
Akinari HOSHI

Complete solutions to a family of Thue equations of degree 12
Tome 29, no 2 (2017), p. 549-568.

<http://jtnb.cedram.org/item?id=JTNB_2017__29_2_549_0>

© Société Arithmétique de Bordeaux, 2017, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal/). Toute reproduction en tout ou partie de cet article sous
quelque forme que ce soit pour tout usage autre que l’utilisation à
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://jtnb.cedram.org/item?id=JTNB_2017__29_2_549_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Journal de Théorie des Nombres
de Bordeaux 29 (2017), 549–568

Complete solutions to a family of
Thue equations of degree 12

par Akinari HOSHI

Résumé. We considérons une famille paramétrique non galoi-
sienne d’équations de Thue Fm(x, y) = λ de degré 12 où m est
un paramètre entier et où λ est un diviseur de 729(m2 + 3m +
9). En utilisant la méthode d’isomorphismes de corps développée
dans [15], nous montrons que ces équations ont seulement des so-
lutions triviales avec xy(x+ y)(x− y)(x+ 2y)(2x+ y) = 0.

Abstract. We consider a parametric non-Galois family of Thue
equations Fm(x, y) = λ of degree 12 where m is an integral pa-
rameter and λ is a divisor of 729(m2 + 3m + 9). Using the field
isomorphism method which is developed in [15], we show that the
equations have only the trivial solutions with xy(x + y)(x − y) ·
(x+ 2y)(2x+ y) = 0.

1. Introduction

In 1909 Thue [36] showed that an equation F (x, y) = λ, where F (X,Y ) ∈
Z[X,Y ] is an irreducible binary form of degree d ≥ 3 and λ ∈ Z is a non-
zero integer, has only finitely many integral solutions (x, y) ∈ Z2. In 1968
Baker [3] proved that the equation F (x, y) = λ can be solved effectively.
Numerical methods for solving a Thue equation are developed by Tzanakis
and de Weger [37] and Bilu and Hanrot [5].

In 1990 Thomas [35] investigated a family of Thue equations F (3)
m (X,Y )

= ±1 where

F (3)
m (X,Y ) = X3 −mX2Y − (m+ 3)XY 2 − Y 3.

The equations F (3)
m (X,Y ) = ±1 are completely solved by Thomas [35] and

Mignotte [28]. Several families of Thue equations of degree d ≤ 6 have been
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studied by many authors (see e.g. [13], [12]). Let

F (4)
m (X,Y ) = X4 −mX3Y − 6X2Y 2 +mXY 3 + Y 4,

F (6)
m (X,Y ) = X6 − 2mX5Y − 5(m+ 3)X4Y 2 − 20X3Y 3

+ 5mX2Y 4 + 2(m+ 3)XY 5 + Y 6.

For d = 3, 4, 6, the splitting fields L(d)
m of F (d)

m (X, 1) over Q are totally real
cyclic Galois extensions of Q of degree d if m ∈ Z (d = 3), m ∈ Z \ {0,±3}
(d = 4), m ∈ Z \ {−8,−3, 0, 5} (d = 6), and called the simplest cubic,
quartic and sextic fields (see e.g. [9]). Lettl and Pethö [26] and Chen and
Voutier [6] solved the family of quartic Thue equations F (4)

m (X,Y ) = λ
where λ ∈ {±1,±4}, and Lettl, Pethö and Voutier [27] determined all
primitive solutions to the Thue inequalities |F (4)

m (X,Y )| ≤ 6m + 7 and
|F (6)
m (X,Y )| ≤ 120m + 323. A family of Thue equations of degree 8 is

solved by Heuberger, Togbé and Ziegler [14]. In [15] and [16], the author
determined solutions to the families of Thue equations F (d)

m (X,Y ) = λd of
degree d = 3 and 6 where m ∈ Z, λ3 is a divisor of m3 + 3m+ 9 and λ6 is
a divisor of 27(m2 + 3m+ 9). See also the quartic case [17].

The aim of this paper is to generalize the results in [15, 16] to the case
of degree 12. Let

Fm(X,Y ) = X12 − 4mX11Y − 22(m+ 3)X10Y 2 − 220X9Y 3

+ 165mX8Y 4 + 264(m+ 3)X7Y 5 + 924X6Y 6

− 264mX5Y 7 − 165(m+ 3)X4Y 8 − 220X3Y 9

+ 22mX2Y 10 + 4(m+ 3)XY 11 + Y 12.

The polynomial fm(X) = Fm(X, 1) is irreducible over Q if m ∈ Z \
{−8,−3, 0, 5}. In general, however, the root field Q(θ) with fm(θ) = 0 is not
a Galois extension of Q. For m ∈ Z\{−8,−3, 0, 5}, the splitting field Lm of
fm(X) over Q is a totally real Galois extension of Q of degree 24 or 12 whose
Galois group is isomorphic to D4×C3 or C6×C2 where D4 is the dihedral
group of order 8 and Cn is the cyclic group of order n. There exist infin-
itely many integers m ∈ Z for which Lm are of degree 24 and of degree 12
respectively. Moreover, we have the field inclusions L(3)

m ⊂ L
(6)
m ⊂ Lm for

arbitrary m ∈ Z where L(3)
m are the simplest cubic fields and L(6)

m are the
simplest sextic fields. We use Okazaki’s theorem (see [15, Theorem 1.4])
which claims that for m ≥ −1, the simplest cubic fields are non-isomorphic
to each other except form = −1, 0, 1, 2, 3, 5, 12, 54, 66, 1259, 2389. Okazaki’s
theorem was reproved in [15, Section 1].

The method of this paper, the field isomorphism method, is developed
in [18], [15] (see also [22]) and applied in [16] and [4]. It uses the splitting
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field Lm and is purely algebraic although it depends on Okazaki’s theorem
which was established by usual methods of analytic number theory: geo-
metric gap principles in the theory of geometry of numbers and a result of
Laurent, Mignotte and Nesterenko [25] in Baker’s theory on linear forms
in logarithms of algebraic numbers (see also [29], [38]). We remark that
the method may work well only for the case where the genus of the curve
Fs(X, 1) = 0 is zero.

We may assume that m ≥ −1 because if (x, y) ∈ Z2 is a solution to
Fm(x, y) = λ, then we have F−m−3(y, x) = λ. The binary form Fm(X,Y ) ∈
Z[X,Y ] is invariant under the action of the cyclic group C6 of order 6 with
C6 : X 7→ −Y, Y 7→ X + Y . Hence if we get a solution (x, y) ∈ Z2 to
Fm(x, y) = λ, then we have another 5 solutions:

(−y, x+ y), (−x− y, x), (−x,−y), (y,−x− y), (x+ y,−x).

We also obtain Fm(x−y, x+2y) = 729Fm(x, y). The equation Fm(x, y) = λ
has the following solutions for λ = c12 and λ = 729c12:

Fm(0,±c) = Fm(±c, 0) = Fm(±c,∓c) = c12,

Fm(±c,±c) = Fm(±2c,∓c) = Fm(±c,∓2c) = 729c12.

We call such solutions (x, y) ∈ Z2 to Fm(x, y) = λ with xy(x + y)(x− y) ·
(x + 2y)(2x + y) = 0 the trivial solutions in the present paper. The main
result of this paper is the following:

Theorem 1.1. Let m ∈ Z and λ be a divisor of 729(m2 + 3m + 9).
The equation Fm(x, y) = λ has only the trivial solutions (x, y) ∈ Z2 with
xy(x+ y)(x− y)(x+ 2y)(2x+ y) = 0.

2. Construction of fs(X) of degree 12

Let K be a field with char K 6= 2, 3 and K(z) be the rational function
field over K with variable z. We take the matrix

M12 =
( √

3 + 1 −1
1

√
3 + 2

)

of order 12 in PGL2(K(
√

3)). We will construct the polynomial fs(X) =

Fs(X, 1) of degree 12 via the matrix M12. Let the matrix M =
(
a b
c d

)
∈

PGL2(K(
√

3)) act on K(
√

3)(z) by

M :
√

3 7→
√

3, z 7→ az + b

cz + d
.
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Then we have

M2
12 ∼

(
1 −1
1 2

)
, M3

12 ∼
( √

3− 1 −2
2

√
3 + 1

)
,

M4
12 ∼

(
0 −1
1 1

)
, M6

12 ∼
(
−1 −2
2 1

)
where ∼ means the equality in PGL2(K(

√
3)), and the matrix M12 induces

a K(
√

3)-automorphism σ of K(
√

3)(z) of order 12:

σ : z 7→ Z 7→ z − 1
z + 2 7→

Z − 1
Z + 2 7→ − 1

z + 1(2.1)

7→ − 1
Z + 1 7→ − z + 2

2z + 1 7→ − Z + 2
2Z + 1 7→ −z + 1

z

7→ −Z + 1
Z

7→ −2z + 1
z − 1 7→ −2Z + 1

Z − 1 7→ z

where

Z = (
√

3 + 1)z − 1
z +
√

3 + 2
.

Hence we have the cyclic Galois extension K(
√

3, z)/K(
√

3, z)〈σ〉 of de-
gree 12. We get the generating polynomial

fs(X) =
12∏
i=1

(
X − σi(z)

)
= X12 − 4sX11 − 22(s+ 3)X10 − 220X9

+ 165sX8 + 264(s+ 3)X7 + 924X6 − 264sX5

− 165(s+ 3)X4 − 220X3 + 22sX2 + 4(s+ 3)X + 1

of the cyclic Galois field K(
√

3, z) over K(
√

3, z)〈σ〉 = K(
√

3)(s) where

s = z12 − 66z10 − 220z9 + 792z7 + 924z6 − 495z4 − 220z3 + 12z + 1
z(4z10 + 22z9 − 165z7 − 264z6 + 264z4 + 165z3 − 22z − 4)

= (z3−3z−1)(z3+6z2+3z−1)(z6−6z5−30z4−20z3+15z2+12z+1)
z(z+1)(z−1)(z+2)(2z+1)(z2−2z−2)(z2+4z+1)(2z2+2z−1) .

The discriminant of fs(X) with respect to X is 224345(s2 +3s+9)11. In [31,
32, 33], for q = 2n, pn and 2n, Shen and Washington constructed cyclic
polynomials g(q)

s (X) ∈ K(s)[X] over K of degree q where K is the real q-th

cyclotomic field. When q = 12, they take the matrix M ′ =
(

1 −1
1
√

3 + 1

)
∈ PGL2(K(

√
3)) of order 12. However, the generating polynomial g(12)

s (X)
is in K(

√
3)(s)[X] but not in K(s)[X]. On the other hand, the polynomial
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fs(X) is defined over not only K(
√

3)(s) but also K(s). This is the reason
why we take M12 instead of M ′. In the case where

√
3 ∈ K, the splitting

field SplK(s)fs(X) of fs(X) over K(s) = K(
√

3)(s) is a Galois extension
of the rational function field K(s) with cyclic Galois group of order 12.
However, if

√
3 6∈ K, then the splitting field SplK(s)fs(X) is not a regular

extension of K.
From now on, we assume that

√
3 6∈ K. Let τ be an involution ofK(

√
3, z)

defined by

τ :
√

3 7→ −
√

3, z 7→ z.(2.2)

The splitting field SplK(s)fs(X) = K(
√

3, z) is a Galois extension ofK(s) =
K(
√

3, z)〈σ,τ〉 with the Galois group H24 = 〈σ, τ〉 of order 24. The group
H24 is given as

H24 = 〈σ, τ | σ12 = τ2 = 1, τστ−1 = σ7〉 ' C12 o C2

= 〈σ3, τ | (σ3)4 = τ2 = 1, τσ3τ−1 = (σ3)−1〉 × 〈σ4〉 ' D4 × C3

where Cn is the cyclic group of order n and D4 is the dihedral group of
order 8.

There exist three subgroups 〈σ2, τ〉, 〈σ〉 and 〈σ2, στ〉 of order 12 of H24.
We have

K(
√

3, z)〈σ2,τ〉 = K(s)(
√
s2 + 3s+ 9),

K(
√

3, z)〈σ〉 = K(s)(
√

3),(2.3)

K(
√

3, z)〈σ2,στ〉 = K(s)(
√

3(s2 + 3s+ 9))

because∑
σ′∈〈σ2,τ〉

σ′(z)/4 = (z3 + 3z2 − 1)(z3 − 3z2 − 6z + 1)
z(z + 1)(z − 1)(z + 2)(2z + 1) =

√
s2 + 3s+ 9 + s.

The other equalities of (2.3) are established by a similar computation.
The group H24 may be regarded as the subgroup 〈σ, τ〉 of the symmet-

ric group S12 of degree 12 as permutation group on the roots of fs(X)
where σ = (1, . . . , 12) and τ = (2, 8)(4, 10)(6, 12). Then the only two
proper subgroups 〈σ〉 and 〈σ2, στ〉 are transitive in S12. Hence fs(X) is
irreducible over K(s)(

√
3) and over K(s)(

√
3(s2 + 3s+ 9)) but is reducible

over K(s)(
√
s2 + 3s+ 9). We will explain this later, see (2.6).

The group H24 has the unique subgroup 〈σ3, τ〉 ' D4 of order 8. The
group 〈σ3, τ〉 is normal in H24 and the corresponding cyclic cubic field over
K(s) is given by K(

√
3, z)〈σ3,τ〉 = K(s)(z3) where

z3 =
∑

σ′∈〈σ3,τ〉
σ′(z)/8 = z(z + 2)(z2 − 2z − 2)

(2z + 1)(2z2 + 2z − 1) .
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The action of H24 of order 3 on the field K(s)(z3) is given by

σ : s 7→ s, z3 7→ − 1
z3 + 1 7→ −z3 + 1

z3
7→ z3.

Hence the cubic field K(s)(z3) is the simplest cubic field of Shanks’ type
(cf. Shanks [30]) over K(s), and the minimal polynomial of z3 over K(s) is
given by

f (3)
s (X) =

∏
z′∈OrbH24 (z3)

(
X − z′

)
(2.4)

= X3 − sX2 − (s+ 3)X − 1.

The discriminant of the cubic polynomial f (3)
s (X) is (s2 + 3s+ 9)2.

There exist five subgroups 〈σ4τ〉, 〈σ2τ〉, 〈σ2〉, 〈στ〉 and 〈τσ〉 of order 6
of H24, and only the group 〈σ2〉 is normal in H24. We have K(

√
3, z)〈σ2〉 =

K(s)(
√

3,
√
s2 + 3s+ 9).

There exist three subgroups 〈σ6, τ〉, 〈σ3〉 and 〈σ6, σ3τ〉 of order 4 of H24
which are normal in H24. The three quotient groups H24/〈σ6, τ〉, H24/〈σ3〉
andH24/〈σ6, σ3τ〉 are cyclic group of order 6 and we have the corresponding
cyclic sextic fields over K(s):

K(
√

3, z)〈σ6,τ〉 = K(s)(z3,
√
s2 + 3s+ 9),

K(
√

3, z)〈σ3〉 = K(s)(z3,
√

3),

K(
√

3, z)〈σ6,σ3τ〉 = K(s)(z3,
√

3(s2 + 3s+ 9)).

In particular, the first one is “the simplest sextic field” over K(s) which
means that the field K(

√
3, z)〈σ6,τ〉 is given by K(s)(z6) where

z6 =
∑

σ′∈〈σ6,τ〉
σ′(z)/4 = (z + 1)(z − 1)

2z + 1

and the minimal polynomial of z6 over K(s) is given by

f (6)
s (X) =

∏
z′∈OrbH24 (z6)

(
X − z′

)
(2.5)

= X6− 2sX5− 5(s+ 3)X4− 20X3 + 5sX2 + 2(s+ 3)X + 1

with discriminant 2636(s2 + 3s+ 9)5.
The unique subgroup of order 3 of H24 is 〈σ4〉. The field K(

√
3, z)〈σ4〉 is

a Galois extension of K(s) with Galois group D4.
There exist five subgroups 〈τ〉, 〈σ6τ〉, 〈σ6〉, 〈σ3τ〉 and 〈σ9τ〉 of order 2 of

H24. The group 〈σ6〉 is the commutator subgroup of H24 and the abelian-
ization Hab

24 = H24/〈σ6〉 of H24 is isomorphic to C6 × C2. The other four
groups of order 2 are not normal in H24.
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The three polynomials
f (3)
s (X) = X3 − 3X − 1− sX(X + 1),

f (6)
s (X) = f

(3)
−3 (X)f (3)

3 (X)− sX(X + 1)(X − 1)(X + 2)(2X + 1),

fs(X) = f
(3)
−6 (X)f (3)

0 (X)f (6)
3 (X)− sX(X + 1)(X − 1)(X + 2)(2X + 1)
· (X2 − 2X − 2)(X2 + 4X + 1)(2X2 + 2X − 1)

satisfy the following remarkable equations:

(2.6)

f (6)
s (X) = (f (3)

s (X))2 − (s2 + 3s+ 9)X2(X + 1)2

= f
(3)
s+
√
s2+3s+9(X)f (3)

s−
√
s2+3s+9(X),

fs(X) = (f (6)
s (X))2

− (s2 + 3s+ 9)X2(X+ 1)2(X− 1)2(X+ 2)2(2X+ 1)2

= f
(6)
s+
√
s2+3s+9(X)f (6)

s−
√
s2+3s+9(X).

3. Field intersection problem

We recall some basic results in the computational aspects of Galois theory
(cf. e.g. [1], [7], [8]). Let K be a field with char K 6= 2, 3 and K be a fixed
algebraic closure of K. Let f(X) =

∏m
i=1(X − αi) ∈ K[X] be a separable

polynomial of degree m with some fixed order of the roots α1, . . . , αm ∈ K.
Let R = K[x1, . . . , xm] be the polynomial ring over K with m variables
x1, . . . , xm. For an element Θ in R, we take the specialization map ωf :
R → K(α1, . . . , αm), Θ(x1, . . . , xm) 7→ Θ(α1, . . . , αm). The kernel of ωf is
the ideal If = {Θ ∈ R | Θ(α1, . . . , αm) = 0} in R. Let Sm be the symmetric
group of degree m. We extend the action of Sm on m letters {1, . . . ,m} to
that on R by π(Θ(x1, . . . , xm)) = Θ(xπ(1), . . . , xπ(m)). The Galois group
of f(X) over K is defined by GalKf(X) = {π ∈ Sm | π(If ) ⊆ If}, and
GalKf(X) is isomorphic to the Galois group of the splitting field SplKf(X)
of f(X) over K. If we take another ordering of roots απ(1), . . . , απ(m) of
f(X) for some π ∈ Sm, then the corresponding realization of GalKf(X)
is conjugate in Sm. Hence, for arbitrary ordering of the roots of f(X),
GalKf(X) is determined up to conjugacy in Sm.

For H ≤ U ≤ Sm, Θ ∈ R is called a U -primitive H-invariant if H =
StabU (Θ) = {π ∈ U | π(Θ) = Θ}. For a U -primitive H-invariant Θ, the
polynomial

RPΘ,U (X) =
∏

π∈U/H
(X − π(Θ)) ∈ RU [X]

where π runs through a system of left coset representatives of H in U , is
called the formal U -relative H-invariant resolvent by Θ. The polynomial

RPΘ,U,f (X) = ωf (RPΘ,U (X))
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is called the U -relative H-invariant resolvent of f by Θ. The following
theorem is fundamental in the theory of resolvent polynomials (see e.g. [1,
p. 95]).

Theorem 3.1. Let G = GalKf(X), H ≤ U ≤ Sm be finite groups with
G ≤ U and Θ be a U -primitive H-invariant. Suppose that RPΘ,U,f (X) =∏l
i=1 h

ei
i (X) gives the decomposition of RPΘ,U,f (X) into a product of pow-

ers of distinct irreducible polynomials hi(X), (i = 1, . . . , l), in K[X]. Then
we have a bijection

G\U/H −→ {he1
1 (X), . . . , hel

l (X)}

GπH 7−→ hπ(X) =
∏

τH⊆GπH

(
X − ωf (τ(Θ))

)
where the product runs through the left cosets τH of H in U contained in
GπH, that is, through τ = πσπ where πσ runs through a system of repre-
sentatives of the left cosets of G ∩ πHπ−1 in G; each hπ(X) is irreducible
or a power of an irreducible polynomial with deg(hπ(X)) = |GπH|/|H| =
|G|/|G ∩ πHπ−1|.

Corollary 3.2. If G ≤ πHπ−1 for some π ∈ U , then RPΘ,U,f (X) has a
linear factor over K. Conversely, if RPΘ,U,f (X) has a non-repeated linear
factor over K, then there exists π ∈ U such that G ≤ πHπ−1.

In the case where RPΘ,U,f (X) is not squarefree, we may take a suit-
able Tschirnhausen transformation f̂ of f over K such that RPΘ,U,f̂ (X) is
squarefree (cf. [7, Alg. 6.3.4]).

We now apply Theorem 3.1 to the case m = 24 and f(X) = fa(X)fb(X)
where

fa(X) = X12 − 4aX11 − 22(a+ 3)X10 − 220X9

+ 165aX8 + 264(a+ 3)X7 + 924X6 − 264aX5

− 165(a+ 3)X4 − 220X3 + 22aX2 + 4(a+ 3)X + 1
of degree 12 for a ∈ K. The reader may find the similar argument of the
resolvent polynomials in the non-abelian group cases in [18, 19, 20, 21]. Let
K(
√

3)(z) be the rational function field over K(
√

3) with variable z. Let
σ and τ be K-automorphisms of K(

√
3, z) as in (2.1) and (2.2). Then the

field K(
√

3, z) is the splitting field of fs(X) over K(
√

3, z)〈σ,τ〉 = K(s) with
Galois group H24 = 〈σ, τ〉 (resp. C12 = 〈σ〉) if

√
3 6∈ K (resp.

√
3 ∈ K).

We also take another rational function field K(
√

3)(w) over K(
√

3) with
variable w, K-automorphisms

σ′ :
√

3 7→
√

3, w 7→ (
√

3 + 1)w − 1
w +
√

3 + 2
, τ ′ :

√
3 7→ −

√
3, w 7→ w
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and the element

t = w12 − 66w10 − 220w9 + 792w7 + 924w6 − 495w4 − 220w3 + 12w + 1
w(4w10 + 22w9 − 165w7 − 264w6 + 264w4 + 165w3 − 22w − 4)

of K(w) by the same manner of K(
√

3)(z), σ, τ and s as in Section 2. Then
the field K(

√
3, w) is the splitting field of ft(X) over K(

√
3, w)H′

24 = K(t)
with H ′24 = 〈σ′, τ ′〉. We extend the actions of σ and τ on K(

√
3, z) and σ′

and τ ′ on K(
√

3, w) to these on K(
√

3, z, w) by

σ :
√

3 7→
√

3, z 7→ (
√

3 + 1)z − 1
z +
√

3 + 2
, w 7→ w, τ :

√
3 7→ −

√
3, z 7→ z, w 7→ w,

σ′ :
√

3 7→
√

3, z 7→ z, w 7→ (
√

3 + 1)w − 1
w +
√

3 + 2
, τ ′ :

√
3 7→ −

√
3, z 7→ z, w 7→ w.

Then τ = τ ′ and the field K(
√

3, z, w) is a Galois extension of K(s, t) =
K(
√

3, z, w)〈σ,σ′,τ〉 whose Galois group is 〈σ, σ′, τ〉 ' (H24×H ′24)/〈(τ, τ ′)〉 of
order 288 (resp. 〈σ, σ′〉 ' C12×C12 of order 144) if

√
3 6∈ K (resp.

√
3 ∈ K).

For a, b ∈ K, we define

La = SplKfa(X), Ga = GalKfa(X),
fa,b(X) = fa(X)fb(X), Ga,b = GalKfa,b(X).

After the specialization s 7→ a ∈ K, we assume that the polynomial fa(X)
is separable, that is a2 + 3a+ 9 6= 0, and also irreducible over K. Then the
Galois group Ga is isomorphic to H24 or C6 × C2 (resp. C12) if

√
3 6∈ K

(resp.
√

3 ∈ K).
For a squarefree polynomial R(X) ∈ K[X] of degree l, we define the

decomposition type DT(R) of R(X) by the partition of l induced by the
degrees of the irreducible factors of R(X) over K. Via the decomposition
type DT(Ri) of the resolvent polynomial Ri(X), we get an answer of the
field intersection problem, i.e. for a, b ∈ K determine the intersection La∩Lb
of the splitting fields La and Lb.

Theorem 3.3. Assume (a2 + 3a + 9)(b2 + 3b + 9) 6= 0, fa(X) and fb(X)
are irreducible over K and #Ga ≥ #Gb for a, b ∈ K. Let U = 〈σ, σ′, τ〉
(resp. 〈σ, σ′〉), Hi = 〈σ(σ′)i, τ〉, (resp. 〈σ(σ′)i〉), Θi be a U -primitive Hi-
invariant and Ri(X) = RPΘi,U,fa,b

(X) for i = 1, 5, 7, 11. Assume that each
Ri(X) is squarefree. If

√
3 6∈ K (resp.

√
3 ∈ K), then the Galois group

Ga,b = GalKfa,b(X) and the intersection field La ∩ Lb are given by the
decomposition types DT(Ri) as in Table 3.1 (resp. Table 3.2).
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Ga Gb Ga,b DT(R1) DT(R5) DT(R7) DT(R11)

H24 H24

(C12×C12)oC2 La ∩ Lb = K(
√

3) 12 12 12 12

D4×C6×C3 [La ∩ Lb : K] = 4
12 12 12 12
62 62 62 62

(C2
4 oC2)×C3 [La ∩ Lb : K] = 6

12 43 12 43

43 12 43 12

D4×C2
3 [La ∩ Lb : K] = 8

12 12 62 62

62 62 12 12
62 62 32, 6 32, 6

32, 6 32, 6 62 62

D4×C6 [La ∩ Lb : K] = 12

12 43 12 43

43 12 43 12
62 26 62 26

26 62 26 62

D4×C3 La = Lb

12 43 62 26

43 12 26 62

62 26 12 43

26 62 43 12
62 26 32, 6 16, 23

26 62 16, 23 32, 6
32, 6 16, 23 62 26

16, 23 32, 6 26 62

H24 C6×C2

D4×C6×C3 La ∩ Lb = K(
√

3) 12 12 12 12
D4×C2

3 [La ∩ Lb : K] = 4 12 12 12 12

D4×C6 [La ∩ Lb : K] = 6
12 43 12 43

43 12 43 12

D4×C3 La ⊃ Lb

12 43 12 43

43 12 43 12

C6×C2 C6×C2

C2
6×C2 La ∩ Lb = K(

√
3) 62 62 62 62

C6×C6 [La ∩ Lb : K] = 4 32, 6 32, 6 32, 6 32, 6

C6×C2
2 [La ∩ Lb : K] = 6

62 26 62 26

26 62 26 62

C6×C2 La = Lb

32, 6 16, 23 32, 6 16, 23

16, 23 32, 6 16, 23 32, 6

Table 3.1.

Proof. First we assume that
√

3 6∈ K. We apply Theorem 3.1 to U =
〈σ, σ′, τ〉, H = Hi = 〈σ(σ′)i, τ〉 (i = 1, 5, 7, 11) and any subgroup G =
Ga,b ≤ U with transitive Ga, Gb ≤ S12. Indeed, we may regard U , Hi ≤ S24
as permutation group in 24 letters where

σ = (1, . . . , 12) ∈ S12,

σ′ = (13, . . . , 24) ∈ S′12,

τ = (2, 8)(4, 10)(6, 12)(14, 20)(16, 22)(18, 24) ∈ S24.
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Ga Gb Ga,b DT(R1) DT(R5) DT(R7) DT(R11)

C12 C12

C12 × C12 La ∩ Lb = K 12 12 12 12

C12 × C6 [La ∩ Lb : K] = 2 62 62 62 62

C12 × C4 [La ∩ Lb : K] = 3
12 43 12 43

43 12 43 12

C12 × C3 [La ∩ Lb : K] = 4
62 62 34 34

34 34 62 62

C12 × C2 [La ∩ Lb : K] = 6
62 26 62 26

26 62 26 62

C12 La = Lb

62 26 34 112

26 62 112 34

34 112 62 26

112 34 26 62

Table 3.2.

Then the decomposition types DT(Ri) in Table 3.1 can be obtained by the
formula deg(hπ(X)) = |GπHi|/|Hi| = |G|/|G ∩ πHiπ

−1|. We may check it
by GAP [34] via the the command DoubleCosetRepsAndSizes(U,G,Hi)
for any subgroup G ≤ U with transitive G|S12 ≤ S12 and G|S′

12
≤ S′12. For

the case where
√

3 ∈ K, we may get Table 3.2 by the similar manner. �

Corollary 3.4. Assume that
√

3 ∈ K, Ga = Gb = C12 and each Ri(X) is
squarefree for a, b ∈ K. Then the splitting fields La and Lb coincide if and
only if (only) one of the polynomials Ri(X) (i = 1, 5, 7, 11) splits completely
into twelve linear factors over K.

4. Field isomorphism problem

In order to obtain an explicit answer to the field isomorphism problem of
fs(X), i.e. whether the splitting fields SplKfa(X) and SplKfb(X) coincide
for a, b ∈ K, we should seek suitable U -primitive Hi-invariants Θi for i =
1, 5, 7, 11 where U and Hi are given as in Theorem 3.3. It follows from [2,
Theorem 1.4] that there exists 〈σσ′〉-invariant Θ1 such that K(z, w) =
K(z,Θ1). Moreover we may obtain the following U -primitive Hi-invariants
Θi which satisfy K(z, w) = K(z,Θi).
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Lemma 4.1. Let

Θ1 = z + 1 + zw

−z + w
,

Θ5 = z(z4 + 5z3 − 10z − 5) + (z + 1)(z4 − z3 − 9z2 − z + 1)w
−(z + 1)(z4 − z3 − 9z2 − z + 1) + (5z4 + 10z3 − 5z − 1)w,

Θ7 = −(5z4 + 10z3 − 5z − 1) + (z + 1)(z4 − z3 − 9z2 − z + 1)w
z(z4 + 5z3 − 10z − 5) + (5z4 + 10z3 − 5z − 1)w ,

Θ11 = −1 + zw

z + 1 + w
.

Then the elements Θi (i = 1, 5, 7, 11) are U -primitive Hi-invariants and
the actions of σ on K(Θi) are given by

σ : Θj 7→
(
√

3 + 1)Θj − 1
Θj +

√
3 + 2

, Θk 7→
(
√

3− 2)Θk − 1
Θk +

√
3− 1

for j = 1, 11 and k = 5, 7, which are the same as the actions of σ and σ5

on K(z) respectively.

Remark 4.2. Θ11(z, w) = Θ1(z,−w − 1) and Θ7(z, w) = Θ5(z,−w − 1).

By Lemma 4.1, the resolvent Ri(X) = RPΘi,U,fa,b
(X) is given by

Ri(X) = fAi(X) for some Ai ∈ K. Indeed, we have the following:

Theorem 4.3. Let Θi (i = 1, 5, 7, 11) be as in Lemma 4.1. Then

Ri(X) = fAi(X)

where

A1 = 3a+ 9 + ab

−a+ b
,

A5 = −3a(a4+15a3−270a−405)− (a+3)(a4−3a3−81a2−27a+81)b
(a+ 3)(a4 − 3a3 − 81a2 − 27a+ 81)− (5a4 + 30a3 − 135a− 81)b ,

A7 = −9(5a4+30a3−135a−81) + (a+3)(a4−3a3−81a2−27a+81)b
a(a4 + 15a3 − 270a− 405) + (5a4 + 30a3 − 135a− 81)b ,

A11 = −9 + ab

a+ 3 + b
.

Proof. This can be done by a straightforward computation. �

Remark 4.4. A11(a, b) = A1(a,−b− 3) and A5(a, b) = A7(a,−b− 3).
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Note that the discriminant disc(Ri) of the polynomials Ri(X) are
given by

disc(Ri) =


224345(a2 + 3a+ 9)11(b2 + 3b+ 9)11

d22
i

if i = 1, 11,

224345(a2 + 3a+ 9)55(b2 + 3b+ 9)11

d22
i

if i = 5, 7,

where

(4.1)

d1 = a− b,
d5 = (a+3)(a4−3a3−81a2−27a+81)−(5a4 +30a3−135a−81)b,
d7 = a(a4 + 15a3 − 270a− 405) + (5a4 + 30a3 − 135a− 81)b,
d11 = a+ b+ 3.

The following theorem can be easily seen by inspecting Tables 3.1 and 3.2.

Theorem 4.5. Let d1, d5, d7 and d11 be as in (4.1). For a, b ∈ K with
d1d5d7d11 6= 0 and (a2 + 3a + 9)(b2 + 3b + 9) 6= 0, assume that fa(X)
and fb(X) are irreducible over K. Then the splitting fields of fa(X) and of
fb(X) over K coincide if and only if the decomposition types DT(Ri) where
Ri(X) = fAi(X) (i = 1, 5, 7, 11) are given as in Table 4.1.

K Ga = Gb DT(R1) DT(R5) DT(R7) DT(R11)

√
3 ∈ K C12

62 26 34 112

26 62 112 34

34 112 62 26

112 34 26 62

√
3 6∈ K

H24

12 43 62 26

43 12 26 62

62 26 12 43

26 62 43 12
62 26 32, 6 16, 23

26 62 16, 23 32, 6
32, 6 16, 23 62 26

16, 23 32, 6 26 62

C6 × C2
32, 6 16, 23 32, 6 16, 23

16, 23 32, 6 16, 23 32, 6

Table 4.1.
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Lemma 4.6. Let d1, d5, d7 and d11 be as in (4.1) and ξ(u) = u(u + 1) ·
(u− 1)(u+ 2)(2u+ 1)(u2 − 2u− 2)(u2 + 4u+ 1)(2u2 + 2u− 1) for u ∈ K.
Assume that d1d5d7d11 6= 0 and (a2 + 3a+ 9)(b2 + 3b+ 9) 6= 0 for a, b ∈ K.

(1) The polynomial fA1(X) (resp. fA11(X)) has a linear factor over K
if and only if there exists u ∈ K such that

B = A(u)(4.2)
where B = b (resp. B = −b− 3) and

A(X) = 9 ξ(X) + f−3(X)
−a ξ(X) + f0(X) = a+ (a2 + 3a+ 9) ξ(X)

fa(X) .

(2) The polynomial fA7(X) (resp. fA5(X)) has a linear factor over K
if and only if there exists u′ ∈ K such that

B = A(u′)(4.3)
where B = b (resp. B = −b− 3) and

A(X) = (270a3 − 729)ξ(X) + (a5 − 270a2)f0(X) + (15a4 − 405a)f−3(X)
ga(X)

= −a(a4 + 15a3 − 270a− 405)
5a4 + 30a3 − 135a− 81 + (a2 + 3a+ 9)5 ξ(X)

(5a4 + 30a3 − 135a− 81)ga(X)
with

ga(X) = a2(a3 − 270) ξ(X)− a(5a3 − 135)f0(X)− (30a3 − 81)f−3(X).
(3) Assume that fa(X) is irreducible and GalQfa(X) = C6 × C2. For

B = b, there exists u ∈ K which satisfies (4.2) if and only if there
exists u′ ∈ K which satisfies (4.3).

Proof. Note that Ai is a linear fractional function in b over K(a) for i =
1, 5, 7, 11. The assertions (1) and (2) are just obtained by solving the equa-
tion fAi(X) = 0 in b. The assertion (3) follows from Theorem 4.5 (see also
Table 4.1). �

Lemma 4.7. Let d1, d5, d7 and d11 be as in (4.1). For a, b ∈ K, if d1d5d7d11
= 0, that is b = a, b = −a− 3,

b = −a(a4 + 15a3 − 270a− 405)
5a4 + 30a3 − 135a− 81

or b = (a+ 3)(a4 − 3a3 − 81a2 − 27a+ 81)
5a4 + 30a3 − 135a− 81 ,

then SplKfa(X) = SplKfb(X).

Proof. For i = 1, 5, 7, 11, we consider the resolvent diRi(X) instead of
Ri(X). If di = 0, then the decomposition type DT(diRi) is given as 15, 23

(resp. 111) if
√

3 6∈ K (resp.
√

3 ∈ K). By Theorem 3.1 (Corollary 3.2), we
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have SplKfa(X) = SplKfb(X) (see also Table 4.1). Note that the vanishing
simple root corresponds to the point at infinity, i.e. X = x/y with y = 0
(see also [20, p. 47]). �

By Theorem 4.5 and Lemma 4.6, for a fixed a ∈ K with a2 + 3a+ 9 6= 0,
we have SplKfb(X) = SplKfa(X) where b is given as in Lemma 4.6(1) for
arbitrary u ∈ K with fa(u) 6= 0 and b2 + 3b+ 9 6= 0.

Corollary 4.8. Let K be an infinite field with charK 6= 2, 3. For a fixed
a ∈ K with a2 + 3a + 9 6= 0, there exist infinitely many b ∈ K such that
SplKfb(X) = SplKfa(X).

On the other hand, by Siegel’s theorem for curves of genus 0 (cf. [23,
Theorem 6.1], [24, Chapter 8, Section 5]), we have the following:

Corollary 4.9. Let K be a number field and OK be the ring of integers
in K. Assume that a ∈ OK with a2 + 3a + 9 6= 0. Then there exist only
finitely many integers b ∈ OK such that SplKfb(X) = SplKfa(X). In par-
ticular, there exist only finitely many integers b ∈ OK such that fAi(X)
(i = 1, 5, 7, 11) has a linear factor over K.

5. The case K = Q

For m ∈ Z, we consider the polynomial fm(X) = Fm(X, 1) of degree 12
over Q. Define

Lm = SplQfm(X), L(6)
m = SplQf (6)

m (X), L(3)
m = SplQf (3)

m (X),

Gm = GalQfm(X), G(6)
m = GalQf (6)

m (X), G(3)
m = GalQf (3)

m (X).

We intend to generalize the following two theorems for the simplest cubic
fields L(3)

m and the simplest sextic fields L(6)
m to the case of Lm.

Theorem 5.1 (Gras [10], [11]).

(1) For m ∈ Z, f (3)
m (X) is irreducible over Q and G(3)

m = C3.
(2) For m ∈ Z \ {−8,−3, 0, 5}, f (6)

m (X) is irreducible over Q. In partic-
ular, we have

G(6)
m =

{
C6 if m ∈ Z \ {−8,−3, 0, 5},
C3 if m ∈ {−8,−3, 0, 5}.

Moreover, for m ∈ Z the unique cubic subfield of L(6)
m is the simplest

cubic field L(3)
m and the field Q(

√
m2 + 3m+ 9) is a subfield of L(6)

m .
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Theorem 5.2 (Okazaki, Hoshi [15], [16]).
(1) For m,n ∈ Z with −1 ≤ m < n, if L(3)

m = L
(3)
n , then m,n ∈

{−1, 0, 1, 2, 3, 5, 12, 54, 66, 1259, 2389}. In particular, we have

L
(3)
−1 = L

(3)
5 = L

(3)
12 = L

(3)
1259, L

(3)
0 = L

(3)
3 = L

(3)
54 , L

(3)
1 = L

(3)
66 , L

(3)
2 = L

(3)
2389.

(2) For m,n ∈ Z, L(6)
m = L

(6)
n if and only if m = n or m = −n− 3.

Theorem 5.3. For m ∈ Z \ {−8,−3, 0, 5}, fm(X) is irreducible over Q.
In particular,

Gm =


H24 if m ∈ Z \ {−8,−3, 0, 5} and

√
3(m2 + 3m+ 9) 6∈ Z,

C6 × C2 if m ∈ Z \ {−8,−3, 0, 5} and
√

3(m2 + 3m+ 9) ∈ Z,
C6 × C2 if m ∈ {−8, 5},
C6 if m ∈ {−3, 0}.

Moreover, for m ∈ Z the unique cubic subfield of Lm is the simplest cubic
field L(3)

m and the fields Q(
√

3), Q(
√
m2 + 3m+ 9), Q

(√
3(m2 + 3m+ 9)

)
and L(6)

m are subfields of Lm.

Proof. From (2.4), (2.5) and Theorem 5.1(1), we have Q ( L
(3)
m ⊂ L

(6)
m ⊂

Lm and Gm 6≤ D4. By (2.3), if
√
m2 + 3m+ 9 6∈ Z and

√
3(m2 + 3m+ 9)

6∈ Z, then fm(X) is irreducible over Q and Gm = H24.
Now we assume that

√
m2 + 3m+ 9 ∈ Z. An easy calculation shows

that
√
m2 + 3m+ 9 ∈ Z if and only if m ∈ {−8,−3, 0, 5} for m ∈ Z. For

m ∈ {−8,−3, 0, 5}, by (2.6), the polynomial fm(X) splits into irreducible
factors over Q as

f−8(X) = f
(6)
−15(X)f (6)

−1 (X), f−3(X) = f
(3)
−3 (X)f (3)

3 (X)f (6)
−6 (X),

f0(X) = f
(3)
−6 (X)f (3)

−3 (X)f (6)
3 (X), f5(X) = f

(6)
−2 (X)f (6)

12 (X).

Hence it follows from Theorem 5.1(2) and Theorem 5.2 that Gm = C6×C2
(resp. C6) for m ∈ {−8, 5} (resp. m ∈ {−3, 0}).

Assume that
√

3(m2 + 3m+ 9) ∈ Z. Thenm 6∈ {−8,−3, 0, 5}. From (2.3)
we have Gm ≤ C6 × C2. We consider fm(X) over Q(

√
m2 + 3m+ 9) =

Q(
√

3). From Theorem 5.1(2), (2.5) and (2.6), we have that fm(X) splits
into two factors as f

(6)
m+
√
m2+3m+9(X)f (6)

m−
√
m2+3m+9(X) over Q(

√
3),

Q(
√

3) ( L
(6)
m ⊂ Lm and C3 ≤ GalQ(

√
3)fm(X) ≤ C6. Hence DT(fm)

over Q(
√

3) is 6, 6 or 3, 3, 3, 3. It is enough to show that f (6)
m±
√
m2+3m+9(X)

6∈ Q[X] are irreducible over Q(
√

3). From (2.6), f (6)
m1 (X) splits into two cubic

factors over Q(
√

3) if and only if m2
1 +3m1 +9 is square in Q(

√
3). However,

for m1 = m±
√
m2 + 3m+ 9, m2

1 + 3m1 + 9 = 2m2 + 6m+ 18± (2m+ 3) ·
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√
m2 + 3m+ 9 is not square in Q(

√
3) because m2 + 3m+ 9 = 3c2 for some

odd integer c ∈ Z and the coefficient (2m+3)c of
√

3 inm2
1+3m1+9 ∈ Z[

√
3]

is odd. Thus we see that f (6)
m±
√
m2+3m+9(X) is irreducible over Q(

√
3) and

fm(X) is irreducible over Q. �

Lemma 5.4. There exist infinitely many integers m such that√
3(m2 + 3m+ 9) ∈ Z.

Indeed, such integers m ≥ −1 are given by

m = 3
2

(√
3

2 (ε2r−1 − ε−(2r−1))− 1
)

= 3(3b2r−1 − 1)
2 (r ∈ Z, r ≥ 1)

where ε =
√

3 + 2 is a fundamental unit of Z[
√

3] and ε2r−1 = a2r−1 +
b2r−1

√
3 with a2r−1, b2r−1 ∈ Z.

Proof. Assume that for m ≥ −1, there exists c ∈ Z>0 such that m2 +
3m + 9 = 3c2. Define m0 := m/3 ∈ Z and c0 := c/3 ∈ Z. Then it follows
that (2m0 + 1)2 + 3 = 12c2

0. Define l = (2m0 + 1)/3 ∈ Z. Then we have
(
√

3l+2c0)(
√

3l−2c0) = −1. Hence there exists j ≥ 1 such that
√

3l+2c0 =
εj . We also have 3l+2

√
3c0 =

√
3εj and 3l−2

√
3c0 = (−

√
3)ε−j . By adding

the both sides, we get m = 3
2(
√

3
2 (εj − ε−j)− 1) = 3

2(3bj − 1). It is easy to
see that m ∈ Z if and only if j = 2r − 1. �

Examples of the integers m and r with
√

3(m2 + 3m+ 9) ∈ Z, i.e. Gm =
C6 × C2, are given as follows:

r 1 2 3 4 5 6 7 8 9
m 3 66 939 13098 182451 2541234 35394843 492986586 6866417379

By Theorem 5.2 and Theorem 5.3, we get:

Theorem 5.5. For m,n ∈ Z, Lm = Ln if and only if m = n or m = −n−3.

Proof. We may assume that −1 ≤ m < n without loss of generality. When
(m,n) = (0, 5), i.e. Gm = Gn = C6, we have L0 6= L5. When m ∈ Z\{0, 5},
i.e. Gm = H24 or C6 × C2, by Theorem 5.3 the unique cubic subfield of
Lm is L(3)

m . It follows from Theorem 5.2 that Lm 6= Ln except for m,n ∈
{−1, 1, 2, 3, 12, 54, 66, 1259, 2389}. For the exceptional cases, we may
confirm that Lm 6= Ln by Theorem 4.5. �

Theorem 5.6. If there exists a non-trivial solution (x, y) ∈ Z2 to
Fm(x, y) = λ, i.e. xy(x + y)(x − y)(x + 2y)(2x + y) 6= 0, where λ is a
divisor of 729(m2 + 3m + 9), then there exists n ∈ Z \ {m,−m − 3} such
that Ln = Lm.
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Proof. Assume that there exists a non-trivial solution (x, y) to Fm(x, y) = λ
where λ is a divisor of 729(m2 +3m+9). From Theorem 4.5 and Lemma 4.6
with u = x/y, we have that

n = m+ (m2 + 3m+ 9)Ξ(x, y)
Fm(x, y) ∈ Q \ {m}

implies Ln = Lm where

Ξ(x, y) = xy(x+ y)(x− y)(x+ 2y)(2x+ y)
· (x2 − 2xy − 2y2)(x2 + 4xy + y2)(2x2 + 2xy − y2).

When m ∈ Z \ {−8,−3, 0, 5} (Gm = H24 or C6 × C2), it follows from
Theorem 4.5 and Lemma 4.6 that n 6= −m − 3 (see Table 4.1). When
m ∈ {−8,−3, 0, 5} (Gm = C6 × C2 or C6), we may check that DT(R11)
is 32, 6 for m = n. Hence n ∈ Q \ {m,−m − 3}. If x 6≡ y (mod 3), then
Fm(x, y) ≡ 1 (mod 3). Hence Fm(x, y) = λ is a divisor of m2 + 3m+ 9 and
n ∈ Z \ {m,−m − 3}. If x ≡ y (mod 3), then 729 is a divisor of Ξ(x, y),
and hence n ∈ Z \ {m,−m− 3}. �

Proof of Theorem 1.1. By combining Theorem 5.5 and Theorem 5.6, we
obtain Theorem 1.1. �
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