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Journal de Théorie des Nombres
de Bordeaux 24 (2012), 691-704

Binomial squares in pure cubic number fields

par Franz LEMMERMEYER

Résumé. Soit K = Q(ω), avec ω3 = m > 1 un nombre entier,
un corps de nombres cubique. Nous montrons que les éléments
α ∈ K× avec α2 = a− ω (où a est un nombre rationnel) forment
un groupe qui est isomorphe au groupe des points rationnels de
la courbe elliptique Em : y2 = x3 − m. Nous démontrons aussi
comment utiliser cette observation pour construire des extensions
quadratiques non ramifiées de K.

Abstract. Let K = Q(ω), with ω3 = m a positive integer, be
a pure cubic number field. We show that the elements α ∈ K×

whose squares have the form a − ω for rational numbers a form
a group isomorphic to the group of rational points on the elliptic
curve Em : y2 = x3 − m. This result will allow us to construct
unramified quadratic extensions of pure cubic number fields K.

Introduction

Let me begin by describing a method for solving certain diophantine
equations invented by Euler and Lagrange. Euler, in his Algebra [7], showed
that equations such as
(0.1) x2 + 2y2 = z3

are easily solved by observing the following: set x+ y
√
−2 = (p+ q

√
−2 )3;

comparing real and imaginary parts shows that
x = p3 − 6pq2, y = 3p2q − 2q3,

and this provides us with infinitely many1 solutions of Equation (0.1).
In [10, p. 532], read to the Academy two years before Euler’s Algebra ap-

peared2, Lagrange exploits the same ideas (unlike Euler, however, Lagrange
does not claim that his formulas would give all solutions), and extends them
to algebraic numbers of degree > 2 in his theory of “fonctions semblables”.

Thus for solving an equation of the form
(0.2) r3 −As3 = p2,

Manuscrit reçu le 7 octobre 2011, révisé le 15 décembre 2011.
1Euler realized that this parametrization does not always yield all possible solutions, but

nevertheless used this technique for showing that certain diophantine equations do not have any
nontrivial solutions.

2In [11], which appeared in 1774, Lagrange presented his “Additions” to Euler’s Algebra.
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Lagrange [10, p. 532] sets p = t + ua 3√A + xa2 3√
A2 and observes that

p2 = T + V a 3√A+Xa2 3√
A2 for

T = t2 + 2Aux, V = Ax2 + 2tu, X = u2 + 2tx.
From p2 = r + s 3√A he obtains u2 + 2tx = 0. Solving for x and plugging
the result into the other two equations gives

r = t2 − Au3

t
, s = −Au

4

4t2 − 2tu.

By giving T , U , V integral values, these formulas provide us with integral
solutions of (0.2). In the case A = 3, for example, we find

t u x r s p

1 2 −2 −23 −16 11
2 2 −1 25 −8 131

He then treats, in a similar way, the equation
r3 −As3 = p3

and remarks
Mais, comme nous ne nous proposons pas ici de traiter cette
matière à fond, nous ne nous y arrètons pas davantage quant
à présent;3

Lagrange had already remarked that his method, applied to the equation
rn −Asn = pn, does not always give rational solutions when n ≥ 3. At the
end of his memoir he remarks that the equation rn + sn = pn was claimed
to have no nonzero solution in rational numbers for n > 2 by Fermat, that
Euler had shown this claim to be correct for the exponents n = 3 and
n = 4 by a very ingenious analysis4, and that the problem would deserve
the highest attention by mathematicians.

A problem similar to (0.2) occurs when trying to solve the diophantine
equation5 y2 = x3 + 1 (or, equivalently, determining the integral points on
this elliptic curve). The most direct way of attacking this equation probably
is writing it in the form (y− 1)(y+ 1) = x3 and using unique factorization.
If y is odd, one possibility we have to consider is y − 1 = 2a3 and y + 1 =
4b3 for integers a, b. This implies a3 − 2b3 = −1, which has the obvious
solution (a, b) = (1, 1), giving the solution (x, y) = (2, 3) of the original
equation. Showing that a3 − 2b3 = −1 does not have any other solution is

3But since we do not intend to treat this matter thoroughly here, we will not dwell any longer
on this topic for now;

4Euler must have found a proof of Fermat’s Last Theorem for the exponent n = 3 in 1753,
as his correspondence with Goldbach (Aug. 4, 1753) shows. Euler mentioned this proof in E272,
but it is not clear to me to which proof Lagrange is referring here. The case n = 4 was proved
by Euler in E098.

5This was first solved by Euler; see [12].
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a slightly technical task. A famous result due to Delaunay and Nagell (see
[14]) tells us that equations a3−mb3 = 1 for noncubes m have at most one
integral solution. For proving this result one needs to study units of the
form a− b 3

√
m in pure cubic number fields and show that these units, with

a few exceptions, cannot be powers of other units.
In this article we shall investigate squares of the form a+ b 3

√
m in pure

cubic number fields and explain why their occurrence in diophantine prob-
lems related to elliptic curves is quite natural. We will also show how to
apply our results to the construction of unramified quadratic extensions of
pure cubic number fields; in particular, we will give these extensions for all
values 2 ≤ m ≤ 113 for which K = Q( 3

√
m ) has even class number.

Each pure cubic number field K = Q( 3
√
m ) contains binomial squares:

trivial examples are r2 = r2 + 0 3
√
m and 3√

m2 2 = 0 + m 3
√
m. Finding

nontrivial binomial squares is more challenging: in Q( 3√2 ), squares of the
form a− b 3√2 are

(1− 3√2− 3√4 )2 = 5− 3√4,

(9− 6 3√2− 2 3√4 )2 = 129− 100 3√2,

(16641− 25800 3√2− 20000 3√4 )2 = 2340922881− 58675600 3√2,

where 58675600 = 76602.
This abundance of examples in Q( 3√2 ) should not mislead the readers

into thinking that this is a typical phenomenon; in fact, there are no non-
trivial squares of the form a− 3√3 at all in Q( 3√3 ).

1. The group law

Fix a cubefree integer m, let K = Q( 3
√
m ) denote the corresponding

pure cubic number field, and consider the set
Sm = {α ∈ K× : α2 = a− 3√m : a ∈ Q×}.

Writing α = r+sω+tω2 with ω = 3
√
m we find that the condition α2 = a−ω

is equivalent to the system of equations
2rt+ s2 = 0,(1.1)

2rs+mt2 = −1,(1.2)
2mst+ r2 = a.(1.3)

Since t = 0 implies s = 0 and a = r2 (which is the trivial solution),
we may assume that t 6= 0; solving (1.1) for r and plugging the resulting
equation r = −s2/2t into (1.2) we find −s3/t + mt2 = −1 which, after
dividing through by −t2 gives the point

Pα = (x, y) =
(s
t
,
1
t

)
on the elliptic curve y2 = x3 −m.
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The missing parameters a and r are given by r/t = −1
2(s/t)2 and by (1.3).

Conversely, every affine point (x, y) ∈ Em(Q) gives a unique element of
Sm via

(1.4) t = 1
y
, s = x

y
, r = x2

2y , and a = x4 + 8mx
4y2 .

Of course we make the point at infinity on Em(Q) correspond to the (class
of the) trivial element 1 ∈ Sm.

We have proved

Theorem 1. Let m be an integer that is not a cube, let K = Q(ω) with
ω3 = m denote the corresponding pure cubic field, and let Em denote the
elliptic curve y2 = x3 −m. There is a bijection between the rational points
(x, y) ∈ Em(Q) and the elements α ∈ K× with α2 = a− ω for a ∈ Q×. In
fact, if α = r+sω+ tω2 satisfies α2 = a−ω, then (x, y) ∈ Em(Q) for x = s

t

and y = 1
t . Clearly α = 1 corresponds to the point at infinity on E, and

multiplication by −1 in K× corresponds to multiplication by −1 in Em(Q).
Conversely, an affine point (x, y) corresponds to

α = −x
2

2y + x

y
ω + 1

y
ω2 with α2 = x4 + 8mx

4y2 − ω.

Multiplying through by 4y2 gives the simpler identity
(x2 − 2xω − 2ω2)2 = x4 + 8mx− 4y2ω,

which can easily be verified directly.
Remark 1. If α = r + sω + tω2 with ω = 3

√
m satisfies α2 = a − ω for

some a ∈ Q×, then α1 = r − sω + tω2 has the property that α2
1 = c − dω

for suitable rational numbers c, d; this is due to the fact that Eqn. (1.1)
remains invariant under s 7→ −s.
Remark 2. The observation that rational points on elliptic curves without
2-torsion and elements of cubic number fields are related is classical. In fact,
consider an elliptic curve E : y2 = f3(x), where f3 ∈ Q[x] is an irreducible
polynomial, let ω denote a root of f3, and set K = Q(ω). Weil’s proof of the
Mordell-Weil theorem for such elliptic curves E uses a homomorphism α :
E(Q) −→ K×/K× 2 defined by α(P ) = (x−ω)K× 2, where P = (x, y). This
map α has kernel 2E(Q), giving us an injection E(Q)/2E(Q) ↪→ K×/K× 2.

Theorem 1, on the other hand, gives a bijection between the group Em(Q)
of rational points on an elliptic curve and a subset Sm of K×/Q×, and the
group structure on Sm is not the one inherited from K×.

Both results can be used to show that certain elements of K× are not
squares. The proof of Theorem 1 requires nothing beyond high school alge-
bra and thus is a lot less deep than the exact sequence

0 −−−−→ 2E(Q) −−−−→ E(Q) α−−−−→ K×/K× 2
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coming from 2-descent on E, whose proof uses the addition law on E(Q)
as well as the arithmetic of ideals and units of the number field K.

Corollary 2. If Em : y2 = x3 −m has no rational point except the point
at infinity, then there are no squares of the form a− ω in K = Q(ω) with
a ∈ Q× and ω = 3

√
m.

Remark. Torsion points of order 3 on Em do not contribute significantly.
In fact, the torsion points (0,±k) on y2 = x3 + k2 give rise to the trivial
solutions 3√

k22 = k 3√k.
Some expressions occurring in Thm. 1 have a natural explanation in

terms of the group law on elliptic curves.
The group law on Em is given by the following formulas: given rational

points (x1, y1) and (x2, y2), set

λ =


y2−y1
x2−x1

if x2 6= x1,

3x2
1

2y1
if x2 = x1.

Then (x1, y1) + (x2, y2) = (x3, y3) with
x3 = λ2 − x1 − x2, y3 = λx3 + y1 − λx1.

The duplication formula for P = (x, y) is given by

2P =
(x4 + 8mx

4y2 ,−x
6 − 20mx3 − 8m2

8y3

)
.

Comparing this formula with (1.4) we immediately get

Corollary 3. The element a − ω is a square in K if and only if a = x2P
for some point P ∈ Em(Q). In this case, N(a− ω) = y2

2P .

The last claim is a simple calculation:( x4 + 8mx
4(x3 −m)

)3
−m =

(x6 − 20mx3 − 8m2

8y3

)2
.

Example. Consider the element β = 5− 3√4 in K = Q( 3√2 ), whose norm
53 − 4 = 112 is a square. For deciding whether β is a square in K we
observe that the point P = (5, 11) on y2 = x3 − 4 is a multiple of 2
since P = 2(2,−2). Thus β = α2 is a square, and the formulas above give
α = −1 + 3√4 + 1

2
3√16 = −1 + 3√2 + 3√4 as well as N(β) = N(α)2 = 112.

The example of Bachet-Fermat. Consider the curve E2 : y2 = x3 − 2.
The integral point P = (3, 5) corresponds to

αP = − 9
10 + 3

5
3√2 + 1

5
3√4 with α2

P = 129
100 −

3√2.
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Multiplying through by 102 shows that P gives rise to

(−9 + 6 3√2 + 2 3√4 )2 = 129− 100 3√2.
Observe that 2P = (129

100 ,
383
1000) corresponds to

α2P = −16641
7660 + 1290

383 ω + 1000
383 ω

2

with α2
2P = 2340922881

58675600 − ω. Finally we remark that

3P =
(164323

1712 ,−66234835
1713

)
,

α3P = 27002048329
22652313570 −

28099233
66234835

3√2− 5000211
66234835

3√4.

2. Explicit multiplication formulas

Recall that we have constructed a bijection between elements α ∈ K×
with α2 = a−ω and rational points on the elliptic curve Em : y2 = x3−m.
The group structure on Em(Q) induces, by transport of structure, a group
law on Sm. In this section we will give explicit formulas for the group law
on Sm.

To this end assume that αj = rj + sjω + tjω
2 (j = 1, 2) are elements

whose squares have the form aj−ω. Then these elements correspond to the
points

Pj =
(sj
tj
,

1
tj

)
on the elliptic curve Em : y2 = x3−m. The sum P3 = P1 +P2 corresponds
to an element α3 ∈ K× with α2

3 = a3−ω, and we can compute formulas for
α3 = α1 ∗α2 by using the group law on elliptic curves. The “multiplication
formulas” for the αj have little if anything to do with multiplication in
K× and are rather complicated. It remains to be seen whether there is any
geometric interpretation of these formulas.

If s1
t1
6= s2

t2
, then we find

x3 =
( 1
t2
− 1

t1
s2
t2
− s1

t1

)2
− s1
t1
− s2
t2

=
( t1 − t2
t1s2 − t2s1

)2
− s1
t1
− s2
t2
,

y3 = t1 − t2
t1s2 − t2s1

(
x3 −

s1
t1

)
+ 1
t1
.

From these values we can compute the coefficients of
α1 ∗ α2 = α3 = r3 + s3ω + t3ω

2.

For what it’s worth, the corresponding values of s3 and t3 are given by

s3 = x3
y3

= num(s)
den(s) , t3 = 1

y3
= num(t)

den(t)
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with
num(s) = (s1t2 − s2t1)((s1t2 + s2t1)(s1t2 − s2t1)2 − t1t2(t1 − t2)2)
den(s) = t1t2(t1 − t2)3 + (s1t2 − s2t1)2(s1t

2
2 + 2(s2 − s1)t2t1 − s2t

2
1)

num(t) = (s2t1 − s1t2)3t1t2,

den(t) = t1t2(t1 − t2)3 + (s1t2 − s2t1)2(s1t
2
2 + 2(s2 − s1)t1t2 − s2t

2
1).

Setting
S− = s1t2 − s2t1, S+ = s1t2 + s2t1, T− = t1 − t2 and T+ = t1t2,

as well as
Σ = s1t

2
2 + 2(s2 − s1)t1t2 − s2t

2
1 = (s2 − s1)T+ − S+T−,

the multiplication formulas become

s3 =
S3
−S+ − S−T 2

−T+
T 3
−T+ + S2

−Σ
, t3 = −

S3
−T+

T 3
−T+ + S2

−Σ
.

Let us check these formulas by “multiplying” the elements

α1 = 9
10 −

3
5

3√2− 1
5

3√4 and α2 = −16641
7660 + 1290

383
3√2 + 1000

383
3√4.

We find

s1 = −3
5 t1 = −1

5 S− = −342
383 T+ = −200

383
s2 = 1290

383 t2 = 1000
383 S+ = −858

383 T− = −5383
1915

Σ = −6138414
733445

This yields

s3 = −28099233
66234835 , t3 = − 5000211

66234835 , r3 = − s2
3

2t3
= 27002048329

22652313570
in perfect agreement with our calculations at the end of Section 1.

3. Squares of the form a − bω

Consider more generally the problem of classifying squares of the form
a− bω for some fixed value of b ∈ Q×. Since a− bω = a−ω′ for ω′ = 3√

mb3

we find, by simply replacing m with mb3 in Thm. 1, the following

Theorem 4. Let m be an integer that is not a cube, let K = Q(ω) with
ω3 = m denote the corresponding pure cubic field, and let Em denote the
elliptic curve y2 = x3 −m. There is a bijection between elements α ∈ K×
with α2 = a−bω for a, b ∈ Q and the rational points (x, y) ∈ E′m(Q), where
E′m : y2 = x3 −mb3 is a quadratic twist of Em.
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In fact, if α = r + sω + tω2 satisfies α2 = a − bω, then (x, y) ∈ E′m(Q)
for x = bs/t and y = b2/t.

Conversely, an affine point (x, y) ∈ E′m(Q) corresponds to

α = −x
2

2y + bx

y
ω + b2

y
ω2 with α2 = x4 + 8mx

4y2 − bω.

In particular, a − bω is a square with N(a − bω) = y2 if and only if
(a, y) ∈ 2E′(Q).

Example. The unit

−19 + 7 3√20 = (1 + 3√20− 3√50 )2

is a well known example due to Nagell [14]; since 3√50 = 1
2

3√202, it comes
from the point P (−2,−2) on the quadratic twist −7y2 = x3 − 20 of the
elliptic curve y2 = x3 − 20. The corresponding point on the elliptic curve
y2 = x3 + 73 · 20 is P ′(14, 98). Observe that 2P ′ = (−19, 1).

Corollary 5. There is a binomial unit a− bω that is a square in K if and
only if there is an integral point (a, 1) ∈ 2E(Q) on E′ : y2 = x3 −mb3.

4. A homomorphism from E(Q) to Cl(K)

In this section we will define a map from E(Q), the group of rational
points on E : y2 = x3 −m (where m 6≡ 0,±1 mod 9 is a cubefree integer),
to the group Cl(K)[2] of ideal classes of order dividing 2 in K = Q( 3

√
m ),

and show that this map is a homomorphism.
Remark. The condition m 6≡ ±1 mod 9 occurring below also comes up
in connection with integral bases in pure cubic fields: if m = ab2 with a, b
squarefree, then 1, ω1 = 3√

ab2 and ω2 = 3√
a2b form an integral basis of OK .

The fact that this condition is relevant for comparing the ranks of elliptic
curves and 2-class groups of pure cubic fields was noticed on a regular basis:
see e.g. [3, 6, 4, 2] and the discussion in [13].

Theorem 6. Let m 6≡ 0,±1 mod 9 be a cubefree integer, and consider the
cubic number field K = Q( 3

√
m ) and the elliptic curve E : y2 = x3 −m.

For any P = (x, y) ∈ E(Q) \ {∞}, set x = a/e2 for coprime integers a and
e. Then (a − e2ω) = a2, and the map P 7→ [a] induces a homomorphism
κ : E(Q) −→ Cl(K)[2].

Proof. Since a3/b3 −m = y2 we find that N(a − bω) = y2b3. Since b = e2

is a square (see [18, p. 68]), the norm of α = a− bω is a square. Thus (α)
is the square of an ideal if and only if a − bω is coprime to its conjugates
α′ = a− bωρ and α′′ = a− bωρ2 in the normal closure L of K/Q. Let d be
the greatest common ideal divisor of α and α′. Then d | α′′, hence d divides
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the trace 3a of α as well as the difference α− α′ = bω(1− ρ). Since a and
b are coprime, d is a product of ideals above 3.

Since we have assumed that m 6≡ ±1 mod 8, we have (3) = q3 in K (see
e.g. [5] for the decomposition law in pure cubic number fields). Assume
therefore that q | (α) (this implies that q | (α′) since q is totally ramified).
If 3 | m, then 3 | a, and from y2 = a3/b3 − m we deduce that 32 | m
contradicting our assumptions. If 3 - m, then a3 −mb3 = y2b3 is divisible
by 3 if and only if it is divisibly by 9, and now a3 ≡ mb3 mod 9 implies that
m ≡ ±1 mod 9, again contradicting our assumptions. Thus (α) = a2, and
[a] = κ(P ) is an ideal class of order dividing 2 in K. It remains to show
that κ is a homomorphism.

To this end, assume that xP = a/b and xQ = c/d for P,Q ∈ E(Q). Set
κ(P ) = [a] and κ(Q) = [b]. We have to show that κ(P + Q) = [ab], which
is equivalent to κ(P )κ(Q)κ(R) ∼ 1 for collinear rational points P,Q,R ∈
E(Q).

The Weil map α : E(K) −→ K×/K× 2 defined by

α(P ) =


(x− ω)K× 2 if P = (x, y), y 6= 0
3ωK× 2 if P = (ω, 0),
K× 2 if P = O

(see e.g. [9, (4.2)]) is a homomorphism, and if we restrict α to E(Q), then
the second case cannot occur. This shows that (xP − ω)(xQ − ω)(xR − ω)
is a square in K×. Thus (a − bω)(c − dω)(e − fω) = β2, where xR = e/f ,
and a2b2c2 = (β)2. But this implies abc = (β). �

We now discuss a few examples.
Example 1. Let K = Q( 3√26 ) and E : y2 = x3 − 26. Then E(Q) is
generated by P = (3, 1) and Q = (35, 207). The element 3 − ω is a unit,
and (35−ω) = 33

132q
2, where (3) = 313

2
2 and where q is a prime ideal above

23. This shows that the condition m 6≡ ±1 mod 9 cannot be dropped.
Example 2. Let K = Q( 3√47 ) and E : y2 = x3 − 47. Then E(Q) is gener-
ated by P = (6, 13) and Q = (12, 41); moreover, P + Q = (34/9,−71/27).
We have

(6− ω) = p2
13, (12− ω) = p2

41, (34− 9ω) = p2
71.

The ideals p13 and p41 generate the ideal class of order 2, the ideal p71 is
principal.
Example 3. Let m = 57; then P = (4873/36,−340165/216) generates
E(Q), (4873 − 36ω) = a2, and a is principal. The elliptic curve E′ : y2 =
x3 − 572 has rank 0 according to sage [16] since L(E′, 1) 6= 0, and has
nontrivial Tate-Shafarevich group X(E′).

This suggests the question whether there is any connection between the
kernel of κ in E(Q) and the Tate-Shafarevich group X(E′) of E′.
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Remark. If we consider the more general case of elliptic curves y2 = x3 −
mb3, then a point (x, y) ∈ E(Q) with x = a/e2 provides us with an element
α = a− be2ω with square norm N(α) = a3 −mb3e6 = (ye3)2; yet (α) need
not be a square of an ideal if gcd(a, b) 6= 1. In fact, (14, 44) is a rational
point on y2 = x3 − 23 · 101, and neither (14− 2ω) nor (7− ω) are squares
of ideals in K = Q(ω) with ω3 = 101.

On the other hand, the proof of Thm. 6 shows

Lemma 7. Assume that m is a cubefree integer with m 6≡ 0,±1 mod 9, set
ω = 3

√
m, and let P = (x, y) be a rational point on E : y2 = x3 −mb3 for

some integer b. Write x = a/e2; then (a− be2ω) is a square of an ideal in
K whenever gcd(a, b) = 1.

5. Hilbert 2-class fields

Let K = Q(ω) with ω3 = m be a cubic number field, where we assume
that m 6≡ 0,±1 mod 9, and let E : y2 = x3 −mb3 be a quadratic twist of
E. If qP = (x, y) ∈ E(Q) \ 2E(Q) is a rational point with x = r/s2 and
coprime integers r, s, then α = r−s2bω ∈ K has norm r3−ms6b6 = y2(bs)6.
Since α is not a square, KP = K(

√
α ) is a quadratic extension. Next (α)

is a square of an ideal by Lemma 7, hence the extension KP /K can only
ramify at the primes above 2 and ∞. If 2 | s and if r is chosen positive,
then r ≡ 1 mod 4 since r3 ≡ 1 mod 4, and in this case the extension KP /K
is unramified everywhere.

Table 5.1 lists the pure cubic number fields with even class number and
m ≤ 113, an elliptic curve E whose rational points provide us with unram-
ified quadratic extensions K(

√
α ).

For m = 113, the three quadratic unramified extensions are generated
by roots of the polynomials

f1(x) = x6 − 291x4 + 28227x2 − 717409
f2(x) = x6 − 130347x4 + 5663446803x2 − 34351825047849
f3(x) = x6 − 3771x4 + 4740147x2 − 1186320249

Since neither of the three points from which these extensions originate are
in 2E(Q), these three extensions are pairwise distinct.

In the case of m = 2351, it can be checked that the three unramified
(in all three cases, we have α > 0, so there is no ramification at infinity)
quadratic extensions generated by roots of the polynomials

f1(x) = x6 − 171x4 + 9747x2 − 4247721,
f2(x) = x6 + 1653x4 + 910803x2 − 92717641,
f3(x) = x6 + 261x4 + 22707x2 − 3404025

are independent.
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m Cl2(K) E xP α
11 2 y2 = x3 − 11 9/4 9− 4ω
15 2 y2 = x3 + 15 1/4 1 + 4ω
39 2 y2 = x3 + 39 217/4 217 + 4ω
43 4 y2 = x3 − 43 1177/36 1177− 36ω
47 2 y2 = x3 + 47 17/4 17− 4ω
57 2 y2 = x3 − 57 4873/36 4873− 36ω
58 2 y2 = x3 − 58 5393/484 5393− 484ω
61 2 y2 = x3 − 61 929/100 929− 100ω
63 2 y2 = x3 + 63 9/4 9 + 4ω
65 2 y2 = x3 + 27 · 65 129/4 129 + 3 · 4ω
66 2 y2 = x3 + 66 1/4 1 + 4ω
67 2 y2 = x3 − 67 17/4 17− 4ω
76 2 y2 = x3 − 76 17/4 17− 4ω
79 2 y2 = x3 + 27 · 79 1921/100 1921 + 3 · 100ω
83 2 y2 = x3 − 83 33/4 33− 4ω
89 2 y2 = x3 − 89 153/4 153− 4ω

101 2 y2 = x3 − 101 6342921/1073296 6342921− 1073296ω
105 2 y2 = x3 − 1052 16465/196 16465− 196ω2

106 2 y2 = x3 − 106 8297/1024 8297− 1024ω
113 (2, 2) y2 = x3 − 27 · 113 97/4 97− 3 · 4ω

43449/2500 43449− 3 · 2500ω
1257/64 1257− 3 · 64ω

2351 (4, 2, 2) y2 = x3 + 27m 57/4 57 + 3 · 4ω
−551/16 −551 + 3 · 16ω
−87/4 −87 + 3 · 4ω

Table 5.1. Quadratic unramified extensions of pure cubic
number fields

Our results suggest that every unramified quadratic extension of a pure
cubic number field K = Q( 3

√
m ) can be computed from a rational point on

some quadratic twist of the elliptic curve y2 = x3 −m.

6. Binomial cubes in pure cubic fields

Cubes of the form a+ bω in pure cubic number fields defined by ω3 = m
also are related to rational points on elliptic curves. The equation

(r + sω + tω2)3 = a+ bω

in K = Q(ω) leads to
mst2 + r2t+ rs2 = 0.
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Dividing through by s3 and setting T = t/s and R = r/s gives mT 2 +
TR2 + R = 0. Multiplying through by T and setting x = −T and y = RT
finally gives
(6.1) E : y2 + y = mx3.

Thus if α = r + sω + tω2 satisfies α3 = a+ bω, then (x, y) = (−t/s, rt/s2)
is a rational point on the elliptic curve (6.1). Multiplying (6.1) through by
m2 and setting Y = my, X = mx gives

Y 2 +mY = X3.

Conversely, assume that (x, y) ∈ E(Q) is a rational point on the affine
part of E. Writing x = −t/s for coprime integers s, t and setting r = −sy/x
produces rational numbers r, s, t such that α = r + sω + tω2 satisfies α2 =
a+ bω.

We have proved

Theorem 8. Let m be a cubefree integer and let K = Q(ω) with ω3 = m
denote a pure cubic number field. There is a bijection between classes in
K×/Q× represented by elements α ∈ K× with α2 = a + bω for a, b ∈ Q,
and rational points on the elliptic curve E : y2 + y = mx3.

In fact, if the cube of α = r + sω + tω2is binomial, then (−t/s, rt/s2) ∈
E(Q). Conversely, every affine rational point (x, y) ∈ E(Q) gives us some
α via x = − t

s and r = −sy/x.

Example. Let m = 6; then Y 2 +6Y = X3 has the rational point (−2,−2),
hence (x, y) = (−1/3,−1/3) is a rational point on y2 + y = 6x3. Thus we
set t = 1, s = 3, r = −3 and find

(−3 + 3 3√6 + 3√6 2)3 = −153 + 189 3√6.

Multiplying through by 3√63 = 6 and cancelling 33 = 27 gives
(2− 3√6 + 3√6 2)3 = −34 + 42 3√6.

Example. Let m = 20; then the Mordell-Weil group of Y 2 + 20Y = X3

is generated by P = (−4,−4). Thus Q = (−1
5 ,−

1
5) generates the group

E(Q), where E : y2 + y = 20x3. This gives r = −5, s = 5, t = 1, and
(−5 + 5 3√20 + 3√20 2)3 = 225 + 1575 3√20.

Multiplying through by 20 and cancelling 53 gives
(4− 3√20 + 3√20 2)3 = −36 + 252 3√20.

The elliptic curve E in (6.1) can also be given in short Weierstrass form
Em : Y 2 = X3 + 16m2. This curve has two rational points (±4m, 0) of
order 3, corresponding to the points (0, 0) and (−1, 0) of order 3 on E, or
to the trivial binomial cubes (±ω)3 = ±m. The curve Em is 3-isogenous
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to the curve Y 2 = X3 − 432m2, which in turn is isomorphic to the cubic
E′m : x3 +y3 = m. In particular, E and Em have the same rank as E′m, and
we have found

Corollary 9. There exist nontrivial binomial cubes in K = Q( 3
√
m ) if and

only if m is a sum of two rational cubes.

7. Open Problems and Questions

There are a lot of questions that deserve being investigated in detail;
below I will list some of them.

(1) Is it possible to use the connection between binomial squares in
pure cubic fields and elliptic curves for streamlining the proofs of
the theorem of Delone and Nagell? The classical proof distinguishes
between binomial squares, binomial cubes, and binomial powers of
higher degree, so the first two cases essentially deal with elliptic
curves.

(2) Eisenbeis, Frey & Ommerborn [6] showed that the 2-class group
of pure cubic number fields K = Q( 3√k ) and the Selmer group of
elliptic curves y2 = x3 ± k are intimately related. These authors
constructed unramified 2-extensions of K from the Selmer group of
E; this is a group that “contains” both the group of rational points
on E and the Tate-Shafarevich group X(E) of E. One may hope
that a close investigation of their results will shed some light on
some of the numerical observations on X(E) made above.

(3) The question whether all quadratic unramified extensions of pure
cubic fields arise from elliptic curves is probably a quite difficult
one. If K = Q( 3

√
m ) has a class group with large 2-rank, and if

the ranks of the twists of the elliptic curve Em could be shown to
be bounded (and small), then we could produce a counterexample
to the conjecture that all quadratic unramified extensions of pure
cubic number fields come from elliptic curves. But this seems rather
unlikely, to say the least.

(4) Many questions concerning relations between binomial squares and
the 2-class group ofK can also be asked in connection with binomial
cubes and the 3-class group ofK. There is some sort of genus theory
for the 3-class group of pure cubic number fields; see e.g. [1].

In particular it would be interesting to see whether certain parts
of the 3-class field of pure cubic fields can be constructed with
the help of elliptic curves. If K = Q( 3

√
m ) and p ≡ 1 mod 3 is a

prime dividing m, then the field of p-th roots of unity has a cubic
subfield F , and Abhyankar’s Lemma shows that FK/K is a cyclic
cubic unramified extension. On the other hand, it is also known (see
e.g. [1] and [8]) that K has class number divisible by 3 e.g. when
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m = p2q for primes p ≡ q ≡ 2 mod 3 such that p2q 6≡ ±1 mod 9
(the smallest example is m = 20). In this case, there seems to
be no way of constructing the corresponding 3-class group except
by doing calculations in the 3-class group of the compositum Kk,
where k = Q(

√
−3 ) is the field of cube roots of unity. I would expect

that these class fields can also be constructed from the group of k-
rational points on the elliptic curves x3 +y3 = m. Nontrivial results
on the rank of such curves were obtained by Satgé [17].

(5) Similar results are to be expected by studying binomial squares in
pure quartic number fields. This is currently being investigated.
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