Evaluation of S_0

Since r = 0 we have $\chi_{Nrq}(m) = 0$ for all m > 1 and the terms with m = 1 yield

$$S_0 = 2 \sum_{\substack{a \le A \\ (a,4N)=1}} \mu(a) \sum_{\substack{n=k\ell^2 \\ (n,a)=1}} a_n n^{-1} \sum_{q \mid \ell} \mu(q) \sum_{d},$$

where

$$\sum_{d} = \sum_{dq \in \mathcal{D}} F\left(\frac{a^2 dq}{Y}\right) V\left(\frac{2\pi n}{a^2 dq \sqrt{N}}\right)$$

We split the summation over d into residue classes modulo 4N. Each class contributes

$$\frac{Y}{4Na^2q}\int F(t)V\left(\frac{2\pi n}{t\sqrt{N}Y}\right)dt + O\left(\left(1+\frac{n}{Y}\right)^{-j}\right)$$

for any $j \geq 2$, and the number of relevant classes is

$$\gamma(4N) = \#\{d(\text{mod } 4N) : d \equiv -\nu^2(\text{mod } 4N), (\nu, 4N) = 1\}.$$

Hence

$$S_{0} = \gamma(4N)Y \sum_{n=k\ell^{2}} \frac{a_{n}\varphi(\ell)}{2Nn\ell} \left(\sum_{a \leq A, (a,4N\ell)=1} \mu(a)a^{-2} \right) \int F(t)V \left(\frac{2\pi n}{t\sqrt{N}Y} \right) dt + O\left(AY^{\epsilon+\frac{1}{2}}\right)$$
$$= c_{N}Y \int F(t)\mathcal{B}(t\sqrt{N}Y)dt + O((AY^{\frac{1}{2}} + A^{-1}Y)Y^{\epsilon}),$$

where

$$c_N = \frac{3\gamma(4N)}{\pi^2 N} \prod_{p|4N} (1 - \frac{1}{p^2})$$

and

$$\mathcal{B}(X) = \sum_{n=h\ell^2} \frac{b_n}{n} V\left(\frac{2\pi n}{X}\right)$$

with

$$b_n = a_n \prod_{p \mid n, p \nmid 4N} \left(1 + \frac{1}{p} \right) .$$

To evaluate the series $\mathcal{B}(X)$ we appeal to analytic properties of the zeta-function

$$L(s) = \sum_{n=k\ell^2} b_n n^{-s}.$$

The required properties are inherited from the properties of the Rankin-Selberg zeta-function

$$H(s) = \sum_{n=1}^{\infty} a_n^2 n^{-s} .$$

The Rankin-Selberg zeta-function is meromorphic on \mathbb{C} , holomorphic on Re $s \geq 1$ except for a simple pole at s = 2 with residuum

$$H = \mathop{\rm res}_{s=2} H(s) > 0 ,$$

and it satisfies a functional equation which connects H(s) with H(2-s). Moreover, as shown by G. Shimura [12] the function

$$L(s, \text{sym}^2) = \frac{\zeta(2s)}{\zeta(s)} H(s+1)$$

is entire. By the Phragmén-Lindelöf principle, using the functional equation, it follows that

$$L(s, \text{sym}^2) \ll |s| \text{ if } \text{Re } s \geq 1/2$$
.

Since L(s) agrees with $L(2s-1, \text{sym}^2)/\zeta(4s-2) = H(2s)/\zeta(2s-1)$ up to an Euler product P(s), say, which converges absolutely in Re $s \geq 3/4$ we conclude that L(s) is holomorphic in Re $s \geq 3/4$, it satisfies

$$L(s) \ll |s|^2$$
 if Re $s \ge 3/4$

and that

(19)
$$L(1) = HP(1) \neq 0.$$

Now by the contour integration we get

$$\mathcal{B}(X) = \frac{1}{2\pi i} \int_{(3/4)} L(s+1) \frac{\Gamma(s)}{s} \left(\frac{X}{2\pi}\right)^s ds$$

$$= \underset{s=0}{\text{res}} L(s+1) \frac{\Gamma(s)}{s} \left(\frac{X}{2\pi}\right)^s + \frac{1}{2\pi i} \int_{(-1/4)} ds$$

$$= L(1) \left(\log \frac{X}{2\pi} - \gamma\right) + L'(1) + O(X^{-1/4})$$

by the expansion $\Gamma(s) = s^{-1} - \gamma + \dots$, where γ is the Euler constant. Integrating against F(t) we conclude that

$$S_0 = \alpha Y \log Y + \beta Y + O((AY^{\frac{1}{2}} + A^{-1}Y)Y^{\epsilon})$$

with

(20)
$$\alpha = c_N L(1) \int F(t) dt \neq 0$$

and

(21)
$$\beta = c_N \int F(t) \left[L(1) \left(\log \frac{t\sqrt{N}}{2\pi} - \gamma \right) + L'(1) \right] dt .$$

10. Evaluation of the first moment of $L'(1, E, \chi_d)$. Conclusion

Collecting the established evaluations we infer that

$$S_1(Y) = S_0 + S_1 + S_2 + R = \alpha Y \log Y + \beta Y$$

+ $O((AY^{\frac{1}{2}} + A^{-1}Y + A^2Y^{\frac{1}{2}} + A^{-\frac{3}{2}}Y^{\frac{5}{4}} + A^{-3}Y^{\frac{3}{2}})Y^{\epsilon})$

which gives (6) on taking $A = Y^{3/14}$.

REFERENCES

- [1] E. BOMBIERI, Le grand Crible dans la Théorie Analytique des Nombres, Astérique 18 (1973).
- [2] D. BUMP, S. FRIEDBERG and J. HOFFSTEIN, Eisenstein series on the metaplectic group and non-vanishing theorems for automorphic L-functions and their derivatives. Ann. Math. 131 (1990), 53-127.
- [3] J.-M. DESHOUILLERS and H. IWANIEC, The non-vanishing of Rankin-Selberg zeta-functions at special points, AMS Contemporary Mathematics Vol. 53 (1986), 51-95
- [4] V.A. KOLYVAGIN, Finiteness of E(Q) and III(E,Q) for a subclass of Weil curves. Math. USSR Izv.
- [5] K. MURTY and R. MURTY, Mean values of derivatives of modular L-series. (to appear in Ann. Math.). (See also K. MURTY, Non-vanishing of L-functions and their derivatives in Automorphic Forms and Analytic Number Theory, (edited by R. Murty), CRM Publications, Montréal 1990, 89-113).
- [6] R.S. PHILLIPS and P. SARNAK, On cusp forms for co-finite subgroups of PSL(2, R). Invent. Math. 80 (1985), 339-364.
- [7] D. ROHRLICH, On L-functions of elliptic curves and anticyclotomic towers. Invent. Math. 75 (1984), 383-408.
- [8] D. ROHRLICH, On L-functions of elliptic curves and cyclotomic towers. Invent. Math. 75 (1984), 409-423.

- [9] D. ROIIRLICH, L-functions and division towers. Math. Ann. 281(1988), 611-632.
- [10] D. ROHRLICH, Non-vanishing of L-functions for GL(2). Invent. Math. 97 (1989), 381-403.
- [11] D. ROHRLICH, The vanishing of certain Rankin-Selberg convolutions, in Automorphic Forms and Analytic Number Theory. (edited by R. Murty) CRM Publications, Montréal 1990, 123-133.
- [12] G. SHIMURA, On modular forms of half-integral weight. Ann. Math. 97 (1973), 440–481.

Department of Mathematics Rutgers University New Brunswick NJ, 08903 USA.