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Siegel’s theorem and the Shafarevich conjecture

par Aaron LEVIN

Résumé. Il est connu que dans le cas des courbes hyperelliptiques
la conjecture de Shafarevich peut être rendue effective, c’est à dire,
pour tout corps de nombres k et tout ensemble fini de places S de
k, on peut effectivement calculer l’ensemble des classes d’isomor-
phisme des courbes hyperelliptiques sur k ayant bonne réduction
en dehors de S. Nous montrons ici qu’une extension de ce résultat
à une version effective de la conjecture de Shafarevich pour les
Jacobiennes de courbes hyperelliptiques de genre g impliquerait
une version effective du théorème de Siegel pour les points entiers
sur les courbes hyperelliptiques de genre g.

Abstract. It is known that in the case of hyperelliptic curves the
Shafarevich conjecture can be made effective, i.e., for any number
field k and any finite set of places S of k, one can effectively
compute the set of isomorphism classes of hyperelliptic curves over
k with good reduction outside S. We show here that an extension
of this result to an effective Shafarevich conjecture for Jacobians
of hyperelliptic curves of genus g would imply an effective version
of Siegel’s theorem for integral points on hyperelliptic curves of
genus g.

1. Introduction
The famous 1929 theorem of Siegel [30] on integral points on affine curves

states (in a formulation convenient for us):
Theorem 1.1 (Siegel). Let C be a curve over a number field k, S a finite
set of places of k containing the archimedean places, Ok,S the ring of S-
integers, and f ∈ k(C) a nonconstant rational function on C. If C is a
rational curve then we assume further that f has at least three distinct
poles. Then the set of S-integral points of C with respect to f ,

C(f, k, S) = {P ∈ C(k) | f(P ) ∈ Ok,S},
is finite.

While Siegel’s theorem is completely satisfactory from a qualitative view-
point, all known proofs of the theorem suffer from the defect of being inef-
fective, i.e., in general there is no known algorithm for explicitly computing

Manuscrit reçu le 21 septembre 2011.



706 Aaron Levin

the set C(f, k, S) (when it is finite). In the classical proofs of Siegel’s theo-
rem, this ineffectivity arises from the use of Roth’s theorem from Diophan-
tine approximation (for a survey on the use of Roth’s theorem in Siegel’s
theorem, including some remarks on effectivity, see [34]). Finding an ef-
fective version of Siegel’s theorem remains a longstanding important open
problem.

Of course, in certain special cases there are known techniques for effec-
tively computing C(f, k, S). In this context, the most powerful and widely
used effective techniques come from Baker’s theory of linear forms in loga-
rithms [2]. Using these techniques, Baker and Coates [3] proved an effective
version of Siegel’s theorem for curves of genus zero and genus one. Already
for curves of genus two, however, it is an open problem to prove an effective
version of Siegel’s theorem. More generally, we will be interested here in
studying this problem for hyperelliptic curves:

Problem 1.1. Find an effective version of Siegel’s theorem for curves C
of genus two. More generally, find an effective version of Siegel’s theorem
for hyperelliptic curves C.

Again, in certain special cases, Problem 1.1 has been solved. For instance,
if C is a (nonsingular projective) hyperelliptic curve over a number field k,
i denotes the hyperelliptic involution of C, and f ∈ k(C) is a rational
function that has a pole at both P and i(P ) for some point P ∈ C(k)
(where we allow P = i(P )), then C(f, k, S) is effectively computable for any
appropriate finite set of places S. This is essentially equivalent to effectively
finding all solutions x, y ∈ Ok,S to hyperelliptic equations of the form

(1.1) y2 = anx
n + · · ·+ a0, x, y ∈ Ok,S ,

where a0, . . . , an ∈ k are constants and the equation defines a hyperelliptic
curve. Explicit bounds for the solutions to (1.1) (when Ok,S = Z) were first
given by Baker [1]. Along the lines of equation (1.1), we note that using
Riemann-Roch it is possible to restate Problem 1.1 as a question about
integral solutions to certain specific types of equations. For instance, if C
has genus two, Problem 1.1 is equivalent to solving equations of the form
(1.1) (with n = 5, 6) and equations of the form

y3 + g1(x)y2 + g2(x)y = x4 + g3(x), x, y ∈ Ok,S ,
where gi ∈ k[x] has degree ≤ i. We refer the reader to [13] or [26] for details.

When C has genus two, Bilu [5] has shown that there exists an infi-
nite set M ⊂ C(k) such that if f has poles at two distinct points of M ,
then C(f, k, S) is effectively computable. The method of [5] combines linear
forms in logarithms with functional units and coverings of curves, and the
exact limitations of the method do not yet seem to be fully understood.
Another interesting alternative approach to an effective Siegel’s theorem
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for genus two curves is given by Grant in [13]. There, the problem is re-
duced to questions about integral points on a certain affine subset of the
Jacobian of C, which in turn are reduced to certain “non-Abelian S-unit
equations".

A final case of particular note where an effective version of Siegel’s theo-
rem is known is the case of geometrically Galois coverings of the projective
line, proved independently by Bilu [4] and Dvornicich and Zannier [10]
(partial results were also obtained in [16] and [26]). This generalizes, in a
qualitative way, the aforementioned results of Baker and Coates [3] and
Baker [1] on integral points on elliptic curves and hyperelliptic curves, re-
spectively. Quantitative results in this context were proven by Bilu in [6].
We refer the reader to [5] for more general statements and other cases of
an effective Siegel’s theorem.

When C is a curve of genus g ≥ 2, Siegel’s theorem is superseded by Falt-
ings’ theorem (Mordell’s Conjecture), which states that in this case the set
of rational points C(k) is finite for any number field k. Faltings’ proof of the
Mordell conjecture [12] used a reduction (due to Parshin) to the Shafare-
vich conjecture, proved by Faltings in the same paper. Moreover, Rémond
has shown [27] that an effective version of the Shafarevich conjecture would
imply an effective version of Faltings’ theorem. In a similar vein, we will
show that Problem 1.1 can be reduced to proving an effective version of a
restricted form of the Shafarevich conjecture (hyperelliptic Jacobians). For
instance, we will show that an effective version of Siegel’s theorem for genus
two curves follows from an effective version of the Shafarevich conjecture
for abelian surfaces.

Before stating the main theorem, we make a few more definitions. For
a nonsingular projective curve C, we let Jac(C) denote the Jacobian of C.
Let g ≥ 2 be an integer, k a number field, and S a finite set of places of k,
which we will always assume contains the archimedean places. Define

H(g, k, S) = {k-isomorphism classes of (nonsingular projective) hyperellip-
tic curves over k of genus g with good reduction outside S}

and

H′(g, k, S) = {k-isomorphism classes of hyperelliptic curves C over k of
genus g such that Jac(C) has good reduction outside S}.

As is well known, if C has good reduction at a place v then so does
Jac(C). In other words, we have H(g, k, S) ⊂ H′(g, k, S). In general, this
set inclusion is proper. In fact, as we will see, understanding the difference
between the two sets is in some sense the key to solving Problem 1.1. It
follows from the Shafarevich conjecture for abelian varieties, proved by
Faltings, that the set H′(g, k, S) is finite. We now state our main result.
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Theorem 1.2. Let g ≥ 2 be an integer. Suppose that for any number field k
and any finite set of places S of k the set H′(g, k, S) is effectively computable
(e.g., an explicit hyperelliptic Weierstrass equation for each element of the
set is given). Then for any number field k, any finite set of places S of
k, any hyperelliptic curve C over k of genus g, and any rational function
f ∈ k(C), the set of S-integral points with respect to f ,

C(f, k, S) = {P ∈ C(k) | f(P ) ∈ Ok,S},
is effectively computable.

We now give a brief outline of the proof of Theorem 1.2. To each point
P ∈ C(f, k, S) we associate a certain double cover πP : C̃P → C such
that C̃P has good reduction outside some fixed finite set of places T of
some number field L (with T and L independent of P ). Associated to πP
we have a classical construction, the Prym variety Prym(C̃P /C). When
C is hyperelliptic, it will turn out that Prym(C̃P /C) is isomorphic to the
Jacobian Jac(XP ) of some hyperelliptic curve XP and Jac(XP ) has good
reduction outside of T . This yields a map C(f, k, S) → H′(g, L, T ), P 7→
XP , and if H′(g, L, T ) is known then C(f, k, S) can be explicitly computed.
We note that an analogous construction essentially works for any curve C
(except that Prym(C̃P /C) will not be a hyperelliptic Jacobian, or even a
Jacobian, for general C), but we focus on the hyperelliptic case as there are
reasons to believe that effectively computing H′(g, k, S) may be a tractable
problem.

Indeed, a primary reason for this hope is that the set H(g, k, S) is known
to be effectively computable, i.e., there is an effective version of the Sha-
farevich conjecture for hyperelliptic curves.

Theorem 1.3 (Effective Shafarevich conjecture for hyperelliptic curves,
von Känel [15]). Let g ≥ 2 be an integer, k a number field, and S a finite
set of places of k. The set H(g, k, S) is effectively computable.

The finiteness of H(g, k, S) goes back to work of Shafarevich [29], Merri-
man [19], Parshin [24], and Oort [23]. Building on earlier work of Merriman
and Smart [20], Smart [33] explicitly computed the set H(2,Q, {2,∞}) us-
ing effective results of Evertse and Györy [11] on related problems concern-
ing discriminants of binary forms. Using the results of Evertse and Györy
[11] and a result of Liu [18], von Känel [15] proved explicit bounds for
the heights of Weierstrass models of the hyperelliptic curves represented in
H(g, k, S). We note that the much earlier proof of Oort [23] also yields a
certain weaker version of Theorem 1.3.1

1Oort’s proof of finiteness in [23] (implicitly) yields a fixed computable finite extension L of
k and effective bounds for the heights of Weierstrass models over L of the hyperelliptic curves
represented in H(g, k, S).
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In [25], Poonen raised the problem of extending the computations of
Merriman and Smart to an effective computation of H′(2,Q, {2,∞}). Our
results give additional motivation and importance, coming from Siegel’s
theorem, to the problem of extending Theorem 1.3 from the set H(g, k, S)
to the set H′(g, k, S). In view of Theorems 1.2 and 1.3, to solve Problem
1.1 it would suffice to solve the following problem:

Problem 1.2. Find an effective bound B(g, k, S) such that if C is a hyper-
elliptic curve of genus g over k and Jac(C) has good reduction outside S,
then C has good reduction at all primes p of k with norm N(p) > B(g, k, S).

Note that an ineffective bound B(g, k, S) follows trivially from the finite-
ness of H′(g, k, S).

2. Parshin’s construction
Parshin [24] was the first to notice that the Mordell conjecture could be

obtained as a consequence of the Shafarevich conjecture. The basic idea is to
associate to each rational point P ∈ C(k) a covering πP : C̃P → C such that
the curve C̃P has good reduction outside a finite set S (independent of P )
and πP has certain specified ramification. We will use a similar construction
to study integral points on curves.

Theorem 2.1. Let C be a nonsingular projective curve over a number field
k, f ∈ k(C) a nonconstant rational function, and S a finite set of places of
k containing the archimedean places. Fix a pole Q ∈ C(k) of f . There exists
an effectively computable number field L ⊃ k and an effectively computable
finite set of places T of L with the following property: for any P ∈ C(f, k, S)
and any double cover π : C̃ → C over k ramified exactly above P and Q,
there exists a morphism of nonsingular projective curves π′ : C̃ ′ → C with
the following properties:

(a) There is an isomorphism ψ : C̃ → C̃ ′ over k such that π = π′ ◦ ψ.
(b) π′ and C̃ ′ are both defined over L.
(c) deg π′ = 2.
(d) π′ is ramified exactly above P and Q.
(e) Both C̃ ′ and C have good reduction outside T .

We note that for any P and Q such maps π exist (see Theorem 4.2). We
will use the following result proven by Silverman in [31, Prop. 3, Lemma
4], where it is attributed to Szpiro and Ogus.

Lemma 2.1. Let C be a nonsingular projective curve over a number field
L and let g ∈ L(C). Suppose that

div(g) = ±P1 ± P2 ± · · · ± Pn + pD,
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where P1, . . . , Pn ∈ C(L), D is some divisor on C, and p is a prime. Let C
be a model for C over OL. Let T be a finite set of places of L such that:

(a) T contains all archimedean places of L.
(b) T contains all places of bad reduction of C .
(c) T contains all places of L lying above p.
(d) The ring of T -integers OL,T has class number one.

There exists an element α ∈ L∗ such that if C ′ is a nonsingular projective
curve with function field L(C)( p

√
αg) and v 6∈ T is a place of L such that

P1, . . . , Pn are distinct modulo v, then C ′ has good reduction at v.

We now prove Theorem 2.1.

Proof of Theorem 2.1. Without loss of generality, we may assume that Q ∈
C(k) and that all of the 2-torsion of Jac(C) is rational over k. Let L be a
number field such that
(2.1) Jac(C)(k) ⊂ 2 Jac(C)(L).
The existence of such an L follows from the (weak) Mordell-Weil theorem
and we recall that such a field L can be explicitly given. We may assume
without loss of generality that S is a finite set of places of k containing all
places of bad reduction of C, all places of k lying above the prime 2, and
such that Ok,S has trivial class group. Let s1, . . . , sn be generators of O∗k,S .
Then L = k(√s1, . . . ,

√
sn) will be a number field satisfying (2.1) ([14,

§C.1]). From the explicit description of L it is clear that L is effectively
computable.

Let C be a model of C over OL. If R ⊂ R′ are rings and X is a scheme
over R, we let XR′ = X ×SpecR SpecR′. Let T be a finite set of places of L
satisfying (a)–(d) of Lemma 2.1 (with p = 2) and such that

(e) T contains every place of L lying above a place of S.
(f) The associated morphism f : CL → P1

L extends to a morphism
COL,T

→ P1
OL,T

over SpecOL,T .

We note that such a finite set T is effectively computable. Let P ∈C(f, k, S).
Let π : C̃ → C be a double cover (over k) ramified exactly above P and
Q. Then π corresponds to an extension of function fields k(C) ⊂ k(C)(√g)
for some rational function g ∈ k(C). It is a standard fact that π is ramified
above a point R ∈ C(k) if and only if g has a pole or zero of odd order at
R. Since π is ramified exactly above P and Q, we must have

div(g) = P −Q+ 2D
for some divisor D. Since Jac(C)(k) ⊂ 2 Jac(C)(L), the divisor class [D] is
L-rational and D ∼ E for some L-rational divisor E. Then for an appropri-
ate rational function h ∈ k(C) satisfying div(h) = E −D, after replacing g
by gh2 we can assume that g ∈ L(C).
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Let v 6∈ T be a place of L. Since f(P ) ∈ Ok,S ⊂ OL,T by assumption, it
follows from the definition of T that P cannot reduce to the pole Q of f
modulo v. Then by Lemma 2.1, there exists α ∈ L∗ such that if C̃ ′ is the
nonsingular projective curve with function field L(C)(√αg), then C̃ ′ has
good reduction outside T . Let π′ : C̃ ′ → C be the morphism corresponding
to the inclusion of function fields L(C) ⊂ L(C)(√αg). Then C̃ ′ and π′

satisfy the required properties. �

3. Prym varieties
Let π : C̃ → C be a morphism of nonsingular projective curves of degree

two. There are two natural maps between the Jacobians Jac(C̃) and Jac(C)
that one can associate to π. First, we have the pullback map

π∗ : Jac(C)→ Jac(C̃),
[D] 7→ [π∗D],

where [D] denotes the divisor class of a divisor D of degree 0. Second, we
have the so-called norm map

Nm : Jac(C̃)→ Jac(C),[∑
nPP

]
7→
[∑

nPπ(P )
]
.

Definition. The Prym variety associated to the double cover π : C̃ → C
is defined by

Prym(C̃/C) = (ker Nm)0,

the connected component of ker Nm containing the identity.

We recall some basic facts about Prym varieties (see [21]). Let ι : C̃ → C̃
be the involution of C̃ interchanging the two sheets of π. This induces an
involution ι : Jac(C̃)→ Jac(C̃). Then we have the identities

Prym(C̃/C) = ker(1 + ι)0 = im(1− ι).

Let i : Prym(C̃/C)→ Jac(C̃) be the inclusion. Assume further now that C
has positive genus and that π is either étale or ramified above exactly two
points of C. We have an isogeny

Jac(C)× Prym(C̃/C)→ Jac(C̃),
(P,Q) 7→ π∗(P ) + i(Q).

Furthermore, if θC̃ is a theta divisor on Jac(C̃), then i∗θC̃ ≡ 2Ξ for some
ample divisor Ξ on Prym(C̃/C) and Ξ yields a principal polarization of
Prym(C̃/C). So Prym(C̃/C) can naturally be given the structure of a prin-
cipally polarized abelian variety. We will find the following lemma useful.
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Lemma 3.1. Suppose that C̃, C, and π : C̃ → C are defined over a number
field k. Let v be a finite place of k. Then Jac(C̃) has good reduction at v if
and only if both Prym(C̃/C) and Jac(C) have good reduction at v.

Proof. The result follows [28, Cor. 2] from the fact that the abelian varieties
Jac(C̃) and Jac(C)× Prym(C̃/C) are k-isogenous. �

In general, the Prym variety Prym(C̃/C) is not the Jacobian of a curve.
However, in the important special case where C is hyperelliptic this holds
(and the Prym variety is a hyperelliptic Jacobian).

Theorem 3.1 (Dalaljan [8, 9], Mumford [21]). Suppose that C is hyper-
elliptic and π : C̃ → C is a double cover of C that is either unramified or
ramified above exactly two points of C. Then (Prym(C̃/C),Ξ) is isomorphic
to the Jacobian (Jac(C ′), θC′) of some hyperelliptic curve C ′.

Suppose that C is a hyperelliptic curve of genus g. For Q ∈ C(k) and
P ∈ C(f, k, S) as in Theorem 2.1, we have a double cover C̃P → C ramified
exactly above P and Q and having nice reduction properties. By Theorem
3.1, Prym(C̃P /C) ∼= Jac(XP ) for some hyperelliptic curve XP of genus g.
In the next section we will explicitly compute a Weierstrass equation for
XP .

4. Some explicit equations
We begin by recalling some results from [9, §3].

Theorem 4.1 (Dalaljan). Let k be an algebraically closed field, char k 6= 2.
Let C be a nonsingular projective hyperelliptic curve over k with hyperel-
liptic map p : C → P1. Let π : C̃ → C be a double cover of nonsingular
projective curves, ramified above exactly two points of C. Associated to π
and p there exists a tower of curves

(4.1) P1

C C0 C1

C̃ ′ C̃ C̃0 C̃1 C̃ ′1

˜̃C

................................................................................................................................................................. ........
....

p

....................................................................................................
.....
.......
.....

p0

.........................................................................................................................................................
....
............

p1

................................................................................................................................................................. ........
....

π′

....................................................................................................
.....
.......
.....

π

.........................................................................................................................................................
....
............

π0

....................................................................................................
.....
.......
.....

π′′0

.......................................................................................................................................................... ........
....

π′0

....................................................................................................
.....
.......
.....

π1

..................................................................................................................................................
....
............

π′1

........................................................................................................................................................................................................................................................................
...
............

π̃′

.............................................................................................................................................................
....
............

π̃

....................................................................................................
.....
.......
.....

π̃0

............................................................................................................................................................. ........
....

π̃1

........................................................................................................................................................................................................................................................................... .........
...

π̃′1
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with C1 ∼= P1, C̃1 hyperelliptic, deg π1 = 2, and

(Prym(C̃/C),Ξ) ∼= (Jac(C̃1), θC̃1
).

For any positive integer g, the tower (4.1) induces a bijection between equiv-
alence classes of towers

{[C̃ π→ C
p→ P1] | deg π = deg p = 2, g(C̃) = 2g, g(C) = g} ←→

{[C̃1
π1→ C1

p1→ P1] | deg π1 = deg p1 = 2, g(C̃1) = g, C1 ∼= P1}.

Here, we say that two towers of curves X π→ Y
p→ Z and X ′ π

′
→ Y ′

p′
→ Z ′

are equivalent if there exists a commutative diagram
X

Y

Z

X ′

Y ′

Z ′

..........................................................
.....
.......
.....
π

..........................................................
.....
.......
.....
p

..........................................................
.....
.......
.....
π′

..........................................................
.....
.......
.....
p′

............................................................... ............

............................................................... ............

............................................................... ............

where the horizontal morphisms are isomorphisms.

Theorem 4.2. Let k be an algebraically closed field, char k 6= 2. Let C be
a (nonsingular projective) hyperelliptic curve over k of genus g given by an
equation

y2 =
2g+1∏
i=1

(x− αi), αi ∈ k,

and p : C → P1 the hyperelliptic map (x, y) 7→ x. Let P = (xP , yP ), Q =
(xQ, yQ) ∈ C(k) with xP 6= xQ and yP 6= 0. The tower (4.1) induces a
bijection between the sets{

double covers π : C̃ → C, up to equivalence,
ramified exactly above P and Q

}
andhyperelliptic curves C̃1 : y2 = (x− 1)

2g+1∏
i=1

(x− βi)
∣∣∣∣∣ β2

i = xQ−αi

xP−αi
,∏2g+1

i=1 βi = yQ

yP

 .
Both sets have cardinality 22g.

Proof. We first give an explicit description of the set of double covers π :
C̃ → C ramified exactly above P and Q. At the function field level, we have
k(C̃) = k(C)(

√
φ) for some rational function φ ∈ k(C). The corresponding
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morphism π is ramified exactly above P and Q if and only if div(φ) =
P +Q+2D for some divisor D. It’s easily seen then that there is a bijection{

double covers π : C̃ → C, up to equivalence,
ramified exactly above P and Q

}
←→ {[D] | D ∈ Div(C), 2D ∼ −(P +Q)},

where Div(C) denotes the group of divisors of C and [D] the linear equiv-
alence class of D. As is well-known, the latter (and hence former) set has
cardinality 22g.

Let∞ denote the (unique) point of C at infinity relative to the equation
y2 =

∏2g+1
i=1 (x − αi). Then we have an embedding C → Jac(C), pt 7→

[pt −∞]. Every element of Jac(C) can be represented by a divisor of the
form P1 + · · ·+Pg−g∞, P1, . . . , Pg ∈ C(k). Then in each linear equivalence
class of divisors D satisfying 2D ∼ −(P + Q), we can find a divisor D of
the form

D = P1 + · · ·+ Pg − (g + 1)∞, P1, . . . , Pg ∈ C(k).

Let π : C̃ → C be a double cover ramified exactly above P and Q. Then we
find that k(C̃) = k(C)(

√
φ) for some rational function φ ∈ k(C) satisfying

div(φ) = P +Q+ 2P1 + · · ·+ 2Pg − (2g + 2)∞.

As usual, let L(D) be the k-vector space L(D) = {ψ ∈ k(X) | div(ψ) ≥
−D}. By Riemann-Roch, dimL((2g + 2)∞) = g + 3 and a basis for
L((2g + 2)∞) is given by the rational functions 1, x, . . . , xg+1, y. It follows
that we can write

φ = ay + h(x)
for some a ∈ k and some h ∈ k[x] with deg h ≤ g + 1. Since xP 6= xQ, we
have a 6= 0, and so we can assume a = 1. Let f(x) =

∏2g+1
i=1 (x− αi). Then

C̃ has an equation of the form

y2 = f(x),
z2 = y + h(x),

where h ∈ k[x] and deg h ≤ g + 1 (where throughout, we mean that the
curve, here C̃, is a projective normalization of the curve defined by the
given equations).

We now describe the relevant part of the tower (4.1) (see [9]). For a
double cover φ : X ′ → X of nonsingular projective curves, we let iφ denote
the corresponding involution of X ′. We set C̃ ′ = C̃ and π′ = ip ◦ π, where
p : C → P1 is the projection onto the x-coordinate. Let ˜̃C = C̃×C ×C̃ ′ and
let π̃ and π̃′ be the natural projection maps onto C̃ and C̃ ′, respectively.
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Explicitly, ˜̃C consists of pairs (P̃ , P̃ ′) ∈ C̃ × C̃ ′ such that π(P̃ ) = π′(P̃ ′).
Then ˜̃C can be given by the equations

y2 = f(x),
z2 = y + h(x),
z′2 = −y + h(x).

Let iπ̃0 = iπ̃′ ◦ iπ̃ and let iπ̃1 be the involution of ˜̃C = C̃ ×C ×C̃ ′ that
switches the coordinates. In the coordinates (x, y, z, z′) these are the in-
volutions (x, y, z, z′) 7→ (x, y,−z,−z′) and (x, y, z, z′) 7→ (x,−y, z′, z), re-
spectively. Taking the quotients of ˜̃C by iπ̃0 and iπ̃1 , we obtain curves C̃0

and C̃1, respectively, and double covers π̃0 : ˜̃C → C̃0 and π̃1 : ˜̃C → C̃1,
respectively. Note that

(z + z′)2 = 2h(x) + 2zz′,
(zz′)2 = h(x)2 − f(x).

Using the above equations, we see that C̃0 is given by the equations

y2 = f(x),
z2 = h(x)2 − f(x),

and C̃1 by the equations

w2 = 2h(x) + 2z,(4.2)
z2 = h(x)2 − f(x).(4.3)

The involutions iπ̃0 and iπ̃1 commute and generate a group of order 4.
The quotient of ˜̃C modulo the action of this group yields the curve C1 in
the tower. The curve C1 is naturally given as the projective normalization
of the curve defined by the equation

z2 = h(x)2 − f(x).

The induced maps π′0 and π1 are then induced by the natural projection
maps onto the x and z coordinates. From the definition of h(x), we have

(4.4) h(x)2 − f(x) = (x− xP )(x− xQ)F (x)2,

for some polynomial F ∈ k[x]. It follows that C1 ∼= P1. As deg π′0 = deg π1 =
2, we see that C̃0 and C̃1 are hyperelliptic curves.
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A hyperelliptic Weierstrass equation for C̃1 can be computed as follows.
In view of (4.4), we can parametrize (4.3) by setting

t2 = x− xQ
x− xP

,(4.5)

x = x(t) = xQ − xP t2

1− t2 ,

z = z(t) = t(x(t)− xP )F (x(t)).

Substituting into (4.2), we see that we need to consider the polynomial

G(t) = (1− t2)g+1(h(x(t)) + z(t))

= (1− t2)g+1
(
h

(
xQ − xP t2

1− t2

)
+ t

(
xQ − xP

1− t2
)
F

(
xQ − xP t2

1− t2

))
.

Let αi, i = 1, . . . , 2g+1, be the roots of f . Then when x = αi, (4.3) gives
z = ±h(αi). From (4.5), it then follows that for some (unique) choice of
the square root, t =

√
xQ−αi

xP−αi
= βi is a root of G(t), i = 1, . . . , 2g+ 1. From

(4.4), it follows that the leading coefficients of h(x) and F (x) are equal up
to sign. This easily implies that either t = 1 or t = −1 is a root of G(t).
Replacing F (x) by −F (x), if necessary, we can assume that t = 1 is a root
of G(t). Since degG ≤ 2g+ 2, we find that the roots of G are exactly given
by the 2g + 2 distinct elements t = 1, β1, . . . , β2g+1.

We have G(0) = h(xQ) = −yQ, from the definition of h. The leading
coefficient of G can be computed as

lim
t→∞

(−1)g+1 G(t)
(1− t2)g+1 = (−1)g+1h(xP ) = −(−1)g+1yP .

Thus,

1 ·
2g+1∏
i=1

βi = −yQ
−(−1)g+1yP

= (−1)g+1 yQ
yP
.

If g is odd, so that (1 − t2)g+1 is an even power of 1 − t2, then it follows
from the above and (4.2) and (4.3) that C̃1 has a Weierstrass equation

(4.6) y2 = (x− 1)
2g+1∏
i=1

(x− βi) , β2
i = xQ − αi

xP − αi
,

2g+1∏
i=1

βi = yQ
yP
.

If g is even, then

(1− t2)g+2

(t− 1)2 (h(x(t)) + z(t)) = c′(t+ 1)
2g+1∏
i=1

(t− βi) ,

for some constant c′ and where
∏2g+1
i=1 βi = −yQ

yP
. Replacing t by −t, we

again see that C̃1 has a Weierstrass equation (4.6).
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In the coordinates of (4.6), the tower C̃1
π1→ C1

p1→ P1 is given by the
hyperelliptic map (x, y) 7→ x followed by the squaring map C1 = P1 → P1,
x 7→ x2. The tower C̃1

π1→ C1
p1→ P1 is associated to the tower C̃ π→ C

p→ P1,
and from the above, C̃1 has an equation given by (4.6). Note that there are
exactly 22g possibilities for the curve (4.6), and hence for the tower [C̃1

π1→
C1

p1→ P1], given by the 22g possibilities for βi subject to the constraint∏2g+1
i=1 βi = yQ

yP
. Since the map

[C̃ π→ C
p→ P1] 7→ [C̃1

π1→ C1
p1→ P1]

given by the tower (4.1) is injective and there are 22g possibilities for [C̃ →
C → P1], it follows that all of the 22g possibilities for C̃1 arise from some
covering C̃ → C, proving the theorem. �

Corollary 4.1. Let C be a hyperelliptic curve over a number field k of
genus g given by an equation

y2 =
2g+1∏
i=1

(x− αi), αi ∈ k.

Let f ∈ k(C) be a nonconstant rational function and S a finite set of
places of k containing the archimedean places. Fix a pole Q = (xQ, yQ) ∈
C(k) of f . There exists an effectively computable number field L ⊃ k and
an effectively computable finite set of places T of L such that for any
P = (xP , yP ) ∈ C(f, k, S) with xP 6= xQ, yP 6= 0, any βi satisfying
β2
i = xQ−αi

xP−αi
,
∏2g+1
i=1 βi = yQ

yP
, and some c = c(β1, . . . , β2g+1) ∈ L∗, the

Jacobian Jac(XP ) of the curve

XP : y2 = c(x− 1)
2g+1∏
i=1

(x− βi)

is defined over L and has good reduction outside of T .

Proof. Without loss of generality, we may assume that Q ∈ C(k). Let L
and T be as in Theorem 2.1. Let P = (xP , yP ) ∈ C(f, k, S) with xP 6= xQ,
yP 6= 0. Let βi, i = 1, . . . , 2g+ 1, satisfy β2

i = xQ−αi

xP−αi
,
∏2g+1
i=1 βi = yQ

yP
. Let S′

be a finite set of places of k such that Ok,S′ is a principal ideal domain and
αi ∈ Ok,S′ , αi − αj ∈ O∗k,S′ , for all i and j, i 6= j. If P ′ = (x′, y′) ∈ C(k),
then we have x′ − αi = uiz

2
i for some zi ∈ k and some S′-unit ui ∈ O∗k,S′ .

Then by the Dirichlet unit theorem, applied to O∗k,S′ , there is a fixed finite
extension of L (independent of P ′ ∈ C(k)) containing

√
x′ − αi = zi

√
ui

for all i. By replacing L by this finite extension (and replacing T by the
set of places lying above it), we can assume that we always have βi ∈ L,
i = 1, . . . , 2g + 1. We note that from their construction both L and T are
effectively computable.
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Let X ′P be the curve y2 = (x − 1)
∏2g+1
i=1 (x− βi). By Theorem 2.1 and

Theorem 4.2, there is a double covering πP : C̃P → C, ramified exactly
above P and Q, that corresponds to C̃1 = X ′P via the tower (4.1), such
that both πP and C̃P are defined over L and both C̃P and C have good
reduction outside T . By Theorem 4.1,

Prym(C̃P /C) ∼= Jac(X ′P )

over L. In fact, the proofs of Theorems 4.1 and 4.2 show that

Prym(C̃P /C) ∼= Jac(XP )

over L, where XP is some quadratic twist of X ′P given by

XP : y2 = c(x− 1)
2g+1∏
i=1

(x− βi) ,

for some c ∈ L∗. Since both C̃P and C have good reduction outside T , by
Lemma 3.1, Jac(XP ) has good reduction outside T . �

An alternative, more direct proof of this result follows from Theorems
6.2 and 6.4 in Section 6.

5. Main theorem
We now prove the main theorem from the introduction.

Theorem 5.1. Let g ≥ 2 be an integer. Suppose that for any number field k
and any finite set of places S of k the set H′(g, k, S) is effectively computable
(e.g., an explicit hyperelliptic Weierstrass equation for each element of the
set is given). Then for any number field k, any finite set of places S of
k, any hyperelliptic curve C over k of genus g, and any rational function
f ∈ k(C), the set of S-integral points with respect to f ,

C(f, k, S) = {P ∈ C(k) | f(P ) ∈ Ok,S},

is effectively computable.

Proof. Without loss of generality, by enlarging k we can assume that every
Weierstrass point of C is k-rational and that some pole Q = (xQ, yQ) of f
is k-rational. Then C can be given by a hyperelliptic Weierstrass equation

C : y2 =
2g+1∏
i=1

(x− αi), αi ∈ k.

Let U consist of the set of Weierstrass points of C along with Q and its
image under the hyperelliptic involution. By Corollary 4.1, for some number
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field L and some finite set of places T of L, we have a map (arbitrarily
choosing among the choices for XP )

C(f, k, S) \ U → H′(g, L, T ),
P 7→ XP .

Explicitly, we can compute C(f, k, S) from H′(g, L, T ) as follows. Recall
that for P = (xP , yP ) ∈ C(f, k, S) \ U , XP is defined by an equation

y2 = cP (x− 1)
2g+1∏
i=1

(
x−

√
xQ − αi
xP − αi

)
,

for some cP ∈ L∗ and some appropriate choice of the square roots. We
pick four of the roots of the polynomial on the right-hand side, say βi =√

xQ−αi

xP−αi
, i = 1, 2, 3, 4, and consider the cross-ratio

CR(β1, β2, β3, β4) = (β1 − β3)(β2 − β4)
(β2 − β3)(β1 − β4) .

Alternatively, we consider the rational function

(5.1) (c1z3 − c3z1)(c2z4 − c4z2)
(c2z3 − c3z2)(c1z4 − c4z1)

on the curve defined by z2
i = x − αi, i = 1, 2, 3, 4, where we view ci =√

xQ − αi, i = 1, 2, 3, 4, as fixed constants. Note that by Kummer theory,
since the αi are distinct, we have [k(x, z1, . . . , z4) : k(x)] = 24 = 16. This
immediately implies that the rational function (5.1) is nonconstant and thus
that the equation CR(β1, β2, β3, β4) = α has only finitely many solutions
in xP for any α ∈ k. Now let C ′ ∈ H′(g, L, T ), given by a Weierstrass
equation C ′ : y2 = c′

∏2g+2
i=1 (x− γi). If XP

∼= C ′, then CR(β1, β2, β3, β4) =
CR(γi, γj , γk, γl) for some i, j, k, l ∈ {1, . . . , 2g + 2}. Since there are only
finitely many possible cross-ratios CR(γi, γj , γk, γl), we find that there are
only finitely many (explicitly computable) possible points P = (xP , yP )
with XP

∼= C ′. Finally, for each such possible point P and each point
P ∈ U , we check if P ∈ C(f, k, S). �

6. Binary Forms
In this section we give a reformulation of some of our results in terms of

binary forms. Let k be a number field and S a finite set of places of k (which
we always assumes contains the archimedean places). Let F (X,Z), G(X,Z)

∈ k[X,Z] be binary forms. Let U =
(
a b
c d

)
, a, b, c, d ∈ k, be a matrix.

Define FU (X,Z) = F (aX + bZ, cX + dZ). We will call F and G equivalent
if there exists U ∈ GL2(k) and λ ∈ k∗ such that G(X,Z) = λFU (X,Z).
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Denote the equivalence class containing F by [F ]. Let Disc(F ) denote the
discriminant of F . Define

B(r, k, S) =
{

[F ]
∣∣∣∣∣ F ∈ Ok,S [X,Z] is a binary form of degree r
and Disc(F ) ∈ O∗k,S

}
.

Effective finiteness of the set B(r, k, S) follows from work of Evertse and
Györy.

Theorem 6.1 (Evertse, Györy [11]). Let r ≥ 2 be an integer, k a num-
ber field, and S a finite set of places of k. The set B(r, k, S) is finite and
effectively computable.

We now define a larger, but related, set B′(r, k, S) ⊃ B(r, k, S). The
set B′(r, k, S) contains equivalence classes of certain binary forms F whose
discriminant is an S-unit outside of primes p where F (mod p) has a factor
of multiplicity ≥ 3. An effective procedure for computing B′(r, k, S) would
give a solution to Problem 1.1 (Corollary 6.1).

More precisely, define B′(r, k, S) to be the set of equivalence classes of
binary forms over k of degree r such that there exists a representative
F ∈ Ok,S [X,Z] satisfying:

If p 6∈ S and ordp Disc(F ) > 0, then ordp Disc(F ) = 2mn(n − 1), where
m is some positive integer, n is an odd integer with 3 ≤ n ≤ 2[(r+1)/2]−3,
and f(x) = F (x, 1) has n distinct roots α1, . . . , αn ∈ k with ordp αi = 2m,
i = 1, . . . , n.

If Disc(F ) ∈ O∗k,S or r ≤ 4, then the above condition is vacuous. So we
trivially have B(r, k, S) ⊂ B′(r, k, S) for all r and B(r, k, S) = B′(r, k, S) if
1 ≤ r ≤ 4.

Theorem 6.2. Let C be a hyperelliptic curve over a number field k of
genus g given by an equation

y2 = h(x) =
2g+1∏
i=1

(x− αi), αi ∈ k.

Let f ∈ k(C) be a nonconstant rational function and S a finite set of places
of k containing the archimedean places. Fix a pole Q = (xQ, yQ) ∈ C(k)
of f . Let U be the set of Weierstrass points of C along with Q and its
image under the hyperelliptic involution. Then there exists an effectively
computable number field L and an effectively computable finite set of places
T of L such that we have a well-defined map

C(f, k, S) \ U → B′(2g + 2, L, T ),

P = (xP , yP ) 7→

(X − Z)
2g+1∏
i=1

(X − βiZ)

 ,
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where the βi are chosen such that β2
i = xQ−αi

xP−αi
and

∏2g+1
i=1 βi = yQ

yP
.

We will see (Corollary 6.2) that B′(2g + 2, k, S) is a finite set. Then by
essentially the same argument as in the proof of Theorem 5.1, we obtain
the following corollary.

Corollary 6.1. Let g ≥ 2 be an integer. Suppose that for any number field
k and any finite set of places S of k the set B′(2g + 2, k, S) is effectively
computable. Then for any number field k, any finite set of places S of k, any
hyperelliptic curve C over k of genus g, and any rational function f ∈ k(C),
the set of S-integral points with respect to f ,

C(f, k, S) = {P ∈ C(k) | f(P ) ∈ Ok,S},

is effectively computable.

Proof of Theorem 6.2. First note that there is an explicit number field L,
depending on C and k, such that for any P ∈ C(f, k, S) we have βi ∈ L for
all i. Then after enlarging k, without of loss of generality it suffices to prove
the theorem for points P ∈ C(f, k, S) such that βi ∈ k, i = 1, . . . , 2g + 1.
Similarly, by enlarging S (in an effectively computable way) we can assume
without of loss of generality that αi ∈ Ok,S , xQ−αi ∈ O∗k,S , i = 1, . . . , 2g+1,
Disc(h) ∈ O∗k,S , Ok,S is a principal ideal domain, every place of k lying
above 2 is in S, every prime p of Ok with norm |Ok/p| ≤ 2g+2 is in S, and

(6.1) min{ordp(xP − xQ), ordp(yP − yQ)} ≤ 0

for every p ∈ Mk \ S and every P = (xP , yP ) ∈ C(f, k, S), where Mk

denotes the canonical set of places of k (identifying nonarchimedean places
with the corresponding prime ideal).

Let P ∈ C(f, k, S) with βi ∈ k, i = 1, . . . , 2g + 1, as in the theorem.
Since Ok,S is principal, we can write βi = γi

δi
, where γi and δi are relatively

prime S-integers, i = 1, . . . , 2g + 1. Consider the binary form

F (X,Z) = (X − Z)
2g+1∏
i=1

(δiX − γiZ) ∈ Ok,S [X,Z],

which is equivalent to (X − Z)
∏2g+1
i=1 (X − βiZ). Let p ∈Mk \ S.

Suppose that ordp(xP − xQ) = 0. Then we claim that ordp Disc(F ) = 0.
For this, it suffices to show that ordp(γiδj − γjδi) = 0, i 6= j, and ordp(γi −
δi) = 0 for all i. We have the identity

(6.2) β2
i −β2

j =
γ2
i δ

2
j − γ2

j δ
2
i

δ2
i δ

2
j

= xQ − αi
xP − αi

−xQ − αj
xP − αj

= (xP − xQ)(αj − αi)
(xP − αi)(xP − αj)

.

Since Disc(h) ∈ O∗k,S , we have ordp(αj−αi) = 0. By assumption, ordp(xP −
xQ) = ordp((xP − αi) − (xQ − αi)) = 0. This last equality, along with
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ordp(xQ − αi) = 0, implies that ordp(xP − αi) = 2 ordp δi. Then

ordp(γ2
i δ

2
j − γ2

j δ
2
i ) = ordp((γiδj − γjδi)(γiδj + γjδi))

= ordp

δ2
i δ

2
j (xP − xQ)(αj − αi)

(xP − αi)(xP − αj)
= 0.

Since γiδj±γjδi is an S-integer, we find that ordp(γiδj−γjδi) = 0. Similarly,
we find that ordp(γi − δi) = 0. So ordp Disc(F ) = 0 as desired.

Now suppose that ordp(xP − xQ) < 0. Since xQ, α1, . . . , α2g+1 ∈ Ok,S ,
this implies that ordp(xP − xQ) = ordp xP = ordp(xP − αi) < 0 for all i.
Since xQ − αi ∈ O∗k,S for all i, we have ordp γi = −1

2 ordp xP for all i. Let
c ∈ Ok,S be such that ordp c = max{0,−1

2 ordp xP } for p 6∈ S. We consider
now the binary form

G(X,Z) = (cX − Z)
2g+1∏
i=1

(δiX −
γi
c
Z) ∈ Ok,S [X,Z].

The identity (6.2) easily implies that if p 6∈ S and ordp(xP − xQ) < 0, then

ordp(γiδj − γjδi) = −1
2 ordp xP = ordp c, i 6= j.

Then computing Disc(G), we find that ordp Disc(G) = 0 if p 6∈ S and
ordp(xP − xQ) ≤ 0.

Finally, suppose that ordp(xP −xQ) > 0. Then from (6.1), we must have
ordp(yP − yQ) = 0 (the case ordp(yP − yQ) < 0 being impossible). Since
ordp(xQ−αi) = 0 for all i, ordp(xP−xQ) > 0 implies that ordp(xP−αi) = 0
for all i. Then ordp βi = ordp δi = ordp γi = 0 for all i. It follows from (6.2)
that

ordp(γ2
i δ

2
j − γ2

j δ
2
i ) = ordp(xP − xQ)

for i 6= j. Similarly,

ordp(γ2
i − δ2

i ) = ordp(xP − xQ) > 0

for all i. In particular, γi ≡ ±δi (mod p) and βi ≡ ±1 (mod p) for all
i. Since xP ≡ xQ (mod p) and yP 6≡ yQ (mod p), we have yP ≡ −yQ
(mod p). So

2g+1∏
i=1

βi ≡
yQ
yP
≡ −1 (mod p).

Then βi ≡ −1 (mod p) for an odd number np of the elements i. Let mp =
ordp(xP − xQ). Then for i 6= j,

ordp(γiδj − γjδi) =
{
mp if βi ≡ βj (mod p),
0 if βi 6≡ βj (mod p).
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Now a straight-forward calculation gives

(6.3) ordp Disc(G) = mpnp(np − 1) +mp(2g + 2− np)(2g + 2− np − 1).

Let

P = {p ∈Mk \ S | ordp(xP − xQ) > 0} = {p ∈Mk \ S | ordp Disc(G) > 0}.

Let b ∈ Ok be such that

2bc ≡ −1

mod
∏
p∈P

pmp

 .
Let U =

(
1 b
c 1 + bc

)
. Then

−GU (X,Z) = Z
2g+1∏
i=1

(
(δi − γi)X + 1

c
(bcδi − (bc+ 1)γi)Z

)
.

Note that since detU = 1, Disc(GU ) = Disc(G). For p ∈ P, let πp be a
generator for pOk,S . Let εi,p = 1 if δi ≡ γi (mod p) and εi,p = 0 otherwise
(in which case δi ≡ −γi (mod p)). Define θi =

∏
p∈P π

mpεi,p
p and θ′i =∏

p∈P π
mp(1−εi,p)
p . Consider the binary form

H(X,Z) = Z
2g+1∏
i=1

(
δi − γi
θi

X + θ′i
c

(bcδi − (bc+ 1)γi)Z
)
.

Note that the binary form H(X,Z) is a scalar multiple of the form
GU

(
X,
(∏

p∈P π
mp
p

)
Z
)
. It follows that ordp Disc(H) = 0 if p ∈Mk\(P∪S).

For p ∈ P, from (6.3) and the definition of H, a calculation yields

(6.4) ordp Disc(H) = 2mpnp(np − 1).

For p ∈ P,

2(bcδi − (bc+ 1)γi) ≡ −(δi + γi) (mod pmp).

If εi,p = 0, then it follows that ordp(
θ′

i
c (bcδi − (bc + 1)γi)) ≥ 2mp. In

fact, since there are np distinct values of i such that εi,p = 0, by (6.4),
ordp(

θ′
i
c (bcδi − (bc + 1)γi)) > 2mp for at most one value of i with εi,p = 0.

Since |Ok/p| > 2g+2 > np, after an appropriate substitution X 7→ X+aZ,
we can force ordp(

θ′
i
c (bcδi − (bc + 1)γi)) = 2mp for all i and p such that

εi,p = 0. Then for each p ∈ P, H(x, 1) has np roots α with ordp α = 2mp. If

np = 2g+ 1, then we can replace H(X,Z) by πmp
p H

(
X, Z

π
mp
p

)
, eliminating

p as a divisor of the discriminant of H. So we have 3 ≤ np ≤ 2g − 1 for
every p ∈ Mk \ S with ordp Disc(H) > 0. Then from all of the above we
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have found a binary form equivalent to (X − Z)
∏2g+1
i=1 (X − βiZ) showing

that [(X − Z)
∏2g+1
i=1 (X − βiZ)] ∈ B′(2g + 2, k, S). �

We have shown that in order to solve Problem 1.1 it suffices to effectively
compute, for all values of the parameters, either the set B′(2g + 2, k, S) or
the set H′(g, k, S). It seems interesting to determine the precise relationship
between these two sets. In the case g = 2, Liu [17] has given an algorithm
to compute, given a Weierstrass equation for a genus two curve, the fibers
of a minimal model of the curve (away from primes above 2, at least). In
particular (see [17, §6]), Liu’s algorithm implies that computing the set
B′(6, k, S) for all k and S and computing the set H′(2, k, S) for all k and S
are equivalent problems. More precisely, Liu’s results imply the following
relationship.

Theorem 6.3. Let k be a number field and S a finite set of places of
k containing the archimedean places and the places lying above 2. There
exists a number field L and a finite set of places T of L such that if C :
y2 = f(x), deg f = 6, is a hyperelliptic curve of genus two representing
an element of H′(2, k, S) and F (X,Z) is the homogenization of f , then
[F ] ∈ B′(6, L, T ). Conversely, if [F ] ∈ B′(6, k, S), then for some constant
c ∈ k∗, the equivalence class of the curve y2 = cF (x, 1) is in H′(2, k, S).

In the theorem, we can take L to be any field such that for every curve
C representing an element of H′(2, k, S), the Weierstrass points of C are
L-rational. As is well known, such a field L can be explicitly computed and
it is a certain extension of k unramified outside of S.

It seems plausible that the analogue of Theorem 6.3 holds in higher
genus. We give a proof of one of the directions.

Theorem 6.4. Let g be a positive integer, k be a number field, and S a
finite set of places of k containing the archimedean places and the places
lying above 2. If [F ] ∈ B′(2g + 2, k, S), then for some constant c ∈ k∗ the
equivalence class of the curve y2 = cF (x, 1) is in H′(g, k, S).

Proof. Let [F ] ∈ B′(2g + 2, k, S), with F ∈ Ok,S [X,Z] as in the definition
of B′(2g + 2, k, S). Let f(x) = F (x, 1) and let C be the hyperelliptic curve
defined by y2 = f(x). It suffices to show that Jac(C) has good reduction
outside S. Let p ∈Mk \S. If p doesn’t divide the discriminant of f then the
curve C, and hence Jac(C), has good reduction at p. Otherwise, let kp be
the completion of k at p, Op the ring of integers of kp, and π a uniformizer.
Then from the definitions, we can write

f(x) = h(x)
n∏
i=1

(x− uiπ2m),

where
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• m and n are positive integers with n odd, 3 ≤ n ≤ 2g − 1.
• h ∈ Op[x], h (mod π) has distinct roots, and π - h(0).
• ui ∈ O∗p , i = 1, . . . , n, and

∏n
i=1(x− ui) has distinct roots mod π.

We can define two nonisomorphic models C1 and C2 of C over Op via
the equations y2 = h(x)

∏n
i=1(x − uiπ2m) and y2 = h(π2mx)

∏n
i=1(x − ui),

respectively [18, §4.3]. Let C1 and C2 be the hyperelliptic curves over Ok/p
defined by y2 = xh(x) and y2 = h(0)

∏n
i=1(x − ui), respectively, where

the bar denotes the image in (Ok/p) [x]. Then C1 and C2 are birational to
the special fibers of C1 and C2, respectively. Let C be the minimal proper
regular model of C over Op. Since C can be obtained by desingularizing C1
or C2 and then blowing down exceptional curves, it follows that the special
fiber Cp of C contains irreducible components Γ1 and Γ2 birational to C1
and C2, respectively. Let Cp =

∑r
i=1 niΓi, where Γ1, . . . ,Γr are the distinct

components of Cp. Then Cp is connected, Γ2
i < 0 for all i, and letting K

denote a canonical divisor, we have
∑r
i=1 ni(Γi.K) = 2g − 2 and Γi.K ≥ 0

for all i (see [32, pp. 342-343], [22, p. 356]). Let gi be the genus of Ci,
i = 1, 2. Then by the adjunction formula,

Γi.K = 2pa(Γi)− 2− Γ2
i ≥ 2gi − 2 + 1 ≥ 2gi − 1, i = 1, 2,

where pa(Γ) denotes the arithmetic genus of Γ. Since g1 +g2 = g, so Γ1.K+
Γ2.K ≥ 2g − 2, we must have Γ2

i = −1, pa(Γi) = gi, and Γi ∼= Ci for
i = 1, 2. Moreover, Γi.K = 0, i ≥ 3. This implies that Γ2

i = −2 and Γi is a
nonsingular rational curve for i ≥ 3. Since n1 = n2 = 1 and Γi.(Cp−Γi) = 1,
i = 1, 2, Γi meets the rest of the special fiber in exactly one point for
i = 1, 2. If Γ1 intersects Γi, i ≥ 3, then ni = 1 and since Γi.(Cp − Γi) = 2,
Γi meets the rest of the special fiber in exactly one other point. Since Cp is
connected, continuing with the same reasoning we find that ni = 1 for all
i and the special fiber of C consists of either C1 and C2 intersecting at a
single point or C1, C2, and an appropriate chain of rational curves joining
a point of C1 with a point of C2. Then it follows from well-known facts on
the relationship between a minimal model of C and the Néron model of
Jac(C) [7, §9.5 Th. 4, §9.6 Prop. 10] that Jac(C) has good reduction at p
and the reduction mod p is isomorphic to Jac(C1)× Jac(C2). �

Finally, since H′(g, k, S) is finite by the Shafarevich conjecture, we can
conclude the (ineffective) finiteness of the set B′(2g + 2, k, S).

Corollary 6.2. For any positive integer g, number field k, and finite set
of places S of k, the set B′(2g + 2, k, S) is finite.
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