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Journal de Théorie des Nombres
de Bordeaux 26 (2014), 465-482

Asymptotic values of modular multiplicities for
GL-

par SANDRA ROZENSZTAJN

RESUME. Valeurs asymptotiques de multiplicités modulaires pour
GLs.

Nous étudions les constituants irréductibles de la réduction mo-
dulo p d’une représentation algébrique irréductible V' du groupe
Resk/q, GL2 pour une extension finie K de @Q,. Nous montrons
qu’asymptotiquement, la multiplicité de chaque constituant ne dé-
pend que de la dimension de V' et du caractere central de sa réduc-
tion modulo p. Nous appliquons ce résultat au calcul de la valeur
asymptotique de multiplicités qui sont ’objet de la conjecture de
Breuil-Mézard.

ABSTRACT. We study the irreducible constituents of the reduc-
tion modulo p of irreducible algebraic representations V' of the
group Resg /g, GL2 for K a finite extension of Q,. We show that
asymptotically, the multiplicity of each constituent depends only
on the dimension of V' and the central character of its reduction
modulo p. As an application, we compute the asymptotic value of
multiplicities that are the object of the Breuil-Mézard conjecture.

1. Introduction

1.1. Main result. Let p be a prime number and K a finite extension of Q,
of degree h. We write Hg = Hom (K, @p). The irreducible representations
of the algebraic group G = Resy g, GL2 are in bijection with families
(n,m) = (nr,mr)ren, € (Z>ox7Z)"x: they are the representations V;, ,,, =
®7(Symm"” W, @ det”'"), where W is the standard representation of GLj
given by the morphism 7 : K — @p and det; = det W,.. We can consider
the semi-simplification stm of the reduction in characteristic p of V;, ,,
this is well-defined and doesn’t depend on the choice of a G-stable lattice
in V;,m used to define the reduction. Then fom is a representation of the
group GLy(F,) (where ¢ is the cardinality of the residue field of K). In
general this representation is not irreducible, and we are interested in the
multiplicities a,(n, m) of the irreducible representations o of GLg(F,) that

appear as constituents of fom They are well defined and do not depend
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on the choice of the lattice in V,, . In particular we want to study their
asymptotic value as the coefficients n, grow to infinity. We show that the
asymptotic value of a,(n,m) depends only on o and the dimension and
central character of V‘:Lsm This follows from the theorem (corollary 3.2):

Theorem 1.1. There exists a family (Sa)a of elements of the Grothendieck
group R of representations of GLa(F,) in characteristic p, indezxed by central
characters o of GLa(FFy), such that for any representation W of GLa(FF,)
that has a central character, for any representation U of GLa(F,) that is
the reduction in characteristic p of an irreducible algebraic representation of
Resg /g, GLa, the class [V] in R of the representation V=W ®@U satisfies:

[V] = (dim V)8, + O((dim U)'~1/7)
where a(V') denotes the central character of V.

1.2. Motivation. The motivation for this study comes from a question
about Galois representations that we now explain. We denote the absolute
Galois group of K by Gal(K/K). We fix a representation p : Gal(K/K) —
GL(V') where V is a 2-dimensional vector space over some finite field k.
We denote by F' a finite extension of @, with residue field £ and by 7 a
uniformizer of F. In all that follows we assume that Endy ., k), (p) = k.

Let R(p) be the universal deformation ring of p over F. It is an Op-
algebra that parameterizes the liftings of p in characteristic 0. That is, for
each closed point = of Spec R(p)[1/p|, there exists a 2-dimensional vector
space V, over some extension of F' and a representation p, : Gal(K/K) —
GL(V;) lifting p.

Let now v = {(n;,m;), 7 € Hg} be a family of pairs of integers indexed
by Hpy as before, let t be a Galois type, that is a representation of the
inertia subgroup I of Gal(K /K) with values in GL(Q,) and open kernel,
and let ¢ be a character Gal(K/K) — O} satisfying some compatibility
relations with v and t (details on these relations can be found in Section 2
of [BM12], but they will play no role in this article).

A representation p : Gal(K/K) — GLg(L) for some extension L of F is
said to be of type (v,t,%) if p is potentially semi-stable with Hodge-Tate
weights (mr, m;+n;+1),cq, and the restriction to I of the Weil-Deligne
representation attached to Dy (p) is isomorphic to t and det p = 9.

Kisin showed in the article [Kis08] (see also [Kis10]) that, after possibly
enlarging F', liftings of p of type (v,t,v) are parameterized by a defor-
mation ring Rﬁt(ﬁ) that is a quotient of R(p): for any closed point z of
Spec R(p)[1/p], the representation p, is of type (v,t,®) if and only if z is
a point of the closed subscheme defined by R;ﬁt (p).

The Breuil-Mézard conjecture ([BM02]) and its refinements ([BM12] and
[EG11], [Kis09]), proved by Kisin in [Kis09] in the case K = Q, for most
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representations p, and also by Paskunas in [Pasl2], is a statement about
the ring R}f”t(ﬁ). The goal is to give a measure of its complexity using

the Hilbert-Samuel multiplicity e(Rfvt(ﬁ) /m) of its special fiber. The con-
jecture states that this multiplicity, called Galois multiplicity, equals an
automorphic multiplicity that can be written as a sum pau(p,v,t) =
Yoas(v,t) s (p) over all irreducible representations o in characteristic p
of GL2(F,;). The ay(v,t) are nonnegative integers depending only on o,
v and t and the u,(p) are nonnegative integers, that we call intrinsinc
multiplicities following the terminology of [Dav13]. They depend only on o
and p.

Let us recall the definition of a, (v, t): Using the theory of types, Henniart
(in the appendix of [BMO02]) attaches to t a finite-dimensional representa-
tion o(t) of GL2(Ok) with coefficients in Q,. We attach to v = (nr,m;)
a representation o(v) that is the algebraic irreducible representation of
Resg /g, GL2 given by ®rep (Symm" Wy @det?'")". Let o(v,t) = o(t) ®
o(v) and let T, ¢ be a lattice in o(v,t) that is preserved by the action of
GL2(Ok). We then define a,(v,t) to be the multiplicity of the irreducible
representation o of GLa(F,) in the semi-simplification of the reduction to
characteristic p of the lattice T}, v, which we denote by o(v,t).

Thus when we apply the results of Theorem 1.1 to U = o(t) and
W = o(v) we get an asymptotic value of a,(v,t), and therefore of the
automorphic multiplicity (provided we know the intrinsic multiplicities)
and so conjecturally, we get the asymptotic value of the Hilbert-Samuel
multiplicity of the special fiber of the deformation ring for these Hodge-
Tate weights and this Galois type t. For example, we treat in Paragraph
4.3 the case where K is the unramified extension of Q, of degree h, and
p is an irreducible representation that is as generic as possible. We obtain
the following asymptotic value for the automorphic multiplicity:

h h—1 h—1

4 . _
PAut(P,v,t) = Wdlma(t)(n(ni +1)) + O(H(nl +1))! I/h)
i=0 1=0
for values of v = (n;, m;)o<i<h—1 such that the central character of
o(v,t) has some fixed value depending on p, and pau(p,v,t) = 0

otherwise.

1.3. Plan of the article. The plan of this note is as follows: in Section 2,
we recall some results on irreducible representations of GL2(FF,) in charac-
teristic p and the multiplicities of these representations in principal series
representations. In Section 3 we compute asymptotic values of the multi-
plicities of the irreducible representations of GLa(F,), in the reduction in
characteristic p of irreducible algebraic representations of Resg /g, GL2 in
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characteristic 0, and we prove Theorem 1.1. In Section 4 we apply this re-
sult to the computation of asymptotic values, as Hodge-Tate weights go to
infinity, of automorphic multiplicities for some mod p Galois representa-
tions.

1.4. Acknowledgements. I would like to thank Christophe Breuil for
useful discussions and helpful comments.

2. Representations of GL2(F,) in characteristic p

2.1. Notations. In the following we fix a prime number p and ¢ = p/. We
denote by E an algebraic closure of F, and we choose a morphism F, — E.
This allows us to view F, as a subfield of E.

We denote GL2(F,) by G and the Borel subgroup of upper triangular
matrices by B.

2.2. Irreducible representations. We recall the description of the irre-
ducible characteristic p representations of G. In this case everything can be
described in a very explicit manner. The proofs of the statements of this
Paragraph can be found in Chapter 10 of the book [Bonl11] (the results in
[Bonll] are for the case of SLy(F,) but they extend readily to the case of
GL2(Fy)). The description of the irreductible representations can also be
found in Section 1 of [BL94].

We denote by W the standard representation of G on E?. For all n € Z>q
we let S,, = Symm"™(W). The representation S, is of dimension n + 1 and
can be identified with the vector space E[z, y],, of homogeneous polynomials
of degree n with the action of g = (2%) given by (g - P)(z,y) = P(az +
cy,bx + dy). In particular Sy is the trivial representation of G.

Let (p,V) be a finite-dimensional E-representation of G. We denote by
V() the twist of V by the i-th power of the determinant for an i € Z/(q —
1)Z. For any integer j we denote by VU the representation p o FJ, where
F' is the Frobenius of F,. Note that vl =v.

We now describe the irreducible representations of G (Theorem 10.1.8
of [Bon11]): Let n be an integer written in base p as 3,5, n;p’. We denote
by L, the sub-representation of S,, = E[z,y], generated by z”. It is the
subspace generated by the monomials zy"”~™ for all integers m that can
be written in base p as > ;5 mgp' with 0 < m; < n; for all 3. As a G-

representation, L,, is isomorphic to ®i205’7[£.

Proposition 2.1. The irreducible representations of G are exactly the rep-
resentations Ly(m) with 0 <n <qg—1andm € Z/(q —1)Z.

Moreover the following property holds (Proposition 10.1.18 and Para-
graph 10.2.1 of [Bonl1)):



Asymptotic values of modular multiplicities for GL2 469

Proposition 2.2. For any 0 < n < q— 1, L, is a multiplicity one con-
stituent of Sy. The other irreducible constituents in S, are among the rep-
resentations L;(j) with i < n.

2.3. Frobenius action and 0 operators. The Frobenius acts as a per-
mutation on the set {L,(m),0 < n < q¢—1,m € Z/(q¢ — 1)Z}. In order
to describe this permutation we introduce an operator on {0,...,q — 1}
and Z/(q — 1)Z that we denote by 0. On Z/(q — 1)Z, 0 is simply multi-
plication by p. Let n be an element of {0,...,qg — 1}. We write it in base
pasn = E{:_Ol a;p* and we set On = af_1+ agp + ...af,gpffl. These 0
operators are compatible with respect to reduction modulo ¢ — 1. We now
have L, (m)! = Lg,(6m).

2.4. The Grothendieck group of representations of G in charac-
teristic p. Let Repy(G) be the Grothendieck group of finite-dimensional
representations of G with coefficients in E. We denote by [V] the image in
Repg(G) of a representation V of G.

Repp(G) is a ring with the product given by [V @ W] = [V][W]. The
twist by a power of the determinant and the action of Frobenius extend to
Repy (@), and we denote [V (i)] by [V](i) and [VI!] by [V]U.

We can endow Repp(G) with two natural bases: The first one, which we
call basis L, is given by the irreducible representations of G, that is the
[Ln(m)] for 0 < n < g—1and m € Z/(q — 1)Z. Note that tensoring an
element of L by a power of the determinant or twisting it by a power of
Frobenius transforms this element into another element of L. The second
one, which we call basis S, is given by the [S,(m)] for 0 <n < ¢—1 and
m € Z/(q — 1)Z. That it is indeed a basis follows from Proposition 2.2.

We denote by [V : L,(m)] the coefficient of [L,,(m)] when we write an
element V' € Repg(G) in the basis L.

Finally let R = Repg(G)®zR. All the notations that we have just defined
extend to R.

2.5. Recurrence formula for tensor products. The following formula
holds for the representations S, = Symm" (W) of G:

Proposition 2.3. For all nonnegative n,m we have [Sy]|[Sm] = [Sn+m] +

[Sn—l] [Sm—l](l)'

Proof. We have in fact a more precise result which is proved in Glover’s
article [Glo78]: the following is an exact sequence:

0— (Sp—1®Sm-1)(1) = Sp ® Sy, = Spem — 0,

where the second arrow is given by multiplication of polynomials and the
first one is given by u ® v — (zu ® yv) — (yu @ zv). O
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2.6. The Dixon invariant. Let © = zy? — 29. For all g € GLy(F;) we
have g(©) = (det g)©. For all n € Z>( we can consider the map ¢ : S, (1) —
Sn+q+1 given by multiplication by ©. This map is GLy(F,)-equivariant and
injective. We let V12 = Sp4g41/t5n(1).

2.7. Principal series representations.

2.7.1. Definition. Let F be the space of functions on G with values in
F,. The group G acts on F by (gf)(v) = f(vg). If x is a character of
B, we let V(x) = ind$ x. It is the subspace of F formed by the functions
satisfying f(bg) = x(b)f(g) for all b € B and g € G. It is an [F4-vector space
of dimension ¢ + 1. The dual space V(x)* of V() is isomorphic to V(x™1).

For r € Z, we denote by A, the character of B with values in Fj given

0 d
note that all characters of B with values in Fj are of the form A, ® det?.
We will thus restrict our study to the case of the characters \,.

2.7.2. Relation to [Sp(r)]. Let n > 0 be an integer. We define a G-

equivariant morphism u,, : S, = E|z,y], — F by P — (g — P((0,1)g)).
Its image is contained in V(A;). We have the following result:

by (a b) — d". This character depends only on r modulo ¢ — 1. Let us

Lemma 2.4. Letr € Z/(q — 1)Z and let n > 0 be an integer congruent to
r modulo ¢ — 1. If n < q then u, is an embedding S, — V(\.), and it is
an isomorphism if n = q. If n > q + 1, then u, induces an isomorphism
Vn7q+1 = Sn/LSnqul(l) — V()\r)

Proof. The kernel of u,, is the set of homogenous polynomials of degree n
that are zero on ]Fg, that is, multiples of the Dixon invariant ©. In particular,
up, is injective when n < ¢+ 1, and the kernel of w,, is ¢S, —4—1(1) otherwise.
Hence when n > ¢+ 1 the morphism u,, induces an embedding of V,,_411 =
Sn/tSn—q—1(1) into V(). As both spaces are of dimension g+ 1, this is an
isomorphism. O

In particular:

Lemma 2.5. For n > 2, V, and V(\,) are isomorphic and the isomor-
phism class of V,, depends only on the class of n modulo q — 1.

In the following we will use the notation V,, for V(\,) also in the case
where n is an element of Z/(q — 1)Z and not necessarily an integer > 2.

We can then recover a classical result (that we won’t use in the sequel)
using the fact that S} is isomorphic to Sy, (—n) and that S, and S;_1_,(n)
have no common constituent if n < g — 1 (see Proposition 2.7):

Proposition 2.6. For all 0 < n < g—1 there is an exact sequence 0 —
S = V(M) = Sq—1-n(n) — 0. It is split when n =0 or g — 1.
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2.7.3. Constituents of principal series representations. The con-
stituents of the representations [V,] have been computed by Diamond in
the article [Dia07]. We give here a reformulation of this description. Con-
sider the following graph:

T r—p—1—=x
. ><
L —
z—x—1 rT—p—2—=x
—

Let C; be the set of closed paths of length f in graph (2.1). Let ¢ be such
a path. We denote by ¢; the vertex reached at the i-th step of the path. We
thus get a list cp,...,cp_1,cp = co of vertices of the graph.

To each path ¢ we attach a family of functions (A§)o<i;<f—1 by taking
for XY the function written on the vertex c;. We also define a function £,
by Le(zo, ... xp—1) = (X P (zi — X§(x;)))/2 if the vertex cy_y is in the left
column of the graph, and £.(zo,...,z;-1) = (p/ — 1+ 3, p'(m; — X§(w;))/2
if the vertex cy_1 is in the right column.

Let 0 <n < q—1. We write n in base p as n = Elf:_ol p'n;. Let A\°(n) =
sz:_ol PIXE(ny), and Le(n) = Le(ng,...,ns_1). Observe that A\°(n) = A% (n)
and £.(n) = £y (n) if and only if ¢ = ¢.

Diamond’s result is the following;:

Proposition 2.7.

Va(m)] = 3 [Lacgn) (m + Le(n))]

where the sum is over all ¢ € Cy such that 0 < X¢(n;) < p—1 for alli. In
particular, all constituents appear with multiplicity 1.

2.7.4. Representations having [L,(m)] as a constituent. Let
A(n,m) be the set of (n/,m’) € {0,...,q—2} xZ/(q—1)Z such that L, (m)
is a constituent of V,»(m’). We give a description of A(n,m). Consider the
following graph:
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T =T r—p—1—=x
. ><
L
r—x+1 rT—=p—2—x
e

Let Ay be the set of closed paths of length f in graph (2.2). Let ¢ be
such a path and write ¢; for the vertex reached at step i. We attach to ¢
a family of functions (u§)o<i< f—1 where pf is the function written on the
vertex c;.

We say that ¢ is compatible with n = >, n;p* if 0 < pé(n;) < p —1 for
all 4. In this case let u(n) = 3 u$(n;)p'.

Proposition 2.8. The set A(n,m) is the set of (u(n),m — £.(u(n))),
for ¢ in the set of elements of Ay that are compatible with n and such that
pc(n) # q—1. Distinct ¢’s give distinct elements in A(n,m). The cardinality
of A(n,m) doesn’t depend on m.

Proof. We denote by the same letter ¢ a path in graph (2.2) and the anal-
ogous path in graph (2.1). Then p¢ and A¢ are inverse functions, so that
A¢(n') = n if and only if u°(n) = n’/. Hence the description of A(n,m).
In particular, the cardinality of A(n,m) doesn’t depend on m. The fact
that distinct ¢’s give distinct elements in A(n, m) follows from the fact that
A¢(n) = X (n) and £.(n) = Ly (n) if and only if ¢ = ¢. O

We denote by w(n) the cardinality of A(n,m). Let 0 <n < g —1 be
written as > ; n;p’ in base p. We denote by 7, the number of coefficients n;
that are equal to p — 1. Then :

Proposition 2.9. (1) w(0) =2/ -1
(2) ifn # 0 then w(n) =2/~

Proof. Computing w(n) is the same as counting elements ¢ € Ay that are
compatible with n and such that u®(n) # ¢ — 1.

We have to understand for which cases we have ;°(n) = ¢ — 1. This can
happen only if path ¢ never reaches the vertex labelled x — p — 2 — x, so
c is necessarily a constant path staying either on the vertex x — x or on
the vertex z +— p — 1 — x. For such a ¢ we have p¢(n) = ¢ — 1 if and only if
n=0orn=q—1.

For each pair of vertices of graph (2.2) there is exactly one path of length
2 from the first point to the second one. Hence the cardinality of Ay is 27
we have 4 choices for the first vertex of path ¢, 2 choices for each following
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step except for step f — 1 where we have only one possibility that allows
us to close the path at step f.

If 7, < f there exist exactly 2/~ elements of Ay that are compatible
with n. Indeed we can assume without loss of generality that ny_; < p—1.
Then for all ¢ such that n; = p — 1 the number of possible paths is divided
by 2, as the path cannot reach the lower row of graph (2.2) at step .

If n = ¢ — 1, the paths compatible with n are those that avoid the lower
row of graph 2.2. Hence there are only 2 compatible paths: the constant
paths staying either on the vertex labelled z — x or on the vertex labelled
x — p—1—2x. The first one gives p°(¢—1) = ¢—1. So we get w(¢—1) = 1.

0

3. Asymptotic study of representations

3.1. Central characters. Let Z be the center of G. Using the embed-
ding F, — FE that we fixed in Paragraph 2.1, we can identify the group
of characters of Z to Z/(q — 1)Z so that i € Z/(q — 1)Z corresponds to

a 0\, i
0 a '

Let V be a representation of G. If is has a central character, we denote
it by a(V).

3.2. The family (Sa). Let S = 55 .pm V()] € R. Let i be
an element of Z/(q — 1)Z which we see as a character of Z. Let §; =
q%l Zx:B%Fémz:i[V(X)]' We have normalized S; in such a way that dim
S; = 1, and by construction a(S;) = 1.

Note that V(x)V! = V(p/x), and a(p’x) = p’a(x). Thus Sib] = Spi;- We
also have S;(j) = Sit2;.

3.3. Norms on R. We endow the R-algebra R = Repy(G) ®z R with a
norm || - || that satisfies the following properties:

(1) it is an algebra norm: that is, for all V-and W, we have the inequality
V- W < [[VII[W]]

(2) it is unchanged by twist by the determinant

(3) it is unchanged under the action of Frobenius

(4) forall V.€e Rand n € {0,...,¢— 1} and m € Z/(q — 1)Z, we have
IV : La(m)]| < V]

Such a norm can be constructed as follows: first endow R with the norm
| - | 1,00 defined by |V, 0o = maxy m |[V : Ly(m)]|. This norm is unchanged
by twist by the determinant and action of Frobenius as these actions per-
mute the elements of the basis L. For all V' € R we set

VI = sup [V- W|L,00/IW|L,00
W0
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which is finite as R is a finite dimensional R-vector space and multiplication
by V is R-linear. Then || - || is a norm on R that clearly satisfies the first
three properties. That it also satisfies the last one can be seen by noticing
that |V > |V - LO‘L,oo =

We also need another norm on R that we denote by |- |s1. An element
V of R can be written V =37, . Apm[Sn(m)] in the basis S. We then set
‘V|S,1 = Zn,m |>\n,m‘

As R is a finite-dimension R-vector space, all norms on it are equivalent.
Hence there exists a positive real number M such that for all V € R we
have |V]s1 < M||V]].

3.4. Statement of the results. We devote the rest of Section 3 to the
proof of the following theorem and its corollary:

Theorem 3.1. Let r > 1 be an integer. There exists a constant C, de-
pending only on r, such that for any representation W of G with a central
character, and any representation U of the form U = S[h] - ® S,[j:],
the representation V.= W @ U satisfies [V] = (dim V)S (v) + rv with

vl < C[W g1 (dim U)/ ming (k; + 1).

Corollary 3.2. There exists a constant C' depending only on K such that
for any representation W of G with a central character, and any repre-
sentation U of G that is the reduction in characteristic p of an irreducible
algebraic representation of Resg g, GLz, the representation V.= W @ U

satisfies [V] = (dim V)Syvy + rv with |ry|| < C[W||(dim U)-1/n,

3.5. Computation of [Si]. Let k = u(¢®> — 1) + v(q + 1) + w, where
u = |k/(¢*—1)], and where v(q+ 1) +w is the remainder of the euclidean
division of k by ¢?> — 1, and w is the remainder of the division of k by ¢+ 1.
Making use of the equality [Spiq+1] = [Sn](1) + [Vat2] we get [Sk] =
S Wicitary el = 1) + [Sul (ulg = 1) + ).
As [Vy] is (¢ — 1)-periodic we have:

u(g—1)+v v v—1
Z [Vk—z‘(q+1)+2](i - 1) = Z[Vk—z'(q+1)+2(i - 1)] = [Vk 2z( )]
i=u(q—1)+1 i=1 =0
and
u(g—1) q-1 q—2
Z Vi—i(g+1)+2l(i — 1) = UZ[Vk—z‘(q+1)+2(i -1)] = Z[Vk 2i(1)]
i=1 i=1 i=0

Moreover [Y05 Vi—2i(i)] = (4% — 1)S(k mod g_1)- Let

q—2

re=(u(@® = 1) =k = 1)S( mod g—1) T 2 Ve—2i(0)] + [Sw](ulq — 1) + v)
i=0
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We define the constant A as follows:
A= (g +2) max{lI[S,],0 < v < ¢ — 1, |Silli € Z/(q - 1)Z}
As |u(¢? — 1) — k — 1] < ¢* we get:
Proposition 3.3. [Si] = (k + 1)S(x mod g—1) + 7% and |1y < A.
3.6. Action of Frobenius.
Proposition 3.4. [S;]U = (k + 1)S0i (k mod g—1) T r,[cj] and ||r,[€j] | < A.

Proof. From [S] = (k + 1)S(x mod g—1) + 7% We get the equality ER=
(k + 1)8([?3m0d -1 T P We know that Sim = Syi;, and moreover |rg| =
Il O
Corollary 3.5. Let t; ) be an integer such that 2t;j = ¢k — k mod q — 1.
Then [|[Sk]9) = [Sk](tj0) ]| < 24.

Proof. This follows from Proposition 3.4 as soon as we have proved that
such a t;, exists. When p = 2, multiplication by 2 is an automorphism of
Z/(q—1)Z, hence t;, exists (and is unique). When p > 2, 67k has the same

parity as k, as € is the same as multiplication by p modulo ¢ — 1, so 67k — k
is even which gives the existence of ¢; . O

3.7. Product.
Proposition 3.6. Let a,b € Z/(q — 1)Z. Then S;Sp = Sa+b-
Proof. Let u,v — 400 with u = @ (mod ¢ — 1), v = b (mod ¢ — 1) and
u <.

We have the following equality:

[Su] [Sv] = ((u + 1)8(u mod g—1) + O(U)((” + 1)8(1) mod g—1) + 0(1))

= (u + 1)(” + 1)S(u mod q—l)S(v mod g—1) =+ O(max(u, ’U))
Moreover:
[Su][Sv] = (u+ 1)(v + 1)S(y40 mod g—1) + O(min(u,v))

Indeed it follows from 2.3 that [Sy][Su] = [Su+w] + [Su—1][Sv—1](1), so
[Sul[So] = 230 [Su+v—2i] (7). Hence:

[Su] [Sv] = Z((u +v—2i+ 1)8(u+v mod ¢—1) + Tu+v—2i)
i=0
= (u+1)(v+ 1>S(u+v mod g—1) T Z Tu+v—2i
i=0
Finally [|[S,J[S0] — (u+ 1)(0 + 1)S(u 10 mod g1 | < (min(u,v) + 1)4.
The result then follows from the comparison of the two formulas for
[Su][Sv]- d
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3.8. Proof of the theorem. We can now prove Theorem 3.1 and its
corollary.

Proof of Theorem 3.1. Using linearity and the invariance of the norm with
respect to twisting by the determinant, we need only prove it when W = 5,
and 0 <m < gq.

Suppose first that r = 1. We write k, j for k1,j1. Let V=W ® S,[cﬂ as in
the statement of the theorem. .

Let ¢ be an integer as in corollary 3.5, so that [S,Ej]] = [SkJ(t) + a for
some a with [|a] < 24. Then [W & SY'] = [S][Sk](t) + [W]a. By the
computations in the proof of Proposition 3.6 we see that

[Sm”Sk’] = (m + 1)(k + 1)S(m+k mod g—1) +0
for some b € R with [|b|| < ¢A. Finally

W @S] = (dim(W ® SP))s

a(wesi T¢

where ¢ = b(t) + [W]a, so that ||c|]| < gA + 2A2. We get the result with
C = qA +2A2

Let us now return to the general case. Let U = S,[jlﬂ Q- Q S,[g]:] and
V=WeeU.

We set Vi = W @S¢ and V; = S for i > 2. Then [V] = [T, [Vi].

For all i > 2 we have [Vi] = (dim V)S (v;) + ¢ with [le;|| < A by Propo-
sition 3.4. For i = 1 we have [V1] = (dim V1)S, ;) + c1 with [[c1]] < C1 =
A(q + 2A) by the case r = 1 of the theorem. Moreover dim V; < q(k; + 1),
as dim W < gq.

Let ry = [V] — (dim V)8, (v). We have:

V] = H((dim Vi)Sa(Vi) +¢) = Z (H(dimV (Vi) ch

( Ic{1,..,r} i€l ig1

Using Proposition 3.6 we see that (dim V')S, ) = [[;(dim V;)S,(y;), hence:

- 3 (TT(dim Vi) Saqi) (I ] ¢)-

IC{1,...,r} I£{1,....r} i€l igl
We have:
I T Sa) )T el < TTISaeplI TT lleill < A™(24 4 q)
el i€l i€l il

as for each i we have ||S, ;|| < A by definition of A, and [|¢;|| < A except
for [|c1|| < A(2A + q). Finally:

Irv] < A"(24 + q) > [T dim v;.
Ic{1,...r},I#{1,...,r}i€l
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Moreover [];c; dim V; < ¢(dim U)/ minj<;<,(k; + 1). Hence:
lrvl < ¢2"A"(2A + ¢)(dim U) / min(k; +1).

The result follows with C, = ¢2"A"(2A + q). O

Proof of Corollary 3.2. The irreducible representations of Resg /g, GL2 are
of the form ®T€Hom(K7@p)(Symka W, ® det)) for some k., € Z>o and
jr € Z. Let U be the reduction in characteristic p of such a representation.
Then [U] is of the form [U] = [S,[iﬂ R ® S,[i:”} (n)] where h = [K : Q).

Let I be a nonempty subset of {1,...,h} and let r be the cardinality of
I. We apply Theorem 3.1 to the decomposition V = W’ @ U’ with W’/ =
Wi(n)® (®i¢15’,[id) and U’ = ®ieIS,[$]. It gives us [V] = (dim V)S, vy +1v
with ||ry ]| < CT’W/|S,1(diII1 U’)/(minig ki +1).

We have |W'|g1 < M||W'|| with M as in Paragraph 3.3. As the norm
| - || is an algebra norm, we get |[|[W'| < ||W(n)||HZ€IHS,BZ]|| Moreover
|W(n)|| = [|[W] by the properties of || - ||.

We apply Proposition 3.4 to each representation S,[j:
inequality [|SE ]| < (ki+1) 1S sk, mod g—1)ll+A4, 50 that [|SP]| < 24(ki+1)
and [W[s.1 < MW Ty (ki +1):

From dim U = (dim U’) [];¢; (ki + 1) we get:

lrv|l < MC.(24)""|W|(dim U)/(mink; +1).

]

and we get an

Using the value of C, that we computed in the proof of Theorem 3.1 we
see that:

Irv || < Mq(24 + ¢)(24)"|W || (dim U)/(mink; +1).

The best choice for [ is to take I = {ip} where i¢ is such that k;, = max k;,
so that:
v < Ma(2A + @) A)" W |(dim )/ max b + 1)

<z
In order to have a formula that works for all U independently of the values
of the k;’s, the best inequality we can use is max; k;+1 > (dim U )1/ h_ which
gives the corollary with C = M¢q(2A + ¢)(24)" = MC,. O

3.9. Asymptotic values of multiplicities. Let a, (V) = [V : L,(m)].
Our goal is to find the asymptotic value of an , (V).
We observe first:

Lemma 3.7. If V has a central character a(V), then apm,m(V) = 0 if
n+2m # a(V) (mod ¢ —1).

Moreover Proposition 2.9 implies:
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Proposition 3.8. (1) [Si: Lp(m)] =0 i n+2m #i (mod g —1)
(2) [Si: Lp(m)] =w(n)/(¢> —1) if n+2m =1 (mod q — 1).

Finally we get (the value of C, is given in Paragraph 3.8 and the value
of w(n) in Proposition 2.9):

Theorem 3.9. Let r > 1 be an integer. Let W be a representation of G

with a central character. Let U = S,[lel] R ® S,[CJ:] andV =W ®U. Then
anm(V) =0 if n+2m # (V) (mod ¢ — 1) and

[anm (V) — w(n)(dim V)/(¢* = 1)] < Co[W|s1(dim U)/ min(k; +1)
ifn+2m=a(V) (mod ¢ —1).
Proof. Write [V] = (dim V)S, vy + 7v as in Theorem 3.1. Then
Vs Lo(m)] — (@i V)Saqv : La(m)l| < [y : La(m)].

By the conditions we imposed on the norm || - || in Paragraph 3.3, we have
[[rv : Lp(m)]| < ||rv||. The result follows. O

Corollary 3.10. Let W be a representation of G with a central character,
let U be a representation of G that is the reduction in characteristic p of
an algebraic irreducible representation in characteristic 0 of Resg g, GLa

and let V=W @ U. Then
(anm(V) = w(n)(dimV)/(¢* = 1)| < C[|WI|(dimT)* /"
if n+2m=a(V) (mod ¢ — 1), and apm (V) = 0 otherwise.

4. Application

4.1. The Breuil-Mézard conjecture. Let us consider again the situa-
tion described in Paragraph 1.2 of the introduction. Let K/Q, be a finite
extension and let h = [K : Q,]. We denote by & the residue field of K so
that x = F, for some ¢ = p’. Let k be a finite field and let 5 : Gal(K/K) —
GLy(k) be a Galois representation such that Endy a7 x0) (p) = k.

Fix a Galois type t, so that o(t) is an irreducible finite-dimensional rep-
resentation of GLa(Of) with coefficients in @p. Fix also v = (n., mr)reny
with n, € Z>o and m,; € Z. We denote by o(v) the representation
@ (Symm"” W, @ det”'").

Let 0(v,t) = o(t)®o(v) and let o(v,t)° be the semisimplification of the
reduction to characteristic p of o(v,t). It is a finite-dimensional k-vector
space with an action of GL2(Ofk) that factors through GLa(k). Note that
we can write o(v,t)  as (o(t) ® @, (Symm"™ E? @ det ™))%,

In order to compute the automorphic multiplicity, which is defined by
pAut (P, v t) = >, to(p)as(v,t), we have to find the multiplicity a,(v,t)
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of o in the semi-simplification of o (v, t) for each irreducible representation
o of GLa(k).

For a fixed Galois type t and v going to infinity (that is, with the dimen-
sion of o(v) going to infinity) we can use the results of Section 3 in order to
have an asymptotic estimate of the values of the a,(v,t) and therefore of
pAut(D,v,t) = Lo pio(p)as (v, t), provided we know the intrinsic multiplici-
ties 4o (7).

It is conjectured that p,(p) can be nonzero only if o is an element of the
set D(p) of Serre weights defined in the article [BDJ10] in the case where K
is unramified, and in [Sch08] and [BLGG] in the general case. In particular,
as all elements of D(p) have the same central character, paq..(p,v,t) is
expected to be nonzero for only one possible value of the central character

a(o(v,t)).

4.2. Example: the case K = Q. In the case K = Q, the Breuil-
Mézard conjecture is entirely known thanks to results of Kisin ([Kis09])
and Paskunas ([Pas12]). We will treat as an example the case where p :
Go, — GLz(k) is an absolutely irreducible representation. All the results
we will use in this example can be found in the article [BMO02].

In this case, v = (a,b) € (Z>o x Z) and o(v) = Symm* @Z ® det®. The
irreducible representations of GLy(F,) are the oy, ,, = Symm" E? ® det™
for 0 <n <p-—1and m € Z/(p — 1)Z, and oy, is the representation
denoted by Ly (m) in Section 3. We denote a,,, ,,(v,t) by an m(v,t). In this
example we take for t the trivial type.

Let w be the mod p cyclotomic character and wy the Serre fundamental
character of level 2, so that wgﬂ = w.

As p is irreducible we can write pj; as

wh T 0
( 0 wé}(n—i—l) ®w™

for some 0 <n <p-—2and m € Z/(p—1)Z. There are exactly two nonzero
intrinsic multiplicities: we have fiy,m(p) = fp—1—nntm(p) = 1.

As we have chosen t to be the trivial type, the representation o(t) is
the Steinberg representation Symmp_l@; and is of dimension p. The au-
tomorphic multiplicity 4w (P, v,t) can be nonzero only for v = (a, b) such
that the central character of o (v, t) is that same as the central character of
those oy, for which gy, m(p) # 0, that is p+a+2b=n+2m (mod p—1).

Finally we get, as a — 400 and p+a+2b =n + 2m (mod p — 1):

o 1au(P, (a,b),t) = dp(a+1)/(p*—1)+0(1) if 1 <n < p—2 (generic
case)
o taut(P, (a,b),t) = 2p(a+1)/(p* — 1) + O(1) if n = 0.
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The constructions of Section 1.2 can be generalized to the case of de-
formation rings parameterizing representations that have the additional
property of being potentially crystalline. These rings differ from the ones
previously described only when the Galois type t is a scalar (otherwise the
condition of being potentially crystalline is automatically satisfied). In this
case, we need to replace the representation o(t) by another representation
which we call 0" (t). When t is trivial, o (t) is the trivial representation.

In this case we get, when t is the trivial type and as ¢ — o0 and
a+2b=n+2m (modp—1):

o 1B, (a.),t) = 4(a+1)/(p? — 1)+ O(1) if L <n < p—2.
o 157 (a,0),t) = 2(a +1)/(p? — 1)+ O(1) if n = 0.

4.3. Example: K an unramified extension of Q,, and p as generic
as possible. Let now K be the unramified extension of degree h of Q. In
this situation we don’t know if the Breuil-Mézard conjecture holds and we
don’t even know which intrinsic multiplicities would make it true. However,
thanks to results of Gee and Kisin ([GK12]|, Theorem A), we have some
results about the intrinsic multiplicities in the case where K is unramified.
They show that u,(p) is nonzero if and only if o is an element of the set
D(p) of Serre weights defined in the article [BDJ10]. Moreover they show
that if o is what they call Fontaine-Laffaille regular (definition 2.1.8 in
[GK12]), then p,(p) = 1 when it is nonzero. In our notations, Fontaine-
Laffaille regular weights are representations L, (m) where the digits of n in
base p are all in {0,...,p — 3}.

Let us fix a morphism F,. — E. We choose a numbering {7o,..., 751}
of Hx = Hom(K, @p) such that 7; reduces modulo p to the i-th power
of Frobenius. The algebraic irreducible representations of Resg g, GL2 are
then the o(v) = @' (Symm% W,, ® det%_), for v = (a;,b;) € (Zh, x
ZM). Such a representation reduces in characteristic p to the representation
Sao(00) @ S, (b)) - @ S,,_, (bp_1)P"1). Note that this representation
has central character Z?;OI p'(a; + 2b;).

The irreducible representations in characteristic p of GL2(F,), ¢ = p"
are those described in Section 2 with f = h. We denote ar,, () (v,t) by
an,m(v,t) as in Section 3.

Let p a 2-dimensional irreducible representation of G with coefficients
in E. After twisting p by some character we can write:

ro+14p(ri+1)+-+pt = (rp_1+1)
_ fwyy 0
Pir= 0 prro+14p" T (ri 1)+ 4p? (rp 1 +1)
Wap,
for some 0 <rg<p—1andsome —1<r;, <p—2forl1 <i<h-—1and

where wqy, denotes the Serre fundamental character of level 2h.
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In this example we take p to be as generic as possible, that is we make
the following assumption:

2<rpg<p—3and1<r;<p—4fori>1.

Note that in this case p is sufficiently generic in the sense of the article
[BP12], Lemma 11.4. As a consequence, we see that D(7) has exactly 2" el-
ements. Moreover the elements of D(p) can be described using the method
of [BP12], Lemma 11.4. Using this description, we see easily that our addi-
tional genericity condition ensures that all o € D(p) are Fontaine-Laffaille
regular in the sense of [GK12], and thus have p,(p) = 1. This also ensures
that for all L, (m) € D(p), we have w(n) = 2", as no digit of n in base p is
p—1and n # 0.

Note that all weights in D(p) have central character ro + 1+ p(r; +1) +
. +Ph71<7"h—1 4 1)_

Finally, under this hypothesis on the genericity of p, we get, for a fixed
Galois type t, (a;,b;) such that a(o(v,t)) = a(Ly(m)) for all L,(m) in
D(p), that is

h—1 . R

> pi(ai+2b) + a(o(t) =ro+ L+ p(ri +1) + -+ p" ey + 1),

i=0
and dim o (v) — +o0:

h h—1 h—1

PAut(Ps v, t) = p;l dima(t)(J] (@i + 1)) + O(T] (a; + 1))"/?)
i=0 i=0
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