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A characterization of class groups
via sets of lengths II

par Alfred GEROLDINGER et Qinghai ZHONG

Résumé. Soit H un monoïde de Krull avec un groupe des classes
fini G, et supposons que chaque classe contient un diviseur pre-
mier. Si un élément a ∈ H a une factorisation a = u1 · · ·uk en
éléments irréductibles u1, . . . , uk ∈ H, alors nous appelons k la
longueur de la factorisation et l’ensemble L(a) de toutes les lon-
gueurs de factorisation possibles l’ensemble des longueurs de a.
C’est bien connu que le système L(H) = {L(a) | a ∈ H} de tous
les ensembles de longueurs ne dépend que du groupe des classes
G, et c’est bien une conjecture de longue date que, inversement, le
système L(H) caractérise le groupe des classes. Nous vérifions la
conjecture si le groupe des classes est isomorphe à Cr

n avec r, n ≥ 2
et r ≤ max{2, (n+ 2)/6}.

En effet, soit H ′ un autre monoïde de Krull avec un groupe
des classes G′ tel que chaque classe contient un diviseur premier,
et supposons que L(H) = L(H ′). Nous montrons que, si l’un des
groupes G et G′ est isomorphe à Cr

n avec r, n donnés comme ci-
dessus, alors G et G′ sont isomorphes (à part deux exceptions bien
connues).

Abstract. Let H be a Krull monoid with finite class group
G and suppose that every class contains a prime divisor. If an
element a ∈ H has a factorization a = u1 · . . . · uk into irre-
ducible elements u1, . . . , uk ∈ H, then k is called the length of
the factorization and the set L(a) of all possible factorization
lengths is the set of lengths of a. It is classical that the system
L(H) = {L(a) | a ∈ H} of all sets of lengths depends only on the
class group G, and a standing conjecture states that conversely the
system L(H) is characteristic for the class group. We verify the
conjecture if the class group is isomorphic to Cr

n with r, n ≥ 2 and
r ≤ max{2, (n + 2)/6}. Indeed, let H ′ be a further Krull monoid
with class group G′ such that every class contains a prime divisor
and suppose that L(H) = L(H ′). We prove that, if one of the
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groups G and G′ is isomorphic to Cr
n with r, n as above, then G

and G′ are isomorphic (apart from two well-known pairings).

1. Introduction and Main Result
Let H be a Krull monoid with class group G and suppose that every

class contains a prime divisor (holomorphy rings in global fields are such
Krull monoids and more examples will be given in Section 2). Then every
nonunit a ∈ H can be written as a product of irreducible elements, say
a = u1 · . . . · uk, and the number of factors k is called the length of the
factorization. The set L(a) of all possible factorization lengths is the set of
lengths of a, and L(H) = {L(a) | a ∈ H} is called the system of sets of
lengths of H (for convenience we set L(a) = {0} if a is an invertible element
of H). It is easy to check that all sets of lengths are finite and, by definition
of the class group, we observe that H is factorial if and only if |G| = 1.
By a result due to Carlitz in 1960, we know that H is half-factorial (i.e.,
|L| = 1 for all L ∈ L(H)) if and only if |G| ≤ 2.

Suppose that |G| ≥ 3. Then there is some a ∈ H with |L(a)| > 1. If
k, ` ∈ L(a) with k < ` and m ∈ N, then L(am) ⊃ {km + ν(` − k) | ν ∈
[0,m]} which shows that sets of lengths can become arbitrarily large. The
monoid B(G) of zero-sum sequences over G is again a Krull monoid with
class group isomorphic to G, every class contains a prime divisors, and the
systems of sets of lengths of H and that of B(G) coincide. Thus L(H) =
L
(
B(G)

)
, and it is usual to set L(G) := L

(
B(G)

)
. In particular, the system

of sets of lengths of H depends only on the class group G. The associated
inverse question asks whether or not sets of lengths are characteristic for the
class group. More precisely, the Characterization Problem for class groups
can be formulated as follows (see [8, Section 7.3], [11, p. 42], [22], and
Proposition 2.1)):

Given two finite abelian groups G and G′ such that L(G) =
L(G′). Does it follow that G ∼= G′?

The system of sets of lengths L(G) is studied with methods from addi-
tive combinatorics. In particular, zero-sum theoretical invariants (such as
the Davenport constant or the cross number) and the associated inverse
problems play a crucial role. Most of these invariants are well-understood
only in a very limited number of cases (e.g., for groups of rank two, the
precise value of the Davenport constant D(G) is known and the associated
inverse problem is solved; however, if n is not a prime power and r ≥ 3,
then the value of the Davenport constant D(Crn) is unknown). Thus it is not
surprising that affirmative answers to the Characterization Problem so far
have been restricted to those groups where we have a good understanding of
the Davenport constant. These groups include elementary 2-groups, cyclic
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groups, and groups of rank two (the latter were recently handled in [13];
for a variety of partial results we refer to [20, 23, 21]).

The goal of the present note is to solve the Characterization Problem
for groups of the form Crn if the exponent is large with respect to the rank.
Here is our main theorem.

Theorem 1.1. Let G be an abelian group such that L(G) = L(Crn)
where r, n ∈ N with n ≥ 2, (n, r) /∈ {(2, 1), (2, 2), (3, 1)}, and r ≤
max{2, (n+ 2)/6}. Then G ∼= Crn.

The groups Crn, where r, n are as above, are the first groups at all for
which the Characterization Problem is solved whereas the Davenport con-
stant is unknown. This is made possible by a detailed study of the set of
minimal distances

∆∗(G) = {min ∆(G0) | G0 ⊂ G is a non-half-factorial subset}

and the associated minimal non-half-factorial subsets. Sets of minimal
distances have been investigated by Chapman, Grynkiewicz, Hamidoune,
Plagne, Schmid, Smith, and others (see [8, Section 6.8] for some basic in-
formation and [9, 19, 5, 21, 3, 15, 18] for recent progress). In Section 2
we repeat some key facts on Krull monoids and gather the required ma-
chinery, and in Section 3 we study structural properties of (large) minimal
non-half-factorial sets. The proof of Theorem 1.1 will be provided in Sec-
tion 4 where we also give a positive answer to the Characterization Problem
for all groups G with Davenport constant D(G) ∈ [4, 11] (Proposition 4.1).

2. Background on Krull monoids and
their sets of minimal distances

Our notation and terminology are consistent with [8, 12]. We denote
by N the set of positive integers, and for a, b ∈ Q, we denote by [a, b] =
{x ∈ Z | a ≤ x ≤ b} the discrete, finite interval between a and b. If A,B ⊂ Z
are subsets of the integers, then A+B = {a+b | a ∈ A, b ∈ B} denotes their
sumset, and ∆(A) the set of (successive) distances of A (that is, d ∈ ∆(A)
if and only if d = b − a with a, b ∈ A distinct and [a, b] ∩ A = {a, b}). Let
d, l ∈ N and M ∈ N0. A subset L ⊂ Z is called an almost arithmetical
progression (AAP for short) with difference d, length l, and bound M if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y + dZ,

where y ∈ Z, L∗ = {νd | ν ∈ [0, l]} is an arithmetical progression with
difference d and length l, L′ ⊂ [−M,−1], and L′′ ⊂ maxL∗ + [1,M ].

By a monoid we mean a commutative semigroup with identity which
satisfies the cancellation laws. A monoid F is called free abelian with basis
P ⊂ F , and we write F = F(P ), if every a ∈ F has a unique representation
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of the form

a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P .

A monoid H is said to be a Krull monoid if it satisfies one of the following
two equivalent conditions (see [8, Theorem 2.4.8]).

(a) H is v-noetherian and completely integrally closed.
(b) There exists a monoid homomorphism ϕ : H → F = F(P ) into a

free abelian monoid F such that a | b in H if and only if ϕ(a) |ϕ(b)
in F .

Rings of integers, holomorphy rings in algebraic function fields, and regular
congruence monoids in these domains are Krull monoids with finite class
group such that every class contains a prime divisor ([8, Section 2.11 and
Examples 7.4.2]). Monoid domains and power series domains that are Krull
are discussed in [17, 4], and note that every class of a Krull monoid domain
contains a prime divisor. For monoids of modules that are Krull and their
distribution of prime divisors, we refer the reader to [6, 1].

Sets of lengths in Krull monoids can be studied in the monoid of zero-
sum sequences over its class group. Let G be an additively written abelian
group and G0 ⊂ G a subset. An element

S = g1 · . . . · g` =
∏
g∈G0

gvg(S) ∈ F(G0)

is called a sequence overG0, and we use all notations as in [16]. In particular,
σ(S) = g1+. . .+g` denotes the sum, |S| = ` the length, h(S) = max{vg(S) |
g ∈ G0} the maximal multiplicity, supp(S) = {g1, . . . , g`} ⊂ G0 the sup-
port, and k(S) =

∑`
i=1 1/ ord(gi) the cross number of S. The monoid

B(G0) = {S ∈ F(G0) | σ(S) = 0}

is the monoid of zero-sum sequences over G0, and since the embedding
B(G0) ↪→ F(G0) satisfies Condition (b) above, B(G0) is a Krull monoid.
As usual, we write L(G0) = L

(
B(G0)

)
for the system of sets of lengths of

B(G0) and A(G0) = A(B(G0)) for the set of atoms (the set of irreducible
elements) of B(G0). Note that the atoms of B(G0) are precisely the minimal
zero-sum sequences over G0, and

D(G0) = sup{|U | | U ∈ A(G0)} ∈ N ∪ {∞}

is the Davenport constant of G0. The significance of the system of sets of
lengths L(G) (and hence of the Characterization Problem in the formulation
given in the Introduction) stems from its universal role which can be seen
from the following proposition.
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Proposition 2.1.
(1) If H is a Krull monoid with class group G such that each class

contains a prime divisor, then L(H) = L(G).
(2) Let O be a holomorphy ring in a global field K, A a central simple

algebra over K, and H a classical maximal O-order of A such that
every stably free left R-ideal is free. Then L(H) = L(G), where G
is a ray class group of O and hence finite abelian.

(3) Let H be a seminormal order in a holomorphy ring of a global field
with principal order Ĥ such that the natural map X(Ĥ)→ X(H) is
bijective and there is an isomorphism ϑ : Cv(H) → Cv(Ĥ) between
the v-class groups. Then L(H) = L(G), where G = Cv(H) is finite
abelian.

Proof.
(1) See [8, Section 3.4].
(2) See [24, Theorem 1.1], and [2] for related results of this flavor.
(3) See [10, Theorem 5.8] for a more general result in the setting of

weakly Krull monoids. �

Next we discuss sets of distances and minimal sets of distances. Let
∆(G0) =

⋃
L∈L(G0)

∆(L) ⊂ N

denote the set of distances of G0. Then G0 is called half-factorial if ∆(G0) =
∅. Otherwise, G0 is called non-half-factorial and we have min ∆(G0) =
gcd ∆(G0). Note that G0 is half-factorial if and only if k(A) = 1 for all
A ∈ A(G0). Furthermore, the set G0 is called

• minimal non-half-factorial if it is half-factorial and every proper
subset G1 ( G0 is half-factorial.
• an LCN-set if k(A) ≥ 1 for all A ∈ A(G0).

The set ∆(G) is an interval and its maximum is studied in [7]. The following
two subsets of ∆(G), the set of minimal distances ∆∗(G) and the set ∆1(G),
play a crucial role in the present paper. We define

∆∗(G) = {min ∆(G0) | G0 ⊂ G with ∆(G0) 6= ∅} ⊂ ∆(G) ,
m(G) = max{min ∆(G0) | G0 ⊂ G is an LCN-set with ∆(G0) 6= ∅} ,

and we denote by ∆1(G) the set of all d ∈ N with the following property:
For every k ∈ N, there exists some L ∈ L(G) which is an
AAP with difference d and length l ≥ k.

Thus, by definition, if G′ is a further finite abelian group such that L(G) =
L(G′), then ∆1(G) = ∆1(G′). The next proposition gathers the properties
of ∆∗(G) and of ∆1(G) which are needed in the sequel.
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Proposition 2.2. Let G be a finite abelian group with |G| ≥ 3 and
exp(G) = n.

(1) ∆∗(G) ⊂ ∆1(G) ⊂ {d1 ∈ ∆(G) | d1 divides some d ∈ ∆∗(G)}. In
particular, max ∆∗(G) = max ∆1(G).

(2) max ∆∗(G) = max{exp(G)−2,m(G)} = max{exp(G)−2, r(G)−1}.
If G is a p-group, then m(G) = r(G)− 1.

(3) If k ∈ N is maximal such that G has a subgroup isomorphic to Ckn,
then

∆1(G) ⊂ [1,max{m(G), bn2 c − 1}] ∪ [max{1, n− k − 1}, n− 2] .

and

[1, r(G)− 1] ∪ [max{1, n− k − 1}, n− 2] ⊂ ∆1(G) .

Proof. (1) follows from [8, Corollary 4.3.16] and (2) from [15, Theorem 1.1
and Proposition 3.2].

Let us prove (3). In [21, Theorem 3.2], it is proved that ∆∗(G) is con-
tained in the set given above. Since this set contains all its divisors, ∆1(G)
is contained in it by 1. The set [1, r(G)− 1] ∪ [max{1, n− k − 1}, n− 2] is
contained in ∆1(G) by [8, Propositions 4.1.2 and 6.8.2]. �

3. Minimal non-half-factorial subsets
Throughout this section, let G be an additive finite abelian group with

|G| ≥ 3, exp(G) = n, and r(G) = r.
The following two technical lemmas will be used throughout the manu-

script.

Lemma 3.1. Let G0 ⊂ G be a subset.
(1) For each g ∈ G0,

gcd
(
{vg(B) | B ∈ B(G0)}

)
= gcd

(
{vg(A) | A ∈ A(G0)}

)
= min

(
{vg(A) | vg(A) > 0, A ∈ A(G0)}

)
= min

(
{vg(B) | vg(B) > 0, B ∈ B(G0)}

)
= min

(
{k ∈ N | kg ∈ 〈G0 \ {g}〉}

)
= gcd

(
{k ∈ N | kg ∈ 〈G0 \ {g}〉}

)
.

In particular, min
(
{k ∈ N | kg ∈ 〈G0 \ {g}〉}

)
divides ord(g).

(2) Suppose that for each two distinct elements h, h′ ∈ G0 we have
h 6∈ 〈G0 \ {h, h′}〉. Then for any atom A with supp(A) ( G0 and
any h ∈ supp(A), we have gcd(vh(A), ord(h)) > 1.
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(3) If G0 is minimal non-half-factorial, then there exists a minimal non-
half-factorial subset G∗0 ⊂ G with |G0| = |G∗0| and a transfer homo-
morphism θ : B(G0)→ B(G∗0) such that the following properties are
satisfied :
(a) For each g ∈ G∗0, we have g ∈ 〈G∗0 \ {g}〉.
(b) For each B ∈ B(G0), we have k(B) = k

(
θ(B)

)
.

(c) If G∗0 has the property that for each h ∈ G∗0, h 6∈ 〈E〉 for any
E ( G∗0 \ {h}, then G0 also has the property.

Proof. See [15, Lemma 2.6]. �

Lemma 3.2.
(1) If g ∈ G with ord(g) ≥ 3, then ord(g) − 2 ∈ ∆∗(G). In particular,

n− 2 ∈ ∆∗(G).
(2) If r ≥ 2, then [1, r − 1] ⊂ ∆∗(G).
(3) Let G0 ⊂ G be a subset.

(a) If there exists an U ∈ A(G0) with k(U) < 1, then min ∆(G0) ≤
exp(G)− 2.

(b) If G0 is an LCN-set, then min ∆(G0) ≤ |G0| − 2.

Proof. See [8, Proposition 6.8.2 and Lemmas 6.8.5 and 6.8.6]. �

Lemma 3.3. Let G0 ⊂ G be a subset, g ∈ G0, and s the smallest integer
such that sg ∈ 〈G0 \ {g}〉, and suppose that s < ord(g). Then ord(sg) > 1
and for each prime p dividing ord(sg), there exists an atom A ∈ A(G0)
with 2 ≤ | supp(A)| ≤ r(G) + 1, s ≤ vg(A) ≤ ord(g)/2, and p - vg(A)

s . In
particular,

(1) If |G0| ≥ r(G) + 2, then there exist s0 < ord(g) and E ( G0 \ {g}
such that s0g ∈ 〈E〉.

(2) If s = 1 and ord(g) is a prime power, then there exists a subset
E ⊂ G0 \ {g} with |E| ≤ r(G) such that g ∈ 〈E〉.

Proof. We set exp(G) = n = pk1
1 · . . . · p

kt
t , where t, k1, . . . , kt ∈ N and

p1, . . . , pt are distinct primes. Since s < ord(g), we have that ord(sg) > 1.
Let ν ∈ [1, t] with pν | ord(sg). Since sg ∈ 〈G0 \ {g}〉, it follows that 0 6=
n

pkνν
sg ∈ Gν = 〈 n

pkνν
h | h ∈ G0 \ {g}〉. Obviously, Gν is a pν-group. Let

Eν ⊂ G0 \ {g} be minimal such that n

pkνν
sg ∈ 〈 n

pkνν
Eν〉. Since 〈 n

pkνν
Eν〉 ⊂ Gν

and Gν is a pν-group, it follows that

1 ≤ |Eν | = |
n

pkνν
Eν | ≤ r(Gν) ≤ r(G) .

Let dν ∈ N be minimal such that dνg ∈ 〈Eν〉. Since 0 6= n

pkνν
sg ∈ 〈Eν〉, it

follows that dν < ord(g). By Lemma 3.1(1), dν | gcd( n

pkνν
s, ord(g)) and there

exists an atom Uν such that vg(Uν) = dν and | supp(Uν) \ {g}| ≤ |Eν | ≤ r(G).
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Since vg(Uν) = dν < ord(g), it follows that | supp(Uν)| ≥ 2. By the mini-
mality of s and dν | n

pkνν
s, we have that s | dν and pν - dνs .

If |G0| ≥ r(G) + 2, then |Eν | ≤ r(G) < |G0 \ {g}| implies that Eν (
G0 \ {g}, and the assertion holds with E = Eν and s0 = dν .

If s = 1 and ord(g) is a prime power, then ord(g) is a power of pν which
implies that gcd( n

pkνν
s, ord(g)) = 1 whence dν = 1 and g ∈ 〈Eν〉. �

Lemma 3.4. Let G0 ⊂ G be a minimal non-half-factorial LCN-set with
|G0| ≥ r + 2. Suppose that for any h ∈ G0, h ∈ 〈G0 \ {h}〉 but h 6∈
〈G0 \ {h, h′}〉 for any h′ ∈ G0 \ {h}. Then |G0| ≤ r + n

2 . In particular, if
each atom A ∈ A(G0) with supp(A) = G0 has cross number k(A) > 1, then
min ∆(G0) ≤ 5n

6 − 4.

Proof. We choose an element g ∈ G0. If ord(g) is a prime power, then
there exists E ⊂ G0 \ {g} such that g ∈ 〈E〉 and |E| ≤ r < |G0| − 1 by
Lemma 3.3, a contradiction to the assumption on G0. Thus ord(g) is not
a prime power. Let s ∈ N be minimal such that there exists a subset E (
G0 \ {g} with sg ∈ 〈E〉, and by Lemma 3.3(1), we observe that s < ord(g).
Let E ( G0 \ {g} be minimal such that sg ∈ 〈E〉. By Lemma 3.1(1), there
is an atom V with vg(V ) = s | ord(g) and supp(V ) = {g} ∪ E ( G0. By
Lemma 3.1(2), for each h ∈ supp(V ), vh(V ) ≥ 2. Since G0 is a minimal
non-half-factorial LCN set, we obtain that

1 = k(V ) ≥ 2
n

(|E|+ 1) ,

whence |E| ≤ n
2 − 1.

Since s ≥ 2, there is a prime p ∈ N dividing s and hence p | s | ord(g).
By Lemma 3.3, there exists an atom U1 such that | supp(U1)| ≤ r + 1 and
p - vg(U1), and therefore supp(U1) ( G0.

Let d = gcd(s, vg(U1)) and E1 = supp(U1) \ {g}. Then d < s and dg ∈
〈sg, vg(U1)g〉 ⊂ 〈E ∪ E1〉 ⊂ 〈G0 \ {g}〉. The minimality of s implies that
E ∪E1 = G0 \ {g}, and thus |G0| ≤ 1 + |E|+ |E1| ≤ 1 + r+ n

2 − 1 = r+ n
2 .

Suppose that each atom A ∈ A(G0) with supp(A) = G0 has cross number
k(A) > 1. There exist x1 ∈ [1, ord(g)

s − 1] and x2 ∈ [1, ord(g)
vg(U1) − 1] such that

dg = x1sg + x2vg(U1)g. Thus d + y ord(g) = x1s + x2vg(U1) with some
y ∈ N0. Let V x1Ux2

1 = (gord(g))y ·W , where W ∈ B(G) with vg(W ) = d,
and letW1 be an atom dividingW with vg(W1) > 0. Since vg(W1) ≤ d < s,
the minimality of s implies that supp(W1) = G0 and hence k(W1) > 1. Since
G0 is minimal non-half-factorial, we have that k(V ) = k(U1) = 1. Therefore
there exists l ∈ N with 2 ≤ l < x1 +x2 such that {l, x1 +x2} ⊂ L(V x1Ux2

1 ).
Then

min ∆(G0) ≤ x1 + x2 − l ≤
ord(g)
s

+ ord(g)
vg(U1) − 4 ≤ 5n

6 − 4 . �
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For our next result we need the following technical lemma.

Lemma 3.5. Let G0 ⊂ G be a non-half-factorial subset satisfying the fol-
lowing two conditions :

(a) There is some g ∈ G0 such that ∆(G0 \ {g}) = ∅.
(b) There is some U ∈ A(G0) with k(U) = 1 and gcd(vg(U), ord(g)) = 1.

Then k(A(G0)) ⊂ N and

min ∆(G0) | gcd{k(A)− 1 | A ∈ A(G0)} .

Note that the conditions hold if ∆(G1) = ∅ for each G1 ( G0 and there
exists some G2 such that 〈G2〉 = 〈G0〉 and |G2| ≤ |G0| − 2.

Proof. The first statement follows from [8, Lemma 6.8.5]. If ∆(G1) = ∅ for
all G1 ( G0, then Condition (a) holds. Let G2 ( G1 ( G0 with 〈G2〉 =
〈G0〉. If g ∈ G1\G2, then 〈G2〉 = 〈G0〉 implies that there is some U ∈ A(G1)
with vg(U) = 1, and since G1 ( G0, it follows that k(U) = 1. �

Lemma 3.6. Suppose that exp(G) = n is not a prime power. Let G0 ⊂ G
be a minimal non-half-factorial LCN-set with |G0| ≥ r + 2 such that h ∈
〈G0 \ {h}〉 for every h ∈ G0. Suppose that one of the following properties
is satisfied :

(a) For each two distinct elements h, h′ ∈ G0, we have h 6∈ 〈G0 \
{h, h′}〉, and there is an atom A ∈ A(G0) with k(A) = 1 and
supp(A) = G0.

(b) There is a subset G2 ⊂ G0 such that 〈G2〉 = 〈G0〉 and |G2| ≤
|G0| − 2.

Then min ∆(G0) ≤ n+r−3
2 .

Proof. Assume to the contrary that min ∆(G0) ≥ n+r
2 − 1. Then Lem-

ma 3.2(3b) implies that |G0| ≥ n+r
2 + 1. If Property (a) is satisfied, then

there exists some g ∈ G0 such that vg(A) = 1. By Lemma 3.5, each of the
two Properties (a) and (b) implies that k(U) ∈ N for each U ∈ A(G0) and

min ∆(G0) | gcd
(
{k(U)− 1 | U ∈ A(G0)}

)
.

We set

Ω=1 = {A ∈ A(G0) | k(A) = 1} and Ω>1 = {A ∈ A(G0) | k(A) > 1} .

Thus for each U1, U2 ∈ Ω>1 we have
(3.1)
k(U1) ≥ n+ r

2 and
(
either k(U1) = k(U2) or |k(U1)−k(U2)| ≥ n+ r

2 −1
)
.

Furthermore, for each U ∈ Ω=1 we have h(U) ≥ 2 (otherwise, U would
divide every atom U1 ∈ Ω>1). We claim that
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A1. For each U ∈ Ω>1, there are A1, . . . , Am ∈ Ω=1, where m ≤ n+1
2 , such

that UA1 · . . . ·Am can be factorized into a product of atoms from Ω=1.

Proof of A1. Suppose that Property (a) holds. As observed above there
exists some g ∈ G0 such that vg(A) = 1. Lemma 3.3 implies that there is
an atom X such that 2 ≤ | supp(X)| ≤ r(G) + 1 and 1 ≤ vg(X) ≤ ord(g)/2.
Since g 6∈ 〈G0 \ {g, h}〉 for any h ∈ G0 \ {g}, it follows that vg(X) ≥ 2, and
|G0| ≥ r + 2 implies supp(X) ( G0.

Suppose that Property (b) is satisfied. We choose an element g ∈ G0\G2.
Then g ∈ 〈G2〉 and by Lemma 3.1(1), there is an atom A′ with vg(A′) = 1
and supp(A′) ⊂ G2∪{g} ( G0. This implies that A′ ∈ Ω=1. Let h ∈ G0 such
that vh(A′) = h(A′). Since h(A′) ≥ 2, we obtain that A′d

ord(h)
h(A′) e = hord(h) ·W

where W is a product of dord(h)
h(A′) e − 1 atoms and vg(W ) = dord(h)

h(A′) e. Thus
there exists an atom X ′ with 2 ≤ vg(X ′) ≤ dord(h)

h(A′) e ≤
n
2 + 1.

Therefore both properties imply that there are A,X ∈ A(G0) and g ∈ G0
such that k(A) = k(X) = 1, vg(A) = 1, and 2 ≤ vg(X) ≤ n

2 + 1. Let
U ∈ Ω>1.

If ord(g)− vg(U) < vg(X) ≤ n
2 + 1, then

UAord(g)−vg(U) = gord(g)S ,

where S ∈ B(G0) and ord(g) − vg(U) ≤ n
2 . Since supp(S) ( G0, S is a

product of atoms from Ω=1.
If ord(g)− vg(U) ≥ vg(X), then

UX
b ord(g)−vg(U)

vg(X) c
A

ord(g)−vg(U)−vg(X)·b ord(g)−vg(U)
vg(X) c = gord(g)S ,

where S is a product of atoms from Ω=1 (because supp(S) ( G0) and⌊
ord(g)− vg(U)

vg(X)

⌋
+ ord(g)− vg(U)− vg(X) ·

⌊
ord(g)− vg(U)

vg(X)

⌋

≤
(

ord(g)− vg(U)
)
−
(
vg(X)− 1

)
vg(X) + vg(X)− 1

≤ ord(g)− vg(U) + 1
2 ≤ n+ 1

2 . �

We set
Ω′>1 = {A ∈ A(G0) | k(A) = min{k(B) | B ∈ Ω>1}} ⊂ Ω>1 ,

and we consider all tuples (U,A1, . . . , Am), where U ∈ Ω′>1 and A1, . . . , Am
∈ Ω=1, such that UA1 · . . . · Am can be factorized into a product of atoms
from Ω=1. We fix one such tuple (U,A1, . . . , Am) with the property that m
is minimal possible. Let
(3.2) UA1 · . . . ·Am = V1 · . . . · Vt with t ∈ N and V1, . . . , Vt ∈ Ω=1 .
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We observe that k(U) = t−m and continue with the following assertion.

A2. For each ν ∈ [1, t], we have Vν - UA1 · . . . ·Am−1.

Proof of A2. Assume to the contrary that there is such a ν ∈ [1, t], say
ν = 1, with V1 |UA1·. . .·Am−1. Then there are l ∈ N and T1, . . . , Tl ∈ A(G0)
such that

UA1 · . . . ·Am−1 = V1T1 · . . . · Tl .

By the minimality of m, there exists some ν ∈ [1, l] such that Tν ∈ Ω>1,
say ν = 1. Since

l∑
ν=2

k(Tν) = k(U) + (m− 1)− 1− k(T1) ≤ m− 2 ≤ n− 3
2 ,

and k(T ′) ≥ r+n
2 for all T ′ ∈ Ω>1, it follows that T2, . . . , Tl ∈ Ω=1, whence

l = 1 +
∑l
ν=2 k(Tν) ≤ m− 1. We obtain that

V1T1 · . . . · TlAm = UA1 · . . . ·Am = V1 · . . . · Vt ,
and thus

T1 · . . . · TlAm = V2 · . . . · Vt .
The minimality of m implies that k(T1) > k(U). It follows that

k(T1)− k(U) = m− 1− l ≤ m− 2 ≤ n− 3
2 <

r + n

2 − 1 ≤ k(T1)− k(U) ,

a contradiction. �

By Equation (3.2), there are X1, Y1, . . . , Xt, Yt ∈ F(G) such that

UA1 · . . . ·Am−1 = X1 · . . . ·Xt,

Am = Y1 · . . . · Yt, and Vi = XiYi for each i ∈ [1, t] .
Then A2 implies that |Yi| ≥ 1 for each i ∈ [1, t], and we set α = |{i ∈ [1, t] |
|Yi| = 1}|. If α ≤ m+ r, then

n ≥ |Am| = |Y1|+ . . .+ |Yt| ≥ α+ 2(t− α) = 2t− α ≥ 2t−m− r ,
and hence min ∆(G0) ≤ t − 1 − m ≤ r+n−3

2 , a contradiction. Thus α ≥
m+ r+ 1. After renumbering if necessary we assume that 1 = |Y1| = . . . =
|Yα| < |Yα+1| ≤ . . . ≤ |Yt|. Let Yi = yi for each i ∈ [1, α] and
(3.3) S0 = {y1, y2, . . . , yα} .
For every i ∈ [1, α], Vi | yiUA1 · . . . · Am−1 whence vyi(Vi) ≤ 1 + vyi(UA1 ·
. . . ·Am−1) and since Vi - UA1 · . . . ·Am−1, it follows that
(3.4) vyi(Vi) = vyi(UA1 · . . . ·Am−1) + 1 .
Assume to the contrary that there are distinct i, j ∈ [1, α] such that yi = yj .
Then
vyi(UA1 · . . . ·Am−1) + 1 = vyi(Vi) = vyi(Xi) + 1 = vyi(Vj) = vyi(Xj) + 1 .
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Since XiXj |UA1 · . . . ·Am−1, we infer that

vyi(UA1 . . . Am−1) ≥ vyi(XiXj) = vyi(ViVj)− 2 = 2vyi(UA1 . . . Am−1) ,

which implies that vyi(UA1 . . . Am−1) = 0, a contradiction to supp(U) =
G0. Thus |S0| = α and

(3.5) | supp(Am)| ≥ |S0| = α ≥ m+ r + 1 .

We proceed by the following two assertions.

A3. There exist g′ ∈ G0 and A′ ∈ A(G0) with k(A′) = 1 satisfying the
following three conditions :
(C1) vg′(A′) < ord(g′) is the smallest positive integer γ such that γg′ ∈

〈supp(A′) \ {g′}〉 ;
(C2) vg′(A′)g′ /∈ 〈E〉 for any E ( supp(A′) \ {g′}.
(C3) UA1 · . . . ·Am−1 ·A′ can be factorized into a product of atoms from

Ω=1.

Proof of A3. Suppose that Property (a) is satisfied. As observed at the
beginning of the proof, there is a g ∈ G0 such that vg(A) = 1. We choose
A′ = A and g′ = g, and we need to prove that UA1 · . . . · Am−1 · A can be
factorized into a product of atoms from Ω=1. Since S0 ⊂ supp(A) = G0,
then V1 · . . . · Vα |UA1 · . . . ·Am−1 ·A and hence k(UA1 · . . . ·Am−1 ·A(V1 ·
. . . ·Vα)−1) < k(U). The minimality of k(U) implies that UA1 · . . . ·Am−1 ·A
can be factorized into a product of atoms from Ω=1.

Suppose that Property (b) satisfied. We choose g′ = y1 (see Equa-
tion (3.3)) and distinguish two cases. First, suppose that there exists a
subset E ( G0 \ {y1} such that y1 ∈ 〈E〉. Choose a minimal subset E
with this property. By Lemma 3.1(1), there exists an atom A′ satisfying
the two conditions (C1) and (C2) with k(A′) = 1 and vy1(A′) = 1. Since
vy1(V1) = vy1(UA1 · . . . · Am−1) + 1 by Equation (3.4) and V1 |UA1 · . . . ·
Am−1 · y1, we obtain that | supp(UA1 · . . . · Am−1 · A′(V1)−1)| < |G0| and
hence UA1 · . . . · Am−1 · A′ can be factorized into a product of atoms from
Ω=1.

Now we suppose that y1 /∈ 〈E〉 for any E ( G0 \ {y1}. Let s0 ∈ N be
minimal such that there exists a subset E ( G0\{y1} such that s0y1 ∈ 〈E〉,
and by Lemma 3.3(1), we observe that s0 < ord(g). Let E be a minimal
subset with this property. Thus, by Lemma 3.1(1), there exists an atom
A′ with vy1(A′) = s0 satisfying the two conditions (C1) and (C2). Since
supp(A′) ( G0, we have k(A′) = 1. We distinguish two cases:

Case 1 : |S0 \ supp(A′)| ≥ r + 1.
Since s0 ≥ 2, there is a prime p dividing s0. Since by assumption, y1 ∈
〈G0 \ {y1}〉, Lemma 3.3 implies that there exists an atom A′p such that
| supp(A′p)| ≤ r + 1 < |G0|, 1 ≤ vy1(A′p) ≤ ord(y1)/2, and p - vy1(A′p).
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Let d = gcd(s0, vy1(A′p)). Then d < s0 and dy1 ∈ 〈s0y1, vy1(A′p)y1〉 ⊂
〈(supp(A′)∪supp(A′p))\{y1}〉. By the minimality of s0, we have G0\{y1} =
(supp(A′) ∪ supp(A′p)) \ {y1}. It follows that

| supp(A′)|+ r ≥ | supp(A′)|+ | supp(A′p)| − 1 ≥ |G0|
≥ | supp(A′)|+ |S0 \ supp(A′)| ≥ | supp(A′)|+ r + 1 ,

a contradiction.
Case 2 : |S0 \ supp(A′)| ≤ r.
Therefore | supp(A′)∩S0| ≥ m+ 1 by Equation (3.5), and we may suppose
that {y1, . . . , ym+1} ⊂ supp(A′)∩S0. Then V1 · . . . ·Vm+1 |UA1 · . . . ·Am−1A

′

and k(UA1 · . . . · Am−1A
′(V1 · . . . · Vm+1)−1) < k(U). By the minimality of

k(U), we have that UA1 · . . . · Am−1A
′ can be factorized into a product of

atoms from Ω=1. �

A4. Let g′ ∈ G0 and A′ ∈ A(G0) with k(A′) = 1 satisfying the following
three conditions:
(C4) vg′(A′) < ord(g′) is the smallest positive integer γ such that γg′ ∈

〈supp(A′) \ {g′}〉;
(C5) vg′(A′)g′ /∈ 〈E〉 for any E ( supp(A′) \ {g′}.
(C6) UA1 · . . . ·Am−1 ·A′ can be factorized into a product of atoms from

Ω=1.
If | supp(A′)| ≥ m + r + 1, then there exists an atom A′′ ∈ A(G0) with
k(A′′) = 1 and | supp(A′′)| < | supp(A′)| such that (C4), (C5), and (C6)
hold.

Suppose that A4 holds. Iterating A4 we find an atom A∗ ∈ A(G0) with
| supp(A∗)| ≤ m + r such that UA1 · . . . · Am−1 · A∗ can be factorized into
a product of atoms from Ω=1, a contradiction to Equation (3.5).

Proof of A4. For simplicity of notation, we suppose that A′ = Am.
Let s0 ∈ N be minimal such that there exists a subset E ( supp(Am) \

{g′} such that s0g
′ ∈ 〈E〉. By (C4) and | supp(A′)| ≥ m + r + 1 ≥ r + 2,

Lemma 3.3 implies that s0 < ord(g′). Let E be a minimal subset with this
property. Thus, by Lemma 3.1(1), there exists an atomA′′ with vg′(A′′) = s0
satisfying the two conditions (C4) and (C5). Since supp(A′′) ( G0, we have
k(A′′) = 1. We distinguish two cases:

Case 1 : |S0 \ supp(A′′)| ≥ r + 1.
We set s′ = vg′(Am) < ord(g′). Since Am satisfies condition (C4), Lem-
ma 3.1(1) implies that s′ | s0 and s0

s′ > 1. Let p be a prime dividing s0
s′ .

Since s′ | ord(g′) and s0 | ord(g′), it follows that p | s0
s′ |

ord(g′)
s′ = ord(s′g′).

Lemma 3.3 (applied to the subset supp(Am) ⊂ G) implies that there exists
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an atom A′p ∈ A(supp(Am)) such that | supp(A′p)| ≤ r + 1 < | supp(Am)|,
s′ ≤ vg′(A′p) ≤ ord(g′)/2, and p - vg′ (A′p)

s′ .
Let d = gcd( s0

s′ ,
vg′ (A′p)
s′ ). Then d < s0

s′ and

ds′g′ ∈ 〈s0g
′, vg′(A′p)g′〉 ⊂ 〈(supp(A′′) ∪ supp(A′p)) \ {g′}〉 .

Thus by minimality of s0, we have supp(Am) \ {g′} =
(

supp(A′′) ∪
supp(A′p)

)
\ {g′}. It follows that

| supp(A′′)|+ r ≥ | supp(A′′)|+ | supp(A′p)| − 1 ≥ | supp(Am)|
≥ | supp(A′′)|+ |S0 \ supp(A′′)| ≥ | supp(A′′)|+ r + 1 ,

a contradiction.

Case 2 : |S0 \ supp(A′′)| ≤ r.
Therefore | supp(A′′)∩S0| ≥ m+ 1 by Equation (3.5), and we may suppose
that {y1, . . . , ym+1} ⊂ supp(A′′)∩S0. Then V1 ·. . .·Vm+1 |UA1 ·. . .·Am−1A

′′

and k(UA1 · . . . · Am−1A
′′(V1 · . . . · Vm+1)−1) < k(U). By the minimality of

k(U), we have that UA1 · . . . ·Am−1A
′′ can be factorized into a product of

atoms from Ω=1. This completes the proof of A4 and thus Lemma 3.6 is
proved. �

Proposition 3.7. We have

m(G) ≤ min
{
n

2 + r − 2,max
{
r − 1, 5n

6 − 4, n+ r − 3
2

}}
.

Proof. Let G0 ⊂ G be a non-half-factorial LCN set. We have to prove that

min ∆(G0) ≤ min
{
n

2 + r − 2,max
{
r − 1, 5n

6 − 4, n+ r − 3
2

}}
.

If G1 ⊂ G0 is non-half-factorial, then min ∆(G0) = gcd ∆(G0) divides
gcd ∆(G1) = min ∆(G1). Thus we may suppose that G0 is minimal non-
half-factorial. By Lemma 3.1(3a), we may suppose that g ∈ 〈G0 \ {g}〉 for
all g ∈ G0.

If n is a prime power, then m(G) = r − 1 by Proposition 2.2, and the
assertion follows. Suppose that n is not a prime power. If |G0| ≤ r+1, then
min ∆(G0) ≤ |G0|−2 ≤ r−1 by Lemma 3.2(3). Thus we may suppose that
|G0| ≥ r + 2 and we distinguish two cases.

Case 1 : There exists a subset G2 ⊂ G0 such that 〈G2〉 = 〈G0〉 and
|G2| ≤ |G0| − 2.

Then Lemma 3.6 implies that min ∆(G0) ≤ n+r−3
2 .
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Case 2 : Every subset G1 ⊂ G0 with |G1| = |G0| − 1 is a minimal gener-
ating set of 〈G0〉.

Then for each h ∈ G0, G0 \ {h} is half-factorial and h /∈ 〈G0 \ {h, h′}〉
for any h′ ∈ G0 \ {h}. Thus Lemma 3.4 and Lemma 3.6 imply that
min ∆(G0) ≤ max{5n

6 − 4, n+r−3
2 }. By Lemma 3.4, we obtain that |G0| ≤

r + n
2 . Therefore Lemma 3.2(3) implies that min ∆(G0) ≤ min{r + n

2 −
2,max{5n

6 − 4, n+r−3
2 }}. �

Proposition 3.8. Let G′ be a finite abelian group with L(G) = L(G′). If
r ∈ [2, (n− 2)/4], then n = exp(G′) > r(G′) + 1.

Proof. Let k ∈ N be maximal such that G has a subgroup isomorphic to
Ckn. Then k ≤ r ≤ n−2

4 . By Proposition 3.7, we obtain that

m(G) ≤ n

2 + r − 2 ≤ n

2 + n− 2
4 − 2 = n− n− 2

4 − 3 ≤ n− k − 3

and hence
max

{
m(G),

⌊
n

2

⌋
− 1

}
≤ n− k − 3 .

By Proposition 2.2(3), we have

∆1(G) ⊂
[
1,max

{
m(G),

⌊
n

2

⌋
− 1

}]
∪ [n− k − 1, n− 2] ,

and thus n− k− 2 6∈ ∆1(G). Thus n− k− 2 6∈ ∆1(G′) and Proposition 2.2
implies that

n− 2 = max{m(G), n− 2} = max ∆1(G) = max ∆1(G′)
= max{r(G′)− 1, exp(G′)− 2} .

If n − 2 = r(G′) − 1, then ∆1(G′) = [1, n − 2] by Lemma 3.2(2), a con-
tradiction to n − k − 2 6∈ ∆1(G′). Therefore it follows that n = exp(G′) >
r(G′) + 1. �

4. Proof of the Main Result and
groups with small Davenport constant

Proof of Theorem 1.1. Let G be an abelian group such that L(G) = L(Crn)
where r, n ∈ N with n ≥ 2, (n, r) /∈ {(2, 1), (2, 2), (3, 1)}, and r ≤ max{2,
(n+ 2)/6}.

First we note that G has to be finite and that D(Crn) = D(G) and
∆1(Crn) = ∆1(G) (see [8, Proposition 7.3.1 and Theorem 7.4.1]). If r = 1,
then the assertion follows from [8, Theorem 7.3.3]. If r = 2, then the asser-
tion follows from [21], and hence we may suppose that r ∈ [3, (n+ 2)/6].

Let k ∈ N be maximal such that G has a subgroup isomorphic to Ckn.
If k ≥ r, then D(Crn) = D(G) ≥ D(Ckn) implies that k = r and that
G ∼= Crn. Suppose that k < r. By Proposition 3.8, we obtain that n =
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exp(G) > r(G) + 1. By Proposition 2.2(3) (applied to Crn) we infer that
[n− r−1, n−2] ⊂ ∆1(Crn) = ∆1(G). By Proposition 2.2(3) (applied to G),
we obtain that

[1, r(G)− 1] ∪ [n− r − 1, n− 2] ⊂ ∆1(G)

⊂
[
1,max

{
m(G),

⌊
n

2

⌋
− 1

}]
∪ [n− k − 1, n− 2] ,

which implies that m(G) ≥ n− r − 1. By Proposition 3.7, we have that

n− r − 1 ≤ m(G) ≤ max
{

r(G)− 1, 5n
6 − 4, n+ r(G)− 3

2

}
.

If n− r− 1 ≤ 5n
6 − 4, then r ≥ n

6 + 3, a contradiction. Thus n− r− 1 ≤
max

{
r(G)− 1, n+r(G)−3

2
}
which implies that r(G) ≥ n− 2r + 1. Therefore

(4.1) [1, n− 2r] ⊂ [1, r(G)− 1] ⊂ ∆1(G) = ∆1(Crn) .

Since r ≤ n+2
6 , we have that n − 2r − 1 ≥ n

2 + r − 2 ≥ bn2 c − 1. By
Proposition 3.7, we obtain that m(Crn) ≤ n

2 + r− 2 ≤ n− 2r− 1. Therefore

max
{

m(Crn),
⌊
n

2

⌋
− 1

}
< n− 2r < n− r − 1 .

By Proposition 2.2(3), n− 2r /∈ ∆1(Crn), which is a contradiction to Equa-
tion (4.1). �

Our proof of Theorem 1.1, to characterize the groups Crn with r, n as
above, uses only the Davenport constant and the set of minimal distances.
Clearly, there are non-isomorphic groups G and G′ with D(G) = D(G′),
∆∗(G) = ∆∗(G′), and ∆1(G) = ∆1(G′). We meet this phenomenon in
Proposition 4.1. Indeed, since L(C1) = L(C2) and L(C3) = L(C2⊕C2) ([8,
Theorem 7.3.2]), small groups definitely deserve a special attention when
studying the Characterization Problem. Clearly, the groups C1, C2, C3, and
C2 ⊕ C2 are precisely the groups G with D(G) ≤ 3. In our final result we
show that for all groups G with D(G) ∈ [4, 11] the answer to the Charac-
terization Problem is positive.

Suppose that G ∼= Cn1 ⊕ . . .⊕Cnr where r ∈ N0 and 1 < n1 | . . . |nr and
set D∗(G) = 1 +

∑r
i=1(ni − 1). Then D∗(G) ≤ D(G). If r(G) = r ≤ 2 or if

G is a p-group, then equality holds.

Proposition 4.1. Let G be a finite abelian group with D(G) ∈ [4, 11]. If
G′ is a finite abelian group with L(G) = L(G′), then G ∼= G′.
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Proof. Suppose that G′ is a finite abelian group with L(G) = L(G′). Then
D(G) = D(G′). If D(G) ∈ [4, 10], then the assertion follows from [21, The-
orem 6.2].

Suppose that D(G) = D(G′) = 11. If r(G) ≤ 2 or r(G′) ≤ 2, then the
assertion follows from [12, Theorem 1.1]. If G or G′ is an elementary 2-
group, then the assertion follows from [8, Theorem 7.3.3].

Thus we suppose that r(G) ≥ 3, r(G′) ≥ 3, exp(G) ∈ [3, 8], and exp(G′) ∈
[3, 8]. If G ∼= C3

4 or G′ ∼= C3
4 , then the assertion follows from [12, Theo-

rem 4.1]. Thus we may suppose that all this is not the case. Since there is
no finite abelian group H with D(H) = 11 and exp(G) ∈ {5, 7}, it remains
to consider the following groups:

C4
2 ⊕ C2

4 , C
7
2 ⊕ C4, Cr2 ⊕ C6, C

3
2 ⊕ C8, C

5
3 for some r ∈ N .

By [14, Corollary 2], D(Cr2⊕C6) = D∗(G) = r+6 if and only if r ≤ 3. Thus
D(C4

2 ⊕ C6) ≥ 11, and this is the only group for which D(Cr2 ⊕ C6) = 11 is
possible. Thus we have to consider

G1 = C4
2 ⊕ C2

4 , G2 = C7
2 ⊕ C4, G4 = C4

2 ⊕ C6,

G5 = C3
2 ⊕ C8, and G6 = C5

3 .

Since max ∆∗(G1) = 5, max ∆∗(G2) = 7, max ∆∗(G4) = 4, max ∆∗(G5) =
6, and max ∆∗(G6) = 4, it remains to show that L(C4

2⊕C6) 6= L(C5
3 ). Note

that Proposition 2.2 implies that ∆∗(C4
2 ⊕ C6) = [1, 4] = ∆∗(C5

3 ). By [8,
Theorem 6.6.2], it follows that {2, 8} ∈ L(C4

2 ⊕ C6), and we assert that
{2, 8} /∈ L(C5

3 ).
Assume to the contrary that {2, 8} ∈ L(C5

3 ). Then there exists U, V ∈
A(C5

3 ) such that L(UV ) = {2, 8}. We choose the pair (U, V ) such that |U |
is maximal and observe that 11 ≥ |U | ≥ |V | ≥ 8. There exists an element
g ∈ G such that g |U and −g |V . Then vg(U) ≤ 2 and v−g(V ) ≤ 2. If
vg(U) = v−g(V ) = 2, then gV (−g)−2, (−g)Ug−2 and g(−g) are atoms and
hence 3 ∈ L(UV ), a contradiction. Therefore vg(U) + v−g(V ) ∈ [2, 3] and
we set

(4.2) {g ∈ supp(U) | vg(U) + v−g(V ) = 3} = {g1, . . . , g`} where ` ∈ N0 .

We continue with the following assertion.

A5. For each i ∈ [1, `] we have vgi(U) = 2.

Proof of A5. Assume to the contrary that there is an i ∈ [1, `] with vgi(U) =
1. Then giV ((−gi)2)−1 is an atom and (−gi)2Ug−1

i is an atom or a product
of two atoms. Since 3 /∈ L(UV ), we obtain that (−gi)2Ug−1

i is an atom but
|(−gi)2Ug−1

i | > |U |, a contradiction to our choice of |U |. �
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Now we set

U ′ = (−g1) · . . . · (−g`)U(g2
1 · . . . · g2

` )−1

and V ′ = g2
1 · . . . · g2

`V ((−g1) · . . . · (−g`))−1 .

Using the above argument repeatedly we infer that U ′ and V ′ are atoms.
Clearly, we have L(U ′V ′) = L(UV ) = {2, 8} whence |V | + ` = |V ′| ≤ |U |
and thus ` ≤ 3. We consider a factorization

UV = W1 · . . . ·W8 ,

where W1, . . . ,W8 ∈ A(C5
3 ) such that |{i ∈ [1, 8] | |Wi| = 2}| is maximal

under all factorization of UV of length 8. We set U = U1 · . . . · U8, V =
V1 · . . . · V8 such that Wi = UiVi for each i ∈ [1, 8], and we define W =
σ(U1) · . . . · σ(U8). We continue with a second assertion.

A6. There exist disjoint non-empty subsets I, J,K ⊂ [1, 8] such that

I ∪ J ∪K = [1, 8] and σ
(∏
i∈I

Ui
)

= σ
( ∏
j∈J

Uj
)

= σ
( ∏
k∈K

Uk
)
.

Proof of A6. First we suppose that h(W ) ≥ 2, say σ(U1) = σ(U2). Then
I = {1}, J = {2}, andK = [3, 8] have the required properties. Now suppose
that h(W ) = 1. Since the tuple (σ(U1), . . . , σ(U7)) is not independent and
the sequence σ(U1) · . . . · σ(U7) is zero-sum free, there exist disjoint non-
empty subset I, J ⊂ [1, 8], such that

∑
i∈I σ(Ui) =

∑
j∈J σ(Uj). Therefore,

I, J , and K = [1, 8] \ (I ∪ J) have the required properties. �

We define

X1 =
∏
i∈I

Ui , X2 =
∏
j∈J

Uj , and X3 =
∏
k∈K

Uk ,

Y1 =
∏
i∈I

Vi , Y2 =
∏
j∈J

Vj , and Y3 =
∏
k∈K

Vk .

By construction, we have X1Y1 =
∏
i∈IWi, X2Y2 =

∏
j∈JWj , X3Y3 =∏

k∈KWk, σ(X1) = σ(X2) = σ(X3), σ(Y1) = σ(Y2) = σ(Y3), and hence
XiYj ∈ B(G) for all i, j ∈ [1, 3].

We choose a factorization of X1Y2, a factorization of X2Y3, and a fac-
torization of X3Y1, and their product gives rise to a factorization of UV ,
say UV = W ′1 · . . . ·W ′8, where all the W ′i are atoms, and we denote by t1
the number of W ′i having length two. Similarly, we choose a factorization
of X1Y3, a factorization of X2Y1, and a factorization of X3Y2, obtain a fac-
torization of UV , and we denote by t2 the number of atoms of length 2 in
this factorization. If g ∈ G and i, j ∈ [1, 3] are distinct with g(−g) |XiYj
and g |Xi, then the choice of the factorization UV = W1 · . . . ·W8 implies
that g(−g) |XiYi or g(−g) |XjYj whence vg(U) + v−g(V ) ≥ 3. Therefore
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Equation (4.2) implies that g ∈ {g1, . . . , g`} whence t1 + t2 ≤ ` ≤ 3, and we
may suppose that t1 ≤ 1. Therefore we infer that

2 + 3× 7 ≤
8∑
i=1
|W ′i | = |UV | ≤ 2D(C5

3 ) = 22 ,

a contradiction. �
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