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Two estimates on the distribution of zeros of the
first derivative of Dirichlet L-functions under the

generalized Riemann hypothesis

par Ade Irma SURIAJAYA

Résumé. Le nombre de zéros and la distribution des parties
réelles des zéros non-réelles de la dérivée de la fonction zêta de Rie-
mann a été étudiée par B. C. Berndt, N. Levinson, H. L. Montgo-
mery, H. Akatsuka et l’auteure. Berndt, Levinson et Montgomery
ont étudié le cas inconditionnel, alors qu’Akatsuka et l’auteure ont
donné de meilleures estimations sous l’hypothèse de Riemann. Ré-
cemment F. Ge a amélioré l’estimation du nombre de zéros par
Akatsuka. Dans cet article nous montrons des résultats similaires
relatifs à la dérivée des fonctions L de Dirichlet associées aux
caractères primitifs de Dirichlet, sous l’hypothèse de Riemann gé-
néralisée.

Abstract. The number of zeros and the distribution of the
real part of non-real zeros of the derivatives of the Riemann zeta
function have been investigated by B. C. Berndt, N. Levinson,
H. L. Montgomery, H. Akatsuka, and the author. Berndt, Levin-
son, and Montgomery investigated the unconditional case, while
Akatsuka and the author gave sharper estimates under the truth
of the Riemann hypothesis. Recently, F. Ge improved the esti-
mate on the number of zeros shown by Akatsuka. In this paper,
we prove similar results related to the first derivative of Dirichlet
L-functions associated with primitive Dirichlet characters under
the assumption of the generalized Riemann hypothesis.

1. Introduction

Zeros of the Riemann zeta function are also related to those of its deriva-
tives ζ(k)(s) for positive integer k. For example, A. Speiser [9] proved that
the Riemann hypothesis is equivalent to the statement that ζ ′(s) has no
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non-real zeros to the left of the critical line. In 2012, assuming the Rie-
mann hypothesis, H. Akatsuka [1, Theorems 1 and 3] showed that we can
approximate the distribution of zeros of ζ ′(s) as follows:∑

ρ′=β′+iγ′,
ζ′(ρ′)=0, 0<γ′≤T

(
β′ − 1

2

)
= T

2π log log T

2π + 1
2π

(1
2 log 2− log log 2

)
T

− Li
(
T

2π

)
+O((log log T )2),

where the sum is counted with multiplicity and

Li(x) :=
∫ x

2

dt
log t ,

and

(1.1) N1(T ) = T

2π log T

4π −
T

2π +O

( log T
(log log T )1/2

)
,

where N1(T ) denotes the number of zeros of ζ ′(s) with 0 < Im(s) ≤ T ,
counted with multiplicity. These results are also extended to higher order
derivatives by the author [10, Theorems 1 and 3].

These results of Akatsuka [1, Theorems 1 and 3] and the author [10,
Theorems 1 and 3], under the truth of the Riemann hypothesis, improve the
error term O(log T ) in the unconditional results obtained by N. Levinson
and H. L. Montgomery [5, Theorem 10] and by B. C. Berndt [3, Theorem].
Recently, F. Ge [4, Theorem 1] showed that we can improve the error term
in (1.1) shown by Akatsuka [1, Theorem 3] to

O

( log T
log log T

)
.

This result is the current best estimate on the number of zeros of ζ ′(s)
under the Riemann hypothesis.

We are interested in extending these results of Akatsuka [1, Theorems 1
and 3] and Ge [4, Theorem 1] to Dirichlet L-functions. In this paper we
consider only Dirichlet L-functions associated with primitive Dirichlet char-
acters χ modulo q > 1, L(s, χ). Note that there exists only one Dirichlet
character modulo 1 and the associated Dirichlet L-function is the Riemann
zeta function, whose results are given in [1]. The generalized Riemann hy-
pothesis states that both ζ(s) and L(s, χ) satisfy the Riemann hypothesis,
that is, all nontrivial zeros lie on the critical line Re(s) = 1/2.

Zeros of L(k)(s, χ) have been studied by C. Y. Yıldırım [13] in 1996
including zero-free regions and the number of zeros. Akatsuka and the
author in their recent preprint [2, Theorems 1, 2, 4, and 5] improved the
zero-free region on the left half-plane [13, Theorem 3] and the number
of zeros [13, Theorem 4] shown by Yıldırım, for the case k = 1. We also
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obtained a result [2, Theorem 6] on the distribution of the real part of zeros
and proved results [2, Theorems 8 and 9], analogous to Speiser’s theorem [9],
for Dirichlet L-functions.

Throughout this paper, for a given integer q > 1, we denote by m the
smallest prime number that does not divide q. Recall that we can show
m = O(log q). We also determine a number κ as

(1.2) κ :=
{

0, χ(−1) = 1;
1, χ(−1) = −1.

Next, we let ρ = β + iγ and ρ′ = β′ + iγ′ denote the zeros of L(s, χ)
and L′(s, χ) in the right half-plane Re(s) > 0. We know that L(s, χ) has
only trivial zeros in Re(s) ≤ 0. We remark that zeros of L′(s, χ) satisfying
Re(s) ≤ 0 can also be regarded as “trivial” (see [2, Theorems 1, 2, and 4]).
Then we define N1(T, χ) for T ≥ 2 as the number of zeros of L′(s, χ)
satisfying Re(s) > 0 and | Im(s)| ≤ T , counted with multiplicity.

Our main theorems are as follows:

Theorem 1.1. Assume that the generalized Riemann hypothesis is true,
then for T ≥ 2, we have∑
ρ′=β′+iγ′,
|γ′|≤T

(
β′− 1

2

)
= T

π
log log qT2π + T

π

(1
2 logm− log logm

)
− 2
q

Li
(
qT

2π

)
+O

(
m1/2(log log (qT ))2 +m log log (qT ) +m1/2 log q

)
,

where the sum is counted with multiplicity.

Theorem 1.2. Assume that the generalized Riemann hypothesis is true,
then for T ≥ 2, we have

N1(T, χ) = T

π
log qT

2mπ −
T

π
+O

(
A(q, T )m

1/2 log (qT )
log log (qT ) + log q

)
,

where

A(q, T ) := min
{

(log log (qT ))1/2, 1 + m1/2

log log (qT )

}
.

In this paper, we first review some basic estimates related to logL(s, χ)
near the critical line and zero-free regions of L′(s, χ) in Section 2. In Sec-
tion 3, we show important lemmas crucial for the proofs of our main theo-
rems and finally prove them in Section 4. For convenience, we use variables
s and z as complex numbers, with σ = Re(s) and t = Im(s). Finally, we
abbreviate the generalized Riemann hypothesis as GRH.
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2. Preliminaries

2.1. Bounds related to logL(s, χ) near the critical line. In this
section we give some bounds related to logL(s, χ) which can be found
in [7, Sections 12.1, 13.2, 14.1]. Only for this subsection, we put τ := |t|+4.

Lemma 2.1. Assume GRH, then

logL(σ + it, χ) = O

(
(log (qτ))2(1−σ)

(1− σ) log log (qτ) + log log log (qτ)
)

holds uniformly for 1/2 + (log log (qτ))−1 ≤ σ ≤ 3/2.

Proof. This is straightforward from the inequalities in exercise 6 of [7, Sec-
tion 13.2] (see also page 3 of [6] for the corrected exercise 6(b) and (c)). �

Lemma 2.2. Assume GRH, then

argL(σ + it, χ) = O

( log (qτ)
log log (qτ)

)
holds uniformly for σ ≥ 1/2.

Proof. See [8, Section 5] or exercise 11 of [7, Section 13.2]. �

With the above lemma and [7, Corollary 14.6], we obtain the following
estimate on the number of zeros of L(s, χ) under GRH:

Proposition 2.3. Assume GRH and let N(T, χ) denote the number of
zeros of L(s, χ) satisfying Re(s) > 0 and | Im(s)| ≤ T , counted with multi-
plicity. Then for T ≥ 2,

N(T, χ) = T

π
log qT2π −

T

π
+O

( log (qT )
log log (qT )

)
.

Proof. This is a straightforward consequence of [7, Corollary 14.6] and [8,
Theorem 6] (see exercise 1 of [7, Section 14.1]). �

Lemma 2.4.

L′

L
(σ + it, χ) =

∑
ρ=β+iγ,
|γ−t|≤1

1
σ + it− ρ

+O(log (qτ))

holds uniformly for −1 ≤ σ ≤ 2.

Proof. See [7, Lemma 12.6]. �



Two estimates on the distribution of zeros of L′(s, χ) under GRH 475

2.2. Zero-free regions of L′(s, χ). We begin with a zero-free region of
L′(s, χ) to the right of the critical line.

Proposition 2.5. L′(s, χ) has no zeros when

σ > 1 + m

2

(
1 +

√
1 + 4

m logm

)
.

Proof. See [13, Theorem 2] for k = 1. �

From the above proposition, it is not difficult to check that L′(s, χ) 6= 0
when σ ≥ 1 + 3m/2. Next we introduce a zero-free region of L′(s, χ) to the
left of the critical line.

Proposition 2.6. L′(s, χ) has no zeros when σ ≤ 0 and |t| ≥ 6. Further-
more, assuming GRH,

(1) if κ = 0 and q ≥ 216, then L′(s, χ) has a unique zero in 0 < Re(s) <
1/2;

(2) if κ = 1 and q ≥ 23, then L′(s, χ) has no zeros in 0 < Re(s) < 1/2.
Thus under GRH, for any fixed ε > 0, there are only possibly finitely many
zeros in the region defined by 0 < σ < 1/2 and |t| ≤ ε for any L′(s, χ).

Proof. See [2, Theorems 1, 8, and 9] and note that q ≥ 3 in our case. �

3. Key lemmas

For convenience, we define the function F (s, χ) as follows:

(3.1) F (s, χ) := ε(χ)2sπs−1q
1
2−s sin

(
π(s+ κ)

2

)
Γ(1− s),

where ε(χ) is a factor that depends only on χ, satisfying |ε(χ)| = 1, and
recall that κ is determined as in (1.2). Thus from the functional equation
for L(s, χ), we have L(s, χ) = F (s, χ)L(1−s, χ). We also define the function
G1(s, χ) associated with L′(s, χ) as follows:

(3.2) G1(s, χ) := − ms

χ(m) logmL′(s, χ).

Lemma 3.1. For σ ≥ 2, we have

|G1(σ + it, χ)− 1| ≤ 2
(

1 + 8m
σ

)(
1 + 1

m

)−σ
and ∣∣∣∣G1

L
(σ + it, χ)− 1

∣∣∣∣ ≤ 2
(

1 + 8m
σ

)(
1 + 1

m

)−σ
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Proof. Let σ ≥ 2. Then from (3.2) and by using the Dirichlet series expres-
sion of L′(s, χ), we can calculate

|G1(s, χ)− 1| =
∣∣∣∣∣− ms

χ(m) logm

(
−
∞∑
n=1

χ(n) logn
ns

)
− 1

∣∣∣∣∣
≤ mσ

logm

∞∑
n=m+1

logn
nσ

≤ mσ

logm
log (m+ 1)
(m+ 1)σ + mσ

logm

∫ ∞
m+1

log x
xσ

dx

= mσ

logm
log (m+ 1)
(m+ 1)σ

(
1 + m+ 1

σ − 1 + m+ 1
(σ − 1)2 log (m+ 1)

)
≤ mσ

logm
2 logm

(m+ 1)σ
(

1 + 4m
σ − 1

)
≤ 2

(
m

m+ 1

)σ (
1 + 8m

σ

)
,

where we have used m + 1 ≤ 2m ≤ m2 and σ − 1 ≥ σ/2 in the last two
inequalities.

By using the Dirichlet series expansion of (L′/L)(s, χ), with calculation
similar to the above, we can show the second inequality in the lemma. �

Applying Stirling’s formula of the following form

(3.3) log Γ(z) =
(
z − 1

2

)
log z − z + 1

2 log 2π +
∫ ∞

0

[u]− u+ 1
2

u+ z
du

(−π + δ ≤ arg z ≤ π − δ, for any δ > 0),

we can define the holomorphic function

(3.4) logF (s, χ) := log ε(χ) +
(1

2 − s
)

log q

2π + 1
2 log 2

π

+ log sin π2 (s+ κ) + log Γ(1− s)

for σ < 1 and |t| > 1, where 0 ≤ arg ε(χ) < 2π and log sin π
2 (s+ κ) is the

holomorphic function on σ < 1, |t| > 1 satisfying

log sin π2 (s+ κ) :=



(1− s− κ)π
2 i− log 2−

∞∑
n=1

eπi(s+κ)n

n
, t > 1;

(s+ κ− 1)π
2 i− log 2−

∞∑
n=1

e−πi(s+κ)n

n
, t < −1.

Under the above definitions, we can show the following lemma.
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Lemma 3.2. For σ < 1 and ±t > 1, we have

F ′

F
(s, χ) = − log (q(1− s)) + log 2π ∓ πi

2 + 1
2(1− s)

+O

( 1
|1− s|2

)
+O

(
e−π|t|

)
,

where −π/2 < arg (1− s) < π/2.

Proof. Applying Stirling’s formula (3.3) to log Γ(z) for arg z ∈ (−π/2, π/2),
we have

log Γ(1− s) =
(1

2 − s
)

log (1− s)− (1− s) + 1
2 log 2π+

∫ ∞
0

[u]− u+ 1
2

u+ 1− s du

in the region σ < 1, |t| > 1. From (3.4), we can show that

logF (s, χ) = log ε(χ) + π

2

(1
2 − κ

)
i− 1

+
(1

2 − s
)(

log (q(1− s))− log 2π + πi

2

)
+ s+

∫ ∞
0

[u]− u+ 1
2

u+ 1− s du−
∞∑
n=1

eπi(s+κ)n

n

holds when σ < 1 and t > 1. Differentiating both sides of the above equation
with respect to s, we obtain

F ′

F
(s, χ) = − log (q(1− s)) + log 2π − πi

2 + 1
2(1− s)

+O

( 1
|1− s|2

)
+O

(
e−π|t|

)
for σ < 1 and t > 1. We can show similarly for σ < 1 and t < −1. �

Lemma 3.3. There exists a σ1 ≤ −1 such that∣∣∣∣∣ 1
F ′

F (s, χ)
L′

L
(1− s, χ)

∣∣∣∣∣ < 2σ

holds for any s with σ ≤ σ1 and |t| ≥ 2.

Proof. Using Lemma 3.2 and the fact that

L′

L
(1− s, χ) = O(2σ) (σ ≤ −1, |t| ≥ 2),

Lemma 3.3 follows. �
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Lemma 3.4. Fix a σ1 that satisfies Lemma 3.3. Then there exists a t′ >
−σ1 such that

(1) for any s satisfying σ ≤ 1/2 and |t| ≥ t′ − 1,∣∣∣∣F ′F (s, χ)
∣∣∣∣ ≥ 1

holds and we can take the logarithmic branch of log (F ′/F )(s, χ) in
that region such that it is holomorphic there and

5π/6 < arg (F ′/F )(s, χ) < 7π/6
holds;

(2) assuming GRH, for any s satisfying σ1 ≤ σ < 1/2 and |t| ≥ t′ − 1,
L′

L
(s, χ) 6= 0

holds and we can take the logarithmic branch of log (L′/L)(s, χ) in
that region such that it is holomorphic there and

π/2 < arg (L′/L)(s, χ) < 3π/2
holds.

Proof.
(1) It immediately follows from Lemma 3.2.
(2) Corollary 10.18 of [7] allows us to show that

Re
(
L′

L
(s, χ)

)
< −1

2 log q
π
− 1

2 Re
(Γ′

Γ

(
s+ κ

2

))
holds for σ < 1/2, under GRH.

For any small δ > 0, let |t| > σ1 tan δ. Stirling’s formula (3.3)
implies

1
2 Re

(Γ′

Γ

(
s+ κ

2

))
= 1

2 log
∣∣∣∣s+ κ

2

∣∣∣∣+O

( 1
|s|

)
.

Hence we can find some t′ large enough so that

Re
(
L′

L
(s, χ)

)
< 0

holds for σ1 ≤ σ < 1/2 and |t| ≥ t′ − 1 and hence (L′/L)(s, χ) 6= 0.
Moreover, we can define a branch of log (L′/L)(s, χ) so that it is

holomorphic in σ1 ≤ σ < 1/2, |t| ≥ t′ − 1 and
π

2 < arg L
′

L
(s, χ) < 3π

2
holds there. �

Now we fix a sufficiently large t′ which satisfies Lemma 3.4.
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3.1. The function F(t, χ). Now we define a few new functions and show
a lemma needed to prove the second estimate in Theorem 1.2. We begin by
setting

F1(t, χ) := −
∑

β′>1/2
Re
( 1

1/2 + it− ρ′
)
,

F2(t, χ) :=
∑

0<β′<1/2
Re
( 1

1/2 + it− ρ′
)
,

h(s, χ) :=
(
q

π

)(s+κ)/2
Γ
(
s+ κ

2

)
,

ξ(s, χ) := e−iθχ/2h(s, χ)L(s, χ), η(s, χ) := e−iθχ/2h(s, χ)L′(s, χ)

where θχ is determined as eiθχ := ε(χ) with ε(χ) in (3.1). Putting

F(t, χ) := −Re
(
η′

η
(1/2 + it, χ)

)
when η(1/2 + it, χ) 6= 0 and

F(t, χ) := lim
v→t
F(v, χ)

when η(1/2 + it, χ) = 0, we have

F(t, χ) = F1(t, χ)−F2(t, χ) +O(log q).

Assuming GRH we have F2(t, χ) = O(1), thus

(3.5) F(t, χ) = F1(t, χ) +O(log q).

This can be shown by using Hadamard’s product expansion similar to [14,
Lemma 2]. Then we have the following result.

Lemma 3.5. Assume GRH. Order the nontrivial zeros ρ of L(s, χ) as
ρn = 1/2 + iγn (if it is a multiple zero, we only count it once: namely we
only order the zeros according to their locations) with

· · · < γ−l < · · · < γ−2 < γ−1 < γ0 = 0 < γ1 < γ2 < · · · < γl < · · ·

(if γ0 exists.) Let ñ := min {n ∈ Z | |γ±n| ≥ t′′} for a constant t′′ ≥ t′. Then
for |n| ≥ ñ we have ∫ γn+1

γn
F(t, χ) dt ≤ π

which by (3.5) immediately implies∫ γn+1

γn
F1(t, χ) dt = O(log q).
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Proof. The proof follows those of [14, Lemmas 1 and 4]. We first show that
we can find a t′′ ≥ t′ such that when |t| ≥ t′′, L(1/2 + it, χ) = 0 holds if
and only if Re (η(1/2 + it, χ)) = 0. Since

ξ′(s, χ) = h′

h
(s, χ)ξ(s, χ) + η(s, χ)

and from the functional equation ξ(s, χ) = ξ(1− s, χ) which gives ξ(1/2 +
it, χ), iξ′(1/2 + it, χ) ∈ R, we can show that

(3.6) Re
(
η

(1
2 + it, χ

))
= −Re

(
h′

h

(1
2 + it, χ

))
ξ

(1
2 + it, χ

)
.

By taking the logarithmic derivative of the Hadamard product expression
for Γ(z) (see [7, (C.10) in p. 522]):

Γ′

Γ (z) = −cE −
∞∑
n=0

( 1
n+ z

− 1
n+ 1

)
where cE is the Euler–Mascheroni constant. Thus when t 6= 0, we can show
that

d
dt Re

(
h′

h

(1
2 + it, χ

))
= d

dt

(1
2 log q

π
+ 1

2 Re
(Γ′

Γ

(1
4 + κ

2 + i
t

2

)))
= 1

2
d
dt

(Γ′

Γ

(1
4 + κ

2

)
+ t2

4

∞∑
n=0

1
(n+ 1/4 + κ/2){(n+ 1/4 + κ/2)2 + t2/4}

)

= 1
t3

∞∑
n=0

(2n+ 1/2 + κ)2

(n+ 1/4 + κ/2)(1 + ((2n+ 1/2 + κ)/t)2)2 .

Hence,
d
dt Re

(
h′

h

(1
2 + it, χ

))
> 0 when t > 0

and
d
dt Re

(
h′

h

(1
2 + it, χ

))
< 0 when t < 0.

Therefore we can find a t′′ ≥ t′ such that

Re
(
h′

h

(1
2 + it, χ

))
6= 0 for all |t| ≥ t′′.

From (3.6), we easily see that
(3.7) L(1/2 + it, χ) = 0⇐⇒ Re (η(1/2 + it, χ)) = 0
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for all |t| ≥ t′′.
With the above result, we can then define arg η(1/2 + it, χ) such that it

is continuous on the interval (γn, γn+1). For any t1, t2 satisfying γn < t1 <
t2 < γn+1, we have∫ t2

t1
F(t, χ) dt = arg η

(1
2 + it1, χ

)
− arg η

(1
2 + it2, χ

)
≤ π

by (3.7). �

From now on we fix a t0 ∈ [t′′ + 1, t′′ + 2] such that
(3.8) L(σ ± it0, χ) 6= 0, L′(σ ± it0, χ) 6= 0
for all σ ∈ R.

3.2. Bounds related to logG1(s, χ). In this subsection, we give bounds
for arg (G1/L)(s, χ) and argG1(s, χ). We take the logarithmic branches so
that logL(s, χ) and logG1(s, χ) tend to 0 as σ →∞ and are holomorphic
in C\{z + λ | L(z, χ) = 0, λ ≤ 0} and C\{z + λ | L′(z, χ) = 0, λ ≤ 0},
respectively. We write

− argL(σ ± iτ, χ) + argG1(σ ± iτ, χ) = arg G1
L

(σ ± iτ, χ)

and take the argument on the right-hand side so that log (G1/L)(s, χ) tends
to 0 as σ → ∞ and is holomorphic in C\{z + λ | (L′/L)(z, χ) = 0 or ∞,
λ ≤ 0}.

Lemma 3.6. Assume GRH and let τ > 1. Then we have for 1/2<σ≤ 10m,

arg G1
L

(σ ± iτ, χ)�


m

σ
3 ≤ σ ≤ 10m,

m1/2 log log (qτ) +m

σ − 1/2 1/2 < σ ≤ 3.

Proof. Let τ > 1 and 1/2 < σ ≤ 10m. Let

uG1/L = uG1/L(σ, τ ;χ) := #
{
u ∈ [σ, 11m]

∣∣∣∣Re
(
G1
L

(u± iτ, χ)
)

= 0
}
,

then ∣∣∣∣arg G1
L

(σ ± iτ, χ)
∣∣∣∣ ≤ (uG1/L + 1

)
π.

To estimate uG1/L, we set

H1(z, χ) := 1
2

(
G1
L

(z ± iτ, χ) + G1
L

(z ∓ iτ, χ)
)

and
nH1(r, χ) := #{z ∈ C | H1(z, χ) = 0, |z − 11m| ≤ r}.
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Since H1(x, χ) = Re((G1/L)(x ± iτ, χ)) for x ∈ R, we have uG1/L ≤
nH1(11m− σ, χ) for 1/2 < σ ≤ 10m.

Now we estimate nH1(11m − σ, χ). We take ε = εσ,τ > 0. It is easy to
show that

nH1(11m− σ, χ) ≤ 1
log (1 + ε/(11m− σ))

∫ 11m−σ+ε

0

nH1(r, χ)
r

dr.

Applying using Jensen’s theorem (cf. [11, Section 3.61]), we have∫ 11m−σ+ε

0

nH1(r, χ)
r

dr = 1
2π

∫ 2π

0
log |H1(11m+ (11m− σ + ε)eiθ, χ)| dθ

− log |H1(11m,χ)|.
We can easily see that log |H1(11m,χ)| = O(1) by applying the second
inequality in Lemma 3.1. Therefore∣∣∣∣arg G1

L
(σ± iτ, χ)

∣∣∣∣ ≤ 1
log (1 + ε/(11m− σ))

×
( 1

2π

∫ 2π

0
log |H1(11m+(11m−σ+ε)eiθ, χ)| dθ+C

)
for some absolute constant C > 0.

Now we divide the rest of the proof in two cases:
(a) For 3 ≤ σ ≤ 10m, we restrict ε to satisfy 0 < ε ≤ σ − 2. Then

11m + (11m − σ + ε) cos θ ≥ 2. Applying the second inequality in
Lemma 3.1, we can easily obtain

|H1(11m+ (11m− σ + ε)eiθ, χ)| ≤ 100m
11m+ (11m− σ + ε) cos θ .

Applying Cauchy’s theorem and the fact that for a > 1,

log (2a+ 2 cos θ) = log
(
1 +

(
a−

√
a2− 1

)
e−iθ

)
+ log

(
eiθ + a+

√
a2− 1

)
,

we can show that for c > r > 0,

(3.9) 1
2π

∫ 2π

0
log |c+ r cos θ| dθ = log c+

√
c2 − r2

2
holds. By using (3.9), we can easily show that

1
2π

∫ 2π

0
log |H1(11m+ (11m− σ + ε)eiθ, χ)|dθ

≤ log (100m)− 1
2π

∫ 2π

0
log (11m+ (11m− σ + ε) cos θ) dθ

= log (100m)− log 11m+
√

11m2 − (11m− σ + ε)2

2
≤ log (100m)− log 11m

2 � 1.
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Note that ε/(11m − σ) ≤ 10, thus log (1 + ε/(11m− σ)) �
ε/(11m− σ). Hence

arg G1
L

(σ ± iτ, χ)� 11m− σ
ε

� m

ε
.

By taking ε = σ − 2, we obtain

arg G1
L

(σ ± iτ, χ)� m

σ
.

This is the first inequality in Lemma 3.6.

(b) For 1/2 < σ ≤ 3, we restrict ε to satisfy 0 < ε < σ − 1/2 and we
divide the interval of integration into
• I1 := {θ ∈ [0, 2π] | 11m+ (11m− σ + ε) cos θ ≥ 2} and
• I2 := {θ ∈ [0, 2π] | 11m+ (11m− σ + ε) cos θ < 2}.

Since 11m+ (11m− σ + ε) cos θ > 1/2 and 11m− σ + ε < 11m, on
I1, as in the calculation of case (a), we can show that

1
2π

∫
θ∈I1

log |H1(11m+ (11m− σ + ε)eiθ, χ)|dθ

≤ 1
2π

∫
θ∈I1

log 100m
11m+ (11m− σ + ε) cos θ dθ

≤ 1
2π

∫ 2π

0
log 100m

11m+ (11m− σ + ε) cos θ dθ � 1.

Now we estimate the integral on I2. Setting

cos θ0 := 11m− 2
11m− σ + ε

for θ0 ∈ (0, π/2), we have I2 = (π−θ0, π+θ0). Applying Lemma 2.4
and Proposition 2.3, and noting that (L′/L)(x+iy, χ) = O(1) when
x ≥ 2, we have

L′

L
(x+ iy, χ) = O

( log (q(|y|+ 1))
x− 1/2

)

for 1/2 < x ≤ A, for any fixed A ≥ 2. Thus,

|H1(11m+(11m−σ+ε)eiθ, χ)| ≤ C1
m2

logm
log (q(τ + 11m))

11m+ (11m− σ + ε) cos θ − 1/2
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for some absolute constant C1 > 0. Hence

1
2π

∫
θ∈I2

log |H1(11m+ (11m− σ + ε)eiθ, χ)|dθ

≤ 1
2π

∫ π+θ0

π−θ0
log C1m

2

logm
log (q(τ + 11m))

11m− 1/2 + (11m− σ + ε) cos θ dθ

= 1
2π

∫ θ0

−θ0
log C1m

2

logm
log (q(τ + 11m))

11m− 1/2− (11m− σ + ε) cos θ dθ

= θ0
π

log C1m
2 log (q(τ + 11m))

logm

− 1
2π

∫ θ0

−θ0
log

(
11m− 1

2 − (11m− σ + ε) cos θ
)

dθ.

We note that cos θ0 = 1 + O(1/m). By using 1 − cos θ0 =
2 sin2 (θ0/2), we can show

θ0 �
∣∣∣∣sin θ0

2

∣∣∣∣� 1
m1/2 .

Hence,∫ θ0

−θ0
log

(
11m− 1

2 − (11m− σ + ε) cos θ
)

dθ

=
∫ θ0

−θ0
log 11m− 1/2− (11m−σ+ ε) cos θ

11m− 1/2 dθ +
∫ θ0

−θ0
log (11m− 1/2) dθ

=
∫ θ0

−θ0
log

(
1− 11m− σ + ε

11m− 1/2 cos θ
)

dθ +O

( logm
m1/2

)
Recalling that σ − ε > 1/2 and θ0 ∈ (0, π/2), we have∫ θ0

−θ0
log (1− cos θ) dθ ≤

∫ θ0

−θ0
log

(
1− 11m− σ + ε

11m− 1/2 cos θ
)

dθ ≤ 0.

Meanwhile,∫ θ0

−θ0
log (1− cos θ) dθ =

∫ θ0

−θ0
log

(
2 sin2 θ

2

)
dθ

= 2θ0 log 2 + 4
∫ θ0

0
log

(
sin θ2

)
dθ

= 2θ0 log 2 + 4
∫ θ0

0
log sin (θ/2)

θ/2 dθ + 4
∫ θ0

0
log θ2 dθ

= O (θ0) +O
(
θ3

0

)
+O

(
θ0 log θ−1

0

)
= O

( logm
m1/2

)
.
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Therefore when 1/2 < σ ≤ 3, recalling thatm� log q ≤ log (qτ),
we have

1
2π

∫ 2π

0
log |H1(11m+ (11m− σ + ε)eiθ, χ)|dθ

= 1
2π

(∫
θ∈I1

+
∫
θ∈I2

)
log |H1(11m+ (11m− σ + ε)eiθ, χ)|dθ

� 1 + log log (q(τ + 11m))
m1/2 + logm

m1/2 � 1 + log log (qτ)
m1/2 .

To obtain the last inequality, we note that it is obvious if τ � m,
otherwise if τ � m, then log log (q(τ + 11m)) � log log (qm) �
log log q � log log (qτ) since τ > 1.

Since 0 < ε/(11m − σ) < 1, we have log (1 + ε/(11m− σ)) �
ε/m, thus

arg G1
L

(σ ± iτ, χ)� m

ε

(
1 + log log (qτ)

m1/2

)
.

Taking ε = (σ − 1/2)/2, we obtain the second inequality in
Lemma 3.6. �

Lemma 3.7. Assume GRH and let A ≥ 2 be fixed. Then there exists a
constant C0 > 0 such that∣∣L′(σ + it, χ)

∣∣ ≤ exp
(
C0

(
(log qτ)2(1−σ)

log log (qτ) + (log (qτ))1/10
))

holds for 1/2− 1/ log log (qτ) ≤ σ ≤ A and τ = |t|+ 4.

Proof. Applying Lemma 2.1 and Cauchy’s integral formula, Lemma 3.7
follows. �

Lemma 3.8. Assume GRH. Then for any 1/2 ≤ σ ≤ 3/4, we have

argG1(σ ± iτ, χ) = O

(
m1/2(log log (qτ))

×
(
m1/2 + (log (qτ))1/10 + (log (qτ))2(1−σ)

(log log (qτ))3/2

))
.

Proof. The proof is similar to that of Lemma 3.6 but we provide the details
for clarity. Let 1/2 ≤ σ ≤ 3/4 and τ > 1 be large. Put

uG1 = uG1(σ, τ ;χ) := # {u ∈ [σ, 4m] | Re (G1(u± iτ, χ)) = 0} ,

then
|argG1(σ ± iτ, χ)| ≤ (uG1 + 1)π.
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To estimate uG1 , we set

X1(z, χ) := G1(z ± iτ, χ) +G1(z ∓ iτ, χ)
2

and
nX1(r, χ) := #{z ∈ C | X1(z, χ) = 0, |z − 4m| ≤ r}.

Then we have uG1 ≤ nX1(4m− σ, χ).
Now we estimate nX1(4m−σ, χ). For each σ ∈ [1/2, 3/4], we take ε = εσ,τ

satisfying 0 < ε ≤ σ − 1/2 + (log log (qτ))−1. It is easy to show that

nX1(4m− σ, χ) ≤ 1 + 3m
ε

∫ 4m−σ+ε

0

nX1(r, χ)
r

dr.

Applying Jensen’s theorem (cf. [11, Section 3.61]), we have∫ 4m−σ+ε

0

nX1(r, χ)
r

dr

= 1
2π

∫ 2π

0
log |X1(4m+ (4m− σ + ε)eiθ, χ)|dθ − log |X1(4m,χ)|.

By using the first inequality in Lemma 3.1, we can easily show

log |X1(4m,χ)| = O(1).

As in the proof of Lemma 3.6, we divide the interval of integration into
• J1 := {θ ∈ [0, 2π] | 4m+ (4m− σ + ε) cos θ ≥ 2} and
• J2 := {θ ∈ [0, 2π] | 4m+ (4m− σ + ε) cos θ < 2}.

Then similarly, applying the first inequality in Lemma 3.1 and (3.9), we
can show that

1
2π

∫
θ∈J1

log |X1(4m+ (4m− σ + ε)eiθ, χ)|dθ = O(1).

Next we estimate the integral on J2. Setting

cos θ0 := 4m− 2
4m− σ + ε

for θ0 ∈ (0, π/2), we have J2 = (π−θ0, π+θ0) and θ0 = O(m−1/2). Applying
Lemma 3.7, we have

|X1(4m+ (4m− σ + ε)eiθ, χ)|

≤ m2

logm exp
(
C ′0

(
(log (qτ))−3m−2(4m−σ+ε) cos θ

log log (qτ) + (log (qτ))1/10
))
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for some absolute constant C ′0 > 0. Thus,

1
2π

∫
θ∈J2

log |X1(4m+ (4m− σ + ε)eiθ, χ)|dθ

≤ θ0

(
log m2

logm + C ′0(log (qτ))1/10
)

+ C ′0(log (qτ))−3m

2π log log (qτ)

∫ π+θ0

π−θ0
(log (qτ))−2(4m−σ+ε) cos θ dθ

≤ θ0

(
log m2

logm + C ′0(log (qτ))1/10
)

+ C ′0(log (qτ))−3m

2π log log (qτ)

∫ 2π

0
(log (qτ))−2(4m−σ+ε) cos θ dθ.

As in [1, pp. 2252–2253], we use∫ 2π

0
e−x cos θ dθ = 2πI0(x),

where Iν is the Bessel function and

I0(x) = ex√
2πx

(1 + o(1)).

Then there exists a constant C ′1 > 0 such that

I0(2(4m− σ + ε) log log (qτ)) ≤ C ′1
(log (qτ))2(4m−σ+ε)

(m log log (qτ))1/2 .

Hence,

1
2π

∫
θ∈J2

log |X1(4m+ (4m− σ + ε)eiθ, χ)|dθ

� 1
m1/2

(
(log (qτ))1/10 + (log (qτ))2(1−σ+ε)

(log log (qτ))3/2

)
.

Concluding the above, we have

argG1(σ ± iτ, χ)� nX1(4m− σ, χ)

� m

ε

(
1 + 1

m1/2

(
(log (qτ))1/10 + (log (qτ))2(1−σ+ε)

(log log (qτ))3/2

))
.

Taking ε = (log log (qτ))−1 completes the proof. �
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4. Proof of theorems

In this section, we prove Theorems 1.1 and 1.2. We put the proof of
each theorem in a separate subsection. In each subsection, we first prove
a proposition which states out the main term of the equation in our main
theorem. We use the functions F (s, χ) and G1(s, χ) defined in the previous
section (see (3.1) and (3.2)).

4.1. Proof of Theorem 1.1. The following proposition states out the
main term of the equation in Theorem 1.1.

Proposition 4.1. Assume GRH. Take t0 as in (3.8). From Proposition 2.5,
we note that L′(s, χ) 6= 0 when σ ≥ 4m. Then for T ≥ t0 which satisfies
L(σ ± iT, χ) 6= 0 and L′(σ ± iT, χ) 6= 0 for any σ ∈ R, we have

∑
ρ′=β′+iγ′,
t0<|γ′|≤T

(
β′ − 1

2

)
= T

π
log log qT2π + T

π

(1
2 logm− log logm

)
− 2
q

Li
(
qT

2π

)
− I(t0, χ) + I(−t0, χ) + I(T, χ)− I(−T, χ)

+O(log log q) +O(m),

where

I(τ, χ) := 1
2π

∫ 4m

1/2
(− argL(σ + iτ, χ) + argG1(σ + iτ, χ)) dσ

and the logarithmic branches are taken as in Section 3.2.

Proof. We take σ1 which satisfies Lemma 3.3 and fix it. Take T ≥ t0 such
that L(σ ± iT, χ) 6= 0 and L′(σ ± iT, χ) 6= 0 for all σ ∈ R. Let δ ∈ (0, 1/2]
and put b := 1/2− δ.

Applying Littlewood’s lemma (cf. [11, Section 3.8]) to G1(s, χ) on the
rectangles with vertices b± it0, 4m± it0, 4m± iT , and b± iT , we obtain

(4.1) 2π
∑

ρ′=β′+iγ′,
t0<±γ′≤T

(β′ − b)

=
∫ T

t0
log |G1(b± it, χ)|dt−

∫ T

t0
log |G1(4m± it, χ)| dt

∓
∫ 4m

b
argG1(σ ± it0, χ) dσ ±

∫ 4m

b
argG1(σ ± iT, χ) dσ

=: I±1 + I±2 + I±3 + I±4 .
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Applying the first inequality in Lemma 3.1, we can show that I+
2 = I−2 =

O(m). Below we estimate I+
1 .

(4.2)

I+
1 =

∫ T

t0
log |G1(b+ it, χ)| dt =

∫ T

t0
log

(
mb

logm |L
′(b+ it, χ)|

)
dt

=
∫ T

t0
log mb

logm dt+
∫ T

t0
log |L′(b+ it, χ)| dt

= (b logm− log logm)T +
∫ T

t0
log |F (b+ it, χ)| dt

+
∫ T

t0
log

∣∣∣∣F ′F (b+ it, χ)
∣∣∣∣ dt+

∫ T

t0
log |L(1− b− it, χ)| dt

+
∫ T

t0
log

∣∣∣∣∣1− 1
F ′

F (b+ it, χ)
L′

L
(1− b− it, χ)

∣∣∣∣∣ dt+O(t0 logm)

=: I11 + I12 + I13 + I14 + I15 +O(logm).

From (3.4) and Stirling’s formula (3.3), we have

I12 =
∫ T

t0
log |F (b+ it, χ)| dt =

∫ T

t0

((1
2 − b

)
log qt

2π +O

( 1
t2

))
dt

=
(1

2 − b
)(

T log qT2π − T − t0 log qt02π + t0

)
+O(1).

Lemma 3.2 gives us

log
∣∣∣∣F ′F (b+ it, χ)

∣∣∣∣ = Re
(

log F
′

F
(b+ it, χ)

)
= log log q|t|2π +O

( 1
t2 log (q|t|)

)
,

thus we have

I13 =
∫ T

t0
log

∣∣∣∣F ′F (b+ it, χ)
∣∣∣∣ dt =

∫ T

t0

(
log log qt

2π +O

( 1
t2 log (q|t|)

))
dt

= T log log qT2π − t0 log log qt02π −
∫ T

t0

1
log qt

2π
dt+O(1)

= T log log qT2π − t0 log log qt02π −
2π
q

Li
(
qT

2π

)
+O (t0)

= T log log qT2π −
2π
q

Li
(
qT

2π

)
+O (log log q) .

Next, we estimate I14. We note that L(s, χ) = L(s, χ), hence
|L(1−b−it, χ)| = |L(1−b+it, χ)|. Take the logarithmic branch of logL(s, χ)
so that logL(s, χ) =

∑∞
n=2 χ(n)Λ(n)(logn)−1n−s holds for Re(s) > 1 and

that it is holomorphic in C\{z + λ | L(z, χ) = 0, λ ≤ 0}. Then apply-
ing Cauchy’s integral theorem to logL(s, χ) on the rectangle with vertices
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1 − b + it0, 4m + it0, 4m + iT , 1 − b + iT and taking the imaginary part,
we can show that

I14 =
∫ T

t0
log |L(1− b− it, χ)|dt =

∫ T

t0
log |L(1− b+ it, χ)| dt

=
∫ 4m

1−b
argL(σ + it0, χ) dσ −

∫ 4m

1−b
argL(σ + iT, χ) dσ +O(1).

Finally we estimate I15. Since L(s, χ) = F (s, χ)L(1− s, χ), we have

(4.3) 1
F ′

F (s, χ)
L′

L
(s, χ) = 1− 1

F ′

F (s, χ)
L′

L
(1− s, χ).

From Lemma 3.4, the function on the left-hand side of (4.3) is holomorphic
and has no zeros in σ1 ≤ σ < 1/2, |t| ≥ t′ − 1. From Lemma 3.3, the
function on the right-hand side of (4.3) is holomorphic and has no zeros in
σ ≤ σ1, |t| ≥ 2. Thus we can determine

log
(

1− 1
F ′

F (s, χ)
L′

L
(1− s, χ)

)
so that it tends to 0 as σ → −∞ which follows from Lemma 3.3, and that
it is holomorphic in σ < 1/2, |t| > t0 − 1(> t′ − 1). Now we apply Cauchy’s
integral theorem to it on the trapezoid with vertices −t0 +it0, b+it0, b+iT ,
and −T + iT . Lemma 3.3 allows us to show(∫ −T+iT

σ1+iT
+
∫ −t0+it0

−T+iT
+
∫ σ1+it0

−t0+it0

)
log

(
1− 1

F ′

F (s, χ)
L′

L
(1−s, χ)

)
ds = O(1).

Thus taking the imaginary part, we obtain∫ T

t0
log

∣∣∣∣∣1− 1
F ′

F (b+ it, χ)
L′

L
(1− b− it, χ)

∣∣∣∣∣ dt
=
∫ b

σ1
arg

(
1− 1

F ′

F (σ + iT, χ)
L′

L
(1− σ − iT, χ)

)
dσ

−
∫ b

σ1
arg

(
1− 1

F ′

F (σ + it0, χ)
L′

L
(1− σ − it0, χ)

)
dσ +O(1)

Now we let

log
(

1
F ′

F (s, χ)
L′

L
(s, χ)

)
= log

(
1− 1

F ′

F (s, χ)
L′

L
(1− s, χ)

)
and determine the logarithmic branch of log (F ′/F )(s, χ) and
log (L′/L)(s, χ) in the region σ1 ≤ σ < 1/2, |t| ≥ t0 − 1 as in Lemma 3.4.
Note that both of them and the functions on both sides of (4.3) are all
continuous with respect to s in σ1 ≤ σ < 1/2, |t| ≥ t0 − 1. Furthermore,
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the two regions σ1 ≤ σ < 1/2, t ≥ t0 − 1 and σ1 ≤ σ < 1/2,−t ≥ t0 − 1 are
connected. Thus we have

arg
(

1− 1
F ′

F (s, χ)
L′

L
(1− s, χ)

)
= − arg F

′

F
(s, χ) + arg L

′

L
(s, χ) + 2πnq

for some nq ∈ Z that depends only at most on q. From our choice of
logarithmic branch, we have nq = 0. Thus,

(4.4) − 2π
3 < arg

(
1− 1

F ′

F (s, χ)
L′

L
(1− s, χ)

)
<

2π
3

for σ1 ≤ σ < 1/2, |t| ≥ t0 − 1. Therefore we obtain

I15 =
∫ T

t0
log

∣∣∣∣∣1− 1
F ′

F (b+ it, χ)
L′

L
(1− b− it, χ)

∣∣∣∣∣ dt = O(1).

Collecting the above calculations, we have

I+
1 = T log log qT2π + (b logm− log logm)T − 2π

q
Li
(
qT

2π

)
+
(1

2 − b
)(

T log qT2π − T − t0 log qt02π + t0

)
+
∫ 4m

1−b
argL(σ + it0, χ) dσ −

∫ 4m

1−b
argL(σ + iT, χ) dσ +O(log log q).

Similarly, we can show that

I−1 = T log log qT2π + (b logm− log logm)T − 2π
q

Li
(
qT

2π

)
+
(1

2 − b
)(

T log qT2π − T − t0 log qt02π + t0

)
−
∫ 4m

1−b
argL(σ − it0, χ) dσ +

∫ 4m

1−b
argL(σ − iT, χ) dσ +O(log log q).

Thus we have
2π

∑
ρ′=β′+iγ′,
t0<γ′≤T

(β′ − b)

= T log log qT2π + (b logm− log logm)T − 2π
q

Li
(
qT

2π

)
+
(1

2 − b
)(

T log qT2π − T − t0 log qt02π + t0

)
+
∫ 4m

1−b
argL(σ + it0, χ) dσ −

∫ 4m

1−b
argL(σ + iT, χ) dσ

−
∫ 4m

b
argG1(σ + it0, χ) dσ +

∫ 4m

b
argG1(σ + iT, χ) dσ

+O(log log q) +O(m)
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and

2π
∑

ρ′=β′+iγ′,
t0<−γ′≤T

(β′ − b)

= T log log qT2π + (b logm− log logm)T − 2π
q

Li
(
qT

2π

)
+
(1

2 − b
)(

T log qT2π − T − t0 log qt02π + t0

)
−
∫ 4m

1−b
argL(σ − it0, χ) dσ +

∫ 4m

1−b
argL(σ − iT, χ) dσ

+
∫ 4m

b
argG1(σ − it0, χ) dσ −

∫ 4m

b
argG1(σ − iT, χ) dσ

+O(log log q) +O(m).

Taking δ → 0, we obtain Proposition 4.1. �

Now we are ready to complete the proof of Theorem 1.1.
Referring to [2, Theorem 6], we have

(4.5)
∑

ρ′=β′+iγ′,
|γ′|≤t0

(β′ − 1/2)� m1/2 log q.

This also implies that when 2 ≤ T < t0,∑
ρ′=β′+iγ′,
|γ′|≤T

(β′ − 1/2)� m1/2 log q.

Next, we estimate ∑
ρ′=β′+iγ′,
t0<|γ′|≤T

(β′ − 1/2).

We divide the proof in two cases.

Case 1. For T ≥ t0 which satisfies L(σ ± iT, χ) 6= 0, L′(σ ± iT, χ) 6= 0 for
all σ ∈ R.

In this case, we apply Proposition 4.1 and provoke Lemmas 2.2, 3.6,
and 3.8 to obtain the error term.

We apply Lemmas 2.2, 3.8, and 3.6 to obtain∫ 1/2+(log (qτ))−1

1/2
argL(σ ± iτ, χ) dσ � 1,∫ 4m

3
arg G1

L
(σ ± iτ, χ) dσ � m logm
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for τ ≥ t0, and∫ 1/2+(log (qt0))−1

1/2
argG1(σ ± it0, χ) dσ � m1/2

(log log q)1/2 ,∫ 1/2+(log (qT ))−1

1/2
argG1(σ ± iT, χ) dσ � m1/2

(log log (qT ))1/2 ,∫ 3

1/2+(log (qt0))−1
arg G1

L
(σ ± it0, χ) dσ � m1/2(log log q)2 +m log log q,∫ 3

1/2+(log (qT ))−1
arg G1

L
(σ ± iT, χ) dσ � m1/2(log log (qT ))2 +m log log (qT ).

Inserting the above estimates into the formula given in Proposition 4.1
and adding this to (4.5), we obtain Theorem 1.1 for Case 1.

Case 2. For T ≥ t0 such that any of L(σ + iT, χ) 6= 0, L(σ − iT, χ) 6= 0,
L′(σ + iT, χ) 6= 0, or L′(σ − iT, χ) 6= 0 is not satisfied for some σ ∈ R.

In this case, first we look for some small 0 < ε < (log log (qT ))−1 such
that L(σ ± i(T ± ε), χ) 6= 0, L′(σ ± i(T ± ε), χ) 6= 0 holds for all σ ∈ R and
apply the method of Case 1, so we obtain∑
ρ′=β′+iγ′,
|γ′|≤T±ε

(
β′− 1

2

)
= (T ± ε)

π
log log q(T ± ε)2π

+ T ± ε
π

(1
2 logm− log logm

)
− 2
q

Li
(
q(T ± ε)

2π

)
+O

(
m1/2(log log (qT ))2 +m log log (qT )+m1/2 log q

)
.

Noting that∑
ρ′=β′+iγ′,

t0−1<|γ′|≤T−ε

(
β′ − 1

2

)
≤

∑
ρ′=β′+iγ′,
t0−1<|γ′|≤T

(
β′ − 1

2

)
≤

∑
ρ′=β′+iγ′,

t0−1<|γ′|≤T+ε

(
β′ − 1

2

)

together with (4.5), we easily show that the equation in Theorem 1.1 also
holds for this case. �

4.2. Proof of Theorem 1.2. The following proposition states out the
main term of the equation in Theorem 1.2.

Proposition 4.2. Assume GRH. Then for T ≥ 2 which satisfies
L(σ ± iT, χ) 6= 0 and L′(σ ± iT, χ) 6= 0 for all σ ∈ R, we have

N1(T, χ) = T

π
log qT

2mπ −
T

π
+A(T, χ) +B(T, χ)−A(−T, χ)−B(−T, χ)

+O
(

m1/2 log q
(log log q)1/2 + log q

)
,
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where

A(τ, χ) := 1
2π argG1

(1
2 + iτ, χ

)
, B(τ, χ) := 1

2π argL
(1

2 + iτ, χ

)
,

and the logarithmic branches are taken as in Section 3.2.
Proof. Take σ1, t0, T, δ, b as in the beginning of the proof of Proposition 4.1.
Let b′ := 1/2− δ/2. Replacing b by b′ in (4.1), we have

2π
∑

ρ′=β′+iγ′,
t0<±γ′≤T

(β′ − b′)

=
∫ T

t0
log |G1(b′ ± it, χ)|dt−

∫ T

t0
log |G1(4m± it, χ)|dt

∓
∫ 4m

b′
argG1(σ ± it0, χ) dσ ±

∫ 4m

b′
argG1(σ ± iT, χ) dσ.

Subtracting these from (4.1), we obtain

δπ
∑

ρ′=β′+iγ′,
t0<±γ′≤T

1 =
∫ T

t0

(
log |G1(b± it, χ)| − log |G1(b′ ± it, χ)|

)
dt

∓
∫ b′

b
argG1(σ ± it0, χ) dσ ±

∫ b′

b
argG1(σ ± iT, χ) dσ

=: J±1 + J±2 + J±3 .

We estimate J±1 . From (4.2), we have

J+
1 =

∫ T

t0

(
log |G1(b+ it, χ)| − log |G1(b′ + it, χ)|

)
dt

= (b− b′)(T − t0) logm+
∫ T

t0
(log |F (b+ it, χ)| − log |F (b′ + it, χ)|) dt

+
∫ T

t0

(
log

∣∣∣∣F ′F (b+ it, χ)
∣∣∣∣− log

∣∣∣∣F ′F (b′ + it, χ)
∣∣∣∣) dt

+
∫ T

t0

(
log |L(1− b− it, χ)| − log |L(1− b′ − it, χ)|

)
dt

+
∫ T

t0

(
log

∣∣∣∣∣1− 1
F ′

F (b+ it, χ)
L′

L
(1− b− it, χ)

∣∣∣∣∣
− log

∣∣∣∣∣1− 1
F ′

F (b′ + it, χ)
L′

L
(1− b′ − it, χ)

∣∣∣∣∣
)

dt

=: J11 + J12 + J13 + J14 + J15.

Applying Cauchy’s theorem to logF (s, χ) on the rectangle C with vertices
b+ it0, b′ + it0, b′ + iT , b+ iT , and taking the imaginary part, we have

J12 =
∫ b′

b
argF (σ + it0, χ) dσ −

∫ b′

b
argF (σ + iT, χ) dσ.
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From (3.4), we can show that

J12 =
(
T log qT2π − T

)
δ

2 −
(
t0 log qt02π − t0

)
δ

2 +O(δ)

Next, we take the logarithmic branch of log (F ′/F )(s, χ) as in condition (1)
of Lemma 3.4. Applying Cauchy’s integral theorem to log (F ′/F )(s, χ) on
C taking the imaginary part, we have

J13 =
∫ b′

b
arg F

′

F
(σ + it0, χ) dσ −

∫ b′

b
arg F

′

F
(σ + iT, χ) dσ = O(δ)

To estimate J14, we define a branch of logL(s, χ) as in the estimation of
I14 in the proof of Proposition 4.1 and apply Cauchy’s integral theorem on
the rectangle with vertices 1− b′ + it0, 1− b+ it0, 1− b+ iT , 1− b′ + iT .
Taking the imaginary part we obtain

J14 = −
∫ 1−b

1−b′
argL(σ + it0, χ) dσ +

∫ 1−b

1−b′
argL(σ + iT, χ) dσ.

Finally, we define a branch of

log
(

1− 1
F ′

F (s, χ)
L′

L
(1− s, χ)

)
as in the estimation of I15 in the proof of Proposition 4.1 and apply Cauchy’s
integral theorem to it on C. Taking the imaginary part, we have

J15 =
∫ b′

b
arg

(
1− 1

F ′

F (σ + it0, χ)
L′

L
(1− σ − it0, χ)

)
dσ

−
∫ b′

b
arg

(
1− 1

F ′

F (σ + iT, χ)
L′

L
(1− σ − iT, χ)

)
dσ

= O(δ)

by (4.4). Then we estimate J−1 similarly.
We then obtain

δπ
∑

ρ′=β′+iγ′,
t0<±γ′≤T

1 = −(T − t0)δ2 logm+
(
T log qT2π − T

)
δ

2 −
(
t0 log qt02π − t0

)
δ

2

∓
∫ 1−b

1−b′
argL(σ± it0, χ) dσ ±

∫ 1−b

1−b′
argL(σ± iT, χ) dσ

∓
∫ b′

b
argG1(σ± it0, χ) dσ ±

∫ b′

b
argG1(σ± iT, χ) dσ+O(δ).
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Taking the limit δ → 0 and applying the mean value theorem, for τ = ±t0
and τ = ±T we have

lim
δ→0

1
πδ

∫ 1−b

1−b′
argL(σ + iτ, χ) dσ = B(τ, χ)

and

lim
δ→0

1
πδ

∫ b′

b
argG1(σ + iτ, χ) dσ = A(τ, χ)

by noting that b = 1/2− δ and b′ = 1/2− δ/2. Hence,

N1(T, χ)−N1(t0, χ)

= T

π
log qT

2mπ −
T

π
−
(
t0
π

log qt0
2mπ −

t0
π

)
−A(t0, χ)−B(t0, χ) +A(T, χ) +B(T, χ)
+A(−t0, χ) +B(−t0, χ)−A(−T, χ)−B(−T, χ) +O(1).

Applying Lemma 3.8,

A(±t0, χ) = 1
2π argG1

(1
2 ± it0, χ

)
= O

(
m1/2 log q

(log log q)1/2

)
and from Lemma 2.2, we have

B(±t0, χ) = 1
2π argL

(1
2 ± it0, χ

)
= O

( log q
log log q

)
.

By using the argument principle and [2, Proposition 2.3], we can show that

N1(t0, χ) =N(t0, χ) + 1
2π arg L

′

L
(−2j − κ+ 1 + it0, χ)

− 1
2π arg L

′

L
(−2j − κ+ 1− it0, χ) +O(1)

= 1
2π

(
arg L

′

L
(−2j−κ+ 1 + it0, χ)− arg L

′

L
(−2j−κ+ 1− it0, χ)

)
+O(log q),

where j ∈ N is chosen such that −2j − κ + 1 ≤ σ1. From the functional
equation for L(s, χ), we have

L′

L
(s, χ) = F ′

F
(s, χ)

(
1− 1

F ′

F (s, χ)
L′

L
(1− s, χ)

)
.

Applying Lemmas 3.3 and 3.4 (1), we can show that

arg L
′

L
(−2j − κ+ 1± it0, χ) = O(1).



Two estimates on the distribution of zeros of L′(s, χ) under GRH 497

Hence,

N1(T, χ) = T

π
log qT

2mπ −
T

π
+A(T, χ) +B(T, χ)−A(−T, χ)−B(−T, χ)

+O
(

m1/2 log q
(log log q)1/2 + log q

)
.

If 2 ≤ T < t0, then N1(T, χ) ≤ N1(t0, χ) = O(log q), which can be
included in the error term. Thus the proof is complete. �

Now we complete the proof of Theorem 1.2. We only need to consider the
case when T ≥ t0 since we already know that 2 ≤ T < t0, then N1(T, χ) ≤
N1(t0, χ) = O(log q).

We first prove that A(q, T ) in our theorem can be (log log (qT ))1/2.
As in the proof of Theorem 1.1, we also consider two cases. In the first

case, for T ≥ t0 which satisfies L(σ ± iT, χ) 6= 0, L′(σ ± iT, χ) 6= 0 for all
σ ∈ R, the error terms are estimated as follows: From Lemma 3.8, we have

argG1

(1
2 ± iT, χ

)
= O

(
m1/2 log (qT )

(log log (qT ))1/2

)
.

From Lemma 2.2, we have

argL
(1

2 ± iT, χ
)

= O

( log (qT )
log log (qT )

)
.

Therefore,

(4.6) N1(T, χ) = T

π
log qT

2mπ −
T

π
+O

(
m1/2 log (qT )

(log log (qT ))1/2 + log q
)

for this case.
In the second case, we consider for T ≥ t0 such that any of L(σ+iT, χ) 6=

0, L(σ − iT, χ) 6= 0, L′(σ + iT, χ) 6= 0, or L′(σ − iT, χ) 6= 0 is not satisfied
for some σ ∈ R. Similar to the proof of Theorem 1.1, we look for some small
0 < ε < (log (qT ))−1 such that L(σ±i(T ±ε), χ) 6= 0, L′(σ±i(T ±ε), χ) 6= 0
holds for all σ ∈ R. Applying the method of the first case we obtain

(4.7) N1(T ± ε, χ) = T ± ε
π

log q(T ± ε)2mπ − T ± ε
π

+O

(
m1/2 log (qT )

(log log (qT ))1/2 + log q
)

Noting the inequalities

N1(T − ε, χ) ≤ N1(T, χ) ≤ N1(T − ε, χ) + (N1(T + ε, χ)−N1(T − ε, χ)) ,

from (4.7) we easily find that (4.6) also holds for this case.



498 Ade Irma Suriajaya

Finally we show that A(q, T ) = 1 +m1/2(log log (qT ))−1 in Theorem 1.2.
Our aim is to show

argG1

(1
2 ± iT, χ

)
= O

(
m1/2 log (qT )
log log (qT )

(
1 + m1/2

log log (qT )

))
+O(log q)

The proof will follow that of [4, Theorem 1]. It is sufficient to prove for
T ≥ t0 which satisfies L(σ ± iT, χ) 6= 0, L′(σ ± iT, χ) 6= 0 for all σ ∈ R and
prove for the other case as in the second case above.

We put

HT := (log log (qT ))3

log (qT ) .

Let ∆±1 denote the change in argument of G1(s, χ) along the horizontal line
from ∞± iT to 1/2 +HT / log log (qT )± iT and ∆±2 denote that along the
horizontal line from 1/2 +HT / log log (qT )± iT to 1/2± iT . Then

argG1

(1
2 ± iT, χ

)
= ∆±1 + ∆±2 .

By using Lemma 3.6, we can easily show that when σ ≥ 1/2 +
HT / log log (qT ),

arg G1
L

(σ ± iT, χ)� m1/2 log (qT )
log log (qT )

(
1 + m1/2

log log (qT )

)
which by Lemma 2.2 immediately implies

∆±1 = argG1(σ ± iT, χ)� m1/2 log (qT )
log log (qT )

(
1 + m1/2

log log (qT )

)
.

In the rest of this proof, we show that

∆±2 = O

(
m1/2 log (qT )
log log (qT )

)
+O(log q).

We first note that

∆±2 = Im
(∫ 1/2+HT / log log (qT )

1/2

G′1
G1

(σ ± iT, χ) dσ
)
.

By using standard methods (see [4, Lemma 6 and p. 5] and [12, Theo-
rem 9.6(A)]) we can show that
G′1
G1

(σ±iT, χ) =
∑

|ρ′−(1/2+HT /(2 log log (qT ))±iT )|≤2

1
σ ± iT − ρ′

+O(m log (qT )).

For convenience, we write

D(y;χ) :=
{
s ∈ C

∣∣∣∣ ∣∣∣∣s− (1
2 + HT

2 log log (qT ) + iy

)∣∣∣∣ ≤ 2
}
.
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Thus

∆±2 = Im

∫ 1/2+HT / log log (qT )±iT

1/2±iT

 ∑
ρ′∈D(±T ;χ)

1
s− ρ′

+O(m log (qT ))

ds


=

∑
ρ′∈D(±T ;χ)

Im
(∫ 1/2+HT / log log (qT )±iT

1/2±iT

1
s− ρ′

ds
)

+O
(
m(log log (qT ))2

)
=

∑
ρ′∈D(±T ;χ)

(
arg

(1
2 + HT

log log (qT ) ± iT − ρ
′
)
− arg

(1
2 ± iT − ρ

′
))

+O
(
m(log log (qT ))2

)
.

We set

f(ρ′) :=
(

arg
(1

2 + HT

log log (qT ) ± iT − ρ
′
)
− arg

(1
2 ± iT − ρ

′
))

,

and note that f(ρ′)� 1. Now we are left to show

∑
ρ′∈D(±T ;χ)

f(ρ′) = O

(
m1/2 log (qT )
log log (qT )

)
+O(log q).

We divide the sum into three regions:
• D1(y;χ) := {s ∈ C | 1/2 < σ ≤ 1/2 +HT , y −HT ≤ t ≤ y +HT },
• D2(y;χ) := {s ∈ C | σ = 1/2, y −HT ≤ t ≤ y +HT },
• D3(y;χ) := D(y;χ)\(D1(y;χ) ∪ D2(y;χ)).

We easily find that ∑
ρ′∈D1(±T ;χ)

f(ρ′)�
∑

ρ′∈D1(±T ;χ)
1.

As in the proof of [4, Lemma 8], we first observe that when T ≥ t0,∫ ±T+HT

±T−HT
F1(t, χ) dt�

∑
ρ∈D1(±T ;χ)

1 + |O(log q)|

by using Lemma 3.5 (see also [4, proof of Lemma 7]). Meanwhile

F1(±t, χ) ≥
∑

ρ′∈D1(±T ;χ)

β′ − 1/2
(β′ − 1/2)2 + (γ′ ∓ t)2
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and so∫ ±T+HT

±T−HT
F1(t, χ) dt ≥

∑
ρ′∈D1(±T ;χ)

∫ ±T+HT

±T−HT

β′ − 1/2
(β′ − 1/2)2 + (γ′ − t)2 dt

≥ c
∑

ρ′∈D1(±T ;χ)
1

for some absolute constant c > 0 (cf. [4, proof of Lemma 8]). This implies∑
ρ′∈D1(±T ;χ)

1�
∑

ρ∈D1(±T ;χ)
1 + |O(log q)|.

By Proposition 2.3, this gives∑
ρ′∈D1(±T ;χ)

f(ρ′)�
∑

ρ∈D1(±T ;χ)
1 + |O(log q)|

≤ N(T +HT , χ)−N(T −HT , χ) + |O(log q)|

= O

( log (qT )
log log (qT )

)
+O(log q).

Similarly we have∑
ρ′∈D2(±T ;χ)

f(ρ′)�
∑

ρ′∈D2(±T ;χ)
1�

∑
ρ∈D2(±T ;χ)

1

by Lemma 7.1 of [2]. Therefore again by Proposition 2.3,∑
ρ′∈D2(±T ;χ)

f(ρ′)�
∑

ρ∈D2(±T ;χ)
1 ≤ N(T +HT , χ)−N(T −HT , χ)

� log (qT )
log log (qT ) .

Finally, for ρ′ ∈ D3(±T ;χ), recalling the definition of f(ρ′), we can easily
show

|f(ρ′)| =
∣∣∣∣Im(

log
(1

2 + HT

log log (qT ) ± iT − ρ
′
)
− log

(1
2 ± iT − ρ

′
))∣∣∣∣

≤
∣∣∣∣log

(1
2 + HT

log log (qT ) ± iT − ρ
′
)
− log

(1
2 ± iT − ρ

′
)∣∣∣∣

=
∣∣∣∣log

(
1 + HT

(1/2± iT − ρ′) log log (qT )

)∣∣∣∣ .
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Since either β′ ≥ 1/2, |γ′ ∓ T | ≥ HT or β′ ≥ 1/2 + HT holds, we have
|1/2± iT − ρ′| ≥ HT . Thus∑

ρ′∈D3(±T ;χ)
f(ρ′)� 1

log log (qT )
∑

ρ′∈D3(±T ;χ)
1

≤ 1
log log (qT ) (N1(T + 2, χ)−N1(T − 2, χ))

� m1/2 log (qT )
log log (qT ) .

Concluding the above, we have

∑
ρ′∈D(±T ;χ)

f(ρ′) =

 ∑
ρ′∈D1(±T ;χ)

+
∑

ρ′∈D2(±T ;χ)
+

∑
ρ′∈D3(±T ;χ)

 f(ρ′)

= O

(
m1/2 log (qT )
log log (qT )

)
+O(log q)

and we complete the proof. �
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