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The probability that a complete intersection is
smooth

par Alina BUCUR et Kiran S. KEDLAYA

Résumé. Étant donné un sous-schéma lisse d’un espace projectif
sur un corps fini, nous calculons la probabilité que son intersection
avec un nombre fixe d’hypersurfaces de grand degré soit lisse de la
dimension attendue. Cela généralise le cas d’une seule hypersur-
face, considéré par Poonen. Nous utilisons ce résultat pour donner
un modèle probabiliste pour le nombre de points rationnels d’une
telle intersection complète. Un corollaire un peu surprenant est
que le nombre de points rationnels sur une intersection lisse de
deux surfaces de l’espace projectif de dimension 3 est strictement
inférieur au nombre de points sur la droite projective.

Abstract. Given a smooth subscheme of a projective space over
a finite field, we compute the probability that its intersection with
a fixed number of hypersurface sections of large degree is smooth
of the expected dimension. This generalizes the case of a single
hypersurface, due to Poonen. We use this result to give a proba-
bilistic model for the number of rational points of such a complete
intersection. A somewhat surprising corollary is that the number
of rational points on a random smooth intersection of two surfaces
in projective 3-space is strictly less than the number of points on
the projective line.

1. Introduction and results

One of the classical Bertini theorems states that if a subscheme X of a
projective space over an infinite field is smooth, then so is any sufficiently
general hyperplane section ofX. It follows that if dim(X) = m, then for any
k ∈ {1, . . . ,m}, the intersection ofX with k sufficiently general hyperplanes
is smooth of dimension m− k.

No meaningful analogue of this assertion exists over a finite field: the set
of available hyperplanes is finite, so the set of “sufficiently general” hyper-
planes may be empty. Katz proposed to address this issue by considering
not just hyperplanes but hypersurfaces. For a single hypersurface of large
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degree, the probability that the intersection with X is smooth of the correct
dimension was computed by Poonen [11, Theorem 1.1].

Theorem 1.1 (Poonen). Let X be a smooth quasiprojective subscheme of
dimension m ≥ 1 of the projective space Pn over a finite field Fq. For d a
nonnegative integer, let Sd be the set of homogeneous polynomials of degree
d on Pn. Let Pd be the set of f ∈ Sd for which the hypersurface Hf defined
by f intersects X in a smooth scheme of dimension m− 1. Then

(1.1.1) lim
d→∞

#Pd
#Sd

= ζX(m+ 1)−1.

In particular, there are infinitely many hypersurfaces whose intersection
with X is smooth of dimension m− 1; this corollary was established inde-
pendently by Gabber [5, Corollary 1.6].

The equality (1.1.1) is predicted by the following heuristic argument.
The zeta function ζX is defined as the Euler product

ζX(s) =
∏
x∈X◦

(1− q−s deg(x))−1,

in which X◦ denotes the set of closed points of X, and deg(x) denotes the
degree of x over Fq. One shows easily that the product converges absolutely
at s = m + 1. The right side of (1.1.1) is thus equal to the product of
(1 − q−(m+1) deg(x)) over all x ∈ X◦; this factor computes the probability
that (in some local coordinates) the value and partial derivatives of f do
not all vanish at x. This is precisely the probability that Hf ∩X is smooth
of dimension m−1 at x, provided that we follow the convention of [11] that
a scheme is considered to be smooth of any dimension at a point it does not
contain. With this convention,Hf∩X is smooth if and only if it is smooth at
each x ∈ X◦, so (1.1.1) asserts that the local smoothness conditions behave
asymptotically as if they were completely independent, even though they
are in fact only independent in small batches (see Lemma 2.1). A related
phenomenon is that the probability that a positive integer N is squarefree
is 6/π2 = 1/ζ(2) =

∏
p(1 − p−2), where 1 − p−2 is the probability that

N is not divisible by p2; in fact, one can formulate a conjectural common
generalization of this statement and Theorem 1.1 [11, §5].

The purpose of this paper is to generalize Poonen’s theorem to the case
of complete intersections. Namely, for d = (d1, . . . , dk) a k-tuple of positive
integers, write Sd for the product Sd1×· · ·×Sdk

. For each f = (f1, . . . , fk) ∈
Sd, write Hf for Hf1 ∩ · · · ∩Hfk

. We are now interested in the probability
that for f ∈ Sd chosen uniformly, Hf ∩X is smooth of dimension m−k. For
Hf ∩X to be smooth of dimension m−k at x, either f1, . . . , fk must not all
vanish at x, or they must all vanish and have linearly independent gradients.
This event occurs with probability 1− q−k deg(x) + q−k deg(x)L(qdeg(x),m, k),
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where

L(q,m, k) =
k−1∏
j=0

(1− q−(m−j))

denotes the probability that k randomly chosen vectors in Fmq are linearly
independent. One thus expects that in the limit as d1, . . . , dk → ∞, the
probability that Hf ∩ X is smooth tends to the product of these local
probabilities.

Before stating this as a theorem, we follow Poonen [11, Theorem 1.2]
by introducing the option to modify finitely many local conditions. Iden-
tify the set Sd with the sections over Pn of the vector bundle OPn(d) =
⊕ki=1OPn(di). We may impose modified local conditions at a finite set
of closed points by forming a subscheme Z of X supported at those
points, then specifying the possible images of f under the restriction map
H0(Pn,OPn(d))→ H0(Z,OZ(d)).

In terms of these notations, we have the following theorem. We make the
error bound explicit for possible use in some applications, as in [4], and to
clarify the extent to which the degrees must simultaneously tend to infinity
(the largest degree must grow subexponentially compared to the smallest
degree).

Theorem 1.2. Let X be a quasiprojective subscheme of dimension m ≥
0 of the projective space Pn over some finite field Fq of characteristic
p. Let X denote the Zariski closure of X in Pn. Let Z be a finite sub-
scheme of X for which U = X \ Z is smooth of dimension m, and de-
fine z = dimFq H

0(Z,OZ). Choose an integer k ∈ {1, . . . ,m + 1}, a tuple
d = (d1, . . . , dk) of positive integers with z ≤ d1 ≤ · · · ≤ dk, and a subset
T of H0(Z,OZ(d)). (Note that #H0(Z,OZ(d)) = qz.) Put
Pd = {f ∈ Sd : Hf ∩ U is smooth of dimension m− k, and f |Z ∈ T}.

Then

(1.2.1) #Pd
#Sd

= #T
qz

∏
x∈U◦

(
1− q−k deg(x) + q−k deg(x)L(qdeg(x),m, k)

)
+O((d1 − z + 1)−(2k−1)/m + dmk q

−d1/max{m+1,p}),

where the implied constant is an increasing function of n,m, k,deg(X).

Note that for k > m, we only admit f when Hf ∩ U is empty, and the
product in (1.2.1) equals

∏
x∈U◦(1 − q−k deg(x)) = ζU (k)−1. Consequently,

the probability that a single hypersurface section of X is smooth is the
same as the probability that m+ 1 hypersurface sections of X have empty
intersection; this is analogous to the fact that the probability that a single
positive integer is squarefree is the same as the probability that two pos-
itive integers are relatively prime. (One can again formulate a conjectural
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common generalization; see Section 4.) By contrast, for 1 < k < m + 1,
numerical evidence suggests that the product over x ∈ U◦ is not a rational
number. If that is correct, then this product cannot admit an interpretation
as an evaluation of a zeta function, or more generally as an evaluation of
the L-function of an étale sheaf of rank k.

The proof of Theorem 1.2 is an extension of Poonen’s proof of Theo-
rem 1.1. It is a sieving argument that separately treats the points of X◦
of low, medium, and high degree (where these ranges are defined in terms
of d1, . . . , dk). For points in the low range (including the points of Z), one
shows that the local conditions are indeed independent. For a single point
in the middle range, one similarly shows that singularities manifest with
the probability predicted by the local factor. One no longer has indepen-
dence of these local conditions, but they together contribute so little to the
product that they can be controlled by crude estimates. For points in the
high range, there are too many points to control by such crude arguments.
Instead, we use Poonen’s clever device of writing the fi so as to partially
decouple the low-order Taylor coefficients; one then bounds the effect of
the points of high degree using Bézout’s theorem. (This trick is the cause
of the explicit appearance of p in the error term, as it relies on the fact that
the derivative of a p-th power vanishes in characteristic p.)

Note that Theorem 1.2 is not needed to deduce the existence of k hy-
persurfaces whose joint intersection with X is smooth of dimension m− k,
as this follows by induction from Poonen’s original theorem. Our intended
application of Theorem 1.2 is to compute the distribution of the number of
rational points on a random smooth complete intersection, via the following
immediate corollary of Theorem 1.2.

Corollary 1.3. Let X be a smooth quasiprojective subscheme of dimension
m of the projective space Pn over a finite field Fq. Let X denote the Zariski
closure of X in Pn. Let y1, . . . , yg, z1, . . . , zh be distinct Fq-rational points
of X. Choose an integer k ∈ {1, . . . ,m} and a tuple d = (d1, . . . , dk) of
positive integers with g + h − 1 ≤ d1 ≤ · · · ≤ dk. Then the probability that
for f ∈ Sd, Hf ∩X is smooth of dimension m − k and contains y1, . . . , yg
but not z1, . . . , zh equals

(1.3.1)
∏
x∈X◦

(
1− q−k deg(x) + q−k deg(x)L(qdeg(x),m, k)

)
(

q−kL(q,m, k)
1− q−k + q−kL(q,m, k)

)g ( 1− q−k

1− q−k + q−kL(q,m, k)

)h
+O((d1 − g − h+ 1)−(2k−1)/m + dmk q

−d1/max{m+1,p}),

where the implied constant is an increasing function of n,m, k,deg(X).
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By Corollary 1.3, over a fixed field Fq, in the limit as all of the di tend
to infinity in such a way that dmk q−d1/(m+1) → 0, the number of Fq-rational
points on a smooth complete intersection of hypersurfaces on X of degrees
d1, . . . , dk is distributed as the sum of #X(Fq) independent identically dis-
tributed Bernoulli random variables, each taking the value 1 with probabil-
ity q−kL(q,m, k)/(1− q−k + q−kL(q,m, k)) and 0 otherwise. One can also
take the double limit as d1, . . . , dk and q all go to infinity, but only in a
suitable range. The limiting distribution is, by the Central Limit Theorem,
a standard Gaussian. We would like to remark that the limited range in
which the CLT applies is probably an artifact of the shape of our error
term, and not an intrinsic phenomenon. In the case of plane curves (i.e.,
X = Pn, n = 2, k = 1), this was established by Bucur, David, Feigon, and
Lalín [4] by essentially the method used here (namely, by making explicit
the implied error terms in [11]). Analogous results had been previously ob-
tained for hyperelliptic curves by Kurlberg and Rudnick [7], and for cyclic
covers of P1 of prime degree by Bucur, David, Feigon, and Lalín [3]; in
those cases, the error analysis is somewhat simpler (and the error bounds
somewhat sharper) because one can enforce smoothness simply by being
careful about ramification.

Corollary 1.3 has in turn the following consequence which we find mildly
counterintuitive, and which prompted the writing of this paper. For a ran-
dom smooth plane curve of degree d in P2, the average number of Fq-rational
points tends to

(q2 + q + 1)q
−1(1− q−2)

1− q−3 = q + 1

as d tends to infinity; in other words, the average trace of Frobenius over
smooth plane curves of degree d in P2 tends to 0. (The same conclusion holds
for a random hyperelliptic curve, by the trivial argument of pairing each
curve with its quadratic twist.) On the other hand, for a random smooth
intersection of two hypersurfaces of degrees d1, d2 in P3, the average number
of Fq-rational points tends to

(q3 + q2 + q + 1) q−2(1− q−3)(1− q−2)
1− q−2 + q−2(1− q−3)(1− q−2) = q + 1− q−2(1 + q−1)

1 + q−2 − q−5

as d1, d2 tend to infinity appropriately. This limit is less than q+ 1, despite
the fact that the range [0, q3 + q2 + q+ 1] for the number of points is much
wider on the side greater than q + 1! The limit does tend to q + 1 as q
grows, but for small q the difference between the two is large enough to be
observed experimentally in computer simulations. (For instance, for q = 2
the average is 37/13 < 2.847.) The same sort of computation shows that
the average number of points over Fq2 of such a curve is

q2 + q − q−1 +O
(
q−2

)
.
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This is consistent with Brock-Granville excess for q large (see [2]).
More generally, for a random smooth intersection of n − 1 hypersur-

faces of degrees d1, . . . , dn−1 in Pn, in the limit as d1, . . . , dn−1 → ∞ ap-
propriately, the number of Fq-rational points is distributed as the sum of
(qn+1− 1)/(q− 1) i.i.d. Bernoulli trials, each taking the value 1 with prob-
ability q1−nL(q, n, n − 1)/(1 − q1−n + q1−nL(q, n, n − 1)) and 0 otherwise.
Hence the average number of Fq-points on such a smooth curve is equal to

(q + 1)− (q + 1)(1− q1−n) 1− (1− q−n) · · · (1− q−3)
1− q1−n + q1−n(1− q−n) · · · (1− q−2) < q + 1,

and it is of size (q+ 1)
(
1 +O(q−3)

)
. For fixed q and varying n, the average

appears to decrease as n increases (though we did not check this rigorously);
it is easy to see that the limit as n→∞ is

(q + 1)
∞∏
n=3

(1− q−n) = q1+1/24(1− q−1)−2η(q−1),

where η is the classical Dedekind eta function.
Even more generally, for a random smooth intersection of hypersurfaces

of degrees d1, . . . , dk in Pn, the average number of Fq-rational points tends
to qn−k + qn−k−1 + · · ·+ 1 if k = 1, but to a limit strictly less than qn−k +
qn−k−1 + · · · + 1 if k > 1. This can be seen as follows. One would get a
limiting average of exactly qn−k + qn−k−1 + · · ·+ 1 if the local condition for
smoothness at a point x were that the first-order Taylor approximations of
f1, . . . , fk had to be linearly independent. For k = 1 this is the correct local
condition, but for k > 1, this condition is too restrictive when the sections
do not all vanish at x. (One possible explanation is that for k > 1, the
intersection of the hypersurfaces can be smooth without being geometrically
integral. However, we suspect that this occurs with probability 0 as the di
tend to infinity, and so does not account for the discrepancy.)

One can obtain other limiting distributions by considering families of
different shapes. For example, Wood [12] has shown that the average num-
ber of Fq-points on a random trigonal curve over Fq is slightly more than
q+ 1, whereas the average number of Fq-points of a random cyclic trigonal
curve is exactly q+1 (as seen by averaging each curve with its cubic twist).
In a different direction, Kurlberg and Wigman [8] construct a sequence of
surfaces in which (for q fixed) the average number of Fq-points of a random
curve section becomes unbounded, and in fact the number of points has
a Gaussian distribution; this is arranged by choosing surfaces with many
Fq-rational points, by taking restrictions of scalars of curves which have
many points over Fq2 (e.g., classical or Drinfel’d modular curves). The ex-
ample considered in the present paper is, to date, the only known family
of curves that occurs naturally (starting with the projective space, and not
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some space with few points) for which the average number of points is less
than q + 1.

Acknowledgments. Thanks to Nick Katz, Bjorn Poonen, and Zeév
Rudnick for helpful comments. We would also like to thank Melanie Match-
ett Wood for catching some errors in an earlier version of the paper.

Bucur was supported by NSF grant DMS-0652529 and the Institute for
Advanced Study (NSF grant DMS-0635607).

Kedlaya was supported by DARPA grant HR0011-09-1-0048, NSF
CAREER grant DMS-0545904, MIT (NEC Fund, Cecil and Ida Green Ca-
reer Development Professorship), and the Institute for Advanced Study
(NSF grant DMS-0635607, James D. Wolfensohn Fund).

2. Proofs

As noted earlier, the proof of Theorem 1.2 is a sieve over X◦ similar to
Poonen’s proof of Theorem 1.1, in which we separately analyze the contri-
butions of points of low degree (including the points of Z), medium degree,
and high degree. We analyze the points of low and medium degree using
the following observation [11, Lemma 2.1].

Lemma 2.1. Let Y be a finite closed subscheme of Pn over Fq. Then for
any d ≥ dimFq H

0(Y,OY ) − 1, the restriction map φd : H0(Pn,OPn(d)) →
H0(Y,OY (d)) is surjective.

This lemma has the following corollaries, following [11, Lemmas 2.2, 2.3].

Corollary 2.2. For r a positive integer, let U◦<r be the subset of U◦ con-
sisting of points of degree less than r, and define

Pd,r =
{

f ∈ Sd : Hf ∩ U is smooth of dimension m− k
at all x ∈ U◦<r, and f |Z ∈ T

}
.

For
(2.2.1) d1 ≥ (m+ 1)

∑
x∈U◦

<r

deg(x) + z − 1

(where z = dimFq H
0(Z,OZ) = dimFq H

0(Z,OZ(d))), we have

(2.2.2)
#Pd,r
#Sd

= #T
qz

∏
x∈U◦

<r

(
1− q−k deg(x) + q−k deg(x)L(qdeg(x),m, k)

)
.

Proof. Apply Lemma 2.1 to the union of Z with the subschemes defined by
the square of the maximal ideal at each point of U◦<r. �

Corollary 2.3. For x ∈ U◦ of degree e ≤ d1/(m + 1), the fraction of
f ∈ Sd for which Hf ∩ U is smooth of dimension m − k at x equals
1− q−ke + q−keL(qe,m, k).
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Proof. Apply Lemma 2.1 to the subscheme defined by the square of the
maximal ideal at x. �

The equation (2.2.2) accounts for the points of U of low degree, except
that we need to control the difference between the products appearing on
the right sides of (1.2.1) and (2.2.2). By doing so, we may also account for
the points of medium degree.

Lemma 2.4. For all positive integers e, #X(Fqe) ≤ 2m deg(X)qme.

Proof. See [9, Lemma 1]. �

Lemma 2.5. Define

Qd,r = {f ∈ Sd : Hf ∩ U is not smooth of dimension m− k
at some x ∈ U◦ with r ≤ deg(x) ≤ d1/(m+ 1)}.

Then #Qd,r/#Sd is bounded above by 2m+1 deg(X)kq−r(2k−1), as is the
difference between the products appearing on the right sides of (1.2.1) and
(2.2.2).

Proof. The second assertion is obtained by first observing that

L(q,m, k) ≥ 1−
k−1∑
j=0

q−m+j ≥ 1− kq−m−k+1,

and then calculating (using Lemma 2.4) that∑
x∈U◦\U◦

<r

q−k deg(x) − q−k deg(x)L(qdeg(x),m, k)

≤
∞∑
e=r

#U(Fqe)kq−e(m+2k−1)

≤
∞∑
e=r

2m deg(X)qemkq−e(m+2k−1)

= 2m deg(X)k q−r(2k−1)

1− q−2k+1

≤ 2m+1 deg(X)kq−r(2k−1).

The first assertion follows from the same argument plus Corollary 2.3. �

It remains to control the points of high degree. This reduces easily to the
case k = 1, which we treat following Poonen [11, Lemma 2.6].
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Lemma 2.6. Suppose that U is contained in the affine space with coordi-
nates t1, . . . , tn, and dt1, . . . , dtm freely generate ΩU/Fq

. Then for any pos-
itive integers d, e, for f ∈ Sd chosen uniformly at random, the probability
that there exists x ∈ U◦ for which deg(x) ≥ e and Hf ∩U is not smooth of
dimension m− 1 at x is at most

(m+ 1) deg(X)
(
(n−m) deg(X) + d− 1

)m
q−min{e,d/p}.

Proof. By dehomogenizing, we may identify Sd with the set of polynomials
of degree at most d in t1, . . . , tn. We may choose f ∈ Sd uniformly at
random by choosing f0 ∈ Sd, g1, . . . , gm ∈ Sb(d−1)/pc, h ∈ Sbd/pc uniformly
at random, then putting

f = f0 + gp1t1 + · · ·+ gpmtm + hp.

For i = 0, . . . ,m, define

Wi = U ∩
{
∂f

∂t1
= · · · = ∂f

∂ti
= 0

}
,

defining the partial derivatives by writing df in terms of dt1, . . . , dtm.
By choosing n − m hypersurfaces of degree at most deg(X) which de-
fine linearly independent relations among dt1, . . . , dtn in ΩU/Fq

and then
applying Cramer’s rule, we see that deg(∂f/∂ti) ≤ (n − m) deg(X) +
(d − 1). Suppose i ∈ {0, . . . ,m − 1}, and fix a choice of f0, g1, . . . , gi
for which dim(Wi) ≤ m − i. Let V1, . . . , V` be the (m − i)-dimensional
irreducible components of (Wi)red. By Bézout’s theorem, we have ` ≤
deg(X)

(
(n−m) deg(X) + d− 1

)i
. For each j ∈ {1, . . . , `}, we have

dim(Vj) ≥ 1, so we can choose s ∈ {1, . . . ,m} such that the projec-
tion xs(Vj) has dimension 1. In particular, any nonzero polynomial in
xs of degree at most b(d − 1)/pc cannot vanish on Vj . Since ∂f/∂ti+1 =
∂f0/∂ti+1 +gpi+1, the set of gi+1 for which ∂f/∂ti+1 vanishes on Vj is a coset
of the subspace of Sb(d−1)/pc consisting of functions vanishing on Vj ; we have
just shown that this subspace has codimension at least b(d−1)/pc+1. Hence
the probability that ∂f/∂ti+1 vanishes on some component of (Wi)red is at
most `q−b(d−1)/pc−1 ≤ deg(X)

(
(n−m) deg(X) + d− 1

)i
q−d/p.

Now fix a choice of f0, g1, . . . , gm for which Wm is finite. As in the previ-
ous paragraph,W ◦m consists of at most deg(X)

(
(n−m) deg(X) + d− 1

)m
points. If x ∈ W ◦m has degree at least e, then the set of h ∈ Sbd/pc for
which f vanishes at x is a coset of a subspace of Sbd/pc of codimension
at least min{e, bd/pc + 1} [11, Lemma 2.5]. Thus the probability that
Hf ∩ U fails to be smooth at some point of degree at least e is at most
deg(X)

(
(n−m) deg(X) + d− 1

)m
q−min{e,d/p}. This yields the claim. �
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Corollary 2.7. Define the set

Qhigh
d = {f ∈ Sd : Hf ∩ U is not smooth of dimension m− k

at some x with deg(x) > d1/(m+ 1)}.

Then

#Qhigh
d

#Sd
≤ kmn2m(m+ 1) deg(X)m+1dmk q

−min{d1/(m+1),d1/p}.

Proof. We may reduce to the case U ⊆ Ank at the cost of multiplying by a
factor of n+1 at the end. Suppose that for some i ∈ {1, . . . , k}, f1, . . . , fi−1
have been chosen so thatHf1∩· · ·∩Hfi−1∩U is smooth of dimensionm−i+1
at each x ∈ U◦ with deg(x) ≥ d1/(m + 1). Let Y be the open subscheme
obtained fromHf1∩· · ·∩Hfi−1∩U by removing all points at whichHf1∩· · ·∩
Hfi−1∩U fails to be smooth of dimensionm−i+1; then the Zariski closure Y
of Y has degree deg(X)d1 · · · dk−1. We may cover Y with at most

( n
m−i

)
open

subsets, on each of which the module of differentials is freely generated by
some (m−i)-element subset of dt1, . . . , dtn. We apply Lemma 2.6 to each of
these sets, improving the bound slightly by noting that the relations among
differentials used in Cramer’s rule may be generated by first generating
relations for U , then adding the relations df1, . . . , dfi−1. With this, we see
that for fi ∈ Sdi

chosen uniformly at random, the probability that there
exists x ∈ U◦ with deg(x) ≥ d1/(m + 1) such that Hf1 ∩ · · · ∩ Hfi

∩ U is
not smooth at x is bounded above by

(
n

m− i

)
(m+ 1)

(
deg(X)d1 . . . di−1

)
×

n deg(X) +
i∑

j=1
(dj − 1)

m−i+1

q−min{d1/(m+1),di/p}

≤ n2m(m+ 1)km deg(X)m+1dmk q
−min{d1/(m+1),d1/p}.

This yields the desired bound. �

It remains to complete the proof of Theorem 1.2, by tuning the parameter
r appearing in Corollary 2.2.
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Proof of Theorem 1.2. Note that for r a positive integer, by Lemma 2.4 we
have ∑

x∈U◦
<r

deg(x) ≤
r−1∑
e=1

#U(Fqe)

≤
r−1∑
e=1

2m deg(X)qme

≤ 2m deg(X) q
m(r−1)

1− q−m

≤ 2m+1 deg(X)qm(r−1).

Consequently, if r is chosen so that
d1 − z + 1 ≥ (m+ 1)2m+1 deg(X)qm(r−1),

then (2.2.1) will be satisfied. We thus put

r = 1 +
⌊

1
m

logq
d1 − z + 1

(m+ 1)2m+1 deg(X)

⌋
;

we may assume r ≥ 1, as otherwise we may choose the implied constant in
the big-O notation so that the contribution of (d1−z+1)−(2k−1)/m bounds
the error term. By Lemma 2.5 and Corollary 2.7,

#Pd
#Sd

− #T
qz

∏
x∈U◦

(
1− q−k deg(x) + q−k deg(x)L(qdeg(x),m, k)

)
is bounded in absolute value by
2m+2 deg(X)kq−r(2k−1) +kmn2m(m+1) deg(X)m+1dmk q

−min{d1/(m+1),d1/p}.

By virtue of our choice of r, this gives a bound of the desired form. �

To get Corollary 1.3 from Theorem 1.2, we follow the same procedure as
in the proof of [4, Proposition 1.5]. First, apply Theorem 1.2 with Z = ∅
in order to compute

#{f ∈ Sd : Hf ∩ U is smooth of dimension m− k}
#Sd

.

Next, take Z to be the disjoint union of one m2
P -neighborhood ZP

for each P ∈ {y1, . . . , yg, z1, . . . zh} and identify H0(Z,OZ(d)) with∏
P H

0(ZP ,OZP
(d)). Take T to be the set of tuples (aP )P ∈∏

P H
0(ZP ,OZP

(d)) with the following properties. For P = y1, . . . , yg,
we require that aP ∈ mPH

0(ZP ,OZP
(d)) (that is, all of the sections vanish

at P ) and the individual factors of aP are linearly independent (that is, the
intersection of the sections at P is transversal). For P = z1, . . . , zh, we re-
quire that aP /∈ mPH

0(ZP ,OZP
(d)) (that is, the sections do not all vanish
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at P ). Then apply Theorem 1.2 again to compute the probability that an
element f ∈ Sd gives an intersection Hf ∩X which is smooth of dimension
m−k passing through y1, . . . , yg and not through z1, . . . , zh. (Note that our
choice of T ensures that the intersection is smooth not only on Hf ∩U but
also at each point of Z.) Finally, taking the ratios of the two probabilities
gives the desired result.

3. Distribution of number of rational points

We mentioned at the end of the introduction that Theorem 1.2 can be
used to study the distribution of the number of Fq-rational points on a
random smooth complete intersection of k hypersurfaces with X. Let us
make this a bit more explicit, in the manner of [4]. Although there is some
leeway to varyX together with q, d1, . . . , dk, for simplicity we will instead fix
a subscheme X of the projective space over Z, and always take X to be the
base change of X to Fq. We assume further that each irreducible component
of the generic fibre of X is geometrically irreducible; this guarantees that
#X(Fq) → +∞ as q → +∞. (One may instead fix a base finite field Fq0 ,
consider only those q which are powers of q0, and take each X to be the
base change of a fixed subscheme X of the projective space over Fq0 . In
this case, one should also assume that each irreducible component of X is
geometrically irreducible.)

As stated before, the number of Fq-rational points on a smooth com-
plete intersection of hypersurfaces on X of degrees d1, . . . , dk is distributed,
when the d’s get big enough, as the sum of #X(Fq) independent identi-
cally distributed Bernoulli random variables, each taking the value 1 with
probability q−kL(q,m, k)/(1 − q−k + q−kL(q,m, k)) and 0 otherwise. The
expected value of this sum of random variables is

#X(Fq)
q−kL(q,m, k)

1− q−k + q−kL(q,m, k) ,

and, since they are bounded real random variables, the normalized sum is
distributed as a normal Gaussian when q → ∞ by a suitable form of the
central limit theorem [1, Theorem 27.2].

We would like to say the same about the number of points on the varieties
in our family when d1, . . . , dk and q all go to infinity, which amounts to the
computation of the moments. Denote

Nr(q,d) = 1
#Sns

d

∑
f∈Sns

d

#(Hf ∩X)(Fq)√
#X(Fq)qk

r ,
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where Sns
d = {f ∈ Sd;Hf ∩X is nonsingular}. We can write

Nr(q,d) =q−rk/2#X(Fq)−r/2

#Sns
d

∑
f∈Sns

d

 ∑
y∈X(Fq)

Sf (y)

r ,
where

(3.0.1) Sf (y) = 1
qk

∑
t∈Fq

e

(
tf1(y)
q

)
. . .

∑
t∈Fq

e

(
tfk(y)
q

)
=
{

1 y ∈ Hf ;
0 otherwise.

(Note that to give meaning to the evaluations fi(y), we must choose once for
each y ∈ X(Fq) a set of homogeneous coordinates defining y.) Expanding
the r-th power,

Nr(q,d) =q−rk/2#X(Fq)−r/2

#Sns
d

∑
y1,...,yr∈X(Fq)

∑
f∈Sns

d

Sf (y1) . . . Sf (yr)

=q−rk/2#X(Fq)−r/2

#Sns
d

×

min{r,#X(Fq)}∑
g=1

a(g, r)
∑

(y,b)∈Pg,r

∑
f∈Sns

d

Sf (y1)b1 . . . Sf (yg)bg ,

where

Pg,r =
{

((y1, . . . , yg), (b1, . . . , bg)) : yi ∈ X(Fq) distinct, bi ∈ Z>0,
b1 + . . .+ bg = r

}
,

while the a(g, r) are certain combinatorial coefficients with the property
that

r∑
g=1

a(g, r)
∑

(y,b)∈Pg,r

1 = #X(Fq)r.

For each (y,b) ∈ Pg,r, we have by (3.0.1)

(3.0.2) 1
#Sns

d

∑
f∈Sns

d

Sf (y1)b1 . . . Sf (yg)bg = #{f ∈ Sns
d ; y1, . . . , yg ∈ Hf}

#Sns
d

.

But Corollary 1.3, together with the same trick employed in [4, end of
Section 2], implies that the probability that Hf ∩X is smooth and passes
through a specified set y1, . . . , yg of distinct Fq-rational points of X is equal
to

(3.0.3)
(

q−kL(q,m, k)
1− q−k + q−kL(q,m, k)

)g
×(

1 +O
(
qkg

(
q−kr(d1 − g + 1)−(2k−1)/m + dmk q

−d1/max{m+1,p}
)))

.
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Substituting (3.0.3) into (3.0.2), then plugging the result into the formula
for Nr(q,d), we get that

Nr(q,d) = 1
qrk/2#X(Fq)r

×
min{r,#X(Fq)}∑

g=1
a(g, r)

∑
(y,b)∈Pg,r

(
q−kL(q,m, k)

1− q−k + q−kL(q,m, k)

)g

×
(
1 +O

(
qkmin{r,#X(Fq)}

(
q−kr(d1 − g + 1)−(2k−1)/m+

dmk q
−d1/max{m+1,p}

)))
.

Since the main term equals the r-th moment of the sum of the aforemen-
tioned #X(Fq) random variables divided by qrk/2#X(Fq)r, we conclude
that the limiting distribution of the number of points on a smooth com-
plete intersection Hf ∩ X in X over Fq (normalized to have mean 0 and
standard deviation 1) is a standard Gaussian, as long as q and d1, . . . , dk all
go to infinity in such a way that the error term above approaches 0. This
condition is satisfied, for instance, if the di are comparable in size (e.g., we
cannot have dk exponentially bigger than d1 because of the last term) and
d1 > q1+ε for any ε > 0. It is also satisfied if the characteristic p of the
base field stays bounded and, again, dk is of at most subexponential size
compared to d1.

4. Further remarks

We indicate some other directions in which one can probably generalize
[11] from hypersurfaces to complete intersections.

In the case of a single hypersurface section, one has an analogue of The-
orem 1.1 allowing certain infinite sets of modified local conditions [11, The-
orem 1.3]. The restriction on these local conditions is that at all but finitely
many points, they are no more stringent than the condition that Hf must
have smooth intersection with each of a finite number of other varieties. One
expects to have a similar extension of Theorem 1.2, in which one allows in-
finite sets of local conditions provided that at all but finitely many points,
the conditions are no more stringent than the condition that Hf must have
smooth intersection with each of a finite number of other varieties.

One can also consider schemes of finite type over Z, as in [11, §5]. We
make the following conjecture, generalizing the conditional theorem [11,
Theorem 5.1]. One can again generalize by allowing modification of finitely
many local conditions; for simplicity, we omit these modifications from the
following statement.

Conjecture 4.1. Let X be a quasiprojective subscheme of PnZ which is
regular of dimension m ≥ 0. For d a positive integer, let Sd be the set of
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homogeneous polynomials on PnZ of degree d, identified with Zn using a Z-
basis of monomials. For d = (d1, . . . , dk) a tuple of positive integers with
d1 ≤ · · · ≤ dk, put Sd = Sd1 × · · · × Sdk

. For f = (f1, . . . , fk) ∈ Sd, put
Hf = Hf1 ∩ · · · ∩ Hfk

, where Hfi
denotes the hypersurface fi = 0 on PnZ.

Put

Pd = {f ∈ Sd : Hf ∩ U is regular of dimension m− k}.

Then as d1, . . . , dk → +∞, the upper and lower densities of Pd in Sd both
tend to ∏

x∈X◦

(
1− q(x)−k + q(x)−kL(q(x),m, k)

)
,

where q(x) denotes the cardinality of the residue field of x.

This conjecture includes the fact that the probability of a single integer
being squarefree and the probability of two integers being relative prime are
both 6/π2 = 1/ζ(2). One may be able to prove some special cases under the
abc-conjecture, as is done in [11]; the abc-conjecture is needed to compute
the density of squarefree values of an integer polynomial. This is done in
the univariate case by Granville [6] and in the multivariate case by Poonen
[10].
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