OURNAL de Théorie des Nombres de BORDEAUX

 anciennement Séminaire de Théorie des Nombres de Bordeaux
Juliusz BRZEZIŃSKI

Corrigendum to "On traces of the Brandt-Eichler matrices"
Tome 29, no 1 (2017), p. 321-325.
http://jtnb.cedram.org/item?id=JTNB_2017__29_1_321_0
© Société Arithmétique de Bordeaux, 2017, tous droits réservés.
L'accès aux articles de la revue «Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Corrigendum to "On traces of the Brandt-Eichler matrices"

par Juliusz BRZEZIŃSKI

RÉsumé. Cette note est une correction de mon article [1]. Elle corrige une formule dans la proposition 2.2. D'après le résultat corrigé, le nombre $\iota(n, m)$ d'idéaux principaux à gauche de norme q^{m} dans l'ordre de Eichler de niveau n sur un anneau de valuation discrète R dont le corps résiduel est de cardinalité q est $\iota(n, m)=$ $(m+1) q^{m}$ si $m<n$ et

$$
\iota(n, m)=(n+1) q^{m}+2 q^{m-1}+\cdots+2 q^{n}+q^{n-1}
$$

lorsque $m \geq n$. La démonstration de la proposition n'était pas donnée dans mon article (étant "pénible mais sans obstacle"). Malheureusement, certains coefficients dans le second cas étaient erronés. Une démonstration complète suit ci-dessous.

Abstract. This is a correction to my paper [1]. It corrects a formula in Proposition 2.2. The corrected result says that the number $\iota(n, m)$ of principal left ideals with norm q^{m} in the Eichler order of level n over a discrete valuation ring R with residue field of cardinality q is $\iota(n, m)=(m+1) q^{m}$ if $m<n$ and

$$
\iota(n, m)=(n+1) q^{m}+2 q^{m-1}+\cdots+2 q^{n}+q^{n-1}
$$

when $m \geq n$. The proof of the Proposition was not given in my paper (as "tedious but straightforward"). Unfortunately, some coefficients in the second case were erroneous. A complete proof follows below.

Let R be a discrete valuation ring with maximal ideal (π). Assume that the residue ring $R /(\pi)$ is finite and let $q=|R /(\pi)|$ be its cardinality. The discrete valuation defined by R will be denoted by v. Thus $v\left(\pi^{m}\right)=m$. Let

$$
\Lambda_{n}=\left(\begin{array}{cc}
R & R \\
\pi^{n} R & R
\end{array}\right)
$$

be an Eichler order in the matrix algebra $M_{2}(K)$ over the quotient field K of R.

[^0]Our purpose is to find the number of principal left ideals in Λ_{n} with norm $q^{m}(m>0)$, which will be denoted by $\iota(n, m)$. Since each such ideal has form $\Lambda_{n} M$, where $M \in \Lambda_{n}$ and the determinant of M is a generator of $\left(\pi^{m}\right)$, we want to find a set of representatives for the orbits $\Lambda_{n}^{*} M$ of the unit group Λ_{n}^{*} of Λ_{n} acting on the set of matrices in Λ_{n} having norm q^{m} (recall that the norm of $\Lambda_{n} M$ is the cardinality of $\left.R /(\operatorname{det}(M))\right)$.

We denote by

$$
\varepsilon=\left(\begin{array}{cc}
e_{11} & e_{12} \\
\pi^{n} e_{21} & e_{22}
\end{array}\right)
$$

the elements of Λ_{n}^{*}, and by

$$
M=\left(\begin{array}{cc}
m_{11} & m_{12} \\
\pi^{n} m_{21} & m_{22}
\end{array}\right)
$$

the matrices in Λ_{n}.
Our purpose is to choose a "canonical" set of representatives of the orbits $\Lambda_{n}^{*} M$.

We split the orbits into 3 types: Type 1 are those having a representant with $m_{11}=0$, Type 2 those having a representant with $m_{21}=0$ and Type 3 those which can not be represented by a matrix with $m_{11} m_{21}=0$.

First we give a canonical choice of matrices representing each type and when this is done, we count the number of orbits by counting the number of representatives of each kind.

Type 1. If a matrix M has $m_{11}=0$, then $\operatorname{det} M=\pi^{n} m_{21} m_{12} \neq 0$, so multiplying M from the left by a suitable diagonal unit matrix, we may assume that

$$
M=\left(\begin{array}{cc}
0 & \pi^{s} \\
\pi^{n+r} & m_{22}
\end{array}\right)
$$

Now, we can take a product

$$
\varepsilon M=\left(\begin{array}{cc}
1 & 0 \\
\pi^{n} q & 1
\end{array}\right) M=\left(\begin{array}{cc}
0 & \pi^{s} \\
\pi^{n+r} & m_{22}+q \pi^{n+s}
\end{array}\right)
$$

so we can assume that m_{22} is reduced modulo π^{n+s}. Thus we arrive to the description of the matrices of Type 1:

$$
M_{r, s, c}^{(1)}=\left(\begin{array}{cc}
0 & \pi^{s} \\
\pi^{n+r} & c
\end{array}\right)
$$

where c is reduced modulo π^{n+s}. We check easily that two matrices $M_{r, s, c}^{(1)}$ and $M_{r^{\prime}, s^{\prime}, c^{\prime}}^{(1)}$ define the same orbit if and only if $r=r^{\prime}, s=s^{\prime}$ and $c=c^{\prime}$ $\left(\bmod \pi^{n+s}\right)$.

The number $\iota_{1}(n, m)$ of matrices of Type 1 with norm q^{m} is equal to all possible choices of r, s, c such that $r+s+n=m$ and c is reduced
modulo π^{n+s}. Thus, we have such matrices only if $m \geq n$ and for each $s=0, \ldots, m-n$ we have q^{s+n} such matrices, that is,

$$
\begin{equation*}
\iota_{1}(n, m)=q^{n}+\cdots+q^{m} . \tag{0.1}
\end{equation*}
$$

Type 2. Since this time, we have $\operatorname{det} M=m_{11} m_{22} \neq 0$, we can multiply M by a diagonal unit matrix, so that

$$
M=\left(\begin{array}{cc}
\pi^{r} & m_{12} \\
0 & \pi^{s}
\end{array}\right)
$$

Now, we can take a product

$$
\varepsilon M=\left(\begin{array}{ll}
1 & q \\
0 & 1
\end{array}\right) M=\left(\begin{array}{cc}
\pi^{r} & m_{12}+q \pi^{s} \\
0 & \pi^{s}
\end{array}\right)
$$

so we can assume that m_{12} is reduced modulo π^{s}. Thus, the matrices of Type 2 are

$$
M_{r, s, c}^{(2)}=\left(\begin{array}{cc}
\pi^{r} & c \\
0 & \pi^{s}
\end{array}\right)
$$

where c is reduced modulo π^{s}. We check easily that two matrices $M_{r, s, c}^{(2)}$ and $M_{r^{\prime}, s^{\prime}, c^{\prime}}^{(2)}$ define the same orbit if and only if $r=r^{\prime}, s=s^{\prime}$ and $c=c^{\prime}$ $\left(\bmod \pi^{s}\right)$.

The number $\iota_{2}(n, m)$ of matrices of Type 2 with norm q^{m} is equal to all possible choices of r, s, c such that $r+s=m$ and c is reduced modulo π^{s}. Thus, for each $s=0, \ldots, m$ we have q^{s} such matrices, that is,

$$
\begin{equation*}
\iota_{2}(n, m)=1+q+\cdots+q^{m} . \tag{0.2}
\end{equation*}
$$

Type 3. This time, we assume that there is no representant of the orbit $\Lambda_{n} M$ with $m_{11} m_{21}=0$, so we can start with a representant

$$
M=\left(\begin{array}{cc}
\pi^{k} & m_{12} \\
\pi^{N} & m_{22}
\end{array}\right)
$$

where $N \geq n$, which we obtain multiplying M by a suitable diagonal unit matrix. First of all, we will show that it is possible to choose a representant of the orbit $\Lambda_{n}^{*} M$ such that $N-k \in\{1, \ldots, n-1\}$ (that is, $\left.n+k>N\right)$. In fact, if $N-k \geq n$, then we can multiply M by the matrix

$$
\left(\begin{array}{cc}
1 & 0 \\
-\pi^{N-k} & 1
\end{array}\right)
$$

which gives a representant with 0 in the left lower position.
Let now $r=v\left(m_{22}-\pi^{N-k} m_{12}\right)$, so $\operatorname{det} M=\pi^{k}\left(m_{22}-\pi^{N-k} m_{12}\right)$ and $v(\operatorname{det} M)=k+r$. It is easy to check that two matrices

$$
M=\left(\begin{array}{cc}
\pi^{k} & m_{12} \\
\pi^{N} & m_{22}
\end{array}\right) \quad \text { and } \quad M^{\prime}=\left(\begin{array}{cc}
\pi^{k^{\prime}} & m_{12}^{\prime} \\
\pi^{N^{\prime}} & m_{22}^{\prime}
\end{array}\right)
$$

with $r=v\left(m_{22}-\pi^{N-k} m_{12}\right), r^{\prime}=v\left(m_{22}^{\prime}-\pi^{N^{\prime}-k^{\prime}} m_{12}^{\prime}\right)$ represent the same orbit of Λ_{n}^{*} if and only if $(N, k, r)=\left(N^{\prime}, k^{\prime}, r^{\prime}\right)$ and $m_{12}=m_{12}^{\prime}\left(\bmod \pi^{r}\right)$ and $m_{22}=m_{22}^{\prime}\left(\bmod \pi^{(n+k)-N+r}\right)$. Moreover, a product $\varepsilon M_{N, k, r}$, where $\varepsilon \in \Lambda_{n}^{*}$ never has 0 in the first column, that is, these matrices can not represent an orbit of Type 1 or 2 . Thus the matrices of Type 3 are

$$
M_{N, k, r, a, b}^{(3)}=\left(\begin{array}{cc}
\pi^{k} & b \\
\pi^{N} & a
\end{array}\right)
$$

where $N \geq n, N-n<k<N, r=v\left(a-\pi^{N-k} b\right), a$ is reduced modulo $\pi^{(n+k)-N+r}$ and b is reduced modulo π^{r}. Notice that $v\left(\operatorname{det} M_{N, k, r, a, b}^{(3)}\right)=$ $k+r$.

In the sequel, we will use the following observations: If $r<N-k$, then $a=\pi^{r} a_{0}, \pi \nmid a_{0}$. If $r \geq N-k$, then $a=\pi^{N-k} a_{0}, \pi^{r-(N-k)} \mid a_{0}-b$ and $\pi^{r-(N-k)+1} \nmid a_{0}-b$.

Now we want to compute the number $\iota_{3}(n, m)$ of matrices of Type 3 with norm q^{m}. This is a little more complicated than the corresponding task in cases 1 and 2. First of all, notice that fixing n, m, we have $n \leq N<n+m$ (that is, N assumes m values). In fact, if $N \geq m+n$, then $k>N-n \geq m$, which is impossible, since $k+r=m$. If we fix N, then the number of possible pairs (k, r) such that $k+r=m$ and $N-n<k<N$ will be denoted by c_{N}. It is easy to check that

$$
c_{N}=n-\max (1, N-m)
$$

In order to compute $\iota_{3}(n, m)$, we start counting the contribution coming from matrices of Type 3 with fixed N. For each r (and $k=m-r$), we count the number of corresponding matrices of Type 3.

We have two cases. First we consider the case $r<N-k$. As we know, we have q^{r} possibilities for b. As regards a, we have $a=\pi^{r} a_{0}, \pi \nmid a_{0}$, so the number of possibilities for a is given by the number of possible residues a_{0} modulo $\pi^{(n+k)-N}$, which are invertible in $R /\left(\pi^{(n+k)-N}\right)$, that is, we get $q^{(n+k)-N}-q^{(n+k)-N-1}$ possibilities for a_{0}. The number of possible matrices is

$$
\begin{align*}
q^{r}\left(q^{(n+k)-N}-q^{(n+k)-N-1}\right) & =q^{r+(n+k)-N}-q^{r+(n+k)-N-1} \tag{0.3}\\
& =q^{(n+m)-N}-q^{(n+m)-N-1}
\end{align*}
$$

The second case is $r \geq N-k$. This time, we have as before that b is reduced modulo π^{r}, but $a=\pi^{N-k} a_{0}$, where $\pi^{r-(N-k)} \mid a_{0}-b$ and $\pi^{r-(N-k)+1} \nmid a_{0}-b$. Since a is reduced modulo $\pi^{n+k-N+r}$, we have to count the number of pairs $\left(a_{0}, b\right)$ such that a_{0} is reduced modulo $\pi^{n+2 k-2 N+r}, b$ is reduced modulo π^{r} and $\pi^{r-(N-k)} \mid a_{0}-b, \pi^{r-(N-k)+1} \nmid a_{0}-b$. These configuration seems to be rather messy, but the situation is essentially very simple: we have residues modulo some π^{x} and π^{y} and we have to count
the number of pairs of residues whose difference is divisible by π^{z} and not divisible by π^{z+1} for some $z \leq \min (x, y)$. If we use q as before, then the answer is

$$
q^{x} q^{y-z}-q^{x} q^{y-z-1}=q^{x+y-z}-q^{x+y-z-1},
$$

which can be easily checked (take q^{x} residues $a_{0}=0,1, \ldots, q^{x}-1$ and for each of them, those residues among $b=0,1, \ldots, q^{y}-1$ for which q^{z} divides $a_{0}-b$; then repeat the counting looking at those for which q^{z+1} divides $a_{0}-b$ and subtract their number).

In our case, we have $x=n+2 k-2 N+r, y=r, z=r+k-N$. Thus $x+y-z=n+k-N+r=n+m-N$, which means that the number of matrices is exactly the same as in the case $r<N-k$ and is given by (0.3).

Now, it remains to compute the number $\iota(n, m)$ of all matrices of Types 1 , 2,3 . We have

$$
\begin{aligned}
\iota(n, m) & =\iota_{1}(n, m)+\iota_{2}(n, m)+\iota_{3}(n, m) \\
& =\sum_{i=n}^{m} q^{i}+\sum_{i=0}^{m} q^{i}+\sum_{N=n}^{n+m-1} c_{N}\left(q^{n+m-N}-q^{n+m-N-1}\right),
\end{aligned}
$$

where the first sum is 0 when $m<n$.
If $m<n$, then it is easy to check that $c_{N}=m+n-N$ for $N=$ $n, \ldots, n+m-1$. Thus, we have the sum:
$\iota(n, m)=\sum_{i=0}^{m} q^{i}+\sum_{N=n}^{n+m-1}(n+m-N)\left(q^{n+m-N}-q^{n+m-N-1}\right)=(m+1) q^{m}$.
If $m \geq n$, then $c_{N}=n-1$ for $N=n, \ldots, m$ and $c_{N}=n+m-N$ for $N=m+1, \ldots, n+m-1$. Hence, we have

$$
\begin{aligned}
\iota(n, m)= & \sum_{i=n}^{m} q^{i}+\sum_{i=0}^{m} q^{i}+\sum_{N=n}^{m}(n-1)\left(q^{n+m-N}-q^{n+m-N-1}\right) \\
& +\sum_{N=m+1}^{n+m-1}(n+m-N)\left(q^{n+m-N}-q^{n+m-N-1}\right) \\
= & (n+1) q^{m}+2 q^{m-1}+\cdots+2 q^{n}+q^{n-1}
\end{aligned}
$$

References

[1] J. Brzeziński, "On traces of the Brandt-Eichler matrices", Journal de Théorie des Nombres de Bordeaux 10 (1998), no. 2, p. 273-285.

Juliusz Brzeziński
Mathematical Sciences
University of Gothenburg and Chalmers
S-412 96 Göteborg, Sweden
E-mail: jub@chalmers.se
URL: http://www.chalmers.se/sv/personal/Sidor/jub.aspx

[^0]: Mathematics Subject Classification. 11S45, 11R52.
 Mots-clefs. Eichler order, ideal norm.
 I am grateful to John Voight for informing me that his numerical computations of the number of ideals deviated from the formula given in Proposition 2.2 of [1]. I am also grateful to the Referee for several valuable comments.

