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The field-of-norms functor and the Hilbert
symbol for higher local fields

par Victor ABRASHKIN et Ruth JENNI

Résumé. Dans cet article nous appliquons le foncteur corps des
normes pour déduire, dans le cas de caractéristique mixte, une
formule explicite pour le symbole de Hilbert de la formule expli-
cite pour le symbole de Witt en caractéristique p > 2 dans le
contexte des corps locaux multidimensionnels. On montre que la
formule explicite de Vostokov est un cas très particulier de notre
construction.

Abstract. The field-of-norms functor is applied to deduce an
explicit formula for the Hilbert symbol in the mixed characteristic
case from the explicit formula for the Witt symbol in characteristic
p > 2 in the context of higher local fields. Is is shown that a “very
special case” of this construction gives Vostokov’s explicit formula.

Introduction

Throughout this paper, M and N are fixed natural numbers, p is an odd
prime number, W (k) is the ring of Witt vectors with coefficients in a finite
field k of characteristic p, W (k)Qp = W (k)⊗Zp Qp, and σ is the Frobenius
automorphism of W (k) induced by the p-th power map on k. In the main
body of the paper we shall also use other notation from this Introduction
without special reference.

Suppose F is an N -dimensional local field of characteristic 0 with the
(first) residue field F (1) (which is an (N − 1)-dimensional local field) of
characteristic p, F̄ is a fixed algebraic closure of F and ΓF = Gal(F̄ /F ).
Note that, by definition, the last residue field F (N) is a finite field of char-
acteristic p which we shall denote by k. Fix a system of local parameters
π1, . . . , πN in F . Let vF be the (first) valuation of F such that vF (F ∗) = Z.
Then vF can be extended uniquely to F̄ and we introduce for any c > 0,
the ideals pcF = {a ∈ F̄ | vF (a) > c}.

Manuscrit reçu le 15 novembre 2010.
Mots clefs. higher local fields, field-of-norms, Hilbert Symbol, Vostokov’s pairing.
Classification math. 11S20, 11S31, 11S70.
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Let F• be a strictly deeply ramified (SDR) fields tower with parameters
(0, c), where 0 < c 6 vF (p). This means that F• = {Fn |n > 0} is an
increasing tower of algebraic extensions of F0 = F such that for all n > 0,

— the last residue field of Fn is k;
— there is a system of local parameters π(n)

1 , . . . , π
(n)
N in Fn such that

π
(n+1)p
1 ≡ π(n)

1 mod pcF ,. . . , π
(n+1)p
N ≡ π(n)

N mod pcF .
The construction of the field-of-norms functor X from [17] attaches to

F• a field X(F•) = F of characteristic p. This field is the fraction field of
the valuation ring OF = lim←−

n

OFn/p
c
F , where OFn = {a ∈ Fn | vF (a) > 0}

are the (first) valuation rings of Fn for all n > 0. Note that F has a natural
structure of an N -dimensional local field of characteristic p with system
of local parameters t̄1 = lim←−

n

π
(n)
1 ,. . . , t̄N = lim←−

n

π
(n)
N and last residue field

F (N) = k, i.e. F is the field of formal Laurent series k((t̄N )) . . . ((t̄1)).
In addition, the field-of-norms functor X provides us with a construction
of a separable closure Fsep of F and identifies the Galois groups ΓF =
Gal(Fsep/F) and ΓF∞ = Gal(F̄ /F∞), where F∞ =

⋃
n>0 Fn.

We use the above system of local parameters t̄1, . . . , t̄N to construct an
absolutely unramified lift L(F) of F of characteristic 0. Then L(F) is an
(N+1)-dimensional local field with system of local parameters p, t1, . . . , tN ;
its first residue field L(F)(1) coincides with F and for 1 6 i 6 N , we have
ti mod p = t̄i.

For any higher local field L, let KN (L) be its N -th Milnor K-group.
In this paper we mainly use the topological versions Kt

N (L) of the Milnor
K-groups, which have explicit systems of topological generators. Neverthe-
less, in the final statement we can return to Milnor K-groups due to the
natural identification KN (L)/pM = Kt

N (L)/pM , which we shall denote by
KN (L)M .

The following maps play very important roles in the statement of the
main result of this paper.
• NF/F : Kt

N (F) −→ Kt
N (F ).

In Subsection 4 we prove that for so-called special SDR towers F•, there
is a natural identification Kt

N (F) = lim←−
n

Kt
N (Fn), where the connecting mor-

phisms are the norm maps NFn+1/Fn : Kt
N (Fn+1) −→ Kt

N (Fn). Then NF/F
is the corresponding projection from Kt

N (F) to Kt
N (F ). For arbitrary SDR

towers F• we prove the analogous “modulo pM” statement under the as-
sumption that a primitive pM -th root of unity ζM ∈ F∞. In particular, this
gives the map

NF/F : KN (F)M −→ KN (F )M .
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• Col : Kt
N (F) −→ Kt

N (L(F)).
This map is obtained as a section of the natural map from Kt

N (L(F)) to
Kt
N (L(F)(1)) = Kt

N (F). Its construction, in which the concept of topo-
logical K-groups is essential, is a direct generalisation of Fontaine’s 1-
dimensional construction from [8].
• θ1 : m0 −→ (1 + m0)×.
Here m0 consists of all series

∑
a>0̄wat

a, which are convergent in L(F),
where the indices a = (a1, . . . , aN ) ∈ ZN are provided with the lexicograph-
ical ordering, all wa ∈ W (k), and ta := ta1

1 . . . taNN . The map θ1 is then a
group homomorphism defined by the correspondence∑

a>0̄
wat

a 7→
∏
a>0̄

E(wa, ta).

Here for any w ∈W (k),

E(w,X) = exp
(
wX + · · ·+ σn(w)Xpn/pn + . . .

)
∈W (k)[[X]]

is the Shafarevich generalisation of the Artin-Hasse exponential. Notice that
the inverse of θ1 is the map given, for any b ∈ 1+m0, by the correspondence
b 7→ (1/p) log(bp/σ(b)), where σ is the continuous map induced by the
Frobenius on W (k) and ti 7→ tpi , for all 1 6 i 6 N .
• γ : (1 + m0)× −→ F̂ ∗∞.
Here F̂∞ is the completion (with respect to the valuation vF ) of F∞ =⋃
n>0 Fn and the map γ is the continuous map uniquely determined by

ti 7→ lim
n→∞

π
(n)pn
i , 1 6 i 6 N .

We now state the main result of this paper.
Let F ab be the maximal abelian extension of F , ΓabF = Gal(F ab/F ) and

K̂t
N (F ) := lim←−

L

Kt
N (F )/NL/FK

t
N (L), where L runs over the set of all finite

extensions of F in F ab.
We denote by ΘF : ΓabF −→ K̂t

N (F ) the reciprocity map of local higher
class field theory. For the field F , we introduce similarly Fab, ΓabF , K̂t

N (F)
and ΘF . Then the compatibility of class field theories for the fields F and F
via the field-of-norms functor means that there is the following commutative
diagram

(0.1) ΓabF
ιF/F

��

ΘF // K̂t
N (F)

N̂F/F
��

Kt
N (F)oo

NF/F
��

Γ(F )ab
ΘF // K̂t

N (F ) Kt
N (F )oo

Here ιF/F is induced by the identification ΓF = ΓF∞ given by the field-of-
norms functor, the horizontal maps on the right-hand side are the natural
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embeddings and the map N̂F/F is induced by NF/F on the corresponding
completions. We prove the commutativity of the above diagram (0.1) only
for F = X(F•), where F• is a so-called special SDR tower, cf. Subsection 4.3.
But under the additional assumption ζM ∈ F∞ we prove the commutativity
of the following “modulo pM” version of (0.1) for any SDR tower F• (we
use the same notation for all involved maps taken modulo pM )

ΓabF /pM

ιF/F

��

ΘF // K̂N (F)M

N̂F/F
��

Kt
N (F)Moo

NF/F
��

ΓabF /pM
ΘF // K̂N (F )M KN (F )Moo

This property allows us to consider the M -th Hilbert pairing
( , )F•M : F̂ ∗ ×NF/F (Kt

N (F)) −→ 〈ζM 〉
under the condition that ζM ∈ F∞. Namely, if b ∈ NF/F (KN (F)M ) then
there is τ ∈ ΓabF /pM such that τ |F∞ = id and ΘF (τ) = b. Then for any
a ∈ F̂ ∗∞, (a, b)F•M := τ(ξ)/ξ, where ξ ∈ F̄ is such that ξpM = a.

Suppose F• is an SDR tower with parameters (0, c).

Definition. The tower F• is called ω-admissible, for ω ∈ Z>0, if cpω >
2vF (p)/(p− 1) and Fω contains a primitive pM+ω-th root of unity ζM+ω.

For an ω-admissible SDR tower F•, we define (not uniquely) an element
Hω = Hω(ζM+ω) ∈ m0 as follows. Suppose H ′ = 1 +

∑
a>0̄wat

a ∈ 1 + m0

is such that γ(H ′) ≡ ζM+ω mod pcF . Then we set Hω := H ′p
M+ω − 1. Note

that the construction of Hω does not require the knowledge of the whole
tower F•, but only of the field Fω. In particular, if ζM ∈ F = F0 then
the corresponding element H0 ∈ m0 will be used later in the definition of
Vostokov’s pairing.

With the above notaion we have, for any ω-admissible SDR tower, the
following explicit formula for the M -th Hilbert symbol.

Theorem 0.1. If f ∈ m0, β ∈ KN (F) and θ := γ ◦ θ1 then

(0.2) ( θ(f) , NF/F (β) )F•M = ζp
ωA
M+ω

where A = (Tr ◦ Res) ((f/Hω)dlogCol(β)) .

Here (and everywhere below) Tr is the trace map for the field extension
W (k)Qp/Qp and Res is N -dimensional residue.

The above Theorem 0.1 gives one of most general approaches to the
explicit formulas for the Hilbert symbol. The proof uses the strategy from
[1] and the construction of the field-of-norms functor for higher local fields
from [17]. As a result, the explicit formula (0.2) is obtained from the explicit
formula for the Witt symbol in characteristic p. Notice that symbol (0.2)
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depends not only on a fixed system of local parameters π1, . . . , πN of F but
also involves special lifts of elements of F to L(F).

The result of the above Theorem 0.1 is related very closely to Vostokov’s
explicit formula for the M -th Hilbert symbol F ∗ × Kt

N (F ) −→ 〈ζM 〉. In
this formula the elements of F ∗ appear as the results of the substitution
ti 7→ πi, i = 1, . . . , N , into formal Laurent series with coefficients in W (k)
and indeterminants t1, . . . , tN . Vostokov’s proof of this formula is based
on a hard computation showing that the formula gives the same result for
arbitrary choices of local parameters π1, . . . , πN .

In Section 3 we develop a slightly different approach to Vostokov’s re-
sult. First of all, the Vostokov pairing has two different aspects. One is
purely K-theoretic: it gives a (non-degenerate) pairing between K1(F )M
and KN (F )M and factors through the canonical morphism
(0.3) K1(F )M ×KN (F )M −→ KN+1(F )M .
(Note that Vostokov’s formula gives also a pairing between Ki(F )M and
KN−i(F )M for 1 < i < N .) We establish these properties following the
strategy from [1] and using an idea of one calculation from [3]. Note that we
can work throughout with our fixed system of local parameters π1, . . . , πN .
Then the Galois-theoretic aspect of Vostokov’s pairing, i.e. that it coincides
with the Hilbert symbol, follows by an easy calculation from the following
two elementary facts:

— the Hilbert symbol also factors through the map (0.3);
—KN+1(F )M is generated by one element which can be written in terms

of our fixed system of local parameters π1, . . . , πN .
At the end of Section 5 we show that symbol (0.2) from Theorem 0.1

coincides with Vostokov’s pairing if we use a “very special ” SDR tower
F 0
• = {F 0

n | n > 0} such that F 0
0 = F and for all n > 0, F 0

n has a system
of local parameters π(n)

1 , . . . , π
(n)
N with π(n+1)p

i = π
(n)
i and π(0)

i = πi for all
1 6 i 6 N .

Note that other interpretations of Vostokov’s formula have been given
by K.Kato [11] in terms of Fontaine-Messing theory and by S. Zerbes [21]
in terms of (ϕ,Γ)-modules under an additional restriction on the basic field
F . Note also the paper [9] where special cases of the constructions of the
field-of-norms functor in the context of higher local fields were treated.

The structure of the paper is as follows. In Section 1 we discuss basic
matters: the concept of higher local field, the P -topology, special systems
of topological generators for the Milnor K-groups and the norm map in
the context of K-groups. In Section 2 we give an invariant approach to the
concept of residue, the Witt symbol and the Coleman map in the context
of higher local fields. In Section 3 we recover the construction of Vostokov’s
pairing following mainly the strategy of the paper [1]. In Section 4 we use
the field-of-norms functor X to relate the behaviour of topological Milnor
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K-groups in SDR towers. Finally, in Section 5 we prove the compatibility of
the field-of-norms functor with class field theories for the fields F = X(F•)
and F = F0 and use the compatibility of the Kummer theory for F and
the Witt-Artin-Schreier theory for F from [2] to deduce the statement of
Theorem 0.1.

1. Preliminaries

Most of the notation introduced in this Section will be used in the next
sections without special references. In particular, this holds for the notation
F , π1, . . . , πN , F , t̄1, . . . , t̄N , O(F) and L(F).

1.1. Higher local fields. Let L be an N -dimensional local field. This
means that L is a complete discrete valuation field and its (first) residue
field L(1) is an (N−1)-dimensional local field. In our setting, 0-dimensional
local fields are finite fields of charactersitic p. Let L(N) be the N -th residue
field of L. By inductive definition this means that L(N) = (L(1))(N−1) and,
therefore, it is a finite field of characteristic p. The system u1, . . . , uN is a
system of local parameters of L, if u1 is a local parameter of L, u2, . . . , uN
belong to the valuation ring OL of L and the images of u2, . . . , uN in L(1)

form a system of local parameters of L(1). The field L is equipped with a
special topology (we call it the P -topology) which relates all N valuation
topologies of L, L(1), L(2) := (L(1))(1), . . . , L(N) := (L(N−1))(1). The idea
how to construct such topology appeared first in [15] and then was consid-
erably developed and studied in [6, 22, 10]. We can sketch its definition as
follows.

Fix a system of local parameters u1, . . . , uN in L. Note that any element
x ∈ L can be written uniquely as a formal series

(1.1) x =
∑

a=(a1,...,aN )
[αa]ua1

1 · · ·u
aN
N ,

where all coefficients [αa] are the Teichmüller representatives of the el-
ements αa ∈ L(N) in L. (Note that αa = [αa] if L has characteristic
p.) Here a ∈ ZN and there are (depending on the element x) integers
I1, I2(a1), . . . , IN (a1, . . . , aN−1) such that αa = 0 if either a1 < I1 or
a2 < I2(a1), . . . , or aN < IN (a1, . . . , aN−1).

Remark. The referee pointed out that this is equivalent to saying that the
set {a ∈ ZN | αa 6= 0} is well-ordered, i.e. any its subset has a minimal
element (with respect to the lexicographical ordering); in the terminilogy
of the papers [22] and [10] such set is also called admissible.

Then the P -topological structure on L can be defined by induction on
N as follows. If N = 0 then it is discrete. If N > 1 then ū2 = u2 modu1,
. . . , ūN = uN modu1 is a system of local parameters in L(1) and we can
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define a section s : L(1) −→ L by
∑
a αaū

a2
2 . . . ūaNN 7→

∑
a u

a2
2 . . . uaNN . By

definition, the basis of open neighbourhoods CL,{u1,...,uN} in L consists of
the sets

L ∩
∑
b∈Z

ub1s(Ub) =

 ∑
b�−∞

ub1s(Ub)

 ,
where all Ub ∈ CL(1),{ū2,...,ūN} and Ub = L(1) if b � 0. One can prove
then that this does not depend on the initial choice of local parameters
u1, . . . , uN . Then any compact subset in L is a closed subset in the compact
subset of the form

∑
b∈Z u

b
1s(Cb), where all Cb ⊂ L(1) are compact and

Cb = 0 for b � 0. In particular, the set of all ξ ∈ L given by (1.1) with
fixed I1, I2(a1), . . . , IN (a1, . . . , aN−1, is compact. The following property
explains that the concept of convergency in the P -topology just coincides
with the concept of convergency of formal power series.

Proposition 1.1. A sequence ξn =
∑
a[αan]ua1

1 . . . uaNN ∈ L converges to
ξ =

∑
a[αa]u

a1
1 . . . uaNN ∈ L if and only if

a) there is a compact C ⊂ L such that all ξn ∈ C;
b) for any a ∈ ZN , the sequence αan converges to αa in k.

Remark. The referee pointed out that the above Proposition identifies
topologically L with the inductive limit of

∏
a∈D k, where D runs over all

well-ordered subsets of ZN .

Proof. The proof can be easily reduced to the case ξ = 0. Then suppose
that for any b ∈ Z, the elements ξ̄bn ∈ L(1) are such that ξn =

∑
b u

b
1s(ξ̄bn).

Clearly, lim
n→∞

ξn = 0 implies that for any b ∈ Z, lim
n→∞

ξ̄bn = 0 and that
for b � −∞ all ξbn = 0. Therefore, by induction on N we obtain that all
lim
n→∞

αan = 0 and there is a compact C ⊂ L containing all ξn.
Inversely, suppose that for all a ∈ ZN , lim

n→∞
αan = 0 and all ξn belong to

a compact C ⊂ L. Then by induction on N , for any b ∈ Z, lim
n→∞

ξ̄bn = 0.
Let b0 ∈ Z be such that all ξ̄bn = 0 if b < b0. Take any U =

∑
b u

b
1s(Ub) ∈

CL,{u1,...,uN}. Then there is b1 ∈ Z such that Ub = L(1) for all b > b1. For
b0 < b 6 b1, let m(b) ∈ Z be such that ξ̄bn ∈ Ub if n > m(b). Then for
n > max{m(b) | b0 < b 6 b1}, ξn ∈ U , i.e. lim

n→∞
ξn = 0. �

In terms of the power series (1.1), the N -dimensional valuation ring OL,
resp. the maximal ideal mL, of L consists of the elements x such that all
αa = 0 if a < 0̄ = (0, . . . , 0), resp. a 6 0̄, with respect to the lexicographic
ordering. Note that L, OL and mL are P -topological additive groups. Mul-
tiplication does not make L∗ into a topological group, but all operations in
the field L are sequentially P -continuous. The choice of local parameters
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u1, . . . , uN provides an isomorphism L∗ ' k∗×〈u1〉× . . . 〈uN 〉× (1 + mL)×,
where only the last factor has a non-trivial P -topological structure.

The concept of P -topology plays a very important role in this paper
and we refer usually to the papers [22] and [10] for its detailed exposi-
tion. In particular, these papers contain the study of infinite products in
L. The following fact clarifies the meaning of infinite products and will
be used below without special references. Suppose I1, . . . , IN (a1, . . . , aN−1)
are the above defined parameters. Consider the infinite product of the form∏
a>0̄

(1 + [αa]ua1
1 . . . uaNN ), where, as earlier, a = (a1, . . . , aN ) ∈ ZN , [αa]

are the Teichmüller representatives of elements αa ∈ k and αa = 0 if ei-
ther a1 < I1, or a2 < I2(a2), . . . , or aN < IN (a1, . . . , aN−1). Then any
such infinite product converges in L∗ and any element from 1 + mL can be
presented uniquely as a such infinite product (with suitably chosen param-
eters I1, . . . , IN (a1, . . . , aN )). This follows from very general criterion 1.4.3
in [22].

The main object we shall deal with is an N -dimensional local field F of
characteristic 0 with first residue field F (1) of charactersitic p, N -th residue
field k (which is necessarily finite) and a fixed system of local parameters
π1, . . . , πN . Fix an algebraic closure F̄ of F , set ΓF = Gal(F̄ /F ) and denote
by ΓabF the maximal abelian quotient of ΓF .

We also consider N -dimensional local fields of characteristic p with last
residue field k. Any such field F is isomorphic to the field of formal Lau-
rent power series k((t̄N )) . . . ((t̄1)), where t̄1, . . . , t̄N is any system of local
parameters of F . We use this system of local parameters as a p-basis for
F to construct a flat Zp-lift O(F) of F to characteristic 0. By definition
O(F) = lim←−

n

On(F), where for all n ∈ N,

On(F) = Wn((tN )) . . . ((t1)) ⊂Wn(F)
are Z/pn-flat lifts of F and for 1 6 i 6 N , ti = [t̄i] are the Teichmüller
representatives of t̄i.

The lift O(F) is a complete discrete valuation ring of the (N + 1)-
dimensional local field L(F) = FracO(F). Note that L(F)(1) = F and L(F)
has a fixed system of local parameters p, t1, . . . , tN such that for 1 6 i 6 N ,
ti mod p = t̄i. The elements of L(F) can be written as formal power se-
ries

∑
a γat

a1
1 · · · t

aN
N with natural conditions on the coefficients γa ∈W (k),

where a = (a1, . . . , aN ) ∈ ZN .

1.2. P -topological bases of F∗ and F ∗/F ∗p
M . The concept of P -

topology allows us to describe explicitly the structure of the multiplicative
groups F∗ and of F ∗/F ∗pM under the additional assumption that ζM ∈ F .

Consider the case of the field F = k((tN )) . . . ((t1)). Choose an Fp-basis
θ1, . . . , θs of k ' Fps . Then any element of F∗ can be uniquely written as
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an infinite product as follows
γt̄a1

1 . . . t̄aNN
∏
j,b

(1 + θjt
b)Ajb ,

where γ ∈ k∗, 1 6 j 6 s, a1, . . . , aN ∈ Z, b runs over the set of all multi-
indices (b1, . . . , bN ) ∈ ZN \ pZN , b > 0̄, t̄b := t̄b11 . . . t̄bNN , and all Ajb ∈ Zp.
The only essential condition on the above infinite product is that it must
converge in F with respect to the P -topology. In particular, with the above
notation the elements ηjb := 1+θj t̄b form a set of free topological generators
of the subgroup (1 + mF )× of F∗.

Consider the case of the field F . In this case we have a similar description
of the group F ∗/F ∗pM under the assumption that F contains a primitive
pM -th root of unity ζM .

Suppose p = πe11 . . . πeNN η = πeη, where e = (e1, . . . , eN ) ∈ ZN and
η ∈ O∗F . Then Hensel’s Lemma implies that any element of F ∗ modulo
F ∗p

M appears in the form

[γ]πa1
1 . . . πaNN εA0

0
∏
j,b

η
Ajb
jb ,

where
— a1, . . . , aN , A0 and all Ajb are integers uniquely determined modulo

pM ;
— ηjb := 1 + [θj ]πb, where the multi-index b = (b1, . . . , bN ) runs over the

set of all b ∈ ZN \ pZN such that 0̄ < b < e∗ := ep/(p− 1);
— ε0 = 1 + [θ0]πe∗ , where θ0 ∈ k is such that 1 + [θ0]πe∗ /∈ (1 + mF )p.

Remark. 1) There is a more natural construction of the generator ε0 re-
lated to the concept of pM -primary element. By definition, ε ∈ F ∗ is pM -
primary if the extension F (ε1/pM )/F is purely unramified of degree pM , i.e.
the N -th residue fields satisfy [F (ε1/pM )(N) : F (N)] = pM . Note that the
images of pM -primary elements in F ∗/F ∗p

M form a cyclic group of order
pM . One of first explicit constructions of pM -primary elements was given
by Hasse, cf. [19], and can be explained as follows. Let ξ ∈ mF be such that
E(1, ξ) = ζM . Let α0 ∈ W (k) be such that Tr(α0) = 1 and let β ∈ W (k̄)
be such that σ(β) − β = α0. Then ε0 = E(β, ξ)pM is a pM -primary ele-
ment of F . In Section 5 we shall use the pM -primary element in the form
ε0 = θ(α0H0), where H0 = H0(ζM ) ∈ m0 was defined in the Introduction.
A natural explanation of this construction of pM -primary element appears
there as a special case of the relation between the Witt-Artin-Schreier and
Kummer theories.

2) The original construction of the Shafarevich basis [18] systematically
uses the Shafarevich exponential E(w,X) and establishes an explicit iso-
morphism F ∗/F ∗p

M ' 〈π̄1〉Z/p
M × 〈ε̄0〉Z/p

M ×
∏
bWM (k)b, where 0 < b <
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e∗, π̄1 = π1 modF ∗pM , ε̄0 = ε0 modF ∗pM and gcd(b, p) = 1, in the 1-
dimensional case. This construction can be generalised to the N -dimensio-
nal case.

1.3. Topological Milnor K-groups. For a higher local field L and a
positive integer n, let Kn(L) be the n-th Milnor K-group of L. Let V Kn(L)
be the subgroup of Kn(L) generated by the symbols having at least one
entry in VL := 1 + mL. If L is of dimension N and u1, . . . , uN is a system
of local parameters of L, then, by [22],

(1.2) KN (L) ' V KN (L)⊕ Z⊕
∏

16i6N
AiN (L),

where Z corresponds to the subgroup generated by {u1, . . . , uN} and for all
1 6 i 6 N , the group AiN (L) ' L(N)∗ consists of the symbols of the form
{[α], u1, . . . , ui−1, ui+1, . . . , uN} with α ∈ L(N)∗.

Following [6, 22] we introduce the P -topology on KN (L) as follows. The
topology on V KN (L) is defined to be the finest topology such that the
map of topological spaces VL× (L∗)N−1 → V KN (L) is sequentially contin-
uous. The other direct summands in (1.2) are equipped with the discrete
topology. Then the topological Milnor K-groups Kt

N (L) are defined to be
KN (L)/Λ, where Λ is the intersection of all neighbourhoods of zero, with
the induced topology. By [6], Λ =

⋂
n≥1 nV KN (L) =

⋂
m≥1 p

mV KN (L),
using l-divisibility of V KN (F ), for any l prime to p. In particular, for any
M > 1, Kt

N (L)M = KN (L)M and the decomposition (1.2) induces the
decomposition Kt

N (L) ' Z⊕ V Kt
N (L).

The advantage of the topological K-groups Kt
N (L) is that they admit

P -topological generators analogous to those of the multiplicative group
L∗ from Subsection 1.2. Before stating these results notice that for any
higher local field K one can introduce a filtration of Kt

N (K) by the sub-
groups U cKKt

N (K), where c > 0. These subgroups are generated by the
symbols {α1, . . . , αN} ∈ Kt

N (K) such that vK(α1 − 1) > c. Here vK is the
1-dimensional valuation on K such that vK(K∗) = Z. Then the classical
identity

(1.3) {1− α, 1− β} = {α(1− β), 1 + αβ(1− α)−1}

for 2-dimensional Milnor K-groups implies that

{α1, . . . , αN} ∈ U c1+···+cN
K Kt

N (K)

if vK(αi − 1) > ci for 1 6 i 6 N .

• Generators of Kt
N (F).

For a = (a1, . . . , aN ) ∈ ZN , a /∈ pZN , a > 0̄, let 1 6 i(a) 6 N be such
that a1 ≡ · · · ≡ ai(a)−1 ≡ 0 mod p but ai(a) 6≡ 0 mod p. As earlier, choose an
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Fp-basis θ1, . . . , θs of k and for all above multi-indices a and 1 6 j 6 s, set

(1.4) εja = {1 + θj t̄
a
, t̄1, . . . , t̄i(a)−1, t̄i(a)+1, . . . , t̄N}.

This is a system of free topological generators of V Kt
N (F) and Kt

N (F) =
V Kt

N (F) ⊕ 〈ε0〉, where ε0 = {t̄1, . . . , t̄N}. This means that any element
ξ ∈ Kt

N (F) can be written in the form ξ = A0ε0 +
∑
j,bAjbεjb, where A0

and all Ajb belong to Zp and, for any 1 6 i0 6 N , the infinite product∏
j,b,i0(b)=i0

(1 + θjt
b)Ajb

converges in F . This can be obtained from relation (1.3). Moreover, for a
given ξ ∈ Kt

N (F), the corresponding coefficients A0 and Ajb are uniquely
determined by ξ, in other words the above system of symbols ε0 and εjb is
a system of free topological generators for Kt

N (F). This was established by
Parshin [15] via an analogue of the Witt pairing, cf. Subsection 2.2 below.
It can be also deduced from the Bloch-Kato theorem [4], which gives an
explicit description of the grading of the filtration U cF (Kt

N (F)), c > 0.

• Generators of Kt
N (F )M , ζM ∈ F .

Introduce similarly the elements

(1.5) εja = {1 + [θj ]πa, π1, . . . , πi(a)−1, πi(a)+1, . . . , πN},

where 1 6 j 6 s, a ∈ ZN \ pZN and 0̄ < a < e∗ := ep/(p − 1). Set
ε0 = {π1, . . . , πN} and for 1 6 i 6 N ,

(1.6) εie∗ = {ε0, π1, . . . , πi−1, πi+1, . . . , πN},

where ε0 was defined in Subsection 1.2.
Then for similar reasons to the case L = F , the above elements ε0,

εja and εie∗ give a set of P -topological generators of the Z/pM -module
Kt
N (F )M . The Bloch-Kato theorem [4] about the gradings of U cF (Kt

N (F )),
where 0 6 c 6 e′ = vF (p)p/(p − 1), implies that the system of topological
generators (1.6) is a topological Z/p-basis of Kt

N (F )1. The fact that we
have a system of Z/pM -free topological generators can be deduced from the
description of p-torsion in KN (F ) from [6]. This fact can be also established
directly from the non-degeneracy of Vostokov’s pairing, cf. Section 3.

• Generators of Kt
N−1(F )M and Kt

N+1(F )M , ζM ∈ F .
A similar technique can be used to prove thatKt

N−1(F )M is topologically
generated by the elements of the form:

— {1+[θj ]πa, πj1 , . . . , πjN−2}, where 1 6 j 6 s, a ∈ ZN\pZN , 0̄ < a < e∗,
1 6 j1 < · · · < jN−2 6 N and i(a) /∈ {j1, . . . , jN−2}.

— {ε0, πj1 , . . . , jN2}, where 1 6 j1 < · · · < jN−2 6 N .



12 Victor Abrashkin, Ruth Jenni

Similarly, in the case of Kt
N+1(F )M we have only one generator given by

the symbol {ε0, π1, . . . , πN}.

1.4. The Norm map. For a finite extension of higher local fields L/K,
the Norm-map of Milnor K-groups NL/K : Kn(L) → Kn(K) was defined
in [5] and [7]. It has the following properties:

(1) if α1 ∈ L∗ and α2, . . . , αn ∈ K∗ then
NL/K{α1, α2, . . . , αn} = {NL/K(α1), α2, . . . , αn};

(2) for a tower of finite field extensions F ⊂ M ⊂ L, it holds NL/F =
NL/M ◦NM/F ;

(3) if iL/K : Kn(K) −→ Kn(L) is induced by the embedding K ⊂ L
then iL/K ◦NL/K = [L : K] idKn(K).

By [22], NL/F is sequentially P -continuous and therefore induces a con-
tinuous morphism of the corresponding topological K-groups which will be
denoted by the same symbol.

Using the unique extension of vK , define the subgroups U cK(Kt
N (L)) ⊂

Kt
N (L) for all c > 0 and algebraic extensions L of K, to be the groups

generated by the symbols {α1, . . . , αN} such that vK(α1 − 1) > c. Then
the general definition of the norm map NL/K , e.g. cf. [7], implies that
for all c > 0, NL/K maps U cK(Kt

N (L)) to U cK(Kt
N (K)) and preserves the

decomposition Kt
N (L) = Z⊕ V Kt

N (L) from Subsection 1.3.

2. Pairings in the characteristic p case

2.1. Residues. For any n > 0, denote by Ωn
L(F) the L(F)-module of P -

continuous differentials of degree n for L(F). For n = N , this module is
free of rank 1 with the basis dt1 ∧ · · · ∧ dtN .

Suppose ω = fdt1 ∧ · · · ∧ dtN ∈ ΩN
L(F) with f ∈ L(F). Then

f =
∑

a=(a0,...,aN )
[αa]pa0ta1

1 . . . taNN

and there is an A0(f) ∈ Z such that αa = 0 if a0 < A0(f), cf. Subsection 1.1.
This makes sense for the following definition of the L(F)-residue ResL(F)
of ω.

Definition. ResL(F)(ω) =
∑
a=(a0,−1,...,−1)[αa]pa0 .

We have the following standard properties:
— if ω′ ∈ ΩN−1

L(F) then ResL(F)(dω′) = 0;
— if t̄′1, . . . , t̄′N is another system of local parameters in F and t′1, . . . , t′N

are their lifts to O(F) then

ResL(F)

(
dt′1
t′1
∧ · · · ∧ dt

′
N

t′N

)
= 1.
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— if ResL(F)ω = c then there is an ω′ ∈ ΩN−1
L(F) such that

ω = dω′ + c
dt′1
t′1
∧ · · · ∧ dt

′
N

t′N

The above properties do not show that the residue ResL(F) is apriori
independent of the choice of local parameters of F because the construc-
tion of the lift L(F) involves a choice of such system of local parameters.
Therefore, we need to slightly modify the above approach to the concept
of residue.

For any i ∈ Z, denote by O(σiF) the Zp-flat lifts of σiF via the system
of local parameters t̄p

i

1 , . . . , t̄
pi

N . Set OM (σiF) := O(σiF)/pM . These flat
Z/pM -lifts OM (σiF) of σi(F) do depend on the system of local parameters
t̄1, . . . , t̄N but we have the following properties:

— WM (σM−1F) ⊂ OM (F) ⊂WM (F) ⊂ OM (σ−M+1F);
— WM (F) = OM (F) + pOM−1(σ−1F) + · · ·+ pM−1O1(σ−M+1F).
Let Ω̃(F ,M) be the Zp-submodule of ΩN

WM (F) consisting of differential
forms ω = w dloga1 ∧ · · · ∧ dlogaN , where w ∈ WM (σM−1F) and all ai ∈
WM (F)∗. Then w ∈ OM (F), all ai ∈ OM (σ1−MF)∗ and, therefore, ω ∈∑
iOM (F)dlogti. As a result, we have a natural WM (k)-linear embedding

ιOM (F) : Ω̃(F ,M) −→ OM (σ−M+1F)⊗OM (F) ΩN
OM (F).

This means that for any ω ∈ Ω̃(F ,M), the image ιOM (F)(ω) can be writ-
ten uniquely as fdlogt1 ∧ · · · ∧ dlogtN , where f =

∑
a γat

a1
1 . . . taNN , with the

indices a = (a1, . . . , aN ) ∈ (p−M+1Z)N and the coefficients γa ∈WM (k).

Definition. With above notation for any ω ∈ Ω̃(F ,M), define itsWM (F)-
residue by the relation ResWM (F)(ω) := γ(0,...,0).

This definition is compatible with the earlier definition of the L(F)-
residue ResL(F) in the following sense. If ω ∈ ΩN

O(F) ⊂ ΩN
L(F) and ωmod pM

is in the image of Ω̃(F ,M) in OM (σ−M+1F)⊗O(F)ΩN
O(F) then ResL(F)(ω) ∈

W (k) and ResL(F)(ω) mod pM = ResWM (F)(ωmod pM ).
We now prove that the WM (F)-residue ResWM (F) is independent of the

choice of local parameters in F . Suppose t̄′1, . . . , t̄′N is another system of
local parameters of F . Consider, for all i ∈ Z, the corresponding flat
lifts O′M (σiF) and the WM (F)-residue Res′WM (F) defined via an analogue
ιO′M (F) of ιOM (F).

Proposition 2.1. For any ω ∈ Ω̃(F ,M), ResWM (F)(ω) = Res′WM (F)(ω).

Proof. Note that any α ∈ WM (F)∗ can be written in the form [β]taεη,
where [β] ∈ WM (k) is the Teichmüller representative of β ∈ k, ta :=
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ta1
1 . . . taNN with a = (a1, . . . , aN ) ∈ ZN , ε ∈ (1 + mL(F))modpMO(F) and
η ∈ 1 + pOM−1(σ−1F) + · · ·+ pM−1O1(σ−M+1F) = 1 + pWM−1(σ−1F).

With this notation any element of dlogWM (F)∗ can be written as∑
16i6N

Cidlogti + dlogε+ dη′,

where C1, . . . , CN ∈ Z and η′ = log η ∈ pWM−1(σ−1F). Note that the
p-adic logarithm establishes an isomorphism of the multiplicative group
1 + pWM−1(σ−1F) with the additive group pWM−1(σ−1F) and

dlogε = −
∑
a

(γata)ndlogt
a,

where a = (a1, . . . , an) ∈ ZN , a > 0̄, n > 0, all γa ∈WM (k) and the sum in
the right-hand side converges in the P -topology. (Use that ε can be written
as an infinite product

∏
a>0̄(1− γata).)

Therefore, any element ω ∈ Ω̃(F ,M) can be written as a sum of the
following types of elements:

(i) γ(ω)dlogt1 ∧ · · · ∧ dlogtN with γ(ω) ∈WM (k);
(ii) mdlogt1 ∧ · · · ∧ dlogtN with m ∈ mL(F)modpMO(F);
(iii) dlogti1 ∧ · · · ∧ dlogtis ∧ d(η1) ∧ · · · ∧ d(ηN−s), where 0 ≤ s < N ,

1 6 i1 < · · · < is 6 N and η1, . . . , ηN−s ∈ pWM−1(σ−1F).
This follows directly from the above description of the elements of

dlogWM (F)∗ by taking into account that for a ∈ ZN such that a > 0̄
and η ∈ pWM−1(σ−1F), we have

(ta)ndlog(ta) ∧ dη =
∑

16i6N
aidlogti ∧ d(tanη),

and d(wη) = wd(η) for any ω ∈WM−1(σM−1F).
Then it can be seen that ResWM (F)(ω) = γ(ω) by noting that the residues

of elements of the form (ii)-(iii) are equal to 0.
Finally, it remains to verify that ResWM (F)(ω) = 1 for differential forms

ω = dlogt
′
1 ∧ · · · ∧ dlogt

′
N . This can be done also along the lines of the above

calculations. �

2.2. The Witt symbol. We introduce the WM (Fp)-linear pairing

(2.1) [ , }FM : WM (F)×Kt
N (F) −→WM (k)

as follows. Suppose w = (w0, . . . , wM−1) ∈ WM (F) and α ∈ KN (F) is of
the form α = {α1, . . . , αN} ∈ KN (F). For 1 6 i 6 N and α̂i ∈ WM (F)∗
such that α̂i mod p = αi, set
(2.2) [w,α}FM = ResWM (F)(σM−1(w)dlogα̂1 ∧ · · · ∧ dlogα̂N ) ∈WM (k).

It can be seen that [w,α}FM is well-defined and the pairing it induces factors
through the natural projection KN (F) −→ Kt

N (F).



Field-of-norms functor and Hilbert symbol 15

Lemma 2.1. For any w ∈WM (F) and α ∈ Kt
N (F), we have

σ[w,α}FM = [σ(w), α}FM .

Proof. Note that for varying systems of local parameters t̄′1, . . . , t̄′N of F ,
the symbols {t̄′1, . . . , t̄′N} generate the group Kt

N (F). Therefore, it is suf-
ficient to consider only the symbols α = {t̄′1, . . . , t̄′N}. By Proposition
2.1, the symbol [ , }FM is independent of the choice of local parameters.
Therefore, we may assume that α = {t̄1, . . . , t̄N}. Consider the expansion
σM−1w =

∑
a γat

a1
1 · · · t

aN
N , where all γa ∈ WM (k), with respect to the

identification WM (σM−1F) = OM (σM−1F) + · · · + pM−1O1(F). Clearly,
[w,α)FM = γ(0,...,0) and [σ(w), α)FM = σ(γ(0,...,0)). The lemma is proved. �

Notice now that for any w = (w1, . . . , wM ) ∈ WM (F), the element
σM−1w = [w1]pM−1 + p[w2]pM−2 + · · · + pM−1[wM ] coincides, modulo pM ,
with theM -th ghost component of w. Therefore, the classical Witt symbol,
cf. [14],

[ , )FM : WM (F)×Kt
N (F) −→WM (Fp)

has the following invariant form:

— If w ∈WM (F) and α ∈ Kt
N (F) then [w,α)FM = Tr

(
[w,α}FM

)
.

Above Lemma 2.1 implies that the Witt symbol induces aWM (Fp)-linear
pairing

(2.3) WM (F)/(σ − id)WM (F) × Kt
N (F) −→WM (Fp)

and it can be verified that this pairing is non-degenerate using the explicit
formula (2.2) for the above symbol [ , }FM .

2.3. Coleman’s lifts and Fontaine’s pairing. For 1-dimensional local
fields, Fontaine [8] developed a version of the Witt symbol by defining a
special multiplicative section Col : F∗ −→ O(F)∗ of the natural projection
O(F) −→ O(F)/p = F . His construction can be generalised in the context
of topological K-groups as follows.

For any x ∈ OL(F), let x̄ = (xp−vp(x)) mod p ∈ F . Consider the map
Π : Kt

N (L(F))→ Kt
N (F) defined by the correspondences

{x1, . . . , xN} 7→ {x̄1, . . . , x̄N}.

We use the free topological generators of Kt
N (F) from Subsection 2.2

to define the P -continuous homomorphism Col : Kt
N (F) −→ Kt

N (L(F))
by the following correspondences: {t̄1, . . . , t̄N} 7−→ {t1, . . . , tN} and
εja 7→ {1+[θj ]ta, t1, . . . , ti(a)−1, ti(a)+1, . . . , tN}. This definition makes sense
because of the following property, cf. [22].
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Lemma 2.2. If for p-adic integers Aja ∈ Zp, where 1 6 j 6 s and a ∈
ZN \ pZN , a > 0̄, the product

∏
ja(1 + θj t̄

a)Aja converges in F then the
product

∏
ja(1 + [θj ]ta)Aja converges in L(F).

The above defined morphism Col depends on the choice of local param-
eters t1, . . . , tN of F . As in Subsection 2.1 consider the lift O(σ−1F). Then
L(σ−1F) = FracO(σ−1F) is a field extension of L(F) of degree pM . Let
σ−1 be the σ−1-linear (with respect to the W (k)Qp-module structure) field
isomorphism L(F) −→ L(σ−1F) given, for 1 6 i 6 N , by the correspon-
dences ti −→ t

1/p
i .

Definition. Call an element x ∈ Kt
N (L(F)) Coleman if the norm map

from Kt
N (L(σ−1F)) to Kt

N (L(F)) maps σ−1(x) to x.

Proposition 2.2. An element η ∈ Kt
N (L(F)) is Coleman if and only if it

belongs to Col(Kt
N (F)).

Proof. Property (1) of Subsection 1.4 easily implies that all elements from
Col(Kt

N (F)) are Coleman.
Suppose x0 ∈ Kt

N (L(F)) is Coleman. We prove that x0 ∈ ColKt
N (F).

Shifting x0 by the inverse to Col(Π(x0)) we may assume that Π(x0) = 0.
Note that L(F) has the system of local parameters t0 = p, t1 = Col(t̄1),

. . . , tN = Col(t̄N ). Then the classical identity (1.5) implies that Kt
N (L(F))

is topologically generated by the elements
{t0, . . . , ti−1, ti+1, . . . , tN}

with 1 6 i 6 N , and the elements of the form
{1 + [θj ]ta0

0 . . . taNN , α2, . . . , αN},
where 1 6 j 6 s, θ1, . . . , θs is an Fp-basis of k, a = (a0, . . . , aN ) ∈ ZN+1 \
pZN+1, a > 0̄ and for 2 6 i 6 N , αi = tji with 0 6 j2 < j3 < · · · < jN 6 N .

These generators can be separated into the two following groups:
— the first group contains the generators belonging to Ker Π (in other

words these generators do depend on t0);
— the second group contains the generators from Col(Kt

N (F)).
Using that Kt

N (F) is topologically free, we obtain for any x ∈ Kt
N (F)

the following properties:
— if Π(x) = 0 then x is a product of generators from the first group;
— if Π(x) = 0 and x = pmx1 with m > 0 and x1 ∈ Kt

N (L(F)), then
Π(x1) = 0.

Returning to the Coleman element x0 ∈ Kt
N (L(F)), assume that there is

an m > 0 such that x0 = pmx1 with x1 ∈ Kt
N (L(F)) but x /∈ pKt

N (L(F)).
Then Π(x1) = 0 and x1 is a product of generators from the first group.
But if y is a generator from this group then property 1) of Subsection
1.4 implies that NL(σ−1F)/L(F)(σ−1y) ∈ pKt

N (L(F)). This gives that x0 =
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NL(σ−1F)/L(F)(σ−1x0) = pmNL(σ−1F)/L(F)(σ−1x1) ∈ pm+1Kt
N (L(F)),

which is a contradiction. This means that x0 is infinitely p-divisible and,
therefore, is 0 in Kt

N (L(F)). �

We define an analogue of Fontaine’s pairing [8]

[ , 〉F : O(F)×Kt
N (F) −→ Zp

by setting for f ∈ O(F) and α ∈ KN (F),

[f, α〉F = Tr
(
ResL(F)fdlogCol(α)

)
.

Here, for Col(α) = {α̂1, . . . , α̂N}, we set dlogCol(α) = dlogα̂1 ∧ · · · ∧ dlogα̂N .
This pairing is related to the Witt symbol by the following Proposition.

Proposition 2.3. For all f ∈ O(F) and α ∈ Kt
N (F), one has

[f, α〉Fmod pM = [f mod pM , αmod pM )FM .

Proof. We need to show that

(2.4) σM−1ResL(F)(fdlogColα) = ResL(F)(σM−1(f)dlogCol(α)).

By linearity and P -continuity this can be verified on the generating el-
ements f = tb = tb11 . . . tbNN , b = (b1, . . . , bN ) ∈ ZN , of O(F) and the gen-
erators α = {t̄11, . . . , t̄N} and α = εja of Kt

N (F) from (2.4) of Subsection
1.3.

— The case f = tb and α = {t̄1, . . . , t̄N}. In this case the both sides of
equality (2.4) are equal to the Kronecker symbol δ(b, 0̄).

— The case f = tb and α = εja. Here the left-hand side of (2.4) equals

(−1)i(a)−1σM−1ResL(F)

tb∑
n>0

(−1)n[θnj ]tnadt1
t1
∧ · · · ∧ dtN

tN


and the corresponding right-hand side equals

(−1)i(a)−1ResL(F)

tpM−1b
∑
n>)

(−1)n[θnj ]tnadt1
t1
∧ · · · ∧ dtN

tN

 .
Clearly, we may assume that b 6= 0̄. Then the left-hand side is non-zero

if and only if there is an n0 > 1 such that b + n0a = 0̄. This is equivalent
to saying that the right-hand side is non-zero noting that a 6∈ pZN . It can
then be seen that both sides are equal to (−1)i(a)+n0−1ai(a)[θ

pM−1n0
j ]. �
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3. Vostokov’s pairing

As usual, π1, . . . , πN is a fixed system of local parameters and k is the
N -th residue field of F . Let L0(F) = W (k)((tN )) . . . ((t1)) ⊂ L(F) with
the induced topological structure. Set

m0 =

∑
a>0̄

wat
a | wa ∈W (k)


and O0 = W (k) + m0. Clearly, m0 ⊂ O0 ⊂ L0(F) and L0(F) =

⋃
a>0̄

t−aO0.

Let R be the multiplicative subgroup in L0(F)∗ generated by the Teich-
muller representatives of the elements of k, the indeterminants t1, . . . , tN
and the elements of 1 + m0. Let κ : R −→ F be the epimorphic contin-
uous morphism of W (k)-algebras such that κ(ti) = πi, where 1 6 i 6 N .
We use the same notation κ for the unique P -continuous epimorphism of
W (k)-algebras L0(F) −→ F such that κ(ti) = πi for 1 6 i 6 N .

3.1. The differential form Ω. For any u0, . . . , uN ∈ R, denote by Ω =
Ω(u0, . . . , uN ) the following differential form from ΩN

L0(F):∑
06i6N

(−1)ifi
(
σ

p
dlogu0

)
∧ · · · ∧

(
σ

p
dlogui−1

)
∧ dlogui+1 ∧ · · · ∧ dloguN

where for 0 6 i 6 N , fi = (1/p) log(upi /σui). Notice that all fi ∈ m0 (use
that σui/upi ∈ 1 + m0) and

(3.1) dfi = dlogui − (σ/p)dlogui.

Proposition 3.1. Ω mod dΩN−1
O0 is skew symmetric in u0, . . . , uN .

Proof. Prove that Ω mod dΩN−1
O0 changes the sign under the transpositions

ui ↔ ui+1, 0 6 i < N . Consider the identity (use (3.1))

fidlogui+1 − fi+1(σ/p)dlogui + fi+1dlogui − fi(σ/p)dlogui+1 = d(fifi+1)

Then the form Ω(. . . , ui, ui+1, . . . ) + Ω(. . . , ui+1, ui, . . . ) is congruent mod-
ulo dΩN−1

O0 to the form

(σ/p)dlogu0 ∧ · · · ∧ (σ/p)dlogui−1 ∧ d(fifi+1) ∧ dlogui+1 ∧ · · · ∧ dloguN

and, using again identity (3.1), we conclude that this form is exact. �

Let e = (e1, . . . , eN ) ∈ ZN be such that πe11 . . . πeNN /p ∈ O∗F , where OF
is the N -dimensional valuation ring of F . We introduce the W (k)-algebra
L0 = O0[[p/te(p−1), tep/p]] and set L = L0 ⊗O0 L0(F). Clearly, we have
L =

⋃
a>0̄

t−aL0.
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The algebra L is a suitable completion of L0(F) and its elements can be
treated as formal Laurent series in t1, . . . , tN with coefficients in W (k)Qp .
Note first that any element of L0 can be written in the form∑

n>0
ont

epn/pn +
∑
n>1

o−np
n/te(p−1)n,

where all on ∈ O0, n ∈ Z. Therefore, L0 consists of formal Laurent series∑
a∈ZN wat

a with coefficients wa ∈W (k)Qp , such that for any n ∈ Z>0:
— if a > epn then vp(wa) > −n;
— if −e(p− 1)n > a > −e(p− 1)(n+ 1) then vp(wa) > n+ 1.
We can use the above Laurent series to define the L-residues ResL ω for

any ω ∈ ΩN
L . If any such form ω is the limit of ωn ∈ ΩN

L0(F), then ResL ω
is the limit of Resωn. Therefore, we can use for the L-residue of ω, the
simpler notation Resω.

Lemma 3.1. Let πe11 . . . πeNN /p = η ∈ O∗F and let η̂ ∈ O0 be such that
κ(η̂) = η. Then the kernel of κ : O0(F) −→ F is the principal ideal gener-
ated by te − pη̂.

Proof. The proof follows easily from the fact that κ induces a bijective map
O0(F)/te → OF /p. �

Proposition 3.2. If u0 ∈ R and κ(u0) = 1 then there are ω0, ω1 ∈ ΩN−1
O0

such that for Ω′ = log(u0)dlogu1 ∧ · · · ∧ dloguN − σ
p log(u0)σpdlogu1 ∧ · · · ∧

σ
pdloguN , it holds Ω = Ω′ + d(log(u0)ω0 + ω1).

Proof. Clearly, u0 ∈ 1 + m0. By above Lemma 3.1 the relation κ(u0) = 1
implies that log(u0) ∈ L0. Then the statement of our Proposition is implied
by the following identities: f0 = log(u0)− (σ/p) log(u0) and for 1 6 i 6 N ,

fi(σ/p)dlogu0 = d(fi log(u0)− fif0)− (σ/p) log(u0)(dlogui − (σ/p)dlogui).

�

3.2. Element H0. As in the Introduction, choose a primitive pM -th root
of unity ζM ∈ F and introduce H0 ∈ m0 such that H0 = H ′p

M − 1, where
H ′ ∈ 1 + m0 is such that κ(H ′) ≡ ζM mod pOF .

Clearly, we have dH0 ∈ pMΩ1
O0 .

Lemma 3.2. a) There are o1 ∈ O0∗ and o2, o3 ∈ O0 such that
a) H0 = o1t

ep/(p−1) + po2t
e/(p−1) + p2o3;

b) H−1
0 ∈ t−ep/(p−1)O0[[pt−e]] ⊂ L;

c) Hp−1
0 /p ∈ O0[[tep/p]] ⊂ L0 and O0[[Hp−1

0 /p]] = O0[[tep/p]];
d) (σ/p)H0 = H0(1 + o1H0 + o2(Hp−1

0 /p) + o3(pM/H0)), where the coef-
ficients o1, o2, o3 ∈ O0 .
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Proof. In order to prove a) use that H ′ ≡ 1 + ote/p
M−1(p−1) mod (p, te)

with o ∈ O0∗. Then b) and c) are implied by a). For part d), use that
σH ′ ≡ H ′p mod pO0 and therefore, σH0 ≡ (1 +H0)p − 1 mod pM+1O0. �

Lemma 3.3. If ω = log(u0)ω1 + ω0 with ω0, ω1 ∈ ΩN−1
O0 then we have

Res(H−1dω) ∈ pMW (k).

Proof. Note that Res(H−1dω) = −Res(d(1/H) ∧ ω), because obviously
ω/H2 ∈ t−2ep/(p−1)L0ΩN−1

O0 and dH ∈ pMΩ1
O0 . It follows that

d(1/H) ∧ ω = (ω/H2) ∧ dH ∈ pM t−2ep/(p−1)L0ΩN
O0 .

It remains to notice that ep > 2ep/(p− 1), which implies that

Res(t−2ep/(p−1)L0dt1 ∧ · · · ∧ dtN ) ⊂W (k).

�

Corollary 3.1. With the notation from Proposition 3.2, we have

Res(Ω/H) ≡ Res(Ω′/H) mod pM .

Proposition 3.3. If h ∈ O0[[tep/p]] then

Res
(
hdlogt1 ∧ · · · ∧ dlogtN

H

)
≡ Res

(
hdlogt1 ∧ · · · ∧ dlogtN

(σ/p)H

)
mod pM .

Proof. We follow the strategy from the proof of Lemma 3.1.3 in [1].
By Lemma 3.2d) it will be sufficient to prove the congruence

Res(Gdlogt1 ∧ · · · ∧ dlogtN ) ≡ 0 mod pM ,

where

G = h1H
l1
0 (Hp−1

0 /p)l2(pM/H)l3
H0

with h1 ∈ O0[[tep/p]], l1, l2, l3 ∈ Z>0 and l1 + l2 + l3 > 1.
If l3 = 0 then G ∈ O0[[tep/p]] and, therefore, the residue

Res(Gdlogt1 ∧ · · · ∧ dlogtN ) = 0.

If l3 > 1 then use that Hp−1/p, p/H ∈ L0 to obtain that

G ∈ (pM/H2)L0 ⊂ pM t−2ep/−1)L0.

Similarly to the proof of Lemma 3.3 this implies that the residue

Res(Gdlogt1 ∧ · · · ∧ dlogtN ) ∈ pMW (k).

�
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3.3. A construction of Vostokov’s pairing V . For any elements
u0, . . . , uN ∈ R, set

(3.2) Ṽ (u0, . . . , uN ) = Tr
(

Res Ω
H

)
modpM ,

where, as earlier, Tr is the trace map for the field extension W (k)Qp/Qp.
Then Proposition 3.1 and Lemma 3.3 imply that Ṽ is an (N + 1)-linear
skew-symmetric form on R with values in Z/pM .

Proposition 3.4. If κ(u0) = 1 then Ṽ (u0, . . . , uN ) = 0.

Proof. By Propositions 3.3 and 3.7 it will be sufficient to prove that

σRes
( log(u0)

H0
dlogu1 ∧ · · · ∧ dloguN

)
≡

Res
((σ/p) log(u0)

(σ/p)H0
(σ/p)dlogu1 ∧ · · · ∧ (σ/p)dloguN

)
mod pM

Let L(−1) be the subalgebra in L consisting of the formal Laurent series
l =

∑
a∈ZN wat

a such that σ(l) :=
∑
a∈ZN σ(wa)tap ∈ L. Then one can

verify that for any r ∈ L(−1),

σRes(rdlogu1 ∧ · · · ∧ dloguN ) = Res
(
σ(r)σ

p
dlogu1 ∧ · · · ∧

σ

p
dloguN

)
.

It remains to note that κ(u0) = 1 implies (use Lemma 3.1) that r =
log(u0)/H0 ∈ L(−1) and, therefore, σ(r) = (σ/p) log(u0)/(σ/p)H0. �

Corollary 3.2. The form Ṽ factors through the projection κ : R −→ F ∗

and defines an (N + 1)-linear skew-symmetric form V̄ on F ∗ with values
in Z/pM .

We now verify the Steinberg relation for Ṽ .

Proposition 3.5. If u1 + u0 = 1 then Ṽ (u0, u1, . . . uN ) = 0.

Proof. As usually, it is sufficient to verify this property for u0 ∈ m0. Then
by Lemma 3.3 it will be sufficient to prove that
(3.3) f0dlogu1 − f1(σ/p)dlogu0 = dF

where F ∈ O0.
For any u ∈ R, set l(u) := (1/p) log(up/σu). By computing in L0(F)⊗Qp

we obtain the identity
l(u0)dlog(1− u0) = d(Li2(u0) + log(1− u0)l(u0))

where Li2(X) =
∫

log(1 − X)X−1dX =
∑
n>1X

n/n2 is the dilogarithm
function. This identity implies that (3.3) holds with

F = Li2(u0)− (1/p2)Li2(σu0) + log(1− u0)l(u0).
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It remains to prove that F ∈ O0.
Using the expansions for Li2(X) and log(1 −X) we can rewrite F as a

double sum F =
∑
m,s Fmsu

mps

0 , where:
— the indices s and m run over the set of all non-negative integers with

additional condition that m is prime to p;
— for all (prime to p) indices m, we have

Fm0 = 1/m2 − (1/m)l(u0)
and for all s > 1,

Fms = 1
m2p2s

1− σump
s−1

0
ump

s

0

− 1
mps

l(u0).

Clearly, Fm0 ∈ O0 and Fms appears as the result of the substitution of
X = −ml(u0) ∈ m0 into the p-integral power series of the function
(psX)−2(1 + psX − exp(psX)). Therefore, all Fms ∈ O0 and F ∈ O0. �

Corollary 3.3. Ṽ induces a bilinear continuous non-degenerate pairing
V : K1(F )M × KN (F )M −→ Z/pM , which factors through the canonical
morphism of the left-hand side to KN+1(F )M .
Proof. The only thing to verify is non-degeneracy. This can be done by rou-
tine calculations with the corresponding topological generators from Sub-
sections 1.2 and 1.3. The most important fact is that

V (ε0, {π1, . . . , πN}) = 1,
where ε0 = θ(α0H0) is the pM -primary element from Remark 1) of Subsec-
tion 1.2. �

Remark. 1) The above construction of the pairing V depends on the choice
of a primitive pM -th root of unity ζM . However, Vostokov’s pairing appears
in the form
(3.4) V : K1(F )M ×KN (F )M −→ 〈ζM 〉.

where for any α ∈ K1(F )M and β ∈ KN (F )M , V(α, β) = ζ
V (α,β)
M , and this

pairing is independent of the choice of ζM .
2) The above Corollary immediately implies that Vostokov’s pairing (3.4)

coincides with the M -th Hilbert symbol
( , )M : K1(F )M ×KN (F )M −→ 〈ζM 〉

for the field F . Indeed, the norm property of the Hilbert symbol implies
that it factors through the canonical morphism K1(F )M × KN (F )M to
KN+1(F )/pM . Therefore, it is sufficient to verify that the Hilbert pairing is
equal to ζM on the generator {ε0, π1, . . . , πn} of KN+1(F )M . But this is ex-
actly the basic property of the pM -primary element θ(α0H0), cf. Subsection
5.5.
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4. The field-of-norms functor

4.1. The field-of-norms functor. N -dimensional local fields are special
cases of the (N−1)-big fields used in [17] to construct a higher dimensional
analogue of the field-of-norms functor. The main ideas of this construction
are as follows.

Suppose K is an N -dimensional local field and vK : K −→ Z ∪ {∞}
is the (first) valuation of K. If K̄ is an algebraic closure of K, denote by
the same symbol the unique extension of vK to K̄. For any c > 0, let
pcK = {x ∈ K̄ | vK(x) > c}. If L is a field extension of K in K̄, we use the
simpler notation OL/pc instead of OL/(pc ∩ OL). Clearly, if [L : K] < ∞
and e(L/K) is the ramification index of L/K, then pcK = p

ce(L/K)
L .

An increasing fields tower K• = (Kn)n>0, where K0 = K, is strictly
deeply ramified (SDR) with parameters (n0, c), if for n > n0, one has
[Kn+1 : Kn] = pN , c 6 vK(p) and there is a surjective map Ω1

OFn+1/OFn
−→

(OFn+1/p
c)d or, equivalently, the p-th power map induces epimorphic maps

(4.1) iN (K•) : OKn+1/p
c
K −→ OKn/pcK .

This means that for n > n0, K(N)
n+1 = K

(N)
n and there are systems of local

parameters u(n)
1 , . . . , u

(n)
N in Kn such that for all 1 6 i 6 N , u(n+1)p

i ≡
u

(n)
i mod pcK .
The field-of-norms functor X associates to any SDR tower K• an N -

dimensional field K = X(K•) of characteristic p such that itsN -dimensional
valuation ring OK coincides with lim←−

in(K•)
OKn/pcK . Then for n > n0, we have

the following properties:
— the last residue fields of K and Kn coincide;
— the natural projections from OK to OKn/pcK induce isomorphisms of

unitary rings
(4.2) OK/pcnK ' OKn/p

c
K

where cn = pn−n0e(Kn0/K);
— if ū1, . . . , ūN is a system of local parameters in K then there are

systems of local parameters u(n)
1 , . . . , u

(n)
N in Kn such that for 1 6 i 6 N ,

lim←−
n

u
(n)
i = ūi.

Suppose L is a finite extension ofK in K̄. Then the tower L• = (LKn)n>0
is again SDR and X(L•) = L is a separable extension of K of degree
[LKn : Kn], where n � 0. The extension L/K is Galois if and only if, for
n � 0, LKn/Kn is Galois. An analogue of the identification (4.2) can be
used to identify Gal(L/K) with Gal(LKn/Kn).
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Finally, X(K̄) := lim−→
L

X(L•) is a separable closure Ksep of K and the

functor X identifies Gal(Ksep/K) with Gal(K̄/K∞), where K∞ = lim−→
n

Kn.

4.2. Applications to K-groups. Suppose there is an SDR tower K• =
(Kn)n>0 with parameters (n0, c) and the ring epimorphisms in = in(K•) :
OKn+1/p

c
K −→ OKn/pcK . Define for n > n0, the morphisms

jn = jn(K•) : Kt
N (Kn+1)/U cKKt

N (Kn+1) −→ Kt
N (Kn)/U cKKt

N (Kn).

as follows. Choose systems of local parameters u(n)
1 , . . . , u

(n)
N of Kn such

that for 1 6 i 6 N , u(n+1)p
i ≡ u

(n)
i mod pcK . Consider the lifts ı̂n of the

morphisms in:
ı̂n :

∑
a

[θa]π(n+1)a 7→
∑
a

[θpa]π(n)a,

where a = (a1, . . . , aN ) ∈ ZN , θa ∈ K(N), and π(n)a = π
(n)a1
1 . . . π

(n)aN
N .

Then ı̂n(K∗n+1) ⊂ K∗n and we may consider

ı̂Nn : K∗⊗Nn+1 −→ Kt
N (Kn)

induced by α1⊗ · · ·⊗αN 7→ {ı̂n(α1), . . . , ı̂n(αN )}. Note that for any α, β ∈
K∗n+1, we have

— ı̂n(αβ) = ı̂n(α)̂ın(β)γ1 with γ1 ∈ pcK ;
— ı̂n(α+ β) = ı̂n(α)γ2 + ı̂n(β) with vK(α) 6 vK(β) and γ2 ∈ pcK .
This implies that the images of the relations for the Milnor K-group

KN (Kn+1) lie in U cKK
t
N (Kn). Therefore, ı̂Nn factors through the natu-

ral projection to Kt
N (Kn+1) and we can proceed modulo the subgroup

U cKK
t
N (Kn+1) because it is mapped to U cKK

t
N (Kn). It can be seen that

the morphisms jn, n > n0, depend only on the tower K• and its parame-
ters (n0, c).

Note that
(4.3) (Kt

N (Kn)/U cKKt
N (Kn), jn)n>n0

is a projective system. Consider the system of local parameters

ū1 = lim←−
n

u
(n)
1 , . . . , ūN = lim←−

n

u
(n)
N

for K = X(F•). Similarly to the procedure of constructing the morphisms
jn, we use the identifications OK/pcnK ' OKn/pcK to construct isomorphisms
of topological K-groups

ιn : Kt
N (K)/U cnK K

t
N (K) −→ Kt

N (Kn)/U cKKt
N (Kn).

These morphisms are compatible with the morphisms jn introduced above
and determine the isomorphism

ι(c) : Kt
N (K) −→ lim←−

n

Kt
N (Kn)/U cKKt

N (Kn).
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For any 0 < c′ < c, there is an induced projective system

(4.4) (Kt
N (Kn)/U c′KKt

N (Kn), j′n)n>n0 .

Its inverse limit coincides with Kt
N (K) and the composition of ι(c) with the

natural projection from (4.3) to (4.4) coincides with ι(c′).

4.3. Special SDR towers. We need the following additional assumption
about the SDR towers K•.

Definition. An SDR tower K• will be called special if for any n > n0,
there is a fields tower of extensions of relative degree p

Kn = K0
n ⊂ K1

n ⊂ · · · ⊂ KN−1
n ⊂ KN

n = Kn+1.

Our main applications are related to the following example of a special
SDR-tower.

Definition. The tower F 0
• = (F 0

n)n>0 is very special if F 0
0 = F and for all

n > 0, the field F 0
n has a system of local parameters π(n)

1 , . . . π
(n)
N such that

for 1 6 i 6 N , π(n+1)p
i = π

(n)
i .

Clearly, a very special tower F 0
• is SDR with parameters (0, vF (p)) and

X(F 0
• ) = F . In this case we have also an isomorphismKN (F) ' lim←−

n

Kt
N (F 0

n)

induced in terms of generators from Subsection 1.3 by the morphisms
Kt
N (F) −→ Kt

N (F 0
n) such that:

— {t̄1, . . . , t̄N} 7→ {π(n)
1 , . . . , π

(n)
N };

— {1 + [θj ]t̄ a, t̄1, . . . , t̄i(a)−1, t̄i(a)+1, . . . , t̄N} 7→

{1 + [θp
−n

j ]π(n)a, π
(n)
1 , . . . , π

(n)
i(a)−1, π

(n)
i(a)+1, . . . , π

(n)
N }

This means that in the case of a very special tower F 0
• , the groupKt

N (F) co-
incides with the limit of the projective system (Kt

N (F 0
n))n>0, where the con-

necting morphisms are the norm maps NF 0
n+1/F

0
n

: Kt
N (F 0

n+1) −→ Kt
N (F 0

n).
We shall show that a similar property holds for any special SDR tower.

Proposition 4.1. Suppose K• is a special SDR tower with parameters
(n0, c). Then for any c1 > c and n > n0,

NKn+1/KnU
c1
K (Kt

N (Kn+1)) ⊂ U c2K (Kt
N (Kn)),

where c2 = c1 + c/p− e(Kn+1/K0)−1.

Proof. Choose a field tower Kn = L0 ⊂ L1 ⊂ · · · ⊂ LN = Kn+1, where for
1 6 i 6 N , [Li : Li−1] = p. One can show the existence of:

— a system of local parameters η1, . . . , ηN of L0;
— a system of local parameters η′1, . . . , η′N of LN ;
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— a permutation
(

1 2 . . . N
j1 j2 . . . jN

)
such that for 1 6 i 6 N , Li = Li−1(η′ji) and η′pi ≡ ηi mod pcK .

For any field extension E of K in K̄, set U c1K (E) := (1 + pc1K) ∩ E.

Lemma 4.1. For all 1 6 i 6 N , we have
a) NLi/Li−1(η′ji) ≡ ηjimodU c/pK (Li−1);

b) if a ∈ Li and a− 1 ∈ pc1K then NLi/Li−1(a)− 1 ∈ p
c1+c/p−vK(η′ji )
K .

Proof. The congruences η′pji ≡ ηji mod pcK imply that all conjugates of η′ji
over Li−1 are congruent modulo pc/pK . Therefore,NLi/Li−1(η′ji) ≡ ηi mod p

c/p
K .

This gives part a) of Lemma.
For property b), we can assume that a = 1 + [θ]η′bji ∈ U c1K (Li), where

θ ∈ K(N) and b ∈ N. Then all conjugates of a over Li−1 are congruent
modulo η′ji

b−1p
c/p
K = η′ji

−1p
c1+c/p
K and this implies that NLi/Li−1(a) ≡ ap ≡

1 mod (η′ji
−1p

c1+c/p
K ). �

We continue the proof of Proposition 4.1.
Consider the following system of topological generators of the group

U c1K (Kt
N (Kn+1)). For any a = (a1, . . . , aN ) ∈ ZN

>0̄, set εaθ = 1 + [θ]ηa,
where θ ∈ K(N) and

ηa = η′
a1
j1 . . . η

′as(a)−1
js(a)−1

η
p−1as(a)+1
js(a)+1

. . . ηp
−1aN
jN

.

Here 0 6 s(a) 6 N is such that aN ≡ · · · ≡ as(a)+1 ≡ 0 mod p but
as(a) 6≡ 0 mod p. (Note that if s(a) = 0, i.e. a ∈ pZN , then ηa ∈ Kn.)
With this notation, U c1K (Kn+1) is topologically generated by all εaθ such
that vK(ηa) > c1. Therefore, U c1K (Kt

N (Kn+1)) is topologically generated by
the symbols

αaθi = {εaθ, η′j1 , . . . , η
′
ji−1 , . . . , η

′
ji+1 , . . . , η

′
jN
}

with a ∈ ZN , a > 0̄, 1 6 i 6 N and εaθ ∈ U c1K (Kn+1). If a /∈ pZN then it
will be enough to keep in this list only the generators with i = s(a) and
denote them by αaθ := αaθs(a).

By Lemma 4.1a) and the properties of the norm map from Subsection
1.4, we obtain that NLN/Ls(a)(αaθ) is congruent to the symbol

{εaθ, η′j1 , . . . , η
′
js(a)−1

, ηjs(a)+1 , . . . , ηjN }

modulo U c′(Kt
N (Ls(a))) if a /∈ pZN with

c′ = c1 + c/p−max{vK(η′js(a)+1
), . . . , vK(η′jN )} 6 c1 + c/p− e(Kn+1/K)−1
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Applying Lemma 4.1b) and using that εaθ ∈ Ls(a) but η′j1 , . . . , η
′
js(a)−1

∈
Ls(a)−1, we obtain that the norm NLN/Ls(a)−1(αaθ) ∈ U c2K (Kt

N (Ls(a)−1))
for c2 = c1 + c/p − e(Kn+1/K)−1. This implies that NLN/L0(αaθ) ∈
U c2K (Kt

N (L0)).
Similarly, we can consider the case a ∈ pZN , where the index i plays the

role of s(a) and we use that εaθ ∈ L0 ⊂ Li−1. �

Corollary 4.1. For a special SDR tower K•, the limit of the projective
system (U cKKt

N (Kn), NKn+1/Kn)n>0 is trivial.

Proposition 4.2. Suppose K• is a special SDR tower with parameters
(n0, c). Then there is 0 < c0 < c such that for all n � 0, the morphisms
jn in the projective system (4.3) with c replaced by c0, are induced by the
norm maps NKn+1/Kn : Kt

N (Kn+1) −→ Kt
N (Kn).

Proof. Let n′0 > n0 be such that e(Kn′0+1/K) < c/p and c0 := c/p −
e(Kn′0+1/K). Take n > n′0 and use the notation from Proposition 4.1. The
group Kt

N (Kn+1) is topologically generated by the symbol {η′j1 , . . . , η
′
jN
}

and all αaθ = {ε′aθ, ηj1 , . . . , η′jN }, where a ∈ ZN \ pZN , a > 0̄. Applying
arguments from the proof of Proposition 4.1, we obtain that

NKn+1/Kn({η′j1 , . . . , η
′
jN
}) ≡ {η′pj1 , . . . , η

′p
jN
}modU c0K (Kt

N (Kn))

NKn+1/Kn(αaθ) ≡ {εpaθ, η
′p
j1
, . . . , η′pjs(a)−1

, η′pjs(a)+1
, . . . , η′pjN }U

c0
K (Kt

N (Kn)).
�

Proposition 4.3. Suppose K• is a special SDR tower. Then for all n > 0,
there are homomorphisms NK/Kn : Kt

N (K) −→ Kt
N (Kn) such that

a) the system of morphisms {NK/Kn}n>0 maps Kt
N (K) to the projective

system (Kt
N (Kn), NKn+1/Kn)n>0 and defines a group isomorphism

Kt
N (K) ' lim←−

n

Kt
N (Kn);

b) for sufficiently small c > 0, the projective limit of the compositions of
NK/Kn with projections Kt

N (Kn)→ Kt
N (Kn)/U cK(Kt

N (Kn)) coincides with
the isomorphism ι(c) from Subsection 4.2.

Proof. Suppose (n′0, c0) are the parameters for K• from Proposition 4.2.
For any a ∈ Kt

N (K) and m > n′0, choose am ∈ Kt
N (Km) such that

ιm(amodU c0K (Kt
N (K)) = am modU c0K (Kt

N (Km)), where ιm are isomor-
phisms from Subsection 4.2.

This allows us to set NK/Kn(a) = limm→∞NKm/Kn(am) for any n > n′0.
Then Corollary 4.1 can be used to prove that the maps NK/Kn are well-

defined and satisfy the requirements of our Proposition. �
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Finally, notice the following properties:
Corollary 4.2. Suppose K• is a special SDR tower, K = X(K•) and
ū1, . . . , ūN is a system of local parameters of K. Then

a)
⋂
n>0

NKn/K0K
t
N (Kn) = NK/K0K

t
N (K);

b) for all n � 0, NK/Kn({ū1, . . . , ūN}) = {u(n)
1 , . . . , u

(n)
N }, where the

elements u(n)
1 , . . . , u

(n)
N form a system of local parameters of Kn.

4.4. The case of an arbitrary SDR tower F•. Suppose L/K is a finite
Galois extension of N -dimensional local fields in a fixed algebraic closure
K̄ of K and G = Gal(K̄/K). Then there is a unique maximal purely
unramified extension K0 of K in L. This means that [K0 : K] = [k0 : k],
where k0 and k are the N -th residue fields of L and K, respectively. Let
G0 = Gal(L/K0) and let G1 = {τ ∈ G0 | τ(a)/a ∈ 1 + mL,∀a ∈ L}, where
mL is the maximal ideal of the N -dimensional valuation ring OL of L. Then
G1 is a p-group, it is normal in G and the order of G0/G1 is prime to p. The
field extension K1 := LG1 of K is the maximal tamely ramified extension
of K in L. Note that in our setting, any tamely ramified field extension is
always assumed to be Galois. Keeping the above notation we obtain the
following property.
Proposition 4.4. Let K̃1 be a tamely ramified extension of K in K̄ with
the N -th residue field k0 and d = [K̃1 : K0]. If [α] is the Teichmüller
representative of a generator α of k∗0 and u1, . . . , uN is a system of local
parameters in K then K̃1 ⊂ K( d

√
[α], d√u1, . . . , d

√
uN ).

Corollary 4.3. Suppose d̃ is a natural number and d̃ = pmd, where d is
prime to p. Let k̃/k be a field extension of degree d̃. Choose a generator
α of k̃∗, a system of local parameters u1, . . . , uN of K and set K(d̃) :=
K( d
√

[α], d√u1, . . . , d
√
uN ). Then K(d̃) contains any tamely ramified exten-

sion of K of degree dividing d̃.
Proposition 4.5. Suppose K• is an SDR tower with parameters (n0, c).
Then there is a tamely ramified extension K ′n0 of Kn0 such that the tower
K ′• = {KnK

′
n0 | n > 0} is a special SDR tower.

Proof. We need the following Lemma.
Lemma 4.2. Suppose Ñ ∈ N and L/K is a totally ramified separable
extension of K of degree pÑ , i.e. L(N) = k. Let d̃ = (pÑ )! = pmd where
m, d ∈ N and d is prime to p. Then there is a fields tower L′0 ⊂ L′1 ⊂ · · · ⊂
L′
Ñ

such that
a) L′0 is a tamely ramified extension of K of degree dividing d̃;
b) for 1 6 i 6 N , [L′i : L′i−1] = p;
c) L′

Ñ
= L′0L.
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Proof of Lemma. Since L/K is separable there is θ ∈ L such that L = K(θ).
Therefore, there is a Galois extension K̃ of K of degree dividing d̃ := (pÑ )!
such that L ⊂ K̃. Let L′0 be the maximal tamely ramified extension of K
in K̃. Then L′0 ⊂ L′

Ñ
:= L′0L ⊂ K̃, [L′

Ñ
: L′0] = pÑ and G̃ := Gal(K̃/L′0)

is a finite p-group. Then elementary group theoretic arguments (e.g. any
finite p-group has a central subgroup of order p) show the existence of a
decreasing sequence of subgroups

H̃0 := G̃ ⊃ H̃1 ⊃ · · · ⊃ H̃Ñ−1. ⊃ HÑ
:= Gal(K̃/L′

Ñ
)

such that for 1 6 i 6 Ñ , (Hi : Hi−1) = p and we can take L′i = K̃Hi . �

For every n > n0, let K ′n := L′0 where L′0 is the field from the above
Lemma chosen for K = Kn and L = Kn+1. Since [K ′n : Kn] divides d̃ =
(pN )!, the field K ′n is contained in the tamely ramified extension Kn(d̃)
of Kn from Corollary 4.3. It remains to notice that for every n > n0,
Kn(d̃) = Kn0(d̃)Kn. The Proposition is proved. �

Remind that for any N -dimensional local field K we use the notation
KN (K)M := KN (K)/pM . If L is a finite extension of K and c > 0 denote
by U cKKN (L)M the image of U cKKt

N (L) in KN (L)M .

Proposition 4.6. Suppose F• is an SDR tower such that a primitive pM -th
root of unity ζM ∈ F∞ =

⋃
n>0

Fn. Then for any c > 0, lim←−
n

U cFKN (Fn)M = 0.

Proof. We can assume that F• has (0, c) and ζM ∈ F := F0. Let F ′ be a
tamely ramified extension of F such that the SDR tower F ′• = {F ′Fn | n >
0} is special. Let Cn be the kernel of the natural map U cFKN (Fn)M to
U cFKN (F ′n)M induced by the embedding Fn ⊂ F ′n. By Corollary 4.1,
lim←−
n

U cFKN (F ′n)M = 0. It remains to prove that lim←−
n

Cn = 0.

Suppose F̃ is the maximal absolutely unramified extension of F in F ′

of p-power degree. Then property (2) of norm maps from Subsection 1.4
implies that the natural map KN (FnF̃ )M −→ KN (FnF ′)M is injective.
Therefore, for n > 0, Cn is the kernel of the natural map from KN (Fn)M
to KN (FnF̃ )M .

Consider the Shafarevich bases of these KN -groups from Subsection 1.3
using the Hasse pM -primary elements ε0. By extending an Fp-basis of F (N)

n

to an Fp-basis of (FnF̃ )(N), we can assume that the corresponding part
of the Shafarevich basis for KN (FnF̃ )M extends the corresponding part
of the Shafarevich basis for KN (Fn)M . This implies that Cn is contained
in the subgroup of KN (Fn)M which is generated by the elements of the
Shafarevich basis which depend on ε0. Going again to the SDR tower F ′•
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we obtain that if y is a such generator in Kn(Fn+1)M then NFn+1/Fn(y) ∈
pKN (Fn)M . Therefore, lim←−

n

Cn = 0, as required. �

Corollary 4.4. Suppose F• is an SDR tower such that a primitive pM -th
root of unity ζM belongs to F∞ and F = X(F•). Then

a) for n > 0, there is a system of homomorphisms
NF/Fn : KN (F)M −→ KN (Fn)M

mapping KN (F)M to the projective system (KN (Fn)M , NFn+1/Fn)n>0 and
defining a group isomorphism KN (F)M ' lim←−

n

KN (Fn)M ;

b) for any n > 0, there is an m > n such that
NF/Fn(KN (F)M ) = NFm/Fn(KN (Fm)M ).

c) for all n � 0, NF/Fn({t̄1, . . . , t̄N}M ) = {π(n)
1 , . . . , π

(n)
N }M , where

t̄1, . . . , t̄N and π(n)
1 , . . . , π

(n)
N are the systems of local parameters in F and,

resp., Fn, and { , . . . , }M denotes the symbol { , . . . , } taken modulo pM .

5. Applications to the Hilbert symbol

As earlier let F be an N -dimensional local field of characteristic 0 with
the first residue field of characteristic p and a fixed system of local param-
eters π1, . . . , πN ; we use the notation F for an N -dimensional local field
of characteristic p with a system of local parameters t̄1, . . . , t̄N . The last
residue field of both F and F will be denoted by k.

5.1. Parshin’s reciprocity map. Consider the non-degenerate perfect
Witt-Artin-Schreier pairing
(5.1) WM (F)/℘WM (F)× ΓF (p)/pM → Z/pM ,

where for any w ∈WM (F), ℘(w) = σ(w)−w, and ΓF (p) is the Galois group
of the maximal abelian p-extension F(p) of F . Then the Witt symbol, cf.
Subsection 2.2, implies the existence of injective group homomorphisms

Θ̃P
F : Kt

N (F)M −→ ΓF (p)/pM = Hom(WM (F)/℘(WM (F)),Z/pM ).
By taking the projective limit over M ∈ N, we obtain an injective homo-
morphism Θ̃P

F : Kt
N (F) −→ ΓF (p). Here, as in the Introduction, we use the

same notation for homomorphisms and their reductions modulo pM . Then
the explicit formula for the Witt symbol from Subsection 2.2 implies that
Θ̃P
F is P -continuous. In [14, 15, 16] Parshin used Θ̃P

F to develop class field
theory of higher local fields of characteristic p by proving that for all finite
abelian extensions E of F in F(p), Θ̃P

F induces the group isomorphisms

Θ̃P
E/F : Kt

N (F)/NE/FKt
N (E) −→ Gal(E/F).
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The explicit formula for the Witt symbol implies that the intersection of all
NE/FK

t
N (E), where E runs over the family of all finite abelian extensions of

F , is trivial. Therefore, Θ̃P
F is the composition of the canonical embedding

jF : Kt
N (F) −→ K̂t

N (F) := lim←−
E
Kt
N (F)/NE/FKt

N (E)

and the isomorphism Θ̂P
F := lim←−

E
Θ̃P
E/F : K̂t

N (F) −→ ΓF (p).

This gives the morphisms

(5.2) ΓabF /pM
ΘPF−→ K̂t

N (F)M
jF←− Kt

N (F)M ,

where ΘP
F =

(
Θ̃P
E/F

)−1
is a group isomorphism and jF is embedding with

a dense image.
Let Fur be the maximal absolutely unramified extension of F in F(p).

Denote by ϕF ∈ Gal(Fur/F) the Frobenius automorphism of this ex-
tension. Let F+ be the subfield in F(p) invariant under the action of
Θ̃P
F ({t̄1, . . . , t̄N}). Using the explicit formula for the pairing (2.2) from Sub-

section 2.2 one can easily obtain the following properties:
a) F(p) = F+Fur and F+ ∩ Fur = F ;
b) {t̄1, . . . , t̄N} generates the group

⋂
E
NE/FK

t
N (E), where E runs over the

family of all F ⊂ E ⊂ F+ such that [E : F ] <∞;
c) Θ̃P

F (V KN (F)) is a closed subgroup in ΓF (p)ab and its invariant subfield
is Fur;

d) Θ̃P
F ({t̄1, . . . , t̄N})|Fur = ϕF ;

e) V Kt
N (F) =

⋂
E
NE/FK

t
N (E), where E runs over the family of all finite

extensions of F in Fur.

5.2. Fesenko’s reciprocity map. In [6], Fesenko defined the reciprocity
map for higher local fields of arbitrary characteristic. This construction can
be specified in our situation as follows.

Let K be either F or F . Let L be a finite extension of K in its maximal
abelian p-extension K(p). Denote by Lur and Kur the maximal absolutely
unramified extensions of L and, resp. K, in K(p). Set L0 = Kur ∩ L.

For any τ ∈ Gal(L/K), consider its lift τ̃ ∈ Gal(Lur/K) such that
τ̃ |Kur = ϕiK , where i ∈ N and ϕK is the Frobenius automorphism ofKur/K.
Such lift exists because Kur and L are linearly disjoint over L0. Let Σ be
the subfield of τ̃ -invariants in Lur. Then Σ is a finite extension of K such
that ΣKur = Lur. Denote by πΣ

1 , . . . , π
Σ
N a system of local parameters in

Σ. Then Fesenko’s reciprocity map is defined to be

ΘΦ
L/K : Gal(L/K) −→ Kt

N (K)/NL/K(Kt
N (L))
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such that for any τ ∈ Gal(L/K), ΘΦ
L/K(τ) = clL/K(NΣ/K({πΣ

1 , . . . , π
Σ
N}),

where for any α ∈ Kt
N (K), clL/K(α) is the image of α under the natu-

ral projection of Kt
N (K) to Kt

N (K)/NL/K(Kt
N (L)). The maps ΘΦ

L/K are
well-defined group homomorphisms. The proof generalises Neukirch’s 1-
dimensional approach from [13].

Remark. Fesenko establishes his construction of class field theory for
higher local fields by proving that all ΘΦ

L/K are isomorphisms. We do not
assume this until the introduction of theM -th Hilbert symbol in Subsection
5.5.

Taking projective limit we obtain Fesenko’s reciprocity map in the form

ΘΦ
K : ΓabK −→ lim←−

L

Kt
N (K)/NL/KK

t
N (L) := K̂t

N (K).

The following properties follow directly from the above definitions.
a) Suppose L ⊂ Kur and τ = ϕK |L. Then ΘΦ

L/K(τ) = clL/K({u1, . . . , uN}),
where u1, . . . , uN is a system of local parameters in K.

b) Suppose L/K is a finite abelian extension,K1 is a finite field extension
of K and L1 = LK1. Then there is a natural group homomorphism κ :
Gal(L1/K1) −→ Gal(L/K) and the diagram

Gal(L1/K1)

κ

��

ΘΦ
L1/K1 // Kt

N (K1)/NL1/K1K
t
N (L1)

NK1/K
��

Gal(L/K)
ΘΦ
L/K // Kt

N (K)/NL/KK
t
N (L)

is commutative.
The following proposition shows that Parshin’s and Fesenko’s reciprocity

maps coincide in the case of fields of characteristic p.

Proposition 5.1. Suppose E is a finite abelian extension of F in F(p).
Then the diagram

ΓF (p)

��

Kt
N (F)

Θ̃PFoo

��
ΓE/F

ΘΦ
E/F // Kt

N (F)/NE/FKt
N (E)

is commutative, where the vertical maps are the natural projections.

Proof. The group Kt
N (F) is generated by the symbols {t̄′1, . . . , t̄′N}, where

t̄′1, . . . , t̄
′
N run over all systems of local parameters in F . Therefore, it will

be sufficient to consider the images of α = {t̄1, . . . , t̄N}. By Subsection 3.1
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we have Θ̃P
F (α)|Fur = ϕF and Θ̃P

F (α)|F+ = id. According to properties a)
and b) of Subsection 5.2, this implies that ΘΦ

E/F (Θ̃P (α)) belongs to

— clE/F
(
∩
E1
NE1/F (Kt

N (E1))
)

, where E1 runs over the set of all finite

extensions of F in F+, which is a group generated by clE/F (α);
— clE/F (αmodV KN (F)).
Therefore, ΘΦ

E/F (Θ̃P (α)) = clE/F (α). �

5.3. Compatibility of class-field theories. Suppose E is a finite field
extension of F and F• = (Fn)n>0 with F0 = F , is a special SDR tower.
Then E• = (En)n>0, where En = EFn, is also a special SDR tower and
E = X(E•) is a finite separable extension of F = X(F•). Notice that for
any n > 0, there is a commutative diagram

Kt
N (E)

NE/F //

NE/En
��

Kt
N (F)

NF/Fn
��

Kt
N (En)

NEn/Fn // Kt
N (Fn)

We shall use the notation NE/F,n for the morphism

Kt
N (F)/NE/F (Kt

N (E) −→ Kt
N (Fn)/NEn/FnK

t
N (En)

induced by NF/Fn .
Suppose that E is abelian over F . Then E is also abelian over F , and for

any n > 0, we have natural homomophisms
ιE/F,n : Gal(E/F) −→ Gal(En/Fn)

which are isomorphisms for n� 0.
Let ιE/F ,0 := ιE/F and NE/F ,0 := NE/F .

Proposition 5.2. The diagram

Gal(E/F)
ΘΦ
E/F //

ιE/F

��

Kt
N (F)/NE/FKt

N (E)

NE/F
��

Gal(E/F )
ΘΦ
E/F // Kt

N (F )/NE/FK
t
N (E)

is commutative.

Proof. Let τ ∈ Gal(E/F). Construct τ̃ ∈ Gal(Eur/F) and S = Eur|τ̃=id to
define Fesenko’s element

ΘΦ
E/F (τ) = NS/F ({ū1, . . . , ūN}) ∈ Kt

N (K)/NL/KKt
N (L).

where ū1, . . . , ūN is a system of local parameters of S.
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For any n > 0, consider an analogue
ιEur/F ,n : Gal(Eur/F) −→ Gal(Eurn /Fn)

of ιE/K,n. Let τn = ιE/F ,n(τ), τ̃n = ιEur/F ,n(τ̃) and set Σn = Lurn |τ̃n=id.
Then from the construction of the field-of-norms functor X it follows that
Σ• = (Σn)n>0 is an SDR tower and X(Σ•) = S. Therefore, for n� 0,

NE/F ,n(ΘΦ
E/F (τ)) = NE/F ,n(NS/F ({ū1, . . . , ūN}) modNE/FKt

N (E))

= NΣn/Fn(NS/Σn({ū1, . . . , ūN}) modNEn/FnK
t
N (En)) = ΘΦ

En/Fn
(τn).

It remains to apply the property b) from Subsection 5.2. �

Finally, we can use the results of Subsection 4.4 to establish the com-
patibility of class field theories for the fields F and F = X(F•) if F• is an
arbitrary SDR tower such that ζM ∈ F∞. This property can be stated in
the following form.

Corollary 5.1. With the above notation and assumptions one has the fol-
lowing commutative diagram

ΓabF /pM
ΘΦ
F //

ιF/F

��

K̂N (F)M

N̂F/F
��

KN (F)Moo

NF/F
��

ΓabF /pM
ΘΦ
F // K̂N (F )M KN (F )Moo

where the right horizontal maps are natural embeddings and ιF/F : ΓF −→
ΓF is given by the field-of-norms functor.

5.4. RelatingWitt-Artin-Schreier and Kummer theories. Consider
an N -dimensional analogue R(N) of Fontaine’s ring. By definition, R(N) =
lim←−
n

(OF̄ /p)n, where the connecting morphisms are induced by the p-th

power map on OF̄ . If r = (rn mod p)n>0 ∈ R(N) with all rn ∈ OF̄ and
m ∈ Z, set r(m) := limn→∞ r

pn+m
n ∈ OF̂∞ and consider Fontaine’s map

γ : W (R(N)) −→ OF̂∞ given by the correspondence

(w0, . . . , wn, . . . ) 7→
∑
n>0

pnw(0)
n .

Let F• be an SDR tower with parameters (0, c). Then we have natural
embeddings

OF = lim←−
n

OFn/pcF ⊂ lim←−
n

OF̄ /p
c
F = lim←−

n

OF̄ /p = R(N),

where OF ,OFn and OF̄ are the corresponding N -dimensional valuation
rings. This implies that F ⊂ R0(N) := FracR(N). Note that R0(N) is
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algebraicly closed and equals the completion (with respect to the first val-
uation) of the algebraic closure of F in R0(N). We have also a natural
embedding OL(F) ⊂W (R0(N)). In particular, ΓF acts on R0(N). In terms
of the fixed system of local parameters in L(F), F and Fn, where n > 0,
we have for all 1 6 i 6 N , that t̄i = lim←−

n

π
(n)
i , ti = [t̄i] ∈ W (R(N)) and

γ(ti) = lim
n→∞

π
(n)pn
i .

Suppose ω ∈ Z>0 and F• is ω-admissible, cf. Introduction for the de-
inition of an ω-admissible tower. Then we can fix a primitive pM+ω-th
primitive root of unity ζM+ω ∈ Fω and introduce an element Hω ∈ OL(F)
as follows.

Let H ′ ∈ F be such that

(5.3) H ′mod pp
ωc
F = ζM+ω mod pcF

under the identification OF/pp
ωc
F = OFω/pcF from the definition of F =

X(F•). Take any H ∈ OL(F) such that H mod p = H ′ and set Hω =
HpM+ω − 1.

Suppose f ∈ m0 = {
∑
a>0̄

wat
a | wa ∈W (k)}. For any τ ∈ ΓF , let aτ (f) =

τ(T ) − T , where T ∈ W (R0(N)) is such that σ(T ) − T = f/Hω. Clearly,
aτ (f) ∈ Zp for all τ ∈ ΓF .

Suppose g ∈ F̂ ∗∞. For any τ ∈ ΓF , define bτ (g) ∈ Z/pM such that
(τU)U−1 = ζ

pωbτ (g)
M+ω , where U ∈ ˆ̄F is such that UpM = g. We use the

identification ΓF = Gal(F̄ /F∞) given by the field-of-norms functor X.
Recall that ∑

a>0̄
wat

a 7→ γ

∏
a>0̄

E(wa, ta)


defines a homomorphism θ : m0 −→ F̂ ∗∞, where E(w,X) is the Shafarevich
generalisation of the Artin-Hasse exponential, cf. Introduction.

Proposition 5.3. For any f ∈ m0 and τ ∈ ΓF , we have the equality
aτ (f) mod pM = bτ (θ(f)).

Proof. Let ε ∈ R(N) be such that ε(0) = 1 but ε(1) 6= 1. We assume that
ε(M+ω) = ζM+ω. Then relation (5.3) implies that

H mod p = εp
−(M+ω) mod pp

ωc
F .

The ideal pp
ωc
F is generated by the element (ε−1)c(p−1)/pvF (p) and, therefore,

Hpω+1 mod p = εp
−(M−1) mod (ε− 1)cpω(p−1)/vF (p).
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Using that F• is ω-admissible, we obtain the existence of w1 ∈ W (R(N))
and w0

1 ∈W (R0(N)) such that

Hpω+1 = [ε]p−(M−1) + ([ε]− 1)2w1 + pw0
1.

Therefore, there are w2 ∈W (R(N)) and w0
2 ∈W (R0(N)) such that

Hω = [ε]− 1 + ([ε]− 1)2w2 + pMw0
2

and for some w ∈W (R(N)) we have
1
Hω
≡
( 1

[ε]− 1 + w

)
mod pMW (R0(N)).

For any τ ∈ ΓF , let a′τ (f) = τT ′ − T ′ ∈ Zp, where T ′ ∈ W (R0(N)) is
such that σ(T ′)−T ′ = f/([ε]−1). Clearly, lim

s→∞
σs(fw) = 0 and this implies

that a′τ (f) ≡ aτ (f) mod pM .
Now one can proceed along the lines of the Main Lemma from [1] (or cf

also [2]) to establish that a′τ (f) mod pM = bτ (θ(f)). �

Corollary 5.2. If α0 ∈W (k) is such that Tr(α0) = 1 then
a) θ(α0H0) is a pM -primary element of F ;
b) if φ denotes the Frobenius automorphism of the extension Fur/F then
φ(θ(α0H0)) = ζM (θ(α0H0)).

Proof. Indeed, θ(α0H0) ∈ 1+mF and therefore we can study ΓF -properties
of the extension F ( pM

√
θ(α0H0)) by studying ΓF -properties of the exten-

sion F(T ), where T ∈ WM (R0(N)) is such that σ(T ) − T = α0. But this
extension is absolutely unramified of degree pM by Witt’s explicit formula
from Section 2). This proves part a). In order to prove b), it is sufficient to
note that φ(T )− T = σs(T )− T = Tr(α0) = 1, where [k : Fp] = s and then
to apply Proposition 5.3. �

5.5. Proof of Theorem 0.1. Suppose F• is an SDR ω-admissible tower
with parameters (0, c), F0 = F , F = X(F•) and β ∈ KN (F). Then there is
an τ ∈ ΓabF such that (in the notation of Subsection 4)

ΘΦ
F (τ mod pM ) = NF/F (βmod pM ).

By Corollary 5.1, there is an τ̃ ∈ ΓabF such that τ = ιF/F (τ̃) and ΘΦ
F (τ̃) = β,

using the notation from the Introduction.
For any f ∈ m0, let (Θ(f),NF/F (β))F•M = ζp

ωA
M+ω, where A ∈ Z/pM .

We construct the corresponding Hω ∈ m0, cf. Introduction and use
Proposition 5.3 to deduce that:

— if U ∈W (R0(N)) is such that σ(U)− U = f/Hω then

τ̃U − U) mod pM = A.
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Finally, by Proposition 2.3,

A = Tr
(

ResL(F)
f

Hω
dlog(Colβ)

)
.

Theorem 0.1 is proved.

5.6. Relation to Vostokov’s pairing. Suppose that ζM ∈ F and F 0
• =

{F 0
n | n > 0} is a very special tower given in notation of Subsection 4.3

such that F 0
0 = F . Recall that each F 0

n has a system of local parameters
π

(n)
1 , . . . , π

(n)
N such that for 1 6 i 6 N , π(0)

i = πi and π(n+1)p
i = π

(n)
i . Then

F 0
• is a 0-admissible SDR tower. As earlier, F = X(F 0

• ) with system of local
parameters t̄i = lim←−

n

π
(n)
i , where 1 6 i 6 N , and L(F) is the corresponding

absolutely unramified lift of F to characteristic 0 with local parameters
p, t1, . . . , tN such that ti mod p = t̄i, 1 6 i 6 N . We have the following
result.

Theorem 5.1. For above SDR tower F 0
• , the explicit formula for the M -

th Hilbert symbol from Theorem 0.1 coincides with Vostokov’s pairing. In
other words, for very special towers the field-of-norms functor transforms
Witt’s pairing to Vostokov’s pairing.

Proof. Note that the very special tower F 0
• has the following advantages:

— the map γ : 1+m0 −→ F is given by the correspondences ti 7→ πi, 1 6
i 6 N , and hence coincides with the evaluation map κ from the beginning
of section 3;

— the Coleman map Col : Kt
N (F) −→ Kt

N (L(F)) has a very simple
explicit description in terms of the standard topological generators of the
corresponding K-groups, cf. the beginning of Subsection 2.3.

It will be sufficient to verify the coincidence of the both explicit formulae
on the standard topological generators of F ∗/pM and KN (F )/pM from
Subsections 1.2 and 1.3. It can be seen that on these generators (due to
the above mentioned properties of very special towers) the formula from
Theorem 0.1 coincides with the “i = 0”-term of Vostokov’s formula. In the
notation of Section 3 we, therefore, need to verify that for 1 6 i 6 N , the
i-parts
Vi := Tr(ResH−1

0 fi(σ/p)dlogu0∧· · ·∧(σ/p)dlogui−1∧dlogui+1∧· · ·∧dloguN )
of Vostokov’s formula give a zero contribution on standard generators.

The variable u0 can take the following values:
a1) tj , where 1 6 j 6 N ;
a2) 1 + [θ]ta, where θ ∈ k and a = (a1, . . . , aN ) ∈ ZN \ pZN , a > 0̄;
a3) α0H0 in the notation from Subsection 5.5.
The symbol {u1, . . . , uN} can take the following values (the generators

containing ε0 do not come from KN (F)):
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b1) {t1, . . . , tN};
b2) {1+[θ′]tb, t1, . . . , ti(b)−1, ti(b)+1, . . . , tN}, where θ′ ∈ k, b = (b1, . . . , bN )

belongs to ZN \ pZN , b > 0̄, bN ≡ . . . bi(b)+1 ≡ 0 mod p and bi(b) 6≡ 0 mod p.
In the case b1) Vi = 0 for any u0, because fi = 0.
In the case a3) Vi = 0 for any {u1, . . . , uN}, because (σ/p)dlogH0 ∈

pMΩO0 .
In the case a1b2) we can assume that j = i(b) and i = 1. Then the

differential form from the expression of V1 is a linear combination of the
differential forms H−1

0 tubdlogt1 ∧ · · · ∧ dlogtN for u ∈ N, u 6≡ 0 mod p. All
these differential forms have zero residue because H0 ∈ σ(m0)modpM .

Similarly, in the case a2b2) we can assume that i = 1 and that the
corresponding differential form is a linear combination of the forms

H−1
0 tspa+ubdlogt1 ∧ · · · ∧ dlogtN

for s, u ∈ Z>0 and u 6≡ 0mod p. All these forms have zero residue for the
same reason.

The Theorem is proved. �
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