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On a theorem of Ax and Katz

par Hui June ZHU

Résumé. Le théorème bien connu d’Ax et Katz donne une borne
sur la p-divisibilité du nombre de points rationnels sur une va-
riété algébrique V sur un corps fini de caractéristique p en termes
des degrés et des nombres de variables des polynômes qui defi-
nissent V . Il a été amélioré par Adolphson–Sperber en termes du
polytope de Newton du support G de V . Dans cet article, nous
démontrons que pour toute variété algébrique générique V sur Q
de support G , la borne de Adolphson–Sperber peut être réalisée
sur la fibre spéciale en p pour un ensemble de nombres premiers
p de densité positive dans Spec(Z). De plus, nous définissons une
fonction de G , de nature combinatoire et explicitement calculable,
dont la non nullité implique que la borne ci-dessus est réalisée à
la fibre spéciale en p pour tout p assez grand.

Abstract. The well-known theorem of Ax and Katz gives a p-
divisibility bound for the number of rational points on an algebraic
variety V over a finite field of characteristic p in terms of the
degree and number of variables of defining polynomials of V . It was
strengthened by Adolphson–Sperber in terms of Newton polytope
of the support set G of V . In this paper we prove that for every
generic algebraic variety V over Q supported on G the Adolphson–
Sperber bound can be achieved on special fibre at p for a set of
prime p of positive density in Spec(Z). Moreover, we show that if
an explicitly computable combinatorial function on G is nonzero
then the above bound is achieved at special fibre at p for all large
enough p.

1. Introduction
In this paper p is a prime number and q = pa for some integer a > 0. Let

V be an algebraic variety over Fq defined by a set of non-constant polyno-
mials f1, . . . , f r in Fq[x1, . . . , xn] in n variables. We study p-divisibility of
the cardinality |V (Fq)| of the set of Fq-rational points on V . This problem
(in a slightly different form) was first proposed by Artin (see [2]) in 1935,
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a first bound was given by Chevalley (see [4]) and Warning (see [9]) using
elementary method. From then on p-divisibility problem is also known as
Chevalley–Warning problem. If q = pa let ordq(·) = ordp(·)

a . Ax (see [3])
and subsequently Katz (see [6]) used Dwork’s method to give the following
bound which is well known as the Ax–Katz bound,

(1.1) ordq|V (Fq)| ≥
⌈
n−

∑r
j=1 deg(f j)

max1≤j≤r deg(f j)

⌉
.

(See also [8] for an elementary proof.) For each integral point g = (g1,
. . . , gn) ∈ Zn≥0 write σp(g) :=

∑n
i=1 σp(gi) where σ(gi) denote the sum

of p-adic digits in gi ∈ Z≥0. Define σp(f j) := maxg∈Gj
(σp(g)). Moreno–

Moreno observed that one can always reduce V /Fq to V ′/Fp where V ′ is
defined by a set of ra polynomials in na variables with degrees ≤ σp(f j)
of f j . They apply Ax–Katz’s bound on V ′ and get the Moreno–Moreno
bound:

(1.2) ordq|V (Fq)| ≥
1
a

⌈
a ·

n−
∑r
j=1 σp(f j)

max1≤j≤r σp(f j)

⌉
.

This bound only potentially improves Ax–Katz bound for small p, namely
for p < maxj deg(f j). Let f := z1f1 + . . . + zrf r where z1, . . . , zr are
new variables and ∆(f) its Newton polytope in Rn+r. Let w(f) be the
least positive rational number c such that the dilation c ·∆(f) contains an
integral point of all positive coordinates. Adolphson–Sperber proved in [1]
the following Adolphson–Sperber bound that strengthens Ax–Katz
(1.3) ordq|V (Fq)| ≥ w(f)− r.
We prove in this paper that Adolphson–Sperber bound is an asymptotic
generic bound in Theorem 1.1 below.

For 1 ≤ j ≤ r let fj =
∑

g∈Gj
aj,gxg where aj,g 6= 0. Let V := V (f1,

. . . , fr) be the algebraic variety defined by the vanishing of f1, . . . , fr. Write
AG1,...,Gr for the space of all such algebraic varieties V , and write AG1,...,Gr (K)
for all such V defined over K, that is, fj ∈ K[x1, . . . , xn]. For any V defined
over Q, we consider it defined over a number field K that contains all
coefficients of f1, . . . , fr. Let V be the reduction (or special fiber) of V at
a prime ideal ℘ over p in the ring of integers of K for p large enough. The
reduction V obviously depends on the choices of K and ℘. Assuming the
residue field of K at ℘ is Fq for q = pa then V is the algebraic variety over
Fq defined by f1, . . . , f r in Fq[x1, . . . , xn].

From now on for any V = V (f1, . . . , fr) over Q we write µµµ := w(f)− r
where f = z1f1 + · · ·+zrfr and w(f) is, as above, the least positive rational
number c such that c ·∆(f) contains an integral point of all positive coor-
dinates in Rn+r. For p large enough (depending only on coefficients of f)
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w(f) = w(f) and hence µµµ = w(f)− r = w(f)− r. We remark that, for any
given V over Q in AG1,...,Gr and p large enough, the nonnegative rational
number µµµ is simply a function on the support set G1, . . . ,Gr, and nothing
else (see also (3.2) for a pure combinatorial definition of µµµ).

Theorem 1.1. Fix G1, . . . ,Gr in Zn≥0, and let AG1,...,Gr be the space of all
algebraic varieties supported on G1, . . . ,Gr.

(1) For every generic V in AG1,...,Gr (Q) there exists a set of prime num-
bers p of positive density in Spec(Z) such that for any special fiber
V at any prime ideal ℘ over p with residue field Fq

ordq|V (Fq)| = µµµ.

(2) Let c(G1, . . . ,Gr) be a combinatorial function defined explicitly
in (3.12). If c(G1, . . . ,Gr) 6= 0, then for every V in AG1,...,Gr (Q)
for every prime p large enough and for any special fiber V at any
prime ideal ℘ over p that has residue field Fq, we have

ordq|V (Fq)| = µµµ

This theorem shows that the Adolphson–Sperber p-divisibility bound µµµ is
asymptotically generically sharp in the sense it can be achieved for a generic
V over Q at infinitely many special fibers. Furthermore, our statement
implies that even though these special fibers V of V depend on the choice
of base field K for V and prime ℘ in K over p, for a generic V over Q we
have ordq|V (Fq)| = µµµ that is independent of all these choices for a set of
primes p of positive density in Spec(Z). When the support set (G1, . . . ,Gr)
satisfies certain combinatorial condition a generic V over Q achieves the
p-divisibility bound for all but finitely many p.

Examples 1.2. Suppose V (f) is any hypersurface defined by f =∑
g∈G agxg in Q[x1, . . . , xn] where ag ∈ Q∗ and G consists of all g =

(g1, . . . , gn) ∈ Zn≥0 with |g| :=
∑n
i=1 gi = d. Let n ≥ d. Then Theorem 1.1

implies that ordp|V (Fp)| ≥ dn−dd e, the same as the Ax–Katz bound. A con-
sequence of Theorem 1.1(1) is that for all generic such V (f) over Q we have
ordp|V (Fp)| = dn−dd e for primes p in a set of positive density in Spec(Z).
In comparison, Katz showed in [6, Section 5] there is an explicit algebraic
surface over Fp for every prime p that his bound is achieved.

Examples 1.3. Suppose V (f) is any hypersurface with f = a1x
3
1x

3
2 +

a2x
2
2x

2
3 where a1, a2 ∈ Z− {0}. One can check by direct computation that

|V (Fp)| = p(2p−1) for all p, hence ordp|V (Fp)| = 1. By Theorem 1.1(2) we
have ordp(|V (Fp)|) ≥ 1 and the equality holds for all V (f) and at all prime
p large enough. In comparison, Ax–Katz bound says that ordp(|V (Fp)|) ≥ 0
which is weaker in this example.
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Our proof uses Dwork method. We first briefly recall necessary p-adic
theory to study the number of rational points |V (Fq)| of algebraic variety
V over Fq in Section 2, then we prepare some A-polynomials where vari-
ables A parametrize the coefficients of defining polynomials of V over Q in
Section 3. This section is technical and combinatorial. We start to prove our
theorem for algebraic variety V over Q and then reduce the general case
V over Q to that over Q immediately. Our proof of the main Theorem 1.1
lies in Section 4.

Acknowledgments. We thank Regis Blache and Kiran Kedlaya for very
helpful comments on earlier versions of this paper.

2. Rational points and the trace
For the rest of the paper we fix nonempty subsets G1, . . . ,Gr in Zn≥0.

They may or may not be distinct. Let f1, . . . , f r be any polynomials in
Fq[x1, . . . , xn] with supporting coefficient sets G1, . . . ,Gr respectively. That
is, for each j = 1, . . . , r one can write f j =

∑
g∈Gj

aj,gxg for aj,g ∈ F∗q . Let
f = z1f1 + . . . + zrf r ∈ Fq[x1, . . . , xn, z1, . . . , zr]. Let C be a nonempty
subset of {1, . . . , n} and we write ZC>0 (resp. ZC≥0) for the subset of Zn≥0
with i-th component in Z≥1 (resp. Z≥0) if i ∈ C and equal to 0 if i 6∈ C.
Let B be a nonempty subset of {1, . . . , r}, and let ZB>0 be defined similarly.
Let Gj,C := Gj ∩ ZC≥0. Write v = (vi)ni=1 and t = (tj)rj=1. Let

(2.1) ZB,C :=
{

(t,v) ∈ ZB>0×ZC>0

∣∣∣∣v =
∑
j∈B

∑
g∈Gj,C

ugg, ug ∈ Q≥0,

tj =
∑

g∈Gj,C

ug ∈Z≥1 for each j ∈B
}
.

For every pair (t,v) in ZB,C we write ztxv =
∏
j∈B z

tj
j

∏
i∈C x

vi
i . Let

(2.2) QB,C :=
{

(u,v) ∈ Q
∑

j∈B
|Gj,C |

≥0 × ZC>0

∣∣∣∣v =
∑

g
ugg, ug ∈ Q≥0,

u = (ug)g∈∪j∈BGj,C
,
∑

g∈Gj,C

ug ∈ Z≥1 for each j ∈ B
}
.

Write the subset of integral points in QB,C by (QB,C)Z. Then we have the
natural surjective map
(2.3) ι : QB,C � ZB,C

that sends all (u,v) to (t,v) with tj =
∑

g∈Gj,C
ug. Let |t| :=

∑r
j=1 tj and

|u| :=
∑
j∈B

∑
g∈Gj,C

ug. For (u,v) in QB,C and (t,v) = ι(u,v) in ZB,C ,
we have |t| = |u|.
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Let Ep(x) be the p-adic Artin–Hasse exponential function. We write
Ep(x) =

∑∞
i=0 δix

i where δi ∈ Zp ∩ Q. For 0 ≤ i ≤ p − 1, δi = 1
i! . Let

γ be a root of logEp(x) =
∑∞
i=0

xpi

pi with ordpγ = 1
p−1 in Qp. Notice that

(2.4) γp−1

p
≡ −1 mod γ.

For each (B,C) as defined above, we define a Zq[γ]-algebra

(2.5) HB,C :=

 ∑
(t,v)∈ZB,C

ct,vγ
|t|ztxv

∣∣∣∣ ct,v ∈ Zq

 .
This is a subalgebra of Zq[x1, . . . , xn, γz1, . . . , γzr]. Let fB,C be the restric-
tion of f for j ∈ B and i ∈ C, namely,

fB,C =
∑
j∈B

∑
g∈Gj,C

aj,gzjxg.

Let âj,g be the Teichmüller lifting of aj,g to Z∗q , then Dwork’s splitting
function of fB,C is GfB,C

:=
∏
j∈B

∏
g∈Gj,C

Ep(γâj,gzjxg), which lies in
HB,C . Write au =

∏
j∈B

∏
g∈Gj,C

a
ug
j,g and write âu for the corresponding

Teichmüller lifting similarly. Then its expansion is

GfB,C
=

∑
(t,v)∈ZB,C

Gt,vγ
|t|ztxv

where its coefficients are given by

(2.6) Gt,v =
∑

(u,v)
(
∏
u
δug)âu

and the sum ranges over all (u,v) ∈ (ι−1(t,v)) ∩ (QB,C)Z. Notice that
Gt,v = 0 if and only if (ι−1(t,v)) ∩ (QB,C)Z = ∅.

Define an operator ψp on HB,C by

(2.7) ψp

 ∑
(t,v)∈ZB,C

ct,vγ
|t|ztxv

 =
∑

(t,v)∈ZB,C

cpt,pvγ
p|t|ztxv.

One can check that HB,C is closed under ψp. Indeed, suppose (t,v) ∈ ZB,C

and (t,v) = (pt′, pv′) with (t′,v′) with all corresponding entries of t′ and
v′ in Z≥1, then pv′ = v =

∑
ugg and pt′j = tj =

∑
g∈GC,j

ug ∈ Z≥1 with
ug ∈ Q≥0. We have v′ =

∑
(ug/p)g and t′j =

∑
g∈GC,j

(ug/p) ∈ Z≥1, so
(t′,v′) ∈ ZB,C and hence HB,C is closed under the operator ψp.

Let τ be the Frobenius automorphism of Qq(γ) over Qp(γ) and its
induced map on HB,C is τ−1(

∑
ct,vγ

|t|ztxv) =
∑
τ−1(ct,vγ

|t|)ztxv. Let
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αααfB,C
be the Dwork operator on HB,C defined by

(2.8) αααfB,C
:= τ−1 ◦ ψp ◦GfB,C

.

Let H
(`)
B,C denote the sub-algebra of HB,C with |t| = `, we have a

decomposition HB,C = ⊕`∈Z≥0H
(`)
B,C . Note that ψp(

∑
ct,vγ

`ztxv) =
γ(p−1)`∑ cpt,pvγ

`ztxv. Then ψp(HB,C) ⊆ ⊕`∈Z≥0p
`H

(`)
B,C . Since GfB,C

lies
in HB,C , we have GfB,C

·HB,C ⊆HB,C . Then it follows

αααfB,C
(HB,C) ⊆ ⊕`∈Z≥0p

`H
(`)
B,C .

From now on we order elements (t,v) in ZB,C so that |t| is nondecreasing,
and in this way ZB,C becomes a partially ordered set. Choose the weighted
monomial basis {γ|t|ztxv} for HB,C over Zq with the pairs (t,v) ranging
in (the partially ordered set) ZB,C . Then

(2.9) αααfB,C
(γ|t′|zt′xv′) =

∑
(t,v)∈ZB,C

(τ−1γ(p−1)|t|Gpt−t′,pv−v′)γ|t|ztxv,

where G−,− is as defined in (2.6). Write the infinite matrix

(2.10) MB,C :=
(
γ(p−1)|t|Gpt−t′,pv−v′

)
(t′,v′),(t,v)

where the row and column are indexed by the pairs (t′,v′) and (t,v)
in ZB,C , respectively. This matrix lies over Qq[γ]. Then the matrix of
αααfB,C

with respect to the above weighted monomial basis is Mat(αααfB,C
) =

τ−1MB,C . For any matrix M we write

(2.11) M [a] := M τa−1 · · ·M τM.

For a compositions of the Dwork operator αααa
fB,C

= αααfB,C
◦ · · · ◦αααfB,C

, we
have

Mat(αααa
fB,C

) = M
[a]
B,C .

Theorem 2.1. Let V be algebraic variety defined by the polynomials
f1, . . . , f r ∈ Fq[x1, . . . , xn] with q = pa. For any nonempty subsets B,C
in {1, . . . , r} and {1, . . . , n} respectively let MB,C be the nuclear matrix
defined in (2.10). Then

(2.12) |V (Fq)| = qn +
∑
B,C

(q − 1)|B|+|C|qn−|B|−|C|Tr(M [a]
B,C).

Proof. We have already shown above that αααfB,C
is a nuclear operator on

HB,C (see [5] or [7]). Our statement follows the same standard counting
argument as that for (3.5.4) in [6]. �
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For a nuclear matrix M over a p-adic valuation ring R, we write ordpM
for the minimum p-adic order of all entries of M .

Lemma 2.2. Let q = pa and k ∈ Z≥0. Let M be a nuclear matrix over a
p-adic valuation ring of the block form

M

pk
=
(

M11 M12
p>0M21 p>0M22

)
+ (p>0)

whereM11 is a square submatrix,Mij are all submatrix such that ordpMij ≥
0. Let M [a] be as defined in (2.11). Then we have Tr(M [a])

qk ≡ Tr(M [a]
11 ) mod

(p>0). In particular, if ordqTr(M [a]
11 ) = 0 then ordqTr(M [a]) = k.

Proof. Notice that
M [a]

pak
= M τa−1

pk
· · ·M

τ

pk
M

pk
≡
(
M

[a]
11 ?
0 0

)
mod (p>0)

where ordp? ≥ 0. Thus

M [a]

qk
≡
(
M

[a]
11 ?
0 0

)
mod (p>0).

Taking trace on both sides, we get Tr(M [a])
qk ≡ Tr(M [a]

11 ) mod (p>0) which
proves our statement. �

As the nuclear matrix MB,C has its entries as polynomials in coefficients
a = (aj,g) of the defining polynomials f j =

∑
g∈Gj

aj,gxg, we shall deform
each entry to polynomials in variables A := (Aj,g). Subsequently, the trace
of MB,C is also deformed to a polynomial in A. This idea is pronounced in
the following Section 3.

3. A-deformations and A-polynomials
The sets G1, . . . ,Gr in Zn≥0 are fixed. Recall that B,C are nonempty

subsets in {1, . . . , r} and {1, . . . , n}, respectively. Define an integral weight
of each pair (B,C) by

(3.1) wZ(B,C) := min
v∈Zn

>0

{∑
j∈B

∑
g∈Gj,C

ug

∣∣∣∣v =
∑
j∈B

∑
g∈Gj,C

ugg, with

ug ∈ Q≥0,
∑

g∈Gj,C

ug ∈ Z≥1 for every j ∈ B
}
.

If no representation of v as described in (3.1) exists, then assign wZ(B,C) =
+∞. Otherwise |B| ≤ wZ(B,C) ≤ r where |B| denotes the cardinality of
B. From the definition ZB,C from (2.1) one observes clearly wZ(B,C) =
min{|t|

∣∣(t,v) ∈ ZB,C}. Let Z min
B,C be the (finite) subset of ZB,C consisting
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of all (t,v) in that the minimal bound wZ(B,C) is realized, that is |t| =
wZ(B,C). We can show by combinatorics that

(3.2) µµµ = min
B,C

{
n− |B| − |C|+ wZ(B,C)

}
.

Let K be the (nonempty) set of all (B,C) with n−|B|−|C|+wZ(B,C) = µµµ.
By this definition one observes that Z min

B,C 6= ∅ for each (B,C) ∈ K . Hence

(3.3) Z min :=
⋃

(B,C)∈K

Z min
B,C

is a nonempty set consisting of all (t,v) ∈ ZB>0 × ZC>0 with |t| = µµµ − n +
|B|+ |C| = wZ(B,C).

Write A = (Aj,g)j∈B,g∈Gj,C
for variables. Let Gt,v(A) be the polynomial

obtained via replacing each â in Gt,v in (2.6) by variables A.

(3.4) Gt,v(A) :=
∑

(u,v)

∏
u

(
∏
g
δug)Au

where (u,v) ∈ (ι−1(t,v))∩ (QB,C)Z. Since all δi ∈ Zp ∩Q for all i we have
Gt,v(A) lies in (Zp ∩Q)[A]. For any (t′,v′) and (t,v) in ZB,C we have

(3.5) Gpt−t′,pv−v′(A) =
∑

(u′′,pv−v′)

∏
u′′

(
∏
g
δu′′g )Au′′

where the sum is over all (u′′, pv− v′) ∈ (ι−1(pt− t′, pv− v′)) ∩ (QB,C)Z.
That is, u′′g ∈ Z≥0 and pv− v′ =

∑
g u
′′
gg. Let MB,C(A) be the paramater-

ized nuclear matrix over (Zp ∩Q)[γ][A] deforming MB,C in (2.10)

(3.6) MB,C(A) :=
(
γ(p−1)|t|Gpt−t′,pv−v′(A)

)
(t′,v′),(t,v)

,

where the subindices range over ZB,C . Let
NB,C(A) :=

(
Gpt−t′,pv−v′(A)

)
(t′,v′),(t,v)

where (t,v) and (t′,v′) lie in Z min
B,C . Then by (2.4) and the definitions,

(3.7) (−1)wZ(B,C)MB,C(A)
pwZ(B,C) =

(
NB,C(A) M12
p>0M21 p>0M22

)
+ (p>0)

for some submatrices M12,M21,M22 all with ordp(Mij) ≥ 0.
For any matrix M(A) over K[A] where K is any field with τ -action, we

define τ(A) := Ap and

(3.8) M(A)[a] := M(A)τa−1 · · ·M(A) = M τa−1(Apa−1) · · ·M(A).

Lemma 3.1. Let MB,C(A)[a] and NB,C(A)[a] be defined as in (3.8). Then
we have

Tr(MB,C(A)[a])
qwZ(B,C) ≡ (−1)awZ(B,C)Tr(NB,C(A)[a]) mod p>0.
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Proof. By (3.7), we may apply Lemma 2.2 to the matrix M11 :=
(−1)wZ(B,C)NB,C(A) and M := MB,C(A) to conclude. �

For any p-adic valuation ring R and polynomial F (A) in R[A] let
ordp(F (A)) be the minimum of the p-adic orders of all coefficients of F (A).
Since |t| ≥ wZ(B,C) for all (t,v) ∈ ZB,C , we have

(3.9) ordqTr(MB,C(A)[a]) ≥ ordqMB,C(A)[a] ≥ wZ(B,C).

Definition 3.2. Let (t,v) ∈ ZB,C where ZB,C is defined as in (2.1). Con-
sider the set of all rational representations of (t,v) in terms of G1, . . . ,Gr,
namely, v = 1

d

∑
j∈B

∑
g∈Gj,C

rgg with d, rg ∈ Z≥0 and all rg’s are coprime
such that 1

d

∑
g∈Gj,C

rg = tj ∈ Z≥1 for all j ∈ B and |t| =
∑
j∈B tj =

wZ(B,C).

Let D be the nonempty finite set of all denominators d of rational rep-
resentations of all (t,v) ∈ Z min.

Lemma 3.3. (1) For each (t,v) ∈ ZB,C ∩ ι((QB,C)Z), there is 1-1 cor-
respondence between a term with monomial

∏
g A

ug
g in the expansion of

Gt,v(A) as in (3.4) and (u,v) ∈ ι−1(t,v)∩(QB,C)Z such that v =
∑

g ugg.
In particular

∑
g ug = |t|.

(2) Let (t,v) ∈ Z min. For each prime p, there is a 1-1 correspon-
dence between a nonzero term with monomial

∏
g A

u′′g
g in the expansion of

G(p−1)t,(p−1)v(A) and a rational representation of (t,v)

v = 1
d

∑
j∈B

∑
g∈Gj,C

rgg

with all d|(p − 1), in which u′′g = (p−1)
d rg ≤ p − 1 and

∑
g u
′′
g = (p −

1)wZ(B,C).
For (t,v) ∈ Z min, we have

G(p−1)t,(p−1)v(A) =
∑

(u′′,(p−1)v)

(∏
g
δu′′g

)
Au′′

=
∑

d∈D ,d|(p−1)

∑
(u,v)

(∏
g
δu′′g

)(∏
g
A
u′′g
j,g

)

where the last sum ranges over all rational representations of (t,v) with
denominator d|(p − 1). Each term has coefficient in Z∗p and Aj,g-degree
≤ p− 1.

Proof. The proof of Part (1) is elementary hence we omit it here. Notice
that since |t| is minimal we have rg

d ≤ 1. From Part (1) and the observation
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above we have u′′g = (p − 1) rg
d ≤ p − 1. This implies that δu′′g = 1

u′′g ! ∈ Z∗p.
Then Part (2) follows. �

Define a Hasse polynomial in (Q∩Zp)[A] for the trace of αααa
fB,C

as follows

(3.10) H [a]
p (A) :=

∑
(B,C)∈K

(−1)|B|+|C|+awZ(B,C)Tr(NB,C(A)[a]).

Write Hp(A) := H
[1]
p (A) for simplicity then

Hp(A) =
∑

(B,C)∈K

(−1)|B|+|C|+wZ(B,C) ∑
(t,v)∈Z min

B,C

G(p−1)t,(p−1)v(A).

Lemma 3.4. Let p be any prime with p ≡ 1 mod d for all d in D . Let
(t,v) ∈ Z min.

(1) Then the expansion of G(p−1)t,(p−1)v(A) in Lemma 3.3(2) has each
term in (Z∗p∩Q)[A] with Aj,g-degree ≤ p−1 and homogenous of total degree
(p− 1)wZ(B,C). Furthermore, Hp(A) 6≡ 0 mod p.

(2) There is a constant θ(G1, . . . ,Gr) such that for p > θ(G1, . . . ,Gr) we
have Tr(NB,C(A)[a]) 6≡ 0 mod p and H [a]

p (A) 6≡ 0 mod p is homogenous of
total degree (pa − 1)wZ(B,C),

Proof. (1) Notice that

Hp(A) =
∑

(B,C)∈K

∑
(t,v)∈Z min

(−1)|B|+|C|+wZ(B,C)G(p−1)t,(p−1)v(A).

The first statement is simply rephrasing the statement in Lemma 3.3(2).
By Lemma 3.3(2) and our hypothesis, each term of the expansion of

G(p−1)t,(p−1)v(A) is nonzero mod p. Now we claim that for any (t,v) ∈
Z min
B,C and (t′,v′) ∈ Z min

B′,C′ where (B,C) 6= (B′, C ′) the corresponding
G(p−1)t,(p−1)v and G(p−1)t′,(p−1)v′ do not have common terms to cancel.

Indeed, suppose B 6= B′, then there exists j ∈ B\B′ where A
p−1

d
rg

j,g lies
in a monomial of G(p−1)t,(p−1)v(A)\G(p−1)t′,(p−1)v′(A). On the other hand
suppose C 6= C ′. Then there is i ∈ C\C ′ such that vi 6= 0 while v′i = 0.
Take its corresponding rational representation v =

∑
g
rg
d g has rg 6= 0 for

some g ∈ ∪j∈BGj,C while v′ =
∑

g
r′g
d′ g has r′g = 0 for g ∈ ∪j∈BGj,C . This

proves our claim. Therefore Hp(A) 6≡ 0 mod p.
(2) To ease notation we omit subindex (B,C) and j for the rest of the

proof. Notice that

Tr(N(A)[a]) =
∑

Gpt1−t2,pv1−v2(Apa−1) · · ·Gpta−t1,pva−v1(A)

where (ti,vi) ranges over all of Z min
B,C . By Lemma 3.3(2) and our hypothesis

each term in Gpt−t,pv−v(A) lies in (Z∗p ∩Q)[A] and Aj,g-degree ≤ p − 1.
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Write Tr(N(A)[a]) = T1(A)+T2(A) where T1(A) consists of all summands
with all equal (ti,vi) and T2(A) with at least one not equal. Each monomial

in T1(A) is of the form
∏

g A

∑a−1
i=0 p

iu′′g,i
g where pv − v =

∑
g u
′′
g,ig and

0 ≤ u′′g,i ≤ p−1. Coefficient of such monomial lies in Z∗p. Notice that T1(A)
is homogenous of total degree (pa − 1)wZ(B,C), where each Ag-degree is∑a−1
i=0 p

iu′′g,i.

On the other hand each monomial of T2(A) is of the form
∏

g A

∑a−1
i=0 p

iu′g,i
g ;

Suppose this monomial form coincides with one lying in T1(A) then pv′ −
v′′ ≡ pv − v mod p, and hence v′′ ≡ v mod p. But v′′,v are bounded
points by our hypothesis so there is a constant θ(G1, . . . ,Gr) such that for
all p > θ(G1, . . . ,Gr) we have v′′ = v and hence pv′ − v′′ = pv′ − v. By
comparing Ag-degrees we have

∑a−1
i=0 p

iu′′g,i =
∑a−1
i=0 p

iu′g,i where 0 ≤ u′′g,i ≤
p − 1 and u′g,i ∈ Z≥0; moreover,

∑a−1
i=0 u

′′
g,i =

∑a−1
i=0 u

′
g,i. This implies that

u′′g,i = u′g,i for all i and hence pv′ − v = pv− v and v = v′ constradicting
our assumption above. Therefore T2(A) has no monomial terms in common
with T1(A).

Using the same argument as that in Part (1) we find that the summands
in the expansion of H [a]

p (A) in (3.10) do not cancel out with each other for
distinct (B,C) ∈ K , and hence H [a]

p (A) 6≡ 0 mod p. �

Below we shall single out a special case of G1, . . . ,Gr in which Hp(â) mod
p is a constant polynomial. Let D be the set of all denominators of rational
representations of (t,v) ∈ Z min. Suppose D = {1}, that is, for all (t,v) ∈
Z min

(3.11) G(p−1)t,(p−1)v(A) =
∑

(u,v)∈Z min
B,C

∏
j∈B

∏
g∈Gj,C

(
Ap−1
j,g

(p− 1)!)
rg

where rg = 0 or 1 by Lemma 3.3(2). Let m(t,v) be the number of all such
rational representations of (t,v) ∈ Z min

B,C , and

(3.12) c(G1, . . . ,Gr) :=
∑

(B,C)∈K

(−1)wZ(B,C) ∑
(t,v)∈Z min

B,C

m(t,v).

One can compute and verify that Example 1.3 satisfies the condition
c(G ) 6= 0.

Proposition 3.5. Suppose D = {1}. Then c(G1, . . . ,Gr) 6= 0 if and only if
for all a ∈ AG1,...,Gr (Q) and for p large enough, we have Hp(â) ∈ Z∗p.

Proof. Below we assume a is integral by letting p be large enough. Com-
bining with Wilson’s theorem (p − 1)! ≡ −1 mod p and âp ≡ â mod p, we
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have by (3.11)

G(p−1)t,(p−1)v(â) =
∑∏

j∈B

∏
g∈Gj,C

(
âp−1
j,g

(p− 1)!)
rg

≡
∑∏

j∈B

∏
g∈Gj,C

(−1)rg

≡
∑

(−1)wZ(B,C)

≡ (−1)wZ(B,C)m(t,v) mod p

where the sum is over all rational representations of (u,v). Then by (3.10)

Hp(â) ≡
∑

(B,C)∈K

(−1)|B|+|C|
∑

(t,v)∈Z min
B,C

m(t,v)

≡ (−1)n−µµµ
∑

(B,C)∈K

(−1)wZ(B,C) ∑
(t,v)∈Z min

B,C

m(t,v)

≡ (−1)n−µµµc(G1, . . . ,Gr) mod p.

As c(G1, . . . ,Gr) is a nonzero integer by our hypothesis, this proves that
c(G1, . . . ,Gr) 6≡ 0 mod p if and only if Hp(â) ∈ Z∗p. �

4. Proof of main theorem
Let G1, . . . ,Gr be fixed subsets in Zn≥0. Let AG1,...,Gr be the space of all al-

gebraic varieties V (f1, . . . , fr) where f1, . . . , fr are supported on G1, . . . ,Gr,
respectively. Namely, fj =

∑
g∈Gj

aj,gxg where aj,g 6= 0 for all g ∈ Gj . For
any field K containing Q (resp. Fp) we shall identify each algebraic variety
V (resp. V ) in AG1,...,Gr (K) by a = (aj,g)j,g (resp. a) with aj,g ∈ K (resp.
aj,g) and g ∈ Gj for 1 ≤ j ≤ r. In this section Va denote the variety defined
by a.

This section is devoted to prove our main Theorem 1.1. It is clear that
Theorems 4.3 and 4.4 below proves Parts (1) and (2) of Theorem 1.1, re-
spectively.

In the following proposition we show that the polynomialH [a]
p (A) ∈ Q[A]

defined in (3.10) is indeed a Hasse polynomial for the p-adic valuation of
|Va(Fq)|. For any prime ℘ over p of residue degree a let Va denote Va mod ℘.

Proposition 4.1. Let Z denote the ring of integral elements in Q. For
any a ∈ AG1,...,Gr (Z), or for any a in AG1,...,Gr (Q) and p large enough, the
following statements are equivalent to each other

(1) |H [a]
p (a)|p = 1

(2) H [a]
p (a) 6≡ 0 mod ℘

(3) ordq|Va(Fq)| = µµµ.
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Proof. For each a we may choose for the rest of the proof that p is large
enough so that ordpa ≥ 0. Then let â be the Teichmüller lifting of a.
The first two statements are clear. We claim that Parts (2) and (3) are
equivalent. Applying (2.12) and Lemma 3.1 we have

|Va(Fq)|
qµµµ

− qn−µµµ ≡
∑

(B,C)∈K

(q − 1)|B|+|C|Tr(MB,C(â)[a])
qwZ(B,C) mod ℘

≡
∑

(B,C)∈K

(−1)|B|+|C|+awZ(B,C)Tr(NB,C(â)[a]) mod ℘.

Comparing to definition (3.10) we have

|Va(Fq)|
qµµµ

≡ H [a]
p (â) ≡ H [a]

p (a) mod ℘.

Our claim follows. �

Let Z min be as in (3.3). Let D be the set of all denominators d of
rational representations of all (t,v) ∈ Z min. Let θ(G1, . . . ,Gr) be as in
Lemma 3.4. We shall write P for the set of primes p ≡ 1 mod d for all d
lying in D and p > θ(G1, . . . ,Gr). Observe that it is of positive density in
Spec(Z) by Dirichlet’s theorem on arithmetic progressions. The following
theorem shows that for prime p in P, a subset of SpecZ of positive density,
there is a Hasse polynomial H [a]

p (A) defined over Q that H [a]
p (A) mod p is

a nonzero polynomial in Fp[A] of homogenous degree (p− 1)wZ(B,C) (as
seen in Lemma 3.4).

Theorem 4.2. Let K be a number field and OK its ring of integers. For any
p ∈P let Up be the subset in AG1,...,Gr consisting of all a with |H [a]

p (a)|p = 1
where a is corresponding residue degree over p. Write Va for the algebraic
variety defined by a and Va for its reduction Va mod ℘ with residue degree
a. Then for every Va ∈ AG1,...,Gr (OK) we have Va in Up(OK) if and only if
ordq|Va(Fq)| = µµµ. In particular, if Va ∈ Up(K) and p is large enough we
have ordq|Va(Fq)| = µµµ.

Proof. It follows immediately from Proposition 4.1. �

Theorem 4.3. Let K be a number field. Let U be the subset of AG1,...,Gr

consisting of all a over K satisfying that
∏
p∈P |H

[a(p)]
p (a)| = 1 where

a(p) denote the corresponding residue degree over p. If Va ∈ U (OK) then
ordq|Va(Fq)| = µµµ for all p ∈ P. If Va ∈ U (K) then ordq|Va(Fq)| = µµµ for
all p ∈P and p large enough.

Proof. It follows from Theorem 4.2 above. �



150 Hui June Zhu

In general the above defined Hasse polynomials H [a]
p (A) in Q[A] depends

on p. However, for special occasions like (but not limited to) D = {1} we
found that H [a]

p (A) mod p is a constant independent of p.

Theorem 4.4. Suppose D = {1}. Suppose c(G1, . . . ,Gr) 6= 0 where c(·)
is defined in (3.12). Then for all V in AG1,...,Gr (Q) and p large enough we
have ordp|V (Fp)| = µµµ.

Proof. By Proposition 3.5 we know that for all a in AG1,...,Gr (Q) for
p large enough Hp(a) ∈ Z∗p ∩ Q. Thus by Proposition 4.1 we have
ordp|V (Fp)| = µµµ. �

We remark that the condition D = {1} is an indicator of how sparse the
given system G1, . . . ,Gr is. We have the following more explicit criterion in
constructing such supporting sets.

Proposition 4.5. Let G1, . . . ,Gr be given subsets of points in Zn≥0. If∑
g∈Gj,C

ugg ∈ ZC≥1 for each 1 ≤ j ≤ r with
∑

gGj,C
ug ∈ Z≥1 and ug ∈ Q≥0

implies that ug ∈ Z then D = {1}.

Remark 4.6. Applying Proposition 4.5, we have D = {1} for Example 1.3.
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