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Journal de Théorie des Nombres
de Bordeaux 29 (2017), 535–548

Constraints on the automorphism group of a
curve

par Josep GONZÁLEZ

Résumé. Pour une courbe de genre > 1 définie sur un corps fini,
nous présentons un critère suffisant pour la non-existence d’auto-
morphismes de l’ordre une puissance d’un nombre premier. Nous
montrons comment ce critère peut être utilisé pour déterminer
le groupe d’automorphismes de certaines courbes modulaires de
genres supérieurs.

Abstract. For a curve of genus > 1 defined over a finite field,
we present a sufficient criterion for the non-existence of automor-
phisms of order a power of a rational prime. We show how this
criterion can be used to determine the automorphism group of
some modular curves of high genus.

1. Introduction

For a curve X of genus g > 1 defined over a field K, the automor-
phism group AutK(X) is finite. In characteristic zero, it is well-known that
one has the Hurwitz bound |AutK(X)| ≤ 84(g − 1). In [9], the inequality
|AutK(X)| < 16g4 is seen to hold in positive characteristic unless X is a
Hermitian curve. In particular, this provides a bound for the order of any
automorphism of the curve. Nevertheless, there is not a general procedure
to discard possible orders.

We are interested in the case in which K is a number field. The reduc-
tion of the curve X at a prime of K of good reduction is a curve X̃ defined
over a finite field Fq. We know that AutK(X) injects into AutFq (X̃) (cf. [8,
Proposition 10.3.38]) and although this inclusion may be strict, any infor-
mation allowing to discard orders of the elements in the group AutFq (X̃)
will be useful for our goal. Moreover, if necessary, we can change the prime
of K of good reduction for X.
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The main result of this work is in Section 2. For a curve X of genus > 1
defined over a finite field Fq, we fix an integer s > 1 which is a power of a
rational prime. In Theorem 2.1, we present a criterion which, under a certain
condition on the sequence {|X(Fqn)|}n≥1 depending on s, ensures the non-
existence of elements in AutFq (X) of order s. Although this criterion is
not a characterization for the non-existence of such automorphisms, it is
certainly a powerful tool that can be applied in many situations.

In Section 3, in order to show the efficacy of this tool, we apply it to
some modular curves. In fact, we deal with curves X defined over Q such
that their jacobians are quotients of jacobians of modular curves X0(M)
for some positive integer M . This choice is due to two reasons. On the
one hand, thanks to the Eichler–Shimura congruence and using Magma
or Sage, we can compute the sequence {|(X ⊗ F`)(F`n)|}n≥1 from the
`-th Fourier coefficient of certain newforms of level dividing M attached
to Jac(X) for all primes ` - M . On the other hand, we can determine the
algebra End(Jac(X))⊗Q as well as the smallest number field L where all
these endomorphisms are defined; in particular, Aut(X) = AutL(X) and
the orders of the roots of unity in the endomorphism algebra restrict the
possible orders in Aut(X). More precisely, in Section 3 we first test our
criterion on 18 modular curves for which Baker and Hasegawa proved that
their automorphism groups are trivial (cf. [1]). We also use this criterion in
Proposition 3.2 to determine the automorphism group for 12 other modular
curves of high genus.

2. Automorphisms of a curve defined over a finite field

Let Fq be the finite field with q elements and let X be a curve of genus
g > 1 defined over Fq. The initial strategy to find a criterion to discard
orders of automorphisms in AutFq (X) is based on the following idea.

Assume that there exists a subgroup G of AutFq (X) of order > 1. Let R
be the set of ramification points of the natural projection πG : X → X/G
and, for all integer n > 0, consider the sets

An :=
{
X(Fq) if n = 1,
X(Fqn)\ ∪n−1

i=1 X(Fqi) if n > 1.

The orbit of a point S ∈ X(Fq) under the action of G has cardinality
equal to |G| if, and only if, S /∈ R. Since R is a finite set, the sequence
of cardinalities |An|, n ≥ 1, satisfies the condition |An| ≡ 0 (mod |G|) for
almost all n. Moreover,∑

n≥1
mod(|An|, |G|) ≤

∑
n≥1
|An ∩R| = |R| ,

where mod(r, |G|) denotes the remainder when dividing the integer r by
|G|. In fact, this inequality when |G| = 2 was applied in [6] to prove the
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non-existence of involutions for five modular curves and is the origin of the
result presented in this article.

From the Riemann–Hurwitz formula applied to πG, we can get an upper
bound for |R| depending only on the genus g and |G| and the corresponding
inequality would provide a necessary condition for curves having a subgroup
of automorphisms of order |G|.

For instance, assume that the order of G is equal to a prime N . In this
case, it can be easily proved that (N − 1)|R| ≤ 2g + 2(N − 1) and, thus,

(2.1)
∑
n≥1

mod(|An|, N) ≤
⌊ 2 g
N − 1

⌋
+ 2 .

Nevertheless, this condition can be improved if we take into account that
the absolute Galois group Gal(Fq/Fq) acts on X(Fq) leaving the sets An
and R stable. Indeed, An is the disjoint union of all orbits of points in
X(Fq) under the action of the absolute Galois group having cardinality
equal to n. So, |An| ≡ |An ∩ R| ≡ 0 (mod n). Hence, from the inequality
nmod(|An|/n,N) ≤ |An ∩R| when n is coprime to N , we obtain

(2.2)
∑

n≥1,gcd(n,N)=1
nmod(|An|/n,N) ≤

⌊ 2 g
N − 1

⌋
+ 2 .

Observe that for N | n, we have mod(|An|, N) = 0, while mod(|An|, N) ≤
nmod(|An|/n,N) for n coprime to N . Hence,∑

n≥1
mod(|An|, N) ≤

∑
n≥1,gcd(n,N)=1

nmod(|An|/n,N) ,

and the condition (2.2) improves (2.1).
We want to generalize the inequality (2.2) to the case that G is a cyclic

subgroup of order a power of a prime. In order to do that, we will consider
places of the curve instead of points in X(Fq). A place of the curve is the
orbit of a point in X(Fq) under the action of the absolute Galois group. In
scheme language, this is simply a closed point of X. The degree of a place
P is its cardinality. We denote by Pn the set of places of degree n, whose
cardinality is |An|/n.

Theorem 2.1. Assume that there exists an automorphism of X defined
over Fq of order Nm, where N is a rational prime and m an integer > 0.
Set

L(n) := Nm

gcd(n,Nm) , P (n) := mod(|Pn|, L(n)) ,

and let D(n) be the sum of the N -adic digits of P (n). Then,

(2.3)
∑
n≥1

n(L(n)D(n)− P (n)) ≤ 2 g + 2(Nm − 1) .
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Proof. Let G be the subgroup of AutFq (X) generated by an automor-
phism of order Nm. Let πG : X → X/G be the natural projection. By
the Riemann–Hurwitz formula applied to πG, we obtain

Nm(2gG − 2) +
∑

S∈X(Fq)

(e(S)− 1) ≤ 2g − 2 ,

where gG is the genus of X/G and e(S) is the ramification index of the point
S (the inequality can be strict only when q is a power of N). In particular,
we have ∑

S∈X(Fq)

(e(S)− 1) ≤ 2g + 2(Nm − 1) .

We can rewrite this inequality in terms of places of X:

(2.4)
∑
n≥1

n
∑
P∈Pn

(e(P )− 1) ≤ 2g + 2(Nm − 1) .

Let Q be a place of X/G. Let P1, . . . , Pr be the places of X that are pre-
images of Q by πG. All these places have the same ramification index, say
e, and the same degree, say n. We have

e · f · r = Nm ,

where f is the degree of the field of definition of each Pi over the field of
definition of Q. In particular, f | gcd(n,Nm). These r places provide in the
sum in (2.4) the amount

n · r(e− 1) = n · r
(
Nm

f · r
− 1

)
= n

(
Nm

f
− r

)
.

Since Nm

f ≤ L(n), these r places contribute at least n(L(n) − r) to (2.4).
We know that there are at least P (n) places of degree n. If the base-N
representation of P (n) is

∑k
i=0 di · N i, then the least contribution of the

P (n) places of degree n to the sum in (2.4) corresponds to the case where
there are di places with r = N i for all 0 ≤ i ≤ k. We have

k∑
i=0

n · di (P (n)−N i) = n (D(n) · L(n)− P (n)) .

Observe that n (D(n) · L(n) − P (n)) is ≥ 0 and is equal to zero when all
places of degree n are unramified. From the inequality

n (D(n) · L(n)− P (n)) ≤ n
∑
P∈Pn

(e(P )− 1) ,

the statement follows. �
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Remark 2.2. For m = 1, Theorem 2.1 states∑
n≥1,gcd(n,N)=1

n(N − 1)P (n) ≤ 2g + 2(N − 1) ,

which is the same condition as (2.2).

Remark 2.3. To apply Theorem 2.1, we only need to know the charac-
teristic polynomial Q(x) of Frobq acting on the Tate module of Jac(X).
Indeed, if α1, · · · , α2g are the roots of Q(x), then

|X(Fqn)| = 1 + qn −
2g∑
i=1

αni .

For n > 1, the integer |P(n)| = |An|/n can be computed from the sequence
{|X(Fqi)|}1≤i≤n as follows

(2.5) |An| =
∑
d|n

µ(n/d)|X(Fqd)| ,

where µ is the Möbius function. We note that if `1 = 2 < · · · < `r are the
first r rational primes, for n <

∏r
i=1 `i, the sum given in (2.5) contains at

most 2r−1 terms.
To be more precise, to apply Criterion 2.1 we only need to know Q(x)

(mod Nm). In other words, we can change the polynomial Q(X) to a poly-
nomial T (x) ∈ Z[x] such that Q(x) ≡ T (x) (mod Nm). We can determine
mod(|An|, Nm) from the roots of T (x) by applying the procedure described
for the roots of Q(x).

Remark 2.4. If we can prove that, for an automorphism u ∈ AutFq (X) of
order a prime N , there exists an integer r such that |R| ≤ r <

⌊
2 g
N−1

⌋
+ 2,

then the condition (2.3) in Theorem 2.1 can be replaced with the condition∑
n≥1,gcd(n,N)=1

nP (n) ≤ r .

Remark 2.5. The condition (2.3) is not a sufficient condition for the exis-
tence of an automorphism in AutFq (X) of order Nm. For instance, it may
be that two non-isomorphic curves X and Y defined over Fq have jacobians
which are isogenous over Fq. If Y has an automorphism of order Nm, then
condition (2.3) is satisfied, even if X does not have an automorphism of
order Nm. Also, if the group G = AutFq (X) is nontrivial, then one has
|An| ≡ 0 (mod |G|) for almost all n. It may be that condition (2.3) is satis-
fied when we take Nm dividing |G| and G does not contain any Nm-cyclic
subgroups.
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Remark 2.6. For a prime N , the condition |An| ≡ 0 (mod Nm) for almost
all n seems to be strong and amounts to saying that∑

n≥1
mod(An|, Nm) <∞ .

If there exists a curve Y defined over Fq such that Jac(Y ) and Jac(X) are
isogenous and the order of the group Aut(Y ) is a multiple of Nm, then this
condition is satisfied. One can wonder if the converse is true. I thank the
referee for providing the following example, that gives a negative answer.
Consider the genus two curve X/F13 defined by

y2 = x5 + x3 + 7x2 + x+ 7 .
The characteristic polynomial of Frob13 is

Q(t) = t4 − 7 t3 + 33 t2 − 91 t+ 169 ≡ (t+ 1)2(t− 1)2 (mod 7) .
Therefore,

|X(F13i)| ≡ 1 + (−1)i − 2(1 + (−1)i) ≡
{

0 (mod 7) if i is odd,
5 (mod 7) if i is even.

It follows that |An| ≡ 0 (mod 7) for all n 6= 2 and it is known that there is
not any genus two curves with an automorphism of degree 7.

Several consequences can be obtained from Theorem2.1. Next, we present
two of them.

Corollary 2.7. Assume that there is an integer n such that

1 + 2
n
< |An| <

2g
n

+ 1 .

If there is u ∈ AutFq (X) of order a prime N - n, then N < 2g
n + 1, which

improves the result obtained through the Hurwitz bound.

Corollary 2.8. If u ∈ AutFq (X) has order a prime N , then the integer∑
n≥1,gcd(n,N)=1 nP (n) is a lower bound for the number of fixed points by u.

3. Application to some modular curves

We summarize some well-known facts on modular curves and fix nota-
tion. Let NewM denote the set of normalized newforms in S2(Γ0(M))new

and let New+
M be the set {f ∈ NewM : wM (f) = f}, where wM is the Fricke

involution. For f ∈ NewM , let S2(f) be the C-vector space of cusp forms
spanned by f and its Galois conjugates. Let us denote by Af the abelian
variety attached to f by Shimura. It is a quotient of J0(M) := Jac(X0(M))
defined over Q and the pull-back of Ω1

Af/Q is the Q-vector subspace of ele-
ments in S2(f)dq/q with rational q-expansion, i.e. S2(f)dq/q∩Q[[q]], where
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q = e2π i z for z in the complex upper half-plane. Moreover, the endomor-
phism algebra End0

Q(Af ) := EndQ(Af ) ⊗ Q is isomorphic to a totally real
number field Ef whose degree is equal to dimAf .

Let GQ denote the absolute Galois group Gal(Q/Q). Let X be a curve
of genus g > 0 defined over Q such that Jac(X) is a quotient of J0(M)
defined over Q. There exists a subset S of the set ∪M ′|M NewM ′ , which is
stable under Galois conjugation, such that Jac(X) is isogenous over Q to
the abelian variety

∏
f∈S/GQ

A
nf

f for some integers nf > 0. If ` is a prime of
good reduction for X not dividing M , by the Eichler–Shimura congruence,
we can compute the characteristic polynomial Q(x) of Frob` acting on the
Tate module of Jac(X ⊗ F`) through the `-Fourier coefficients a`(f) of the
newforms f in S:

Q(x) =
∏
f∈S

(x2 − a`(f)x+ `)nf .

3.1. The modular curves X+
0 (p). In [1], the automorphism group of

the modular curvesX+
0 (p) := X0(p)/〈wp〉 is determined for all primes p. Af-

ter applying some theoretical results and to conclude the article, the authors
need to prove that the modular curve X+

0 (p) does not have any involutions
defined over Q for p = 163, 193, 197, 211, 223, 227, 229, 269, 331, 347, 359,
383, 389, 431, 461, 563, 571, 607. In order to do that, they apply two dif-
ferent arguments. The first one is used to discard 11 cases and the second
one allows to discard the remaining 7 cases. Although in [1] it is proved
that the number of fixed points of an involution is ≤ 12, next we show the
table obtained by applying Theorem 2.1 (without using Remark 2.4) to the
curve X = X+

0 (p) ⊗ F2 and Nm = 2. Set Q(n) =
∑n
i≥1,i odd iP (i), where

P (i) is as in Theorem 2.1, i.e. Pi = mod(|Ai|/i, 2). We get
p g Q(n) p g Q(n) p g Q(n)

163 6 Q(11) = 25 229 7 Q(11) = 25 389 11 Q(11) = 27
193 7 Q(17) = 33 269 6 Q(9) = 19 431 8 Q(13) = 25
197 6 Q(9) = 20 331 11 Q(15) = 39 461 12 Q(21) = 38
211 6 Q(9) = 22 347 10 Q(21) = 63 563 15 Q(17) = 39
223 6 Q(11) = 22 359 6 Q(9) = 18 571 19 Q(17) = 49
227 5 Q(7) = 16 383 8 Q(13) = 19 607 19 Q(17) = 42

In all cases
∑
n≥1,n odd nP (n) > 2 g + 2 and, thus, all these curves do not

have any involutions defined over Q.

3.2. The non-split Cartan modular curves Xns(p). Here, in order to
determine some automorphism groups, we deal with an example to apply
Theorem 2.1. This argument is more elaborated than the one presented in
the preceding subsection.
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Let p be a rational prime and let Xns(p) be the modular curve attached
to a non-split Cartan subgroup of GL2(Fp). This curve is a quotient of the
modular curve X(p) defined over Q, which has a canonical involution w
defined over Q, the so-called modular involution. The genus g of Xns(p) is
greater than 1 for p ≥ 11. In [5], the following is proved

Aut(Xns(11)) = AutQ(Xns(11)) ' (Z/2Z)2 .

In [4], it is proved that for p ≥ 37 all automorphisms of Xns(p) preserve
cusps and, moreover, if p ≡ 1 (mod 12) then Aut(Xns(p)) = {1, w}.

It is expected that Aut(Xns(p)) = {1, w} for p > 11. The goal of this
subsection is to prove this fact for 13 ≤ p ≤ 31. We point out that the
genera of these six curves are 8, 15, 20, 35, 54 and 63.

Set X+
ns(p) = Xns(p)/〈w〉 and let us denote by g+ its genus. For p ≥ 11,

the splitting over Q of the jacobians of these curves is as follows (cf. [3]):

Jns(p) := Jac(Xns(p))
Q∼

∏
f∈Newp2 /GQ

Af ,

J+
ns(p) := Jac(X+

ns(p))
Q∼

∏
f∈New+

p2 /GQ
Af .

From now on, χ denotes the quadratic Dirichlet character of conduc-
tor p, i.e. the Dirichlet character attached to the quadratic number field
K = Q(

√
p∗), where p∗ = (−1)(p−1)/2p. Next, we summarize some facts con-

cerning the modular abelian varieties Af attached to newforms f ∈ Newp2

(see [6, Section 2] for detailed references).
The map f 7→ f ⊗ χ is a permutation of the set Newp2 ∪Newp. Under

this bijection, there is a unique newform f , up to Galois conjugation, such
that f = f ⊗χ when p ≡ 3 (mod 4) and, moreover, in this case f ∈ Newp2 .

If f ∈ Newp2 has complex multiplication (CM), i.e. f = f ⊗ χ, then
the dimension of Af is the class number of K and Af has all its endomor-
phisms defined over the Hilbert class field of K. The endomorphism algebra
End0

K(Af ) is isomorphic to the CM field Ef ⊗K which only contains the
roots of unity ±1. Moreover, f ∈ New+

p2 if, and only if, p ≡ 3 (mod 8).
Let f =

∑
anq

n ∈ Newp2 be without CM. If f has an inner twist χ′ 6= 1,
i.e. f⊗χ′ = σf for some σ ∈ GQ, then χ′ = χ because χ′ must be a quadratic
character of conductor dividing p2. In such a case, End0(Af ) = End0

K(Af )
is a noncommutative algebra. More precisely, set Ff := Q({a2

`}), with `

running over the set of all rational primes. If Af is simple, then End0
K(Af )

is a quaternion algebra Qf over Ff (QM case), otherwise Af is isogenous
over K to the square of an abelian variety Bf and End0

K(Af ) is isomorphic
to the matrix algebra M2(Ff ) (RM case).

If χ is not an inner twist for f ∈ Newp2 , then Af is simple and End0(Af )
is isomorphic to Ef (RM case).
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For two distinct f1, f2 ∈ Newp2 /GQ, the abelian varieties Af1 and Af2
are not isogenous over Q and are isogenous if, and only if, f1⊗χ = σf2 for
some σ ∈ GQ. In this particular case, there is an isogeny defined over K.

In the sequel, we restrict our attention to the values 13 ≤ p ≤ 31. The
next lemma can be obtained through the instruction BrauerClass in the
program Magma.
Lemma 3.1. For all 13 ≤ p ≤ 31, there is no f ∈ Newp2 with quaternionic
multiplication.

Let us fix a set {f1, · · · , fr} of representative cusp forms for the set
Newp2 /GQ. We introduce the subsets Scm, Srm, Ss and St of Newp2 /GQ as
follows. The subsets Scm and Srm are the sets of newforms in Newp2 /GQ
having χ as an inner twist and corresponding to the CM and RM cases
respectively. The subsets Ss and St are defined as follows:

Ss = {f ∈ Newp2 /GQ : f ⊗ χ ∈ Newp /GQ} ,
St = {fi ∈ Newp2 /GQ : fj = fi ⊗ χ, i < j} .

For New+
p2 /GQ, we introduce the following four sets

S+
cm = Scm ∩New+

p2 , S+
rm = Srm ∩New+

p2 , S+
s = Ss ∩New+

p2 ,

and S+
t = {fi ∈ St ∩ New+

p2 : fi ⊗ χ ∈ New+
p2}. Hence, the splitting over K

of Jns(p) and J+
ns(p) are

Jns(p)
K∼

∏
f∈Scm

Af
∏
f∈Ss

Af
∏

f∈Srm

B2
f

∏
f∈St

A2
f

and
J+
ns(p)

K∼
∏

f∈S+
cm

Af
∏
f∈S+

s

Af
∏

f∈S+
rm

B2
f

∏
f∈S+

t

A2
f .

The corresponding decomposition of their endomorphism algebras over K
are
(3.1) End0

K(Jns(p)) '
∏

f∈Scm

Ef ⊗K
∏
f∈Ss

Ef
∏

f∈Srm

M2(Ff )
∏
f∈St

M2(Ef )

and
(3.2) End0

K(J+
ns(p)) '

∏
f∈S+

cm

Ef ⊗K
∏
f∈S+

s

Ef
∏

f∈S+
rm

M2(Ff )
∏
f∈S+

t

M2(Ef ) .

For 13 ≤ p ≤ 31, Table 3.1 shows the description of the sets Newp2 /GQ
and New+

p2 /GQ as well as the action of the map f 7→ f ⊗ χ on the set
(Newp2 ∪Newp)/GQ.

The label of the newforms in Newp2 is the one given by Magma. For a
prime p, the set Ss is the set of newforms f which do not appear in the
columns corresponding to Srm, Scm and St (twists).
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p Newp2 /GQ dimAfi Srm Scm
St

(twists) New+
p2 /GQ

13 f1, f2, f3
2 , i = 1
3 , 2 ≤ i ≤ 3 f1 ∅ f2

f3 = f2 ⊗ χ
f2

17 f1, · · · , f6

1 , i = 1
2 , 2 ≤ i ≤ 3
3 , 4 ≤ i ≤ 5
4 , i = 6

f6 ∅
f2, f4

f3 = f2 ⊗ χ
f5 = f4 ⊗ χ

f1, f2, f4

19 f1, · · · , f9

1 , 1 ≤ i ≤ 2
2 , 3 ≤ i ≤ 6
3 , 7 ≤ i ≤ 8
4 , i = 9

f9 f1

f3, f5, f7
f4 = f3 ⊗ χ
f6 = f5 ⊗ χ
f8 = f7 ⊗ χ

f1, f7, f9

23 f1, · · · , f10

2 , 1 ≤ i ≤ 5
3 , i = 6
4 , 7 ≤ i ≤ 8
5 , 9 ≤ i ≤ 10

f7,
f8

f6

f1, f4, f9
f2 = f1 ⊗ χ
f5 = f4 ⊗ χ
f10 = f9 ⊗ χ

f7, f8, f9

29 f1, · · · , f11

2 , 1 ≤ i ≤ 4
3 , 5 ≤ i ≤ 6
6 , 7 ≤ i ≤ 8
8 , 9 ≤ i ≤ 10

12 , i = 11

f3,
f11

∅

f1, f5, f7, f9
f4 = f1 ⊗ χ
f6 = f5 ⊗ χ
f8 = f7 ⊗ χ
f10 = f9 ⊗ χ

f1, f2, f5,
f6, f7, f9

31 f1, · · · , f12

2 , 1 ≤ i ≤ 6
3 , i = 7
4 , i = 8
8 , 9 ≤ i ≤ 10

12 , i = 11
16 , i = 12

f5,
f8,
f11,
f12

f7

f1, f2, f9
f4 = f1 ⊗ χ
f6 = f2 ⊗ χ
f10 = f9 ⊗ χ

f1, f2,
f9, f12

Table 3.1.

Proposition 3.2. Let p be a prime such that 13 ≤ p ≤ 31. Then
(1) The group Aut(X+

ns(p)) is trivial.
(2) The modular involution w is the only nontrivial automorphism of

Xns(p).

Proof. For p = 13, we already know that Aut(X+
ns(13)) is trivial because the

curve X+
ns(13) is not hyperelliptic (cf. [2]) and the endomorphism algebra

End0(J+
ns(13)) is a totally real number field which only contains the roots

of unity ±1.
We split the proof into the following steps.

Step 1: All automorphisms of Xns(p) and X+
ns(p) are defined over the qua-

dratic field K. On the one hand, for two distinct f1, f2 lying in Newp2 /GQ,
without CM, Af1 and Af2 are isogenous if, and only if, f2 is a Galois conju-
gate of f1⊗χ and, in this case, the isogeny is defined over K. On the other
hand, if f ∈ Newp2 /GQ does not have CM, all endomorphisms of Af are
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defined over K. Hence, if Newp2 /GQ, resp. New+
p2 /GQ, does not contain a

newform with CM, all endomorphisms of Jns(p), resp. J+
ns(p), are defined

over K and, in particular, so are all automorphisms of the corresponding
curve.

Assume that Newp2 /GQ, resp New+
p2 /GQ, contains a newform f with

CM. Then all endomorphisms of Af are defined over the Hilbert class field
of K and Af is unique. Let gc be the dimension of the abelian variety
Af . Due to the fact that g > 1 + 2gc (p ≡ 3 (mod 4)), resp. g+ > 1 + 2gc
(p ≡ 3 (mod 8)), the non-existence of an automorphism not defined over K
is obtained by applying the same argument used in the proof of Lemma 1.4
in [7]. �

Step 2: The only primes N which can divide the order of a nontrivial au-
tomorphism of Xns(p) or X+

ns(p) are the displayed in the following tables

(3.3) Xns(p) :

p N

13 2, 3, 7
17 2, 3
19 2, 3, 5
23 2, 3, 11
29 2, 3, 5, 7
31 2, 3, 5

, X+
ns(p) :

p N

13 2
17 2
19 2, 3, 5
23 2, 3
29 2, 3, 7
31 2, 3

The number fields which appear in the decomposition of End0
K(Jns(p))

(see (3.1)), resp. End0
K(J+

ns(p)) (see (3.2)), only contain the roots of unity
±1. The only matrix algebras in this decomposition are of the form M2(F )
for f ∈ Srm and f ∈ St for Jns(p), resp. f ∈ S+

rm and f ∈ S+
t for J+

ns(p).
In the first case, F = Ff and, in the second case, F = Ef . In any case,
F is a totally real number field. If there exists a nontrivial automorphism
of order an odd prime N , then the maximal real subfield KN of the N -th
cyclotomic field must be contained in some of these number fields F . In
particular, N − 1 must divide 2[F : Q]. By looking at the following tables,
obtained from Table 3.1,

Xns(p) :

p [F : Q]
13 1, 3
17 2, 3
19 2, 3
23 2, 5
29 1, 2, 3, 6, 8
31 1, 2, 6, 8

, X+
ns(p) :

p [F : Q]
13 −
17 −
19 2
23 2
29 3
31 8

,

we obtain a few possibilities for N . After checking all of them, we obtain
that the only cases in which KN is contained in some F are the displayed
in (3.3). �
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Step 3: There are no automorphisms of Xns(p) and X+
ns(p) of odd order.

The claim is obtained applying Theorem 2.1 to the curves Xns(p)⊗F` and
X+
ns(p) ⊗ F`, where ` is a prime splitting in K, and for all Nm = N as

in (3.3). We only show the case N = 3:

p ` Xns(p)⊗ F` :
∑

3-n nP (n) B X+
ns(p)⊗ F` :

∑
3-n nP (n) B

13 3
∑

3-n,n≤4 nP (n) = 13 10 −
17 2

∑
3-n,n≤11 nP (n) = 27 17 −

19 5
∑

3-n,n≤8 nP (n) = 29 22
∑

3-n,n≤7 nP (n) = 13 10
23 2

∑
3-n,n≤10 nP (n) = 51 33

∑
3-n,n≤7 nP (n) = 28 15

29 5
∑

3-n,n≤11 nP (n) = 59 56
∑

3-n,n≤11 nP (n) = 30 26
31 2

∑
3-n,n≤14 nP (n) = 67 65

∑
3-n,n≤13 nP (n) = 69 30

,

where B denotes the upper bound for
∑

3-n nP (n) provided by Theo-
rem 2.1. �

Step 4: The group Aut(X+
ns(p)) is trivial.We only need to prove thatX+

ns(p)
does not have any involutions defined over K. Again, the claim is obtained
applying Theorem 2.1 to the curves X = X+

ns(p) ⊗ F` for p 6= 19 and
X = X+

ns(p)⊗ F`2 for p = 19, and Nm = 2:

p `
∑

2-,n nP (n) B = 2 g+ + 2
17 2

∑
2-,n≤9 nP (n) = 22 14

19 2
∑

2-,n≤9 nP (n) = 17 16
23 2

∑
2-,n≤17 nP (n) = 37 28

29 5
∑

2-,n≤21 nP (n) = 58 50
31 2

∑
2-,n≤27 nP (n) = 68 58

For p = 19, we have changed the prime ` = 5 by ` = 2 (2 is inert in
K), because for ` = 5 the sequence nP (n) turns out to be equal to 0 for
8 ≤ n ≤ 200. �

Step 5: The modular involution w is the only nontrivial automorphism of
Xns(p). A nontrivial automorphism different from w does not commute
with w because the group Aut(X+

ns(p)) is trivial. Assume that there is a
nontrivial automorphism u of Xns(p) different from w. Since the order of
AutK(Xns(p)) is a power of 2, we can suppose that u is an involution
different from w. The automorphism v = u · w cannot be an involution,
otherwise u and w would commute. Therefore, either v or a power of v has
order 4.
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Now, applying Theorem 2.1 to X = Xns(p) ⊗ F` for Nm = 4 and p 6=
13, 19, we obtain

p `
∑
n n(L(n)D(n)− Pn) B = 2g + 6

17 2
∑
n≤9 n(L(n)D(n)− Pn) = 44 36

23 2
∑
n≤17 n(L(n)D(n)− Pn) = 76 68

29 5
∑
n≤21 n(L(n)D(n)− Pn) = 130 114

31 2
∑
n≤27 n(L(n)D(n)− Pn) = 136 132

Hence, for these four values of p the statement is proved. For p = 13 or 19,
the sequence n(L(n)D(n)−Pn) turns out to be equal to 0 for 9 < n ≤ 250,
even changing the prime `. Nevertheless, applying Theorem 2.1 for Nm =
8, we prove that Xns(13) an Xns(19) do not have any automorphisms of
order 8:

p `
∑
n n(L(n)D(n)− Pn) B = 2g + 14

13 3
∑
n≤7 n(L(n)D(n)− Pn) = 56 40

19 5
∑
n≤5 n(L(n)D(n)− Pn) = 80 54

Therefore, the order of any automorphism of Xns(p) must divide 4. Assume
that there is v ∈ Aut(Xns(p)) of order 4. Then, the automorphism u := v2·w
can only have order 2 or 4. On the one hand, u cannot be an involution
since v2 and w do not commute. On the other hand, if u has order 4, then
u2 is an involution different from w and, thus, u2 · w = v2 · w · v2 must
have order 4, but (u2 · w)2 = 1. Therefore, neither of these two curves has
automorphisms of order 4. �
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