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The n-th prime asymptotically

par JUAN ARIAS DE REYNA et JErREMY TOULISSE

RESUME. Dans cet article nous donnons une nouvelle dérivation
du développement asymptotique classique du n-iéme nombre pre-
mier; ainsi qu’un algorithme permettant de calculer les termes
rapidement, améliorant celui de Salvy (1994).

Nous donnons des bornes réalistes de erreur avec li~!(n) apres
avoir pris en compte les m premiers termes, pour 1 < m < 11.
Finalement, en supposant I’'Hypothese de Riemann, nous donnons
une estimation du meilleur r3 possible tel que pour n > r3 on ait
Pn > s3(n) ot s3(n) désigne la somme des quatre premiers termes
du développement asymptotique.

ABSTRACT. A new derivation of the classic asymptotic expansion
of the n-th prime is presented. A fast algorithm for the compu-
tation of its terms is also given, which will be an improvement of
that by Salvy (1994).

Realistic bounds for the error with li™*(n), after having re-
tained the first m terms, for 1 < m < 11, are given. Finally, as-
suming the Riemann Hypothesis, we give estimations of the best
possible r3 such that, for n > r3, we have p,, > s3(n) where s3(n)
is the sum of the first four terms of the asymptotic expansion.

1. Introduction.

1.1. Historical note. Chebyshev failed to fully prove the Prime Num-
ber Theorem (PNT), but he obtained some notable approximations. For
example, he proved that for every natural number n: if the limit

(m(x) —1i(x))

exists, then this limit must be equal to 0.
The question was decided by de la Vallée Poussin (1899) when he gave
his bound on the error in the PNT: The above limits exist and equal 0.

. log"x
lim

T—00 T
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In 1894, Pervushin ([13],[14]), a priest in Perm, published several for-
mulae obtained empirically about prime numbers'. One of these formulae
gives the following approximation to the n-th prime

DPn ) 1
— =1 log1 -1 .
n ogn +loglogn +1210gn+2410g2n

Cesaro then published a note [1, 1894] where he asserts that the true for-
mula is

log 1 -2
Pr _ogn + loglogn — 1 4 0B8N =2
n logn

(loglogn)? — 6loglogn + 11

— + o(l
2log? n oflog

-2

Despite no mention by Cesaro in [1], the editors of his collected works
added a note to [1] pointing out that certain formulae quoted by Cesaro,
since they followed from the results of Chebyshev, were only established
under the assumption of the existence of the implied limits. It therefore
remains unsurprising that Hilbert, in the Jahrbuch? stated that Cesaro did
not prove his formula.

Landau [6, 1907] several years later was better informed: a formula,
like that of Cesaro, would imply the PNT, which had yet to be proved
at Cesaro’s time. However, using the results of Chebyshev, Cesaro may
claim that if there is some formula for p, correct to the order n(logn)=2,
then it must coincide with his formula.

Cipolla [3, 1902] obtained an infinite asymptotic expansion for p,, and
gave a recursive formula to compute its terms. He published after the results
of de la Vallée Poussin but it seems that he was unaware of these results,
so that gave his proof under the same hypotheses as Cesaro. So uninformed
was he that he attempted to prove some false formulae of Pervushin already
corrected by Torelli [21]

loglogn — 1 O(loglogn)2

DPn+1 — Pn = logn + loglogn +
logn logn

with an impeccable proof that if such a formula exists, then it must be this
formula. (Such a formula would refute the twin prime conjecture, and today
the above formula is known to be false.)

In his Handbuch Landau [7, § 57| obtained by means of the procedure
of Cesaro, some approximative formulae for p,, and explained that the

van Mikheevich Pervushin (1827-1900) (VIBar Muxeesnu Ilepsymun). No small achievement
if we note that he had only a table of primes up to 3000 000.

2 Jahrbuch Uber die Fortschritte der Mathematik (1868-1942), a forerunner for the Zentral-
blatt fiir Mathematik, at present digitalized at http://www.emis.de/MATH/JFM/JFM.html.
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method could give further terms. He also mentioned some recursive formu-
lae without giving any clue for their derivation.

We may say that Pervushin was the first to deal with a formula for p,,
albeit that he gave only the first few terms. Cesaro then proved that in the
case such a formula exists, it must be one from which he would be able
to derive several terms. Cipolla found a method to write all the terms of
the expansion if there is one. Landau saw that the results of de la Vallée
Poussin imply that the expansion certainly exists.

The algorithm given by Cipolla is not very convenient for the computa-
tion of the terms of the expansion. He iteratively computes the derivative
of some polynomials appearing in the expansion but computes the constant
terms as determinants of increasing order. Robin [16, 1988] considers the
problem of computing these and other similar expansions, leaving the prob-
lem of computing the constant terms of the polynomials as an open problem.
Later Salvy [19, 1994] gives a satisfactory algorithm. This algorithm needs
O(n7/ 2/Togn) coefficient operations to compute all the polynomials up to
the n-th polynomial.

The asymptotic expansion of p,, also plays a role in the study of g(n),
which is the maximum order of any element in the symmetric group S,. In

fact, log g(n) has the same asymptotic expansion as {/1i~*(z) [10].

There are many results giving true bounds on p,,, for example we mention
pn > nlogn [17, 1939], and p, > n(logn + loglogn — 1) [4, 1999] both for
n > 2 (with partial results given in [18], [15], [11], [4]). In [5] it is also
proved that

loglog n — 2
w), n > 688 383.

Pn < n(logn+loglogn— 1+
logn

1.2. Organization of the paper. In this paper we present a new deriva-
tion of the asymptotic expansion for p,, and obtain explicit bounds for the
error.

First, it must be said that the asymptotic expansion has, in a certain
sense, nothing to do with prime numbers: it is an asymptotic expansion
of ali(x) := li'z which is the inverse of the usual logarithmic integral
function.

In Section 3 a proof of the existence of the expansion is given, following
the path of Cesaro, since it cannot be found elsewhere, although it is fre-
quently claimed it can be done. This Section is not needed in the rest of
the paper.

In Section 4, a new formal derivation of the expansion is given. We obtain
a new algorithm to compute the polynomials (Theorem 4.7). This is simpler
than that given by Salvy [19]. Our algorithm allows all the polynomials up
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to the n-th one to be computed in O(n?) coefficient operations (Theorem
4.9). It must be said that these polynomials have O(n?) coefficients.

In Section 5, independently of Section 3, we prove that the formal ex-
pansion given in Section 4 is in fact the asymptotic expansion of ali(x) and
gives realistic bounds on the error (Theorem 5.2 and 5.3).

In Section 6, the results are applied to p,, the n-th prime. Using the results
of de la Vallée Poussin it can be shown that the asymptotic expansion of
ali(n) is also an asymptotic expansion for p,.

By assuming the Riemann Hypothesis, we found (Theorem 6.1) that

1
Ipp —ali(n)| < —vn(logn)2,  n>11.
s

This bound of p,, is better than all the bounds cited above.
We end the paper by motivating why the above bounds have not been
extended to further terms of the asymptotic expansion (Theorem 6.2).

Notations: With a certain hesitation we have introduced the notation
ali(x) to denote the inverse function of li(x).

In Section 5, where explicit bounds are sought, it has been useful to
denote by 6 a real or complex number of absolute value |6| < 1, which will
not always be the same, and depends on all parameters or variables in the
corresponding equation.

ACKNOWLEDGEMENT: The authors would like to thank Jan van de Lune
( Hallum, The Netherlands ) for his linguistic assistance in preparing the
paper, and his interest in our results.

2. The inverse function of the logarithmic integral.

Usually li(x) is defined for real x as the principal value of the integral
) Tt
li(z) :P.V./ —.
o logt
It may be extended to an analytic function over the region 2 = C~ (—o0, 1],
which is the complex plane with a cut along the real axis x < 1. The main

branch of the logarithm is defined in €2 and does not vanish there. Therefore,
li(z) may be defined in Q by

o ¢ dt
(2.1) 11(2)_11(2)+/2 b €9

where we integrate, for example, along the segment from 2 to z.

For real x > 1, the function li(x) is increasing and maps the inter-
val (1,400) onto (—oo,+00), so that we may define the inverse function
ali: R — (1,400) by

(2.2) li(ali(x)) = «.
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The function li(x) is analytic on €2, so that ali(x) is real analytic. It is clear
that we have the following rules of differentiation

d 1 d
2. —1 —al log ali(x).
(23) i@ = i) = logali(x)

It is well known that the function li(x) has an asymptotic expansion:

Theorem 2.1. For each integer N > 0

x N
(2.4)  li(z) = 1+
k

log T —1 ]ogk x

O<logN1+1:c>) (z — +00).

This may be proved by repeated integration by parts (see [12, p. 190
192]).

3. Asymptotic expansion of ali(x).
In this section, we prove the following

Theorem 3.1. For each integer N > 0

(1) M),y +i Faalloge) | gyl

N+1
Te n rN+1 )’

(x — 400)

n=1

where the P,_1(z) are polynomials of degree < n.

In the case of N = 0 the sum must be understood as equal to 0.
The theorem says that, for each NV, there exists an zy > 1 and a constant
C'y such that

‘ali(e“’”) o EN: Pn,l(logx)’ - C,NlogNJrl T

re® rn W’ (:C > xN)'

n=1

In the course of the proof we will make repeated use of the following
Lemma 3.1. Let f(x) be a function defined on a neighbourhood of x = 0
such that
(3.2) f(@) =az+ - +ayz™ + 0N, (x —0)
where the ay are given constants. Assume that g(x) satisfies
N+1

(x — +00)

N pn(log x) log
(3.3) g(z) = Z T (W)v

where the py(z) are polynomials of degree < n. Then there exist polynomials
qr(z) of degree < k such that

qx(log x) log
(3.4) Zk ($M1

N+1$

), (== +o0).
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Proof. It is clear that, for each 1 < n < N we have p,(logz)z™" =
O((log z/x)™). Therefore, g(z) = O(log z/z) (this is true even when N = 0
and there is no py,). It follows that lim,_,;~ g(x) = 0 and by substitution
in (3.2), we obtain

N ogN+1
(3.5) flg(@) =Y ang(z)" + O(liw)
n=1

By expanding the powers g(x)™ by (3.3) it is easy to obtain an expression
of the form

= Po(log z) log"*! &
(36)  gla)" =) FESET O(W> (z = +00)
k=1
where each p, ;(2) is a polynomial of degree < k. By substituting these
values in equation (3.5) and collecting terms with the same power of z,
(3.4) is obtained. 0O

We will prove Theorem 3.1 by induction. The following theorem yields
the first step of this induction.

Theorem 3.2.

ali(x loglog x
(3.7) )y o(lsleery
zlogx log x

(x = 400).

Proof. From (2.4) with N = 0 we have li(y)% = 14 0(log ! y) for y — occ.
Since lim,_, 4o ali(z) = 400 we may substitute y = ali(z) and obtain

rlogali(z)

(3.8) ali(z) (m>

By taking logarithms

1
log x — logali(x) + loglogali(z) = (’)(7>

log ali(z)
we obtain
log = log log ali(x)

3.9 = h— =Rt~ Rl S

(39) log ali(x) ( log ali(x) )

and it follows that

1
(3.10) lim 2% 1

z—+o0 log ali(x)
By taking log in (3.9)

log log ali(x) )

loglog x — loglogali(z) = (’)( logali(z)



The n-th prime asymptotically 527

we obtain
loglog x 1
_ 607 40—
log log ali(x) + (log ali(x) )
so that
log1
(3.11) lim —82%8% 4

z—+oo log log ali(x)
In view of (3.10) and (3.11), we may write (3.8) and (3.9) in the form

log ali 1 1 logl
(3.12) “losalit@) o( 1), lmr . p(lelen
ali(z) log x log ali(x) log x
and by multiplying these two, we obtain
zlogx log log x
=1+0o(—=—22
ali(z) + ( log x )
from which (3.7) can easily be deduced. O

Proof of Theorem 3.1. We proceed by induction. For N = 0, our theorem
is simply Theorem 3.2 with e” instead of z.
Hence we assume (3.1) and try to prove the case N + 1.
Our objective will be obtained by starting from the expansion of li(y).
By (2.4)
N+1

lity) = ——(1+ Y

! 1
ogr (22 gty * ligrm,))

By substituting y = ali(em ) and applying (3.10) we obtain
N+1 k! 1

e’ log ali(e
1 — =1 o .
(3:13) 5111(633 + Z (log ali(e P <xN+2 )

From our induction hypothesis, the expansion of the functions logali(x)
and (logali(x))™* is now sought.
By taking the log of (3.1) we obtain

ey P,_1(log ) logN*1 g
logali(e”) = + logx + log{l + zzl BT + O(W>}
n=
Lemma 3.1 may be applied with
X X3

XN
log(l+X)=X -2 42 (V2 4

o XNJrl
2 3 N ( )

to obtain

o Quii(logz)  log
logali(em):x—klog:c—kz +(9(

N+1 .
n rN+1 )

n=1
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The reason why we have written @41 instead of @, (x) is revealed below.
The above may be written as

N+1
logali(e®) = z{l + — logaz Z W +o<loi]\f7+2x)}
or

Nl o, logN+2
(3.14) logali(e®) = x{l 4 nz::l Q (x(;g@ i (’)( O§N+2 )}

where the @, (z) are polynomials of degree < n. Observe that knowing the

expansion of ali(e®) up to (logz/x)V*! has enabled us to obtain log ali(e®)

up to (logz/2)N+2; this will be of great importance in what follows.
From (3.14), for all natural numbers n,

1 1 ) NHQk(log:L') o logV 2 2\ y—n
logai@y ~ w0t X o))

By applying Lemma 3.1 with

NAL /o
(I+z)"—-1= Z ( . >:L‘T+O(x_N_2)

r=1
we obtain
1 1 v, k(log z) logV*2 &
3.15 - (1 MG R Ao e —
(3.15) {log ali(e®)}™ x”< * kz::l zk * ( zN+2 >>
where the V}, () are polynomials of degree < k.
By substituting these values of {logali(e”)}~" in (3.13), we obtain
e* log ali(e” ! Uk (log @ log™V+2
g- ():1+Z k(kg)+o( gN2)'
ali(e®) = o N+

Hence again from (3.15) with n =1

e’ 1 ! V1 x(log z) logV*2 2
ali(e®) 5{1 * kgl xk + O( xN+2 )}X
! Uy (log z) logV 2 2
><{1+kz_:l 4 0(— )}

from which we derive that there exist polynomials Wy(z) of degree < k

such that
N4+1

—1+Z Wi logac o(log

N+2 x)
N+2 )

ah



The n-th prime asymptotically 529

Another application of Lemma 3.1 yields

ali(e Tlox logV+2
—1+Z k( 2+ o(2

)

with polynomials T (z) of degree < k. Therefore, we have an asymptotic
expansion of type (3.1) with N + 1 instead of N. The usual argument of
uniqueness of the asymptotic expansion applies here so that Tj(z) = Px(2)
for 1<k < N. O

4. Formal Asymptotic expansion.

First we give some motivation. We have seen that the asymptotic expan-
sion of ali(e”) is

ali(e”) = xe*V(z,logz), where V(z,y):=1+ Z n;nlm(y)

and differentiation yields
e’ logali(e”) = (e” + xe”)V + xe™V, + €V,
Here logali(e®) = log(ze*V (z,logz)) =y + x + log V, so that
y+x+logV=V+zV+aV,+V,

which we write as
1
(4.1) V:1+%—;V—Vx —V+ logV

This ends our motivation for considering this equatlon.
Consider now the ring A of the formal power series of the type

A

n
n=0 x

where the ¢,(y) are polynomials with complex coefficients of degree less
than or equal to n. In particular go(y) is a constant.

It is clear that A, with the obvious operations, is a ring. The elements
with ¢ = 0 form a maximal ideal I. An element 1 + u with ¢o = 1 is
invertible, with inverse 1 — u + u? — - - -. It follows that if @ & I, then a is
also invertible. Hence I is the unique maximal ideal and A is a local ring. If
a € A is a non-vanishing element, then there exists a least natural number
n with ¢, (y) # 0. We define deg(a) = n in this case, with deg(0) = oc.

As is usual in local rings, (see [8]) we may define a topology induced
by the norm ||a| = 2~ 9(®) which, with the associated metric, induces a
complete metric space. Indeed A is isomorphic to C[[X, Y]], by means of
the application that sends X — 271 Y s ya~!
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Given a € A with a =300 q’;(ﬁy), we define two derivates
[e) o0 /
_ n4n(y) _ N W)
ax——z po] d ay,= gt
n=1 n=1

Finally the set U C A of elements with gg = 1 form a multiplicative
subgroup of A* (the group of invertible elements of A). For 1 +u € U, we
define

) k
u
log(1 4+ u) = —1)k =
g(l+u)=> (=1
k=1
which is a series that is easily shown to converge since u* € I*.
We are now ready to prove the following

Theorem 4.1. The equation (4.1) has one and only one solution in the
ring A.

Proof. For V € U, we define T'(V) as

1 1 1
T(V) =1+ -2V -V, — =V, + ~log V.
T x x
It is clear that T(V) € U. We may apply Banach’s fixed-point theorem.
Indeed, we have deg(T'(V) — T(W)) < 1+ deg(V — W), so that || T(V) —
TW)I| < 5V = WIl.

By Banach’s theorem there is a unique solution to V. = T(V). We
may obtain this solution as the limit of the sequence 7 (1). In fact, since
deg(T(V)—T(W)) < 1+deg(V — W), in each iteration we obtain one fur-
ther term of the expansion. In this way, it is easy to prove that the solution
is

-1 -2
v=1+
x x
However, we are going to find more direct methods to compute the terms
of the expansion. O

Definition. Let V' be the unique solution to equation (4.1). Since it is in
A, it has the form

(4.2) Vi =143 1) ”;jfy)
n=1

where for n > 0, P,_1(y) is a polynomial of degree < n.

In the following sections, we prove that V' yields the asymptotic expan-
sion of ali(e”). For this proof the following property is crucial.

Theorem 4.2. For N > 1, let

N
(4.3) W(z,y) = Wn(z,y) =1+ Z Pn;i(y)

k=1
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Then
(4.4)

1 1 1 P
wot1-Y twawa g tw, - Liogw = - N(y) | wly) | v()
x x €T T

+ + o+
N+1 rN+2 N+3

Proof. By the definition of the P, we know that deg(V — W) > N + 1.
Therefore, deg(V — T(W)) > N + 2. That is

uo(y) | vo(y)

V—-T(W)= ZN+2 +xN+3 T
where ug, vg are polynomials. We also have
o0
Pnfl(y)
vews 3 I
n=N-+1
so that
_uo(y) | vo(y) — Pn1
W-T(W) = o N+2 + o N+3 + - Z o
n=N+1
That is,
Py(y) | uly) | v(y)
W—=T(W)= - T N+1 + T N+2 + o N+3 -
for certain polynomials u, v, ... O

In the sequel V' will denote the unique solution to (4.1). The element
log V' belongs to A, so that there are polynomials @y, (y) of degree less than
or equal to n such that

(4.5) logV = i Q;Sy)
n=1

From equation (4.1), we may obtain log V' in terms of V' and its derivatives.
It is easy to obtain from this expression the following relation

(4.6) Qn(y) =Pu(y) — (n = 1)Poa(y) + Poa(y), (n>1).

Theorem 4.3. The polynomials P,(y) that appear in the unique solution
(4.2) to equation (4.1) may be computed by the following recurrence rela-
tions:

Pozy—l and forn > 1

47)
( P,=nP,1—P,_+— Zk‘{ — )Py — Py — P} Po_j1.

Proof. By differentiating (4.5) with respect to x, we obtain

(") (1 3 Py < 3 mie )

n=1 n=1
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By equating the coefficients of z7"!, we obtain

n—1

(4.8) nP,_1 =nQy + Z kQwPr—k—1, (n>2).
k=1

Now we substitute the values of the @, given in (4.6)
nP,—1 =nP, —n(n—-1)P,_1+nP, |+ Z kQrPn_ k1
so that
nP, =n*P,_1 —nP,_, Zk{Pk— k—1)Po1+ Py} Pog1

O

From this expression it is very easy to compute the first terms of the
expansions

y—1+y—2 y2—6y—|—11+2y3—21y2+84y—131

x 2 2m3 624
_3 — 46y3 + 294y —954y+1333
122 ’
-1 2 4y+5 23— 15y% + 42y — 47
1Ogvzy Y y+ L Yy~ + 42y B
T 212 63
3yt — 3413 4 156y% — 366y + 379
- +
1224

Theorem 4.4. We have

(a) Forn > 1, the degree of P, is less than or equal to n.
(b) n! P,(y) has integer coefficients.

Proof. The equation (4.1) may be written

ve1-Y— Yogv—v_av, - vy,

x T

Since xV, € A, it is clear that

xV—x—y——l—l—Z )EA.

n=1

This implies that the degree of P, is less than or equal to n.
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We prove (b) by induction. The first few P, satisfy this property. We
define py, := k! P so that the recurrence relation (4.7) may be written as

Pn=n"pn_1—np,_1+
n—1 n—2
+(n-1)) (k B 1) {k(k = Dpr—1 — pr. — kpj_1}Pn—r—1-
k=1
Hence, by induction, all p,, have integer coefficients. O

The most significant contribution by Cipolla is his proof of a recurrence
for the coefficients a,, ;, of P, (see (4.11)), which is better than the recur-
rence given in (4.7). We intend to give a slightly different proof. The result
of Cipolla is equivalent to the following surprising fact: The solution V
of equation (4.1) formally satisfies the following linear partial differential
equation:

(4.9) V=(x-1)V,—2aV,.
This equation can easily be deduced from the following Theorem.

Theorem 4.5. For n > 1, we have

(n—=1)Po1(y) = P,1(y) = Py(y), (n>1)
(n=1)Qn1(y) =Qn_1(y) —Qn(y),  (n>2).

Proof. We will proceed by induction. For n < 3 it can be verified that these
equalities are satisfied.

We now assume that (4.10) is satisfied for n < N, and we will show that
these equations are true for n = N + 1.

By differentiating (4.5) with respect to y we get

(i Qiiy)) (1 . i::l Pn;i(y)) _ i Péxil(y)

(4.10)

so that by equating the coefficients of z=N~! and of 2™ we obtain

N-1 N—2
Qni1 =Py — > PQy_p Qv=Py_1— > PQy_j 1.
k=0 k=0

Subtracting these equations we get

N-2
Q/N-i-l - Q/N = PJ/V - P]/V—l - Z Pk(QEV—k - Q/N—k—l) — Py
k=0
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and by the induction hypothesis this is equal to

N-2
~(N=1)Py_1+ > P (N—k—=1)Qn_k-1— Py_1=
k=0
N—-1
= —NPy_1+ Y kQpPn_i1.
k=1

By (4.8) this is equal to NPy_; — NQy so that we obtain

Qni1— Qy=—-NQn.
This is the second equation of (4.10) for n = N + 1. In order to achieve the
result for the first equation, observe that from (4.6) we get

NQny =NPy —N(N —-1)Py_1+ NPy_,
~Qn=—-Py+(N-1)Py_ — Py,
QIN—H :PJ/\T—H —NP]’V—i—P]'\',.
By adding these equations we obtain
0= NPy~ Py + Py, + N{Py_, — Py — (N — )Py}~
~{PN_1— Py — (N -1)Py_y} = NPy — Py + Py 4
which is the first equation of (4.10) for n = N + 1. O
We define the coefficients a,, , implicitly by

(_1>n+1 1
(4.11) P,(y) = T(amoyn — a1yt (_1)nan7n) =
(_1)n+1 & k n—k
:7‘2(—1) an kY ) (n>1).
nl =
Analogously, @, is of a degree less than or equal to n, and we define the
coefficients by, ,, implicitly by
-1 n+l N B
S Wby, (21,
k=0

@12)  Qu)= "2
Remark 4.1. Py(y) has degree 1, which is not given by (4.11). However,
we can extend the definition of a(n, k) in such a way that, for n > 1 we
have a(n,k) = 0 for k < 0 or k > n. Then a formula such as (4.11) also
holds for n = 0 if we add up the values from & = —1 to £ = n and define
a(0,0) =1, a(0,—1) = 1 and a(0, k) = 0 for other values of k
()" & k n—k S
S (<DFangy™, (0> 0)
k=—1

Note that Qo(y) remains undefined.

(30 bis) Paly) =2
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Theorem 4.6. For 1 <n and 0 < k < n, we have (when defined)
(4.13)
n(n—1 n(n—1
ap ke = Np_1 k-1 gan—l,ka bk =nby_1 -1+ gbn—l,k-
n—k n—k

For1<n and 0 <k <n, we have
(4.14) Qnk = bn’k + (n —k+ 1)an7k_1.

Forn > 1, we have

n—1
n—1
(415) bn,n =N0ap—1n-1+ § ( k > k bk,k Qp—k—1n—k—1-
k=1

Proof. (4.13) is obtained by equating the coefficients of 4™ *~1 in the first
equation in (4.10). In this way, we obtain

(_1)n+k

(n— 1)m%—1,k =

(_1)n+k+1

=(n=k) (n—1)!

Ap—1k—1— (n—k)
If n # k, then the equation for a,, ;, in (4.13) is obtained. The other equation
in by, j; is obtained analogously from the second equation in (4.10).

To prove (4.14), observe that by (4.6), @, = P, — (n —1)P,—1 + P,_,,
and from (4.10) it follows that

(4.16) Qu="Pu+ P, (nz1).

Now by equating the coefficient of y™* in both members of this equality
we obtain (4.14).

Finally (4.15) follows from (4.8). Recall that —“* and —b*;b—’f are respec-
tively the values of P,(0), and @,(0). Hence, by setting y = 0 in (4.8), we
obtain (4.15) through multiplication by (n — 1)! and the reordering of the

terms. O

The main problem now is that equations (4.13) do not allow us to com-
pute the coefficients a,, ,,. Cipolla gives an algorithm to simultaneously com-
pute the coefficients a,, ; and b, based on Theorem 4.6. In the procedure
of Cipolla, these key coefficients a,, ,, are recursively computed using all the
previous coefficients. We prefer a method that computes A, := a,, and
B, := ann—1 separately and then compute the remaining coefficients by
using (4.13).
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Theorem 4.7. In order to compute the numbers a,, i, we may first compute
the sequences Ay, = ann and By := app—1 by the recursions

(4.17) Ag=1, A1 =2, By=1, By=1,

(4.18) B, =nBp_1+n(n—1)A,

(4.19) A, =n*A, 1 +nB,_1—

n—1

—2

—(n—1)) (Z B 1) {k(k— 1) Ap_1 — A+ kBir_1} Ap_p1.
k=1

After this one we may obtain a(n, k) := an . Setting
a(0,0) =1, a(0,-1)=1, a(1,0)=1, a(l,1)=2
and all other a(0,k) and a(1,k) = 0. Then, for n > 2, put

a(nv n) = Anv

(420)  a(n.k) = na(n— 1,k —1) + "=

where a(n, k) =0 for k <0 or k > n.
Finally, we may obtain the b(n, k) := by, ) from

(4.21) b(n,k) =a(n,k) — (n—k+1)a(n,k—1).

Proof. The constant term of P, is —% and the coefficient of y in P, is %,

so that equation (4.18) follows from the first equation in (4.10) taking it
with y = 0.

In the same way, (4.19) follows from (4.7), and (4.20) is the first equation
in (4.13).

Equation (4.21) for the b(n, k) follows easily from (4.16). O

The array of coefficients a(n, k) for 0 < n,k <7, reads

1 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0

1 6 11 0 0 0 0 0

2 21 84 131 0 0 0 0

6 92 588 1908 2666 0 0 0
24 490 4380 22020 62860 81534 0 0
120 3084 35790 246480 1075020 2823180 3478014 0
720 22428 322224 2838570 16775640 66811920 165838848 196993194

and the b(n,k) for 1 <n <7and 0 <k <7 are
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1 1 0 0 0 0 0 0

1 4 5 0 0 0 0 0

2 15 42 47 0 0 0 0

6 68 312 732 758 0 0 0
24 370 2420 8880 18820 18674 0 0
120 2364 20370 103320 335580 673140 654834 0
720 17388 187656 1227450 5421360 16485000 32215008 31154346

Theorem 4.8. (a) The coefficients b(n, k) are integers.
(b) a(n,k) >0 and b(n,k) > 0.
(¢) a(n,k—1) <a(n,k) for1 <k <mn.
(d) Forn>1, a(n,0) = (n—1)L

Proof. (a) We have proved in Theorem 4.4 that the numbers a(n, k) are
integers, so that from (4.21), the coefficients b(n, k) are also integers.

(b) We proceed by induction on n. Assuming that we have proved that
a(m, k) and b(m, k) are positive for m < n, it follows from (4.13) that
a(n, k) and b(n, k) are positive for 0 < k < n. Then (4.15) implies that

b(n,n) > 0, and (4.14) with & = n proves that a(n,n) > 0.
(c) This is a simple consequence of (4.14).
(d) The equation follows from (4.20) by induction. O

Theorem 4.9. By means of the rule in Theorem 4.7, one may compute
all coefficients any of the polynomials Py(y) for 1 < n < N in O(N?)
coefficient operations.

Proof. We count the operations needed, following the indications in Theo-

rem 4.7, to compute every a,  for 0 <n < N and 0 < k < n.

First we must compute the numbers (T) for 0 < m < N — 2. Using the
scheme of the usual triangle, we need to carry out Z]kvz_f’ k additions, which
involves (N — 2)(N — 3)/2 operations.

The numbers B,, must now be computed for 2 < n < N by means of the
formula

B,=n%(Bp_1+(n—1)%Ap_1).
Each B,, requires 4 operations, therefore a total of 4(N — 1) operations are
needed. We compute the A, for 2 <n < N using the formula

Apn=nsnxAp_1+nxB,_1—(n—1)x

-2
*Z( 1)*{k*(kz—l)*Ak_l—Ak—i—k*Bk_l}*An_k_l.

Hence A,, requires 7 + ZZ;% 8 = 8n — 1 operations. All A,, together take
5:2 (8n—1) = 4N? +3N — 7 operations. These numbers are the an,n- The
ap and aq j require no operations. Finally we compute for 0 < k <n

ang =n*{an_14-1+ n—1)xa,_1/(n—k)}.
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Therefore, a,, ;, takes 6 operations. For each n, every a,, , for 1 < k < n takes
6(n — 1) operations. And each a,, ) for 2 < n < N takes S0 ,6(n — 1) =
3N(N —1).

The total cost in number of operations is therefore

(N = 2)(N - 3)
2

+4(N —1) +4N? + 3N — 7T+ 3N(N — 1) =
1 2
= 5(I15N? + 3N — 16).

g

5. Bounds for the asymptotic expansion.

5.1. The sequence (a,). First we define a sequence of numbers as the
coeflicients of a formal expansion in A.

Lemma 5.1. There exists a sequence of integers (a,) such that

(5.1) log (1 - Z;ln) - Z%;n-
n=1

The coefficients may be computed by the recursion

n—1

(5.2) a; =1, an:n!-n—l—Zk!an,k.

Proof. Tt is clear that w = 1 — Y.nla™™ € U C A, so that v~! € U and
logu~! are well defined. To obtain the recursion we differentiate (5.1) to

obtain
> an > nl
- Z xn—&-l = (nz_:l xn+1>(1 _;xn)

Equation (5.2) is obtained by equating the coefficients of 27"~1. The re-
currence (5.2) proves that a, is a natural number for each n > 1. U

The first terms of the sequence (ay,)S2 ; are
1,5,25,137,841,5825,45529, 399713, 3911785, 42302225, . ..
Lemma 5.2. For each natural number n we have
(5-3) an < 2n - nl.

Proof. We may verify this property for ay, as, ag and a4 directly. For n > 4
we proceed by induction. Assume the inequality for a; with k < n, so that
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_ -1
an Ap—k n—=kn
1< <1 <
“nl-n T +Z(n—k)!-(n—k) n <k:> -
1 =2\ 11 P

<14+2(— — 1 <1+2(—+ — —3)— .

<1+ <n+k22<k:> + ) <1+2(C 4+ (n )n(n—l))
For n > 4, it is easy to see that this is < 2. O

Lemma 5.3. For each natural number N there is a positive constant cy
such that

N ol
(5.4) (1= 2) =1 a>en
Proof. 1t is clear that the left-hand side of (5.4) is increasing and tends to

400 when z — 400, from which the existence of ¢y is clear.
The value of ¢y may be determined as the solution of the equation

Nl
(5.5) x(l n; 3:”> =1, z>1.
In this way we found the following values.
C1 2 Ce 4.15213 C11 5.61664 C20 8.70335
co | 2.73205 || c7 | 4.43119 || ¢12 | 5.93649 || c30 | 12.34925
cs | 3.20701 || cg | 4.71412 || c13 | 6.26449 || cq0 | 16.03475 O

ca | 3.56383 || co | 5.00517 || c14 | 6.59947 || c50 | 19.72833
cs | 3.86841 || c10 | 5.30597 || c15 | 6.94035 || ceo | 23.42351

Remark 5.1. Notice that for z > ¢y the sum in (5.4) is positive and less
than 1.

Proposition 5.1. For each natural number N there exists dy > 0 such
that, for x € C with |x| > dn, there exists 0 with |0] <1 such that

Mot Qa1 1
n! _ an 1 aN+1
(5.6) log(1-3 ) _;nanrHNHxNH’ 2| > d.

n=1

Proof. By comparing the expansions (5.1) and

Noply -1 N g 1 > b, 1
(5.7) 1og(1—2x7) —y oy

n=1 n=1 n=N-+1

it is clear that l}{,\’_ﬁ +(N+ 1) = ?\J,V_:ll, so that by < ani1-
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The above expansion is convergent for all sufficiently large |z|, so that

i by 1
n - gn(z

N+1
N1 n " N+1x

where lim,_, gn(2) = 1. Hence there exist sufficiently large dy such that

bny19n ()] < a1, |z| > dn-.

This ends the proof of the existence of dy.
We have

N _ N N+1
og(1- 3 55) = X o) T =

(N+1) & b, 1

O R

Since all a,, and b,, are positive, this is a decreasing function for x — +oo,
and the lowest value of dy will be the unique solution of

Vo1 Qlan 1\ (V4 1)z

We obtain the following table of values

dy | 1.03922 || dg | 4.54145 || d11 | 5.73661 || dop | 8.73298
do | 2.38568 || d7 | 4.75734 || d12 | 6.03061 || d3g | 12.37349
ds | 3.33232 || dg | 4.97336 || d13 | 6.33969 || dso | 16.05983 g
dq | 3.92171 || dg | 5.20626 || d14 | 6.66091 || dsp | 19.75448
ds | 4.28707 || dio | 5.46090 || dq5 | 6.99175 || deo | 23.45053

Remark 5.2. The numbers dy in Lemma 5.1 are very similar to the num-
bers ¢y of Lemma 5.3. This is no more than an experimental observation,
but since the ¢y numbers are easy to compute and dy are somewhat elu-
sive, it has been useful to start from ¢y as an approximation to dy in order
to compute dy.

5.2. Some inequalities.

Lemma 5.4. For u > 2 we have logali(u) < 2logu. For u > e we have
ali(u) < 2ulogu.

Proof. The first inequality is equivalent to ali(u) < u2. Since li(z) is strictly
increasing, the inequality is equivalent to u < li(u?).
For u > 2 we have li(u) > 1i(2) = 1.04516. .. so that

. . u? gt u?—u
h(ug) = h(u) +/ @ > 1+ log u2 .
u
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fggg_uqé > u — 1, that is from u > 2logu.
However, this last inequality is certainly true for u > 2.

The second inequality is equivalent to u < li(2ulogu) and has a similar

Hence, our inequality follows from

easy proof. O
Lemma 5.5. For all integers n > 1 we have

t (loglogt)™ log 1 "
(5.8) / Uoglog )",y doslogu)” = 5 o)

efn log" ™t log"™ u

where f, =4(n+1)/3.

Proof. Notice that f,, > 1. For t > e the function loglogt is positive and
increasing so that

v (loglogt)™ uodt
~——= =2 dt < (loglo u”/ _—
/efn 10gn+1 t - ( g g ) efn logn+1 t
It remains to be shown that
u dt 4y
< , u > eln).
/efn log" ™t ~ log" ™l u (wze™)

Replacing u by e® this is equivalent to

z el 4e”
/ntnﬂdtﬁxnﬂa (x> fn)

4x T t
G(x) = ¢ —/ °

For the function

pn+1 Fa tn+1
we have . i N
’ e n -+
G@)= —m(4-———-1)
so that for z > 4(n + 1)/3 we obtain G'(z) > 0. Since G(f,) > 0 we have
G(x) >0 for all > f,. O

Theorem 5.1. The polynomials P, (y) defined in (4.2) satisy the inequal-
ities

(5.9) P <3-nly", y>2 n>1

and |Py(y)| <y fory > 2.

Proof. Since Py(y) = y — 1, the second assertion is trivial.
Given r > 0, for each polynomial P(z) = fozo an,x" we define
N

1Pl = lanlr".

n=0

It is easy to show that
IP+QI<[PI+lell, PQI<IPI-[l
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and that for the derivative of a polynomial of degree < N

N N

_ N N
1Pl = 3" nlaal™™ < = 3 fanl™ = 1P

n=0 n=0

For y > r we have the inequality

|—\Zany ]< lanly" <Z|an|r (y/r)" < (w/m)N|1P].

Hence, our Theorem follows if it can be shown that for n > 1 we have
| Pn]| <3-2"n! (for r =2).

Define S,, := ||P,||. By (4.11) we have S, = —P,(—2), and it can be
shown that S,, < 3-2"n! for 0 <n < 15.

For n > 15 it follows from (4.7) and the aforementioned properties of
| P|| that

n—1

1 k
S < MSpot + 5 Sno1 + kzlk< — 1Skt + St + 551 ) Snotet.

It follows that S,, < T}, where T,, := S, < 3-3"n! for 0 <n < 15, and that
forn > 15

3n

Toi= S To1 42 Z(k:Tk+

k(3k — 2)

5 Tk—1>Tn—k;—1-

Now we proceed by induction. For n > 15 and assuming that we have
proved T}, < 3- 2% k! for k < n, we obtain

9
T, < 7”2"—1(71 S

9= k k(3k —2) 14 —k—1
— 2"kl 4+ ——— 292 — 12" — k-1
+nk2::1(k Kl = (k—1)!) (n—k—1)
Hence
T, 3 3n! kE-kl(n—k—1) (Bk—-2)kl(n—k—1)!
242 <
3- 2"n‘ 4 nz( 2.-n! + 8- nl! )_
3 7k:—2 3 3(7n— 27k — 2
<> 4 SRS —.
— 4 4 8n? nQZ )
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Therefore, by using the symmetry of the combinatorial numbers, we obtain

T, 3 3(Tn— 7n — 11
< —
3-2nn! ~ 4 + 8n2 16n2 Z )
3 3(m—9) 3 Tn —11
< = . -2 <
S1T T e oz WD S
3 3(n—9) 3 n(4n — 63) + 87
— (Tm—11)=1-— 1
1t s Tige (Mo 1612 <
for n > 15. Il
Corollary 5.1. We have
(5.10) |Pr—1(y)] < nly™, n>1, y>2.
Proof. This follows easily from the above Theorem. O

5.3. Main inequalities. To simplify our formulae we introduce some no-
tation. First we set r,, := 3 - n! so that, for n > 1, we have |P,(y)| < rpy"
when y > 2.

Let ¢, and d,, be the constants introduced in Lemma 5.3 and Proposition
5.1. Let a,, be equal to max(e, ¢,,d,) and let 5, > e be the solution of the
equation

T

5.11 = ..
( ) log an

(The function @ is increasing for t > e).
Finally, define x,, := max(3,, fn,e?), where f,, is defined in Lemma 5.5.

Proposition 5.2. Let x be a real number such that x > x,, and set y :=
logxz. Then

y =2, T 2 cny, T 2 dny, T2 fn.

Proof. Since x > x, = max(By, fn, €%) we have x > €2, so that y = logz >
2.
We also have x > (3,, > e. Since @ is an increasing function for ¢t > e we

obtain 1o§x > 102% = oy, = max(e, ¢y, dy). Therefore, % > ¢, and % >d,
as required. O

We insert a table of the constants z,,.

1 | 7.38906 || we | 10.81135 || z11 | 16.00000 || 220 | 29.57923
T2 | 7.38906 || x7 | 11.70187 || x12 | 17.33333 || z30 | 47.86556
3 | 7.38906 || =g | 12.60164 || x13 | 18.66667 || x40 | 67.69154
g | 8.29874 || xg | 13.58167 || 14 | 20.00000 || x50 | 88.57644
5 | 9.77283 || 10 | 14.66667 || x15 | 21.42740 || xep | 110.29065
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For each natural number N we set

(5.12) Wy =1+ Z Fo l(y)

n=1

and frequently we write W := Wy when N is fixed.

Proposition 5.3. For N > 1 let W = Wy (as in (5.12)). Then forz > zy
and y = log x there exists 6 with |0] < 1 such that
N
(5.13) WA aW 4 aW, + Wy —z —y—logW =0 -y 2.
x

Proof. Denote by T' = T'(x,y) the value of W +a2W +aW, + W, -z —y —
log W. Then we have

N N N /
Pn—1<y) nPn—l(y) n—l(y)
T:(1+$)Z%T—ZIT+ZIT—

N _
—x—y+log(1+ZW) 1.
n=1

From (4.5) we have the expansion

(5.14) log(1+ Z L) =- Z Q”

From Proposition 5.2 we know that y = logm > 2 and ¢ > ydy. From
(5.10), for y > 2, we have |P,_1(y)| < nly" so that we have the majorant

(515)  log(1+ ivj Pn;(y))_l < log(1 - % (:c7;)”>_1
n=1 =t

1

(by considering this expression as a power series in z~
eter). From (5.14) and (5.15), we obtain

N
(5.16) log(1+ > P’;iy ) = Z Q” (z,y)
n=1

where Sy (z,y) is a power series majorlzed by the Taylor expansion of

, and y as a param-

loe (1 N -1 N a, 1
s -X anr) T X

(compare equation (5.7)).
By applying Proposition 5.1 we deduce that, for z > ydy, there exists 0
with |0] <1 and

N+1

__ ,aN+1 Y
(5.17) Sn(z,y) _0N+1mN+1'
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If we substitute (5.16) in the expression for T', then by Theorem 4.2, all
the terms in 2™ with n < N cancel out, and the terms in 2=V add up to
— Py (y)z=N. Tt follows that

Pn(y
(5.18) T=- ]E,)—l—SN(x,y).
Therefore, since y > 2, we have
N N+1
Yy aN+1 Y

Tlsrvimw + N

so that from (5.3) ,
yN log x 3-(N+1D)lyN yN

where N > 1 and % + 210% < 3 for x > e? are applied. O

Proposition 5.4. For each natural number N let uy = e*. Then there
exists vy > un such that

. u(loglog u)™v
(5.19)  li(fn(u)) —u=0-13(N +1)! %, (> vy)
where |0] <1 and
z n—1(log )
(5.20) In(e®) == xe" Wi (x,logx) = ze (1 + nZ:l xi)

Proof. To simplify the notation, the abbreviation W(x,y) = Wx(z,y) is
used. Differentiating (5.20) we obtain

(il () — %) =

B 1
 log(fn(e”))

Assume that « > zy, so that © > dylogz and = > €. We may apply
(5.13) to obtain

{€$W + ze™W + xe” (WI + éWy)} —e”.

d e’
—(li ) —e€")= ——F——— W+ W, —e¥ =
(/v (") — ") log(fN(ex)){W+x +aW, + Wy} —e
e’ log T
= 1 logW + 6 .
log(fN(efC)){x+ ogr + logW + 0rn41 } e
This may be simplified to
d .. z " e’ T logN z
— (li(/n(e) — ") = O

log(fn(e")) N
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Since x > xny we have x > ycn, so that by Lemma 5.3
|

N P,_1(logx Nl
(10 3 PED) [ 2a(1- 3 a2

n=1
that is Wy (z,logz) > 1, so that log(fn(e®)) > z. Hence, for x > zn
(with another ), we have

d . x x TN+1 IOng T
2 Wil (e)) =€) = 0 57—

Defining Hy (u) := li(fn(u)) — u the above equation is equivalent to

ryy1 logh @

H]/V(ew) =0 o N+1 ) (l’ > xN)
and, since uy := €'V,
ry+1 (loglogu)™
Hy(u) =10 , U > UN).
N( ) 10gN+1u ( = N)

Lemma 5.5 can be applied since zy > fy, so that u > uy > e/~¥. Hence,
integrating over the interval (uy,u) we get

4741 u(loglogu)NY

HN(U):HN(UN)+9 N+1u y

(u>upn).

log

The function (N + 1)!log1\+1u - (loglogu)" is increasing (as product of

two positive increasing functions) for u > ef?, so that there exists vy > uy
for which this function is greater than Hy(uy), so that

13- (N + 1)!u(loglog u)™Y
NTI,, ;

Hy(u) =146 (u>vN).

log
g

Remark 5.3. For the values of n appearing in our tables, the equality
U, = vy, holds, since, in these cases,

(n + 1)!uy,(loglogu,)™
Hn(un) S 1 w, .

log

Lemma 5.6. For any natural number N, and u > e*N we have log fy(u) <
2logu.

Proof. First observe that the hypothesis u > e*V implies (with v = €%)
that © > xn, so that logz > 2 and = > ¢y logz. (Proposition 5.2).

The inequality log fy(u) < 2logu is equivalent to fy(u) < w2, and
together with u = e* it is equivalent to

N
e Tt IVTe TN <2t

n=1 x
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From Corollary 5.1, since > e? and = > cyvy, and by Remark 5.1,

N P,_1(logx Nooopl Nooopl -1
“””(H;lx(ng)) < x(1+nz_:1 (x/y)n) < x(l— 3 (a:/y)n) .

n=1

Hence our inequality follows from

yet x Nl B
w<x-y(1—nz:1(x/y)n), y = logx.

Since we assume that x > ycy, the second factor is greater than 1, so that

x T

v oy g oy v
x (@/y)" x

Y n=1

Finally, it is easy to prove that e®logx > 2 for z > 2. O
The asymptotic expansion with bounds can now be proved.

Theorem 5.2. For each integer N > 1

N
E&%ﬁ)7 (4> vy),

(521)  ali(u) = f(u) +260(N +1)!u( log u

where vy 1s the number defined in Proposition 5.4 .

Proof. Since li(ali(u)) = u, Proposition 5.4 yields, for u > vy,

fn(u) gt (loglog u)™
li u)) — li(ali(u :/ — =130(N + Nu—="-—.
() = lali) = [ ° 730 < 130N + 1) SR
Since vy > uy = "N, u > vy implies logu > 2, hence u > 2.
From Lemma 5.4, logali(u) < 2logu, for u > 2. Analogously, Lemma
5.6 implies that log fx(u) < 2logu, for u > e*N. Therefore, for u > vy, we

have
) = It | ()
2log u = ali(w) logt!
It follows that there exists 6’ with |#’| < 1 such that

i) — () = 0 2log) [
allflu) — u) = ogu —
N & ali(u) log ¢

and the result follows easily. O

The actual error appears to be much smaller than that given in Theorem
5.2. However, as usual with asymptotic expansions, having a true bound
allows realistic bounds to be given of the remainder for specific values of
N.

The true error after N terms of an asymptotic expansion, while the terms
are decreasing in magnitude, is often of the size of the first omitted term.
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In our case, the magnitude of the term Py(logz)z~"~! depends on the
polynomial Py (logx).
Numerically, it appears that for n > 3:

(5.22) |Pa(y)| < (

elogn) y',  (y>2logn)

although we have not been able to prove this.
From Theorem 5.2, more realistic bounds can be obtained for the first
values of V. This is done in the following Theorem.

Theorem 5.3. For 2 < N < 11, we have

(5.23)

ali(e®) 14+ % P,—1(logx) 4020 ( N )N log" (x> =)
zet — " elog N N+ N

where

29 =150, 23=234, 2z4=23.32, 25=433, z5=5.36,
7 = 6.39, zZ8 — 7.43, zZ9 — 8.46, zZ10 — 9.50, Z11 — 10.53.

Proof. By taking N = 10 in Theorem 5.2, we have, for u = e* > e*10
(recall also Remark 5.3)

ah P, logx log!®
_1+Z +OR——,  (z>m0)

with R =26-11! = 1037836800.
We compute the maximum?® M, of |P,_1(logz)/log" ' z| for x > 1,
so that for any 2 < N < 10, we have

ali(e®) g i\f: Pn_l(loga:)+

xer — "
n=1
logNm( iO: P,_1(logz)log" N1y N eRlogw*N )
xNJrl o logn—l T xanfl xlOfN
so that

ali(e®) 14 i\f: Pn_l(loga:)+

xe® xh
n=1

logN z 0 M, log"N-1g log'®=N ¢
+0 N1 ( %; ) - N-1 +R 210-N )
n=N+

3M2 =1, M3 =1/2, My = 1/3, M5 = 0.250636, Ms = 0.526887, M7 = 1.300565, Mg =
3.719653, Mg = 12.070813, Mg = 43.788782. This last maximum would be much smaller if the
maximum were taken from a point slighthly greater than x1¢.



The n-th prime asymptotically 549
We determine a value z, > x1o such that, for z = 2/
N ) N>
0 A, log™ N1y ogl0-N

n 1 N N
(3 e ) < 0(y)

Since this is a decreasing function of z, we obtain for x > z)

ali(e®) N P._1(logz) N \Nlog" z
5.24 =1 ———=2460-20 .
(5.24) xer +nzl " + (elogN) N+l

We consider the function

ali(e P,—1(logx)
() —Z . )bg .

on the interval (1.3, 2}y), to determine the least value of zy for which (5.24)
is true.
In this way we find: 25 = 32 and then zp = 1.5; 25 = 49.5 and then
z3 = 2.3395; zj; = 82 and then z4 = 3.3114; 2z = 155 and then z5 = 4.3237.
If we take N = 20 in Theorem 5.2, we obtain z; = 113, 2/ = 143, 2§ =
187, zy = 251 24, = 353, 24, = 528 from which zg = 5.3514, 27 = 6.3851,
zg = 7.4208, z9 = 8.4566, z190 = 9.4914 and z1; = 10.5251 are obtained. [

Remark 5.4. We have proved (5.23) only for 2 < N < 11, although
something similar appears to be true for the general case. If (5.23) were
true for all n, then for a large u = e* we could take N ~ z terms in the
expansion and in this way the error would be ~ 2% so that ali(u) could
be computed with an error less than = 20.

In fact, for several values of u, the terms of the expansion have been
computed up to the point where these terms start to increase. Always
the computation is terminated when N ~ x and the error appears to be
bounded. ( For example, with u = 1019, we compute 230 terms of the ex-
pansion, which coincides with log 1019 ~ 230.259. The approximate value
obtained for ali(u) has an absolute error equal to 40.94738, which can be
compared with the fact that ali(10!°°) has 103 digits ).

6. Applications to p,,.

6.1. Asymptotic expansion of p,,. Inequalities for the n-th prime num-
ber can be found in [17], [15], [11], [4]. In fact, from 7 (z) = li(z) + O(r(z))
we may obtain p, = ali(n) + O(r(nlogn)logn), if r(z)/z is sufficiently
small. For example, in [11], it is noticed that from a result of Massias [9],
it follows that

(6.1) pn = ali(n) + O(ne °VI°e™)
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so that the asymptotic expansion of ali(n) is also an asymptotic expansion
for p,, that is,

N

(6.2) pnznlogn<1+zw)+o<n<loglﬂ)1\[)
k=1

logh n logn
By assuming the Riemann hypothesis, Schoenfeld [20] has proved
(6.3) im(2) — li(z)| < 8%\/5 logz, (x> 2657).
This result will be used to obtain (under RH) some precise bounds for py,.

Lemma 6.1. We have \/x(log x)g < ali(z) for x > 94.

Proof. The inequality is equivalent to
li(v/z(log :L‘)g) <.

Differentiating the function f(x) := x — li(\/z(log x)g) we get

B 1 (log5/2:v 510g3/2x)
log(\/f(log:z)%) 2\x 2\x

Hence this derivative is positive if and only if

log3/2x(10§x + g) < \/E(lo;gm + gloglogx).

For x > 94 we have (log x)% < y/z, so that f'(z) > 0 for z > 94.
Finally, one may verify that f(94) > 0. Hence f(z) > 0 for z > 94. O

"(x) =1

Theorem 6.1. The Riemann hypothesis is equivalent to the assertion
1

(6.4) |pn, — ali(n)| < —\/ﬁlogg n for alln > 11.
T

Proof. First we assume the Riemann Hypothesis and prove (6.4). Let r(z) :=
=vzlogz, f(z) = li(z) — r(z), and g(z) := li(z) 4+ r(z). For z > 1 we
have f(x) < li(z) < g(x), where the three functions are strictly increasing.
From (6.3) for x > 2657, we also have f(x) < m(x) < g(z).

The inverse functions satisfy ¢~ '(y) < ali(y) < f~(y), and if y = n >
7(2657) = 384 is a natural number, then g=*(n) < p, < f~1(n). It follows
that the distance from ali(n) to p, is bounded by

Ipn, — ali(n)| < max(f~!(n) — ali(n),ali(n) — g~'(n)).

Hence, we have to bound f~!(y) — ali(y) and ali(y) — g~ 1(y).
We consider y as a parameter and set @ = ali(y), so that li(a) =

li(ali(y)) = v.
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Consider the function u(§) = f(§) — li(a) = f(£) — y, which is strictly
increasing and satisfies

13
u(€) = 1(€) — () ~lite) = [ ﬂgtt ).

Therefore, u(a) = —r(a) < 0 and

u(f~Hy)) = F(f () = li(er) = y — li(ali(y)) = 0.

If a point b is found where u(b) > 0, then o < f~1(y) < b, so that b — a >
f~Y(y) — « and one of the required bounds is obtained.

Therefore, we try b = a + ¢,/y(log y)g with ¢ < 1. We have

5 atey/yllogy) 2 5

e+ eyiliogy)H) = [ o e+ eyillogy)?) >
c\/g(logy)% a+ ceyy(logy)s
log(a+c\/§(logy)%) rlatevyllogy)?).

5
2

From Lemma 6.1 for y > 94, we have ,/y(logy)2 < ali(y) = «, so that

cy/y(logy)?

u(a+ cy/y(logy)?) > og2a)

—7r(2a)
cy/y(logy)? — %W log®(2a)
(2cx

log

We want to show that this expression is positive. For y > 94, we have
a = ali(y) < 2ylogy (by Lemma 5.4), so that o < 2ylogy < 4ylogy < y?
(for y > 94), which yields (with ¢ = 1/7)

1
cy/y(log y)g - 8—\/ 2 log2(2a) >
T
> cy/y(logy) % — \/4y log y log (4ylogy) >
> cf(logy 5 — \/4ylog log?(y?)) = 0.

Hence, we have proved that f~1(y) —a < ;\/@(log y)°/? for y > 94.

To bound a — g~1(y), we consider the function v(¢) := g(¢) — li(a) =
9(&) —y. Then

v(é)zr(ﬁ)/:ljgtt

and v(a) = r(a) > 0, v(g 1 (y)) = g(¢97(y)) — y = 0. If a value b is found
such that v(b) < 0, it will follow that o — g7 1(y) < a — b.
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Choose b = a — ¢\/y(logy)®? with ¢ = L. We claim that v(b) < 0. We
have o« g b
o) =r(v) ~ [ (o) - 1
b
and our claim will follow from r(b) log o — ¢,/y(log y)®/? < 0. Finally, since
b < a=ali(y) < 2ylogy, and by Lemma 5.4,

1 1
r(b)loga < & ali(y)(log ali(y))* < 87\/2ylogy(210g y)?

which proves our claim.

Hence, (assuming RH), we have proved that |p, —ali(n)| < Z/n(log n)%
for n > 384 > 94. By verifying all 1 < n < 385, we find that the inequality
holds except for n < 11.

The reverse implication is simple. From |p,, — ali(n)| = O(n%%) for any
e > 0, we may derive that m(z) = li(z) + O(a:%+€). It is well known that
this is equivalent to the Riemann Hypothesis. Il

logt log o

Remark 6.1. The inequality (6.4) is only proved by assuming the Riemann
Hypothesis, but is stronger than those contained in [17], [15], [11], [4].
Inequality (6.4) gives approximately half of the digits of p,,. If our conjecture
that (5.23) is true for all NV is also assumed, then the asymptotic expansion
gives about half of the digits of p,.

6.2. Inequalities for the n-th prime Let

Py_1(logl
sy(n) = nlogn( + Z kllogg;gn)>

where sg = nlogn.

Cipolla noted that for k > 1, Py(y) = (—1)*1% 4+ ... and Py(y) =
y — 1. Hence, except for the first term, eventually the sign of the k-th term
Py._1(loglogn)log=* n becomes (—1)F. The asymptotic expansion implies
that there exist rn such that

(6.5) pn > so(n), n>ro, pn > s1(n), n >y,
' pn < san(n), nm>ran,  Pa>san+1(n), n>Tanga
In fact, 1o = 2 is the main result in [17], 71 = 2 is proved in [4] and

ro = 688383 is proved in [5]. The value of ry for N > 3 has not been
determined. See Theorem 6.2 for an estimation of r3 by assuming RH.

The above reasoning may give the impression that the terms of the as-
ymptotic expansion of ali(u) are alternating in sign, starting from the sec-
ond term. However this is not true. For example, computing the first 230
terms for ali(101%?), we found only three positive terms Py/x, P /x?, and
P3/z*. In fact, the sign of the k-th term is that of P_1(loglogn). Thus we
are interested in the sign of these polynomials.
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The polynomials Py(y), for 1 < N < 23 of odd index, have one and
only one real root, which is positive. Starting from P (y) which vanishes at
y = 2, these roots are

2, 4.23415, 5.83131, 7.43591, 9.07979, 10.6881, 12.2538,
13.7876, 15.2977, 16.79, 18.2683, 19.7353.

The polynomials P, P, and Pz have no real roots, and all Fs, ..., Pss have
two positive real roots. These pairs of roots are:

(6.4306,8.2185), (7.16158,9.88528), (7.90293,11.4752),
(8.63359,13.0241),  (9.3507,14.5452), (10.055,16.0458),
(10.7478,17.5307), (11.4307,19.003).

For example, Py(loglogn) is positive only for n > exp(e®"), which is
a very big number.

The even terms at first sight appear negative. However Pjg(loglogn), for
example, is negative except in the interval exp(e”!6) < n < exp(e?88+).

In a certain sense, the inequalities (6.5) are the wrong inequalities. These
inequalities would hold only for very large values of ry, especially when we
want a lower bound of p,, > sony1 (except for the three known cases). We
estimate rj3.

Theorem 6.2. Let r3 be the smallest number such that

logl -2
(6.6) pp > s3:=nlogn+n(loglogn — 1) + n%—
ogn

(loglogn)? — 6loglogn + 11
-n 5 , n > rs.
2log“n

Then, if the Riemann Hypothesis is assumed,

39 x 10%Y < r3 < 39.58 x 10%.
Proof. By Theorem 6.1, there exists 61 with |61 < 1 such that

Dn :ali(n)+01@(logn)g, n > 11.
T

By Theorem 5.3, with 5 < N < 10 and setting n = €*, z = logn, and
y = loglogn, we have for n > e*~

, -1, y—2 y*P—6y+11
ah(n):xez(l—i—y 4+ Y 5 Y 253

X X
N
+EPk1 +96Ny )

rN+1
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The inequality of the Theorem is obtained if

Pk, 1 yN e”/? 5
( - NxNH) - z2 >0
This is equlvalent to
)+ ZPk 1( Y > enyNe B 4 2 ! ezvem3e,
T

Since P3(y) — +oo and all the other terms tend to 0 as y — 400, it is
clear that the inequality is true for y > yo. With N = 10, we find yg =
4.254946453 . .. The inequality p,, < s, is true for n > 3.957022241488456 x
1039, This proves that r3 < 39.58 x 10%7.

In order to show that r3 > 39 x 10%, we directly show that, for n =
39 x 10%?, the opposite inequality p, < s3 is obtained.

We compute

s3 = 2.87527 18639 02974 79681 42399 35057 89294 02005 87915 x 1032,

Now we can compute ali(n), for which we already have obtained a good ap-
proximation through the asymptotic expansion, and then apply the Newton
method

ali(n) = 2.87527 18639 02495 21516 14800 14732 45414 39731 x 10%2.
Therefore, from Theorem 6.1, we obtain p,, < ali(n) + %\/ﬁlogg n, so that
P < 2.87527 18639 02756 97808 39055 05640 30082 86370 11482 x 1032

and we can conclude that p,, < s3. O
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