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The field-of-norms functor and the Hilbert
symbol for higher local fields

par VicTorR ABRASHKIN et RuTH JENNI

RESUME. Dans cet article nous appliquons le foncteur corps des
normes pour déduire, dans le cas de caractéristique mixte, une
formule explicite pour le symbole de Hilbert de la formule expli-
cite pour le symbole de Witt en caractéristique p > 2 dans le
contexte des corps locaux multidimensionnels. On montre que la
formule explicite de Vostokov est un cas tres particulier de notre
construction.

ABSTRACT. The field-of-norms functor is applied to deduce an
explicit formula for the Hilbert symbol in the mixed characteristic
case from the explicit formula for the Witt symbol in characteristic
p > 2 in the context of higher local fields. Is is shown that a “very
special case” of this construction gives Vostokov’s explicit formula.

Introduction

Throughout this paper, M and N are fixed natural numbers, p is an odd
prime number, W (k) is the ring of Witt vectors with coefficients in a finite
field k of characteristic p, W (k)q, = W (k) ®z, Qp, and o is the Frobenius
automorphism of W (k) induced by the p-th power map on k. In the main
body of the paper we shall also use other notation from this Introduction
without special reference.

Suppose F'is an N-dimensional local field of characteristic 0 with the
(first) residue field F") (which is an (N — 1)-dimensional local field) of
characteristic p, F is a fixed algebraic closure of F' and I'r = Gal(F/F).
Note that, by definition, the last residue field F(N) is a finite field of char-
acteristic p which we shall denote by k. Fix a system of local parameters
1, ...,7n in F. Let vp be the (first) valuation of F' such that vp(F*) = Z.
Then vr can be extended uniquely to F' and we introduce for any ¢ > 0,
the ideals p% = {a € F' | vp(a) > c}.

Manuscrit regu le 15 novembre 2010.
Mots clefs. higher local fields, field-of-norms, Hilbert Symbol, Vostokov’s pairing.
Classification math. 11520, 11S31, 11S70.
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Let F, be a strictly deeply ramified (SDR) fields tower with parameters
(0,¢), where 0 < ¢ < vp(p). This means that F, = {F, |[n > 0} is an
increasing tower of algebraic extensions of Fy = F' such that for all n > 0,

— the last residue field of F, is k;

— there is a system of local parameters 7T§n), . ,711(\7) in F}, such that
7r§n+1)p = W%n) mod p%,. . ., WE\T,LH)’) = 7TJ(\7;) mod p%.

The construction of the field-of-norms functor X from [17] attaches to
F, a field X(F,) = F of characteristic p. This field is the fraction field of
the valuation ring Or = @Opn/p%, where Op, = {a € F}, | vp(a) > 0}

n

are the (first) valuation rings of F), for all n > 0. Note that F has a natural
structure of an N-dimensional local field of characteristic p with system

of local parameters t; = l'mﬂgn),. N limr™ and last residue field
o bl

FWN) = [ ie. F is the field of formal Laurent series k((ty))...((f1)).
In addition, the field-of-norms functor X provides us with a construction
of a separable closure Fy, of F and identifies the Galois groups I'r =
Gal(Fyep/F) and I'p = Gal(F/Fy), where Foo = Uy Fa

We use the above system of local parameters t1,...,ty to construct an
absolutely unramified lift L(F) of F of characteristic 0. Then L(F) is an
(N +1)-dimensional local field with system of local parameters p, t1,. .., tx;
its first residue field L(F )(1) coincides with F and for 1 <7 < N, we have
t;modp = t;.

For any higher local field L, let Ky (L) be its N-th Milnor K-group.
In this paper we mainly use the topological versions K% (L) of the Milnor
K-groups, which have explicit systems of topological generators. Neverthe-
less, in the final statement we can return to Milnor K-groups due to the
natural identification Kx(L)/p™ = K% (L)/p*, which we shall denote by
Kn(L)y.

The following maps play very important roles in the statement of the
main result of this paper.

In Subsection 4 we prove that for so-called special SDR towers F,, there
is a natural identification K% (F) = Jm K (Fy,), where the connecting mor-
n
phisms are the norm maps Ng, ,, /, : Ki(Fny1) — Kj(Fy). Then Nz, p
is the corresponding projection from K% (F) to K4 (F). For arbitrary SDR
towers F, we prove the analogous “modulo pM” statement under the as-
sumption that a primitive p-th root of unity (y; € Fso. In particular, this

gives the map

NJ:/F : KN(F)M —)KN(F)M
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e Col: K& (F) — K4\ (L(F)).

This map is obtained as a section of the natural map from K% (L(F)) to
K (L(F)M) = K§(F). Tts construction, in which the concept of topo-
logical K-groups is essential, is a direct generalisation of Fontaine’s 1-
dimensional construction from [8].

e/ :m’ — (14+m?)x.

Here m® consists of all series " ,.5wet?, which are convergent in L(F),
where the indices a = (a1, ...,ayn) € Z" are provided with the lexicograph-
ical ordering, all w, € W(k), and t* := t{*...t3¥. The map 0 is then a
group homomorphism defined by the correspondence

Z Wet® — H E(wgq,t%).

a>0 a>0
Here for any w € W(k),

B(w, X) = exp (wX + - + 0" () X" /p" + ... ) € W(k)[[X]]

is the Shafarevich generalisation of the Artin-Hasse exponential. Notice that
the inverse of ' is the map given, for any b € 1+mP, by the correspondence
b — (1/p)log(b?/co (b)), where o is the continuous map induced by the
Frobenius on W (k) and ¢; — tf, forall 1 <i¢< N.

ev:(1+m)* — Fr.

Here Fl, is the completion (with respect to the valuation vg) of Fyy =
Upnso Fn and the map « is the continuous map uniquely determined by

t; > lim 77" 1< < N.
n—0o0

%
We now state the main result of this paper.
Let F% be the maximal abelian extension of F, T% = Gal(F®/F) and

KU (F) := I'&anV(F)/NL/FKfV(L), where L runs over the set of all finite
L

extensions of F' in F. .

We denote by O : I'% — K4 (F) the reciprocity map of local higher
class field theory. For the field F, we introduce similarly Fe°, Fafb, f(\f\,(}" )
and © r. Then the compatibility of class field theories for the fields F' and F
via the field-of-norms functor means that there is the following commutative
diagram

Sha

(0.1) rab K4 (F) K (F)
lLF/F \L,/C/']_-/F l/\/—}‘/p
I(F)a L K4 (F) K (F)

Here 1z, is induced by the identification I'z = I'p, given by the field-of-
norms functor, the horizontal maps on the right-hand side are the natural
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embeddings and the map N F/F is induced by N F/F on the corresponding
completions. We prove the commutativity of the above diagram (0.1) only
for F = X (F,), where F, is a so-called special SDR tower, cf. Subsection 4.3.
But under the additional assumption (3; € Fix we prove the commutativity
of the following “modulo p™” version of (0.1) for any SDR tower F, (we
use the same notation for all involved maps taken modulo p™)

rab /pM Kn(F)u K (F)m
\LL}"/F J/./(\/’]:/F lN}"/F
b /pM Kn(F)ur Kn(F)ym

This property allows us to consider the M-th Hilbert pairing
() F X Nep(K N (F)) — (Cur)
under the condition that (3; € F. Namely, if b € N;/F(KN(F)M) then
there is 7 € T%/p™ such that 7|, = id and ©p(7) = b. Then for any

a € F;O, (a,b)ﬂ' = 7(€)/€, where £ € F is such that pr =a.
Suppose F, is an SDR tower with parameters (0, c).

Definition. The tower F, is called w-admissible, for w € Zg, if cp*¥ >
2vp(p)/(p — 1) and F,, contains a primitive p™+¥-th root of unity (us.w-

For an w-admissible SDR tower F,, we define (not uniquely) an element
H, = H,(Cpr4w) € m as follows. Suppose H' = 1 + Y oasi Wat® € 1+ m’
is such that v(H') = (4w mod p%. Then we set H,, := HP™ _ 1. Note
that the construction of H,, does not require the knowledge of the whole
tower F,, but only of the field F,,. In particular, if {3y € F = Fy then
the corresponding element Hy € m® will be used later in the definition of
Vostokov’s pairing.

With the above notaion we have, for any w-admissible SDR tower, the
following explicit formula for the M-th Hilbert symbol.

Theorem 0.1. If f e m°, B € Kn(F) and 0 := o001 then

(0.2) (0(f), Nogyp(8)) s = ¢824,
where A = (Tr o Res) ((f/Hw)diogCol(B)) .

Here (and everywhere below) Tr is the trace map for the field extension
W(k)qg,/Qp and Res is N-dimensional residue.

The above Theorem 0.1 gives one of most general approaches to the
explicit formulas for the Hilbert symbol. The proof uses the strategy from
[1] and the construction of the field-of-norms functor for higher local fields
from [17]. As a result, the explicit formula (0.2) is obtained from the explicit
formula for the Witt symbol in characteristic p. Notice that symbol (0.2)
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depends not only on a fixed system of local parameters w1, ..., 7y of F but
also involves special lifts of elements of F' to L(F).

The result of the above Theorem 0.1 is related very closely to Vostokov’s
explicit formula for the M-th Hilbert symbol F* x K4 (F) — ((u). In
this formula the elements of F* appear as the results of the substitution
t; — m, i =1,...,N, into formal Laurent series with coefficients in W (k)
and indeterminants t1,...,tyx. Vostokov’s proof of this formula is based
on a hard computation showing that the formula gives the same result for
arbitrary choices of local parameters my,...,7y.

In Section 3 we develop a slightly different approach to Vostokov’s re-
sult. First of all, the Vostokov pairing has two different aspects. One is
purely K-theoretic: it gives a (non-degenerate) pairing between Kip(F')as
and Kn(F)p and factors through the canonical morphism

(03) Kl(F)MXKN(F)M—>KN+1(F)M.

(Note that Vostokov’s formula gives also a pairing between K;(F)y and
Ky_i(F)ym for 1 < i < N.) We establish these properties following the
strategy from [1] and using an idea of one calculation from [3]. Note that we
can work throughout with our fixed system of local parameters my,...,7nN.
Then the Galois-theoretic aspect of Vostokov’s pairing, i.e. that it coincides
with the Hilbert symbol, follows by an easy calculation from the following
two elementary facts:

— the Hilbert symbol also factors through the map (0.3);

— Kn4+1(F) s is generated by one element which can be written in terms
of our fixed system of local parameters my,...,TN.

At the end of Section 5 we show that symbol (0.2) from Theorem 0.1
coincides with Vostokov’s pairing if we use a “very special ” SDR tower
FY = {F% | n > 0} such that F{ = F and for all n > 0, F has a system

of local parameters 77%"), e ,71'](\?) with 7ri("+1)p = wg") and 772(0)

1<i<N.

Note that other interpretations of Vostokov’s formula have been given
by K.Kato [11] in terms of Fontaine-Messing theory and by S. Zerbes [21]
in terms of (¢, I')-modules under an additional restriction on the basic field
F'. Note also the paper [9] where special cases of the constructions of the
field-of-norms functor in the context of higher local fields were treated.

The structure of the paper is as follows. In Section 1 we discuss basic
matters: the concept of higher local field, the P-topology, special systems
of topological generators for the Milnor K-groups and the norm map in
the context of K-groups. In Section 2 we give an invariant approach to the
concept of residue, the Witt symbol and the Coleman map in the context
of higher local fields. In Section 3 we recover the construction of Vostokov’s
pairing following mainly the strategy of the paper [1]. In Section 4 we use
the field-of-norms functor X to relate the behaviour of topological Milnor

= m; for all
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K-groups in SDR towers. Finally, in Section 5 we prove the compatibility of
the field-of-norms functor with class field theories for the fields F = X (F,)
and F = Fy and use the compatibility of the Kummer theory for F and
the Witt-Artin-Schreier theory for F from [2] to deduce the statement of
Theorem 0.1.

1. Preliminaries

Most of the notation introduced in this Section will be used in the next
sections without special references. In particular, this holds for the notation
F, Tlye-+y TN, .F, tl,...,tN, O(.F) and L(.F)

1.1. Higher local fields. Let L be an N-dimensional local field. This
means that L is a complete discrete valuation field and its (first) residue
field L) is an (N — 1)-dimensional local field. In our setting, O-dimensional
local fields are finite fields of charactersitic p. Let L(N) be the N-th residue
field of L. By inductive definition this means that L(N) = (LMW)(N=1) and,

therefore, it is a finite field of characteristic p. The system u1,...,uy is a
system of local parameters of L, if u; is a local parameter of L, us, ..., un
belong to the valuation ring Oy, of L and the images of ug, ..., uy in LY

form a system of local parameters of L(1). The field L is equipped with a
special topology (we call it the P-topology) which relates all N valuation
topologies of L, LM, LG .= (LD L) .= (LIN=-D)() The idea
how to construct such topology appeared first in [15] and then was consid-
erably developed and studied in [6, 22, 10]. We can sketch its definition as
follows.

Fix a system of local parameters uq,...,uy in L. Note that any element
x € L can be written uniquely as a formal series

(1.1) x = Z [aguft - - u}y,

a=(ai,...,an)
where all coefficients [o,] are the Teichmiiller representatives of the el-
ements a, € L) in L. (Note that a, = [ag4] if L has characteristic
p.) Here a € ZY and there are (depending on the element ) integers
I, Is(a1),...,In(a1,...,an—1) such that a, = 0 if either a1 < I; or
ag < IQ(Cll), oo, orany < IN(al, e ,aN_l).

Remark. The referee pointed out that this is equivalent to saying that the
set {a € ZV | ag # 0} is well-ordered, i.e. any its subset has a minimal
element (with respect to the lexicographical ordering); in the terminilogy
of the papers [22] and [10] such set is also called admissible.

Then the P-topological structure on L can be defined by induction on
N as follows. If N = 0 then it is discrete. If N > 1 then 4y = us mod u,
.., uny = uymodu; is a system of local parameters in L) and we can
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define a section s : L) — L by 3, aqtig? ... a3y — S, ug? ... ulY. By
definition, the basis of open neighbourhoods Cr, ;.. uy) in L consists of
the sets

LN Zul{s(Ub) = { Z U?S(Ub)} )

beZ b>—o0

where all Uy € Cray qq,,. ayy and Up = LM if b > 0. One can prove
then that this does not depend on the initial choice of local parameters
u1,...,uyn. Then any compact subset in L is a closed subset in the compact
subset of the form $,c, u8s(Cy), where all ¢, € LU are compact and
Cy = 0 for b < 0. In particular, the set of all £ € L given by (1.1) with
fixed Iy, Is(a1),...,In(a1,...,an—1, is compact. The following property
explains that the concept of convergency in the P-topology just coincides
with the concept of convergency of formal power series.

Proposition 1.1. A4 sequence &, = Y ,[aan]ui’ ... uf\Y € L converges to

=Y lagult ... uyyY € L if and only if
a) there is a compact C C L such that all &, € C;
b) for any a € ZV, the sequence cuy converges to oy in k.

Remark. The referee pointed out that the above Proposition identifies
topologically L with the inductive limit of [[,cp k, where D runs over all
well-ordered subsets of ZV.

Proof. The proof can be easily reduced to the case { = 0. Then suppose
that for any b € Z, the elements &, € L") are such that En = Yy ubs(Epn)-
Clearly, lim &, = 0 implies that for any b € Z, lim &, = 0 and that
n—o0o n—0o0
for b > —oo all &, = 0. Therefore, by induction on N we obtain that all
li_>m Qan = 0 and there is a compact C' C L containing all &,.
n oo

Inversely, suppose that for all a € ZV, le Qqn = 0 and all &, belong to
n oo
a compact C C L. Then by induction on N, for any b € Z, h_)IIl & = 0.
n oo

Let by € Z be such that all &, = 0 if b < by. Take any U = >, uls(U;) €
CL.{uy,..ux}- Then there is by € Z such that U, = L() for all b > by. For
bo < b < by, let m(b) € Z be such that &, € Uy if n > m(b). Then for
n = max{m(b) by <b< b}, & €U, ie. nlgrgoﬁnzo. O

In terms of the power series (1.1), the N-dimensional valuation ring Oy,
resp. the maximal ideal my, of L consists of the elements z such that all
ag=0ifa<0=(0,...,0), resp. a < 0, with respect to the lexicographic
ordering. Note that L, O and my, are P-topological additive groups. Mul-
tiplication does not make L* into a topological group, but all operations in
the field L are sequentially P-continuous. The choice of local parameters
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Ui, ..., uyn provides an isomorphism L* ~ k* X (u1) x ... (un) X (1 +mp)*,
where only the last factor has a non-trivial P-topological structure.

The concept of P-topology plays a very important role in this paper
and we refer usually to the papers [22] and [10] for its detailed exposi-
tion. In particular, these papers contain the study of infinite products in
L. The following fact clarifies the meaning of infinite products and will

be used below without special references. Suppose I1,...,In(a1,...,an—1)
are the above defined parameters. Consider the infinite product of the form
IT(1+ [oa]us ... u}Y), where, as earlier, a = (a1,...,an) € ZV, [a4]
a>0

are the Teichmiiller representatives of elements «, € k and a, = 0 if ei-
ther a; < Iy, or as < Is(ag), ..., or ay < In(ai,...,an—1). Then any

such infinite product converges in L* and any element from 14 my, can be
presented uniquely as a such infinite product (with suitably chosen param-
eters I,...,In(a1,...,an)). This follows from very general criterion 1.4.3
n [22].

The main object we shall deal with is an /N-dimensional local field F' of
characteristic 0 with first residue field F(1) of charactersitic p, N-th residue
field k& (which is necessarily finite) and a fixed system of local parameters
71, ..., 7y. Fix an algebraic closure F of F, set I'r = Gal(F/F) and denote
by Fan the maximal abelian quotient of I'r.

We also consider N-dimensional local fields of characteristic p with last
residue field k. Any such field F is isomorphic to the field of formal Lau-
rent power series k((ty))...((t1)), where t1,...,ty is any system of local
parameters of F. We use this system of local parameters as a p-basis for
F to construct a flat Z,-lift O(F) of F to characteristic 0. By definition

= @On(}-), where for all n € N,
n

On(F) = Wa((tn)) .- (( 1)) © Wa(F)

are Z/p™-flat lifts of F and for 1 < ¢ , ti = [t;] are the Teichmiiller
representatives of ;.

The lift O(F) is a complete discrete valuation ring of the (N + 1)-
dimensional local field L(F) = Frac O(F). Note that L(F)(") = F and L(F)
has a fixed system of local parameters p,t1,...,ty such that for 1 <7 < N,
timodp = t;. The elements of L(F) can be written as formal power se-
ries Y, Yqty' - - - t3Y with natural conditions on the coefficients v, € W (k),
where a = (a1, ...,ay) € ZV.

1.2. P-topological bases of F* and F*/ F**™ . The concept of P-
topology allows us to describe explicitly the structure of the multiplicative
groups F* and of F*/F *»" yunder the additional assumption that {3y € F.

Consider the case of the field F = k((tn)) ... ((t1)). Choose an F,-basis
01,...,05 of k ~ Fps. Then any element of F* can be uniquely written as
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an infinite product as follows

ALY T+ 0520 e,

3.b

where v € k*, 1 < j < s, a1,...,an € Z, b runs over the set of all multi-
indices (b1,...,by) € ZN\ pZN, b > 0, £ := ... 8%, and all Aj € Z,.
The only essential condition on the above infinite product is that it must
converge in F with respect to the P-topology. In particular, with the above
notation the elements 7;;, := 1 +0jf) form a set of free topological generators
of the subgroup (1 4+ mx)* of F*.

Consider the case of the field F'. In this case we have a similar description
of the group F*/ ™ under the assumption that F' contains a primitive
pM-th root of unity (.

Suppose p = w{t... Wy = 7y, where e = (e1,...,en) € ZV and
n € Op. Then Hensel’s Lemma implies that any element of F* modulo
e appears in the form

A
(It e HUJ
where
— ai,...,an,Ag and all Aj, are integers uniquely determined modulo
M
P
— njp == 1+ [0;]7°, where the multi-index b = (b1, ...,by) runs over the

set of all b € ZV \pZN such that 0 < b < e* :=ep/(p — 1);
— €9 = 1+ [fp]m®", where 0y € k is such that 1 + [fo]x® ¢ (1 + mp)P.

Remark. 1) There is a more natural construction of the generator ¢y re-
lated to the concept of p™-primary element. By definition, e € F* is pM-
primary if the extension F(e'/ pM) /F is purely unramified of degree pM
the N-th residue fields satisfy [F(el/pM)(N) : FIN)] = pM . Note that the
images of pM-primary elements in F*/F ™ form a cyclic group of order
M One of first explicit constructions of p™-primary elements was given
by Hasse, cf. [19], and can be explained as follows. Let £ € mp be such that
E(1,€) = . Let ag € W(k) be such that Tr(ag) = 1 and let 8 € W (k)
be such that o(8) — f = ap. Then ¢y = E(B,f)pM is a pM-primary ele-
ment of F. In Section 5 we shall use the pM-primary element in the form
€0 = 0(agHy), where Hy = Hy((pr) € m® was defined in the Introduction.
A natural explanation of this construction of p™-primary element appears
there as a special case of the relation between the Witt-Artin-Schreier and
Kummer theories.
2) The original construction of the Shafarevich basis [18] systematically
uses the Shafarevich exponential F(w, X) and establishes an explicit iso-
morphism F*/F*" ~ (7)2/P" x (g)2/P"" x [, War(k)y, where 0 < b <
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e, m = m modF*”M, € = € mod F**" and gcd(b,p) = 1, in the 1-
dimensional case. This construction can be generalised to the N-dimensio-
nal case.

1.3. Topological Milnor K-groups. For a higher local field L and a
positive integer n, let K,,(L) be the n-th Milnor K-group of L. Let VK, (L)
be the subgroup of K, (L) generated by the symbols having at least one

entry in Vg, := 1+ myg. If L is of dimension N and uyq,...,uy is a system
of local parameters of L, then, by [22],
(1.2) Kn(L)~VEKn(L)aZa& [] Ain(L),

1<i<N
where Z corresponds to the subgroup generated by {ui,...,ux} and for all
1 <i < N, the group A;n(L) ~ L™)* consists of the symbols of the form
{[a],ul, B VN [ T VT [N uN} with o € LWN)*,

Following [6, 22] we introduce the P-topology on Ky (L) as follows. The
topology on V Ky (L) is defined to be the finest topology such that the
map of topological spaces V7, x (L*)N~! — V Ky(L) is sequentially contin-
uous. The other direct summands in (1.2) are equipped with the discrete
topology. Then the topological Milnor K-groups K% (L) are defined to be
Kn(L)/A, where A is the intersection of all neighbourhoods of zero, with
the induced topology. By [6], A = N,>1 nVEN(L) = N> P"VEN(L),
using [-divisibility of V Ky (F), for any [ prime to p. In particular, for any
M > 1, Ki(L)yy = Kn(L)y and the decomposition (1.2) induces the
decomposition K4 (L) ~Z & VK4 (L).

The advantage of the topological K-groups K& (L) is that they admit
P-topological generators analogous to those of the multiplicative group
L* from Subsection 1.2. Before stating these results notice that for any
higher local field K one can introduce a filtration of K% (K) by the sub-
groups U§ K4 (K), where ¢ > 0. These subgroups are generated by the
symbols {a1,...,an} € K& (K) such that vg(a; — 1) > c. Here v is the
1-dimensional valuation on K such that vg(K™*) = Z. Then the classical
identity

(1.3) {1-a,1- B} = {a(1 - §),1+aB(1 - )1}

for 2-dimensional Milnor K-groups implies that
{a1,...,an} € URT TN KL (K)

if vg(o; —1) > ¢ for 1 <i < N.

e Generators of K (F).
For a = (a1,...,an) € ZV, a ¢ pZN, a > 0, let 1 < i(a) < N be such
that a1 = -+ = a4(4)—1 = 0mod p but a;,) # 0mod p. As earlier, choose an
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Fp-basis 01, ...,0s of k and for all above multi-indices a and 1 < j < s, set
(14) €ja = {1 + ij,fl, R 7t7i(a)717t7i(a)+17 R ,EN}.

This is a system of free topological generators of VKFV(]: ) and K}V(}' ) =
VKL (F) & (e0), where g = {t1,...,tn}. This means that any element
¢ € K4 (F) can be written in the form £ = Agep + > 6 Ajbejn, Where Ag
and all Aj;, belong to Z, and, for any 1 < ip < N, the infinite product

[T @+ee)%e
jub,io(b):io

converges in F. This can be obtained from relation (1.3). Moreover, for a
given ¢ € K% (F), the corresponding coefficients Ay and Aj, are uniquely
determined by &, in other words the above system of symbols 9 and ¢y, is
a system of free topological generators for K& (F). This was established by
Parshin [15] via an analogue of the Witt pairing, cf. Subsection 2.2 below.
It can be also deduced from the Bloch-Kato theorem [4], which gives an
explicit description of the grading of the filtration U%(K4 (F)), ¢ > 0.

e Generators of K& (F)r, (i € F.
Introduce similarly the elements

(1.5) €ja = {1 + [Qj]ﬂa,ﬂl, s Ti(a)—1s Ti(a)+10 - - - ,7TN},

where 1 < j < s,a € ZN\pZYN and 0 < a < ¢e* := ep/(p — 1). Set
eo={m,...,mn}and for 1 <i < N,

(1.6) €ier = {€0, M1,y s Tie1, Tit1,---, TN},

where €y was defined in Subsection 1.2.

Then for similar reasons to the case L. = F, the above elements e,
€ja and e+ give a set of P-topological generators of the 7/p™-module
K% (F)ar- The Bloch-Kato theorem [4] about the gradings of U& (K4 (F)),
where 0 < ¢ < € = vp(p)p/(p — 1), implies that the system of topological
generators (1.6) is a topological Z/p-basis of K% (F)1. The fact that we
have a system of Z/pM -free topological generators can be deduced from the
description of p-torsion in K (F') from [6]. This fact can be also established
directly from the non-degeneracy of Vostokov’s pairing, cf. Section 3.

e Generators of Ki_1(F)ar and Ky (F)um, ¢ € F.
A similar technique can be used to prove that K% _,(F)ys is topologically
generated by the elements of the form:

— {1+[0,]7%, Tjys -y Ty, }, Where 1 < j < s,a € ZN\pZN, 0 < a < e,
1<j1 < <jn-2<Nandi(a) ¢ {j1,.,jn-2}

f{Eo,ﬂ'jl,...,jNQ}, where 1 < j;1 <+ < jny_2 < N.
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Similarly, in the case of K} | (F)as we have only one generator given by
the symbol {eg, 71,..., 7N}

1.4. The Norm map. For a finite extension of higher local fields L/K,
the Norm-map of Milnor K-groups Ny i : Kn(L) — K,(K) was defined
in [5] and [7]. It has the following properties:

(1) if g € L* and a, ..., € K* then

NL/K{al, a9, ... ,an} = {NL/K(Oél), a9, ... ,an};
(2) for a tower of finite field extensions F* C M C L, it holds Ny /p =
NL/M oN M/F;
(3) if ip/k + Kn(K) — K,(L) is induced by the embedding K C L
then iL/K o NL/K =[L: K] idKn(K)-

By [22], Ny is sequentially P-continuous and therefore induces a con-
tinuous morphism of the corresponding topological K-groups which will be
denoted by the same symbol.

Using the unique extension of vy, define the subgroups U% (K4 (L)) C
K% (L) for all ¢ > 0 and algebraic extensions L of K, to be the groups
generated by the symbols {a1,...,an} such that vg(a; — 1) > ¢. Then
the general definition of the norm map Np f, e.g. cf. [7], implies that
for all ¢ > 0, Ny, maps Uf(K§(L)) to Ui (Kk(K)) and preserves the
decomposition K4 (L) =Z @ VK4 (L) from Subsection 1.3.

2. Pairings in the characteristic p case

2.1. Residues. For any n > 0, denote by 7 ) the L(F)-module of P-
continuous differentials of degree n for L(F). For n = N, this module is
free of rank 1 with the basis dt; A --- A dty.

Suppose w = fdt; A--- ANdtn € in(f) with f € L(F). Then

f= Z [ag]p®tit .t
a=(ao,...,aN)
and there is an Ag(f) € Z such that a, = 0if ag < Ao(f), cf. Subsection 1.1.
This makes sense for the following definition of the L(F)-residue Resyr)
of w.

Definition. Resp(r)(w) = > o=(49,-1,...,—1)[@a]P™.

We have the following standard properties:

—ifw' € Qg(}l) then Resp(r)(dw') = 0;
/

—if #},...,ty is another system of local parameters in F and t},...,t
are their lifts to O(F) then
dt}

dt’
1 N
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— if Resy(r)w = c then there is an ' € Q]LV(}I) such that

dt/ dt’
w:dw'—l—c—,l/\---/\ ,N

The above properties do not show that the residue Resyr) is apriori
independent of the choice of local parameters of F because the construc-
tion of the lift L(F) involves a choice of such system of local parameters.
Therefore, we need to slightly modify the above approach to the concept
of residue.

For any i € Z, denote by O(c'F) the Z,-flat lifts of oc'F via the system
of local parameters f’fl,...,fﬁ’\;. Set Oy (0'F) := O(0*F)/pM. These flat
Z/pM-lifts Oy (o' F) of o*(F) do depend on the system of local parameters
t1,...,tn but we have the following properties:

— W (eM=1F) € Op(F) € Wy (F) C Opg(o=MHLF);

— Wn(F) = Om(F) +pOpr 1 (07 F) + -+ + pM 7101 (07 MFLF).

Let Q(F, M) be the Z,-submodule of Q%M( 7 consisting of differential
forms w = wdiggar A -+ - A dipgan, where w € WM<JM71.F) and all a; €
W (F)*. Then w € Op(F), all a; € Op(o' =M F)* and, therefore, w €
> On(F)diogti. As a result, we have a natural Wy (k)-linear embedding

Loy (F) + ﬁ(]‘—7 M) — OM(UiMJrlJr) Q0 (F) QgM(}—)'

This means that for any w € Q(F, M), the image ¢, (7)(w) can be writ-
ten uniquely as fdiogts A -+ A diogtn, where f =3, 7417 ... t3Y, with the
indices a = (ay,...,ayn) € (p™™*+1Z)N and the coefficients v, € Was(k).

Definition. With above notation for any w € Q(F, M), define its Wy, (F)-
residue by the relation Resy,, (7 (w) == Y(0....,0)-

This definition is compatible with the earlier definition of the L(F)-
residue Resy,(r) in the following sense. If w € Qg( 7 C Qg( 7) and w mod p™
is in the image of Q(F, M) in On (oML F) @07 Qg(f) then Resp,(r)(w) €
W (k) and Resr,r)(w) mod pM = Resy,, (7) (wmod pM).

We now prove that the Wy (F)-residue Resyy,, (7 is independent of the
choice of local parameters in F. Suppose #],...,t) is another system of
local parameters of F. Consider, for all i« € Z, the corresponding flat
lifts Oy(0*F) and the Wiy (F)-residue Resy, () defined via an analogue

104, (7) of Loy (7)-
Proposition 2.1. For any w € KNZ(]-", M), Resw,,(F)(w) = Resg,VM(f) (w).

Proof. Note that any o € Wy (F)* can be written in the form [f]t%n,
where [§] € Wys(k) is the Teichmiiller representative of 5 € k, t* :=
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th .ty with @ = (a1,...,an) € ZN, € € (1 4+ my(x)modp™ O(F) and
n€1l+pOy 1(0 ' F)+---+pM 1010 M F) =1+ pWar 1 (07 F).
With this notation any element of diogWas(F)* can be written as

Z C,‘dlogti + dioge + dn/,
1<i<N
where C1,...,Cy € Z and 1 = logn € pWyr_1(c~1F). Note that the
p-adic logarithm establishes an isomorphism of the multiplicative group
1+ pWy—1(0~LF) with the additive group pWys_1(oc~1F) and

dlog5 = - Z('Yaia)ndlogza,
a
where a = (a1, ...,a,) € ZN, a > 0,n >0, all v, € Wys(k) and the sum in
the right-hand side converges in the P-topology. (Use that & can be written
as an infinite product [],-5(1 — vat®).)

Therefore, any element w € Q(]—" ,M) can be written as a sum of the
following types of elements:

(i) ’y(w)dlogtl JARERIVAN dlogtN with 'y(w) € WM(k),

(ii) mdiogt1 A -+ A diogt n With m € mL(;)modpMO(F);

(iii) diogliy N -+ N diggtiy N d(nl) A A d(?]N_s), where 0 < s < N,
1<ip<--<ig<Nandmn,...,nnv_s € pWay_1(c71F).

This follows directly from the above description of the elements of
diogW (F)* by taking into account that for a € ZV such that a > 0
and n € pWy_1(0~1F), we have

(Ea)ndlog@a) A d77 = Z aidlogti A d(t‘mn)a
1<i<N
and d(wn) = wd(n) for any w € Wy _1(cM~1F).

Then it can be seen that Resy, (r)(w) = v(w) by noting that the residues
of elements of the form (ii)-(iii) are equal to 0.

Finally, it remains to verify that Resy,, (r)(w) = 1 for differential forms

w = diogth A+ - Adiogt’y. This can be done also along the lines of the above
calculations. O

2.2. The Witt symbol. We introduce the Wy, (F,)-linear pairing
(2.1) [ 1 War(F) x Ki(F) — War(k)

as follows. Suppose w = (wp,...,wy—1) € Wy (F) and a € Ky (F) is of
the form a = {ay,...,an} € Kn(F). For 1 <i < N and &; € Wy (F)*
such that &; modp = «;, set

(2.2) [w, O‘}g\:/[ = ReSWM(]:) (UM?l(w)dlogOAél ARERNA dlog&N) € W (k).

It can be seen that [w, a}f; is well-defined and the pairing it induces factors
through the natural projection Ky (F) — K& (F).
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Lemma 2.1. For any w € Wy (F) and a € K4 (F), we have
olw,a}f; = [o(w), a}i;.

Proof. Note that for varying systems of local parameters ¢, ...,t of F,
the symbols {#},...,ty} generate the group Iﬁv(}— ). Therefore, it is suf-
ficient to consider only the symbols a@ = {¢},...,t)y}. By Proposition
2.1, the symbol [, }ﬂ is independent of the choice of local parameters.
Therefore, we may assume that o = {t1,...,tx}. Consider the expansion
oM~y = 3 yatft - t3Y, where all v, € Way(k), with respect to the
identification Wy (M1 F) = Op(o™M=LF) + - + pM =101 (F). Clearly,
[w, ), = Y,....0) and [o(w), Q) = o(Y,....0))- The lemma is proved. [

Notice now that for any w = (wy,...,wy) € Wy (F), the element
oMl = [w P + plwa]?" T + - + pM~1wy,] coincides, modulo pM,
with the M-th ghost component of w. Therefore, the classical Witt symbol,
cf. [14],

[0 A s War(F) x Ky (F) — W (Fy)

has the following invariant form:
— Ifw € Wy (F) and o € K& (F) then [w,a)f, = Tr ([w,a}ﬂ).

Above Lemma 2.1 implies that the Witt symbol induces a Wy (F))-linear
pairing

(2.3) W (F)/(0 = id)Wa(F) x Kn(F) — Wi (Fp)

and it can be verified that this pairing is non-degenerate using the explicit
formula (2.2) for the above symbol [, }7;.

2.3. Coleman’s lifts and Fontaine’s pairing. For 1-dimensional local
fields, Fontaine [8] developed a version of the Witt symbol by defining a
special multiplicative section Col : F* — O(F)* of the natural projection
O(F) — O(F)/p = F. His construction can be generalised in the context
of topological K-groups as follows.

For any x € Opx), let © = (zp~**®))modp € F. Consider the map
II: K4 (L(F)) — K4 (F) defined by the correspondences

{l’l,...,x]\[} — {[fl,...,i‘]\[}.

We use the free topological generators of K4 (F) from Subsection 2.2
to define the P-continuous homomorphism Col : K4 (F) — K4 (L(F))
by the following correspondences: {ti,...,tn} +—— {t1,...,tn} and
€ja = {1+105]t%, t1, - -, tita)—1> ti(a)+1, - - - » tv }- This definition makes sense
because of the following property, cf. [22].
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Lemma 2.2. If for p-adic integers A, € Zy,, where 1 < j < s and a €
ZN\ pZN, a > 0, the product [1;(1 + 0;1")%e converges in F then the
product [, (1 + [0;]t*)A5a converges in L(F).

The above defined morphism Col depends on the choice of local param-
eters f1,...,fy of F. As in Subsection 2.1 consider the lift O(¢~'F). Then
L(c7YF) = FracO(o~1F) is a field extension of L(F) of degree pM. Let
o1 be the o~ !-linear (with respect to the W (k)g,-module structure) field
isomorphism L(F) — L(oc~1F) given, for 1 < i < N, by the correspon-
dences t; — tz/p.

Definition. Call an element z € K& (L(F)) Coleman if the norm map
from K% (L(o=F)) to K& (L(F)) maps o~ 1(x) to z.

Proposition 2.2. An element n € K (L(F)) is Coleman if and only if it
belongs to Col(KY(F)).

Proof. Property (1) of Subsection 1.4 easily implies that all elements from
Col(K % (F)) are Coleman.
Suppose zg € K4 (L(F)) is Coleman. We prove that zo € ColK% (F).
Shifting ¢ by the inverse to Col(II(x¢)) we may assume that II(zg) = 0.
Note that L(F) has the system of local parameters to = p, t; = Col(ty),
...,tn = Col(ty). Then the classical identity (1.5) implies that K& (L(F))
is topologically generated by the elements

{tos - timt tivs, .-, tN Y}
with 1 <7 < N, and the elements of the form
{1 + [9]']7580 .. .t(]lVN,OZQ, .. .,aN},

where 1 < j < s, 01,...,05 is an Fp-basis of k, a = (ag,...,an) € ZVNT1\
pZN*l a>0andfor2 <i < N, o = t;, with 0 < jo < j3 < -+ < jn < N.

These generators can be separated into the two following groups:

— the first group contains the generators belonging to KerII (in other
words these generators do depend on t);

— the second group contains the generators from Col( K (F)).

Using that K (F) is topologically free, we obtain for any = € K4 (F)
the following properties:

— if II(x) = 0 then x is a product of generators from the first group;

— if (z) = 0 and x = p™ay with m > 0 and z; € K4 (L(F)), then

Returning to the Coleman element zo € K& (L(F)), assume that there is
an m > 0 such that o = p™z; with 21 € K§(L(F)) but @ ¢ pK% (L(F)).
Then II(z1) = 0 and x; is a product of generators from the first group.
But if y is a generator from this group then property 1) of Subsection
1.4 implies that NL((,_U_—)/L(]:)(U_ly) € pK4(L(F)). This gives that zo =



Field-of-norms functor and Hilbert symbol 17

Ni-17ynm (0 wo) = p"Nyg-1z)pe (o o) € p" KR (L(F)),
which is a contradiction. This means that x( is infinitely p-divisible and,
therefore, is 0 in K& (L(F)). O

We define an analogue of Fontaine’s pairing [§]
[ )75 O(F) x Ki(F) — 2,
by setting for f € O(F) and o € Kn(F),
[f. )" = Tr(Resp () fdiogCol(r)).

Here, for Col(a) = {@,...,an}, we set diogCol(ar) = dioglii A+ -+ A dioglin.
This pairing is related to the Witt symbol by the following Proposition.

Proposition 2.3. For all f € O(F) and a € K§(F), one has

[f. )’ mod p™ = [f mod p™, a mod p™)7;.

Proof. We need to show that
(2.4) JMflResL(;)(fdlogCola) = ResL(;)(aMfl(f)dlogCol(a)).

By linearity and P-continuity this can be verified on the generating el-
ements f = > = 2 . 4% b= (b,...,by) € ZV, of O(F) and the gen-
erators a = {f11,...,ty} and a = g, of K4 (F) from (2.4) of Subsection
1.3.

— The case f =t* and o = {t1,...,tx}. In this case the both sides of
equality (2.4) are equal to the Kronecker symbol §(b,0).

— The case f =t* and a = €j,. Here the left-hand side of (2.4) equals

, o dt dt
i(a)—1 _M-1 b n ad N
(=) oM Res 7 (t > (=nreee » A A )

n=0

and the corresponding right-hand side equals

ila pM— n1ana At dt
(—1)H @)~ 1ResL ( lbz "7t t—l/\ /\N).

1 tn

Clearly, we may assume that b # 0. Then the left-hand side is non-zero
if and only if there is an ng > 1 such that b + nga = 0. This is equivalent
to saying that the right-hand side is non-zero noting that a ¢ pZ~. It can

I\Il

then be seen that both sides are equal to (—1){®+m0—1q al0y . O
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3. Vostokov’s pairing

As usual, 71,..., 7y is a fixed system of local parameters and k is the
N-th residue field of F. Let Lo(F) = W(k)((tn))-..((t1)) C L(F) with
the induced topological structure. Set

m’ = {Zwat“ | we € W(k)}

a>0

and O = W (k) +m°. Clearly, m* C O° C Lo(F) and Lo(F) = U t*0°.

a>0
Let R be the multiplicative subgroup in Lo(F)* generated by the Teich-
muller representatives of the elements of k, the indeterminants t1,...,tn

and the elements of 1 +m’. Let x : R — F be the epimorphic contin-
uous morphism of W (k)-algebras such that x(t;) = m;, where 1 < ¢ < N.
We use the same notation x for the unique P-continuous epimorphism of
W (k)-algebras Lo(F) — F such that x(¢;) = m; for 1 <i < N.

3.1. The differential form Q. For any ug,...,uy € R, denote by 2 =
Q(ug, ..., uy) the following differential form from ng )’

. o (2
S (=1 (pdlogu0> ARERWA (pdlogui—l) A diogttiyr A -+ A diggUN
0<i<N

where for 0 < i < N, f; = (1/p)log(u! /ou;). Notice that all f; € m° (use
that ou;/ul € 14+ m°) and

(31) df; = dlogui - (U/p)dlogui-
Proposition 3.1. 2 mod ngo_l is skew symmetric in ug, ..., UN.

Proof. Prove that 2 mod ngo_ ! changes the sign under the transpositions
u; <> ui+1, 0 < i < N. Consider the identity (use (3.1))

Jidhogtit1 — fit1(0/p)diogtii + fir1diogui — fi(0/p)diogti+1 = d(fifit1)

Then the form Q(. .., u;, wjt1,...) +Q(. .., wit1, Ui, - .. ) is congruent mod-
ulo ngo_l to the form

(o/p)dioguo N -+ - A (0 /p)diogii—1 A d(fifir1) A diogtiiz1 A - -+ A diggun

and, using again identity (3.1), we conclude that this form is exact. O
Let e = (e1,...,en) € Z™ be such that 77" ... 7% /p € O, where Op

is the N-dimensional valuation ring of F'. We introduce the W (k)-algebra
L£0 = O%[p/teP=1) ¢ /p]] and set L = L° ®po Lo(F). Clearly, we have
L= UtLo.

a>0
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The algebra L is a suitable completion of Lo(F) and its elements can be
treated as formal Laurent series in t1,...,ty with coefficients in W (k)g,.
Note first that any element of £° can be written in the form

Z Ontepn/pn + Z Oinpn/ze(p—l)n,

n=0 n>1

where all 0, € OY, n € Z. Therefore, £° consists of formal Laurent series
Y aczN Wal® with coefficients w, € W (k)q,, such that for any n € Z>q:

— if a > epn then vy(wy) > —n;

—if —e(p—1)n>a> —e(p—1)(n+1) then v,(wy) > n+ 1.

We can use the above Laurent series to define the £-residues Res, w for
any w € Q]LV If any such form w is the limit of w, € ng(]_.), then Res, w
is the limit of Resw,. Therefore, we can use for the L-residue of w, the
simpler notation Resw.

Lemma 3.1. Let 7{' ... 7% /p = n € Of and let ) € O° be such that
k() = n. Then the kernel of k : O%(F) — F is the principal ideal gener-
ated by t® — pn.

Proof. The proof follows easily from the fact that x induces a bijective map
O°(F)/t¢ — Or/p. O

Proposition 3.2. If ug € R and k(ug) = 1 then there are w°, w' € ng_l
such that for ' = log(ug)diogui A -+ A diggun — %log(u[))%dlogul A A
Zdiogun, it holds Q0 = Q' + d(log(ug)w® + wl).

Proof. Clearly, ug € 1+ m°. By above Lemma 3.1 the relation s(ug) = 1
implies that log(ug) € £°. Then the statement of our Proposition is implied
by the following identities: fo = log(up) — (o/p)log(up) and for 1 <i < N,

fi(o/p)dioguo = d(filog(uo) — fifo) — (o/p)log(uo)(diogui — (0/p)diogtis)-
O

3.2. Element Hy. As in the Introduction, choose a primitive p-th root
of unity (s € F and introduce Hy € m" such that Hy = HPY — 1, where
H' € 1+ m° is such that x(H') = (3 mod pOp.

Clearly, we have dHy € pM Qloo.

Lemma 3.2. a) There are 01 € 0% and 09,03 € O° such that

a) Hy = oyteP/(P=1) 4 poﬂe/(lﬂfl) + p2os3;

b) Hy' € t=P/0=DO°[pt~°]] C £L;

¢) Hy ™' /p € O°[[t?/p]] € £° and O°[[HE ™" /pl] = O[[¢ /p]);

d) (o/p)Ho = Ho(1+ 01Hy + OQ(Hg_l/p) + 03(p™ /Hy)), where the coef-
ficients o1, 02,03 € O° .
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Proof. In order to prove a) use that H = 1 + ote/P" (=1 mod (p, t°)
with 0 € O%. Then b) and c¢) are implied by a). For part d), use that
oH' = H'® mod pO° and therefore, 0 Hy = (1 + Hp)? — 1 mod pM+10°. O

Lemma 3.3. If w = log(ug)wi + wo with wp,w; € ng_l then we have
Res(H " 'dw) € pMW (k).

Proof. Note that Res(H 'dw) = —Res(d(1/H) A w), because obviously
w/H? € 720/~ 0N and dH € pMQl,. It follows that

d(1/H) Aw = (w/H?) AdH e pM=2ep/=D) £0gN
It remains to notice that ep > 2ep/(p — 1), which implies that
Res(t 2P/ P~V 204t A - Adty) € W (k).

Corollary 3.1. With the notation from Proposition 3.2, we have
Res(2/H) = Res('/H) mod p™.
Proposition 3.3. If h € O°[[t°?/p]] then

hdigst1 A -+ A dioet N hdjgst1 A -+ A dioet N M
Res < 6 £ ) = Res < & 6 ) mod p™.
H (o/p)H b

Proof. We follow the strategy from the proof of Lemma 3.1.3 in [1].
By Lemma 3.2d) it will be sufficient to prove the congruence

Res(Gdiogti A -+ A diogtn) = 0 mod p™,

where
_ i Hg (H ™ p) (pM ) H)'
Hy
with hy € O°[[tP/pl], l1, 12,13 € Zso and Iy + Iz + I3 > 1.
If I3 = 0 then G € OY[[t°?/p]] and, therefore, the residue

g

Res(Gdiogt1 A -+ A diogtn) = 0.
If I3 > 1 then use that H?~!/p,p/H € L° to obtain that
Ge (pM/H?)LO ¢ pMy=2ep/=1) 20
Similarly to the proof of Lemma 3.3 this implies that the residue
Res(Gdiogt1 A - -+ A diogtn) € pM W ().
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3.3. A construction of Vostokov’s pairing V. For any elements
ug, - - -, UN € R, set
~ Q
(3.2) V(ug,...,uy) ="Tr (ResH> modp™,
where, as earlier, Tr is the trace map for the field extension W (k)q,/Qp.

Then Proposition 3.1 and Lemma 3.3 imply that V is an (N + 1)-linear
skew-symmetric form on R with values in Z/ pM.

Proposition 3.4. If k(ug) = 1 then V(ug,...,uy) = 0.

Proof. By Propositions 3.3 and 3.7 it will be sufficient to prove that

oRes <10g(u0)d10gu1 JARERIAN dloguN) =
s (22200500
(o/p)Ho
Let £V be the subalgebra in £ consisting of the formal Laurent series
I = > 4z wat® such that o(l) = > cznv o(w,)t*? € L. Then one can
verify that for any r € £-1,

(0/p)diogur A -+ A (U/p)dloguN> mod pM

oRes(rdipgn A - -+ A diggun) = Res (a(r)adlogul A A UdloguN> .
p p

It remains to note that k(up) = 1 implies (use Lemma 3.1) that r =
log(ug)/Ho € £ and, therefore, () = (o/p) log(uo) /(o /p)Hy. O

Corollary 3.2. The form 1% factors through the projection k : R — F*
and defines an (N + 1)-linear skew-symmetric form V on F* with values
in Z/p™.

We now verify the Steinberg relation for V.
Proposition 3.5. If u; +ug =1 then V(uo,ul, ouy) =0.

Proof. As usually, it is sufficient to verify this property for ug € m°®. Then
by Lemma 3.3 it will be sufficient to prove that

(3'3) delogul - f1 (U/p)dloguo =dF
where F € O°.
For any u € R, set [(u) := (1/p) log(u” /ou). By computing in Lo(F)®Q,
we obtain the identity
(uo)diog(1 — ug) = d(Liz(ug) + log(1 — ug)l(uo))
where Liz(X) = [log(l — X)X 'dX = Y., X"/n? is the dilogarithm
function. This identity implies that (3.3) holds with

F = Lis(up) — (1/p*)Lia(oug) + log(1 — ug)l(ug).
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It remains to prove that F' € O°.

Using the expansions for Liz(X) and log(1 — X) we can rewrite F' as a
double sum F =3, Frnsup™” | where:

— the indices s and m run over the set of all non-negative integers with
additional condition that m is prime to p;

— for all (prime to p) indices m, we have

Fo = 1/m? — (1/m)l(ug)
and for all s > 1,

1 ou™ 1
Frs = (1 - %ps ) - Z(UO)

m2p25 ug mps

Clearly, Fy,0 € OY and F,,, appears as the result of the substitution of
X = —ml(up) € m® into the p-integral power series of the function
(p*X)72(1 + p*X — exp(p*X)). Therefore, all F,,s € O and F € O°. [

Corollary 3.3. V induces a bilinear continuous non-degenerate pairing
V : K1(F)a x Ky(F)y — Z/pM, which factors through the canonical
morphism of the left-hand side to Kn11(F)nr-

Proof. The only thing to verify is non-degeneracy. This can be done by rou-
tine calculations with the corresponding topological generators from Sub-
sections 1.2 and 1.3. The most important fact is that

Vieo,{m1,...,7n}) =1,

where ey = 0(agHp) is the pM-primary element from Remark 1) of Subsec-
tion 1.2. O

Remark. 1) The above construction of the pairing V' depends on the choice
of a primitive p™-th root of unity (y;. However, Vostokov’s pairing appears
in the form

where for any o € K1(F)p and 8 € Ky(F)u, V(a, B) = C]‘&(O"ﬁ), and this
pairing is independent of the choice of (.

2) The above Corollary immediately implies that Vostokov’s pairing (3.4)
coincides with the M-th Hilbert symbol

(5 s Ko (F)u x Kn(F)m — (Cur)

for the field F. Indeed, the norm property of the Hilbert symbol implies
that it factors through the canonical morphism Kj(F)y x Ky(F)a to
Kni1(F)/pM. Therefore, it is sufficient to verify that the Hilbert pairing is
equal to (j on the generator {eg, 71, ..., 7T} of Kn41(F)as. But this is ex-
actly the basic property of the p-primary element 6(cgHy), cf. Subsection
5.5.
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4. The field-of-norms functor

4.1. The field-of-norms functor. N-dimensional local fields are special
cases of the (N —1)-big fields used in [17] to construct a higher dimensional
analogue of the field-of-norms functor. The main ideas of this construction
are as follows.

Suppose K is an N-dimensional local field and vg : K — Z U {o0}
is the (first) valuation of K. If K is an algebraic closure of K, denote by
the same symbol the unique extension of vg to K. For any ¢ > 0, let
pS; = {z € K | vg(x) = c}. If L is a field extension of K in K, we use the
simpler notation Op,/p¢ instead of O /(p¢ N OL). Clearly, if [L : K] < oo
and e(L/K) is the ramification index of L/K, then pj = pze(L/K).

An increasing fields tower K, = (K, )n>0, where Ky = K, is strictly
deeply ramified (SDR) with parameters (ng,c), if for n > ng, one has
[Knt1: Kn] =9V, ¢ < vk (p) and there is a surjective map Q}9Fn+1/0m —

(OF,../ p°)? or, equivalently, the p-th power map induces epimorphic maps

(4.1) in(K.) : Ok, /P — Ok, /P
This means that for n > ny, KT(L]PI = K& and there are systems of local
parameters ugn),...,u%) in K, such that for all 1 < ¢ < N, ul(.nﬂ)p =

ugn) mod p.

The field-of-norms functor X associates to any SDR tower K, an N-
dimensional field I = X (K,) of characteristic p such that its N-dimensional
valuation ring Ok coincides with @1 Ok, /9% Then for n > ng, we have

in(Ke)
the following properties:

— the last residue fields of K and K, coincide;

— the natural projections from Ok to Ok, /pj induce isomorphisms of
unitary rings

(4.2) Ox/pi ~ Ok, [Pk
where ¢, = p""e(K,,/K);

— if wy,...,un is a system of local parameters in I then there are

systems of local parameters u&”), . ,ug\?) in K, such that for 1 <i < N,

Suppose L is a finite extension of K in K. Then the tower L, = (LK},)n>0
is again SDR and X(L,) = L is a separable extension of I of degree
[LK, : K,], where n > 0. The extension £/K is Galois if and only if, for
n > 0, LK, /K, is Galois. An analogue of the identification (4.2) can be
used to identify Gal(£/K) with Gal(LK,,/Ky,).
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Finally, X(K) := limX(L,) is a separable closure Ky, of K and the

—_
L
functor X identifies Gal(KCs.,/K) with Gal(K /K), where Ko, = lim K.

4.2. Applications to K-groups. Suppose there is an SDR tower K, =
(K )n>0 with parameters (ng, c) and the ring epimorphisms i,, = i, (K,) :
Ok, /9% — Ok, /9% Define for n > ng, the morphisms

Jn = dn(B) + Ky (K1) JURK N (K1) — Ky (Kn) /UK (Kn).

as follows. Choose systems of local parameters ugn), e ,ug\?) of K, such

that for 1 < i < N, ugnﬂ)p = ugn) mod p% . Consider the lifts 7, of the
morphisms i,
i Z[ea}ﬂ(nJrl)a N Z[ag]ﬂ(n)a7

a a
where a = (a1,...,an) € ZV, 6, € K& and g™ = w%n)al...wg\?)a}v.
Then 2, (K, 1) C K;; and we may consider

iKY — KN (Ky)
induced by a1 ®@ - - - @ ay +— {#p (1), ..., in(an)}. Note that for any o, 3 €
K; . ., we have

— p(aB) = in(a)in(B)y1 with y1 € P

— Ip(a+ B) =in(a)y2 + in(B) with vk (a) < v (B) and y2 € p%.

This implies that the images of the relations for the Milnor K-group
Kn(Kpy1) lie in U4 K4 (K,). Therefore, i factors through the natu-
ral projection to K4 (K,+1) and we can proceed modulo the subgroup
UL K (Kpt1) because it is mapped to UL K& (K,). It can be seen that
the morphisms j,, n > ng, depend only on the tower K, and its parame-
ters (no, c).

Note that

(4'3) (KFV(KH)/UIC(KR[(Kn):]n)nZnO
is a projective system. Consider the system of local parameters
U1 :@ gn),...,ﬂN:@ 5\7)
n n
for K = X (F,). Similarly to the procedure of constructing the morphisms

Jn, we use the identifications O /pi* ~ Ok, /p% to construct isomorphisms
of topological K-groups

s K () UG Ky (K) — Ky (Ko [US Ky (K.

These morphisms are compatible with the morphisms j, introduced above
and determine the isomorphism

(2 K4 (K) — tm K (K,) (UG K& (K).
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For any 0 < ¢’ < ¢, there is an induced projective system
(4-4) (KFV(KH)/UIC(KFV(Kn)a];L)n>n0

Its inverse limit coincides with K% (K) and the composition of () with the
natural projection from (4.3) to (4.4) coincides with ¢(¢),

4.3. Special SDR towers. We need the following additional assumption
about the SDR towers K,.

Definition. An SDR tower K, will be called special if for any n > ng,
there is a fields tower of extensions of relative degree p

K,=K)CK!C---Cc KN 'CKY =K.

Our main applications are related to the following example of a special
SDR-tower.
Definition. The tower FC = (FY),>¢ is very special if F) = F and for all
n > 0, the field F? has a system of local parameters Wgn), .. .771(\7,") such that
for 1 <i< N, 7ri(n+l)p = 7TZ-(n).

Clearly, a very special tower FY is SDR with parameters (0,vg(p)) and
X (FY) = F.In this case we have also an isomorphism Ky (F) =~ @K}V (FY)

n
induced in terms of generators from Subsection 1.3 by the morphisms
K4(F) — K& (F?) such that:

—{t1,..., N} — {ﬂ'gn), .. ,771(\7)};
T {1 + [Hj]iavfb .- 'agi(a)—lagi(a)+1a s 7EN} =

{1+ [inn]ﬂ(n)a, 7T§n), . ,TrZ.((na))_l,wlea)Hl, ey 71'](\7)}

This means that in the case of a very special tower F?, the group K L (F) co-

incides with the limit of the projective system (K& (F?))n>0, where the con-
: : . 0 0

necting morphisms are the norm maps Npo /po : K (F)) — K (F).

We shall show that a similar property holds for any special SDR tower.

Proposition 4.1. Suppose K, is a special SDR tower with parameters
(ng,c). Then for any ¢1 = ¢ and n = ny,

Ni i1/, Uit (K (K1) C UR (K (Kn)),
where c3 = c1 +¢/p — e(Kni1/Ko) L.
Proof. Choose a field tower K,, = Lo C L1 C --- C Ly = Ky41, where for
1<i< N, |[L;: Li—1] = p. One can show the existence of:

— a system of local parameters 7y, ...,nx of Lg;
— a system of local parameters 7}, ..., 0} of Ly;



26 Victor ABRASHKIN, Ruth JENNI

. 1 2 ... N
— a permutation . . .
Ju J2 ... IN

such that for 1 <i < N, L; = L;—1(n)},) and n? = n; mod p;.
For any field extension E of K in K, set U (E) := (1 +p%) N E.

Lemma 4.1. For all1 <1t < N, we have
(L) NLi/Li—l(T/_;i) = njimOd U;:(/p(Li—l);'
b)ifa€ L; and a—1 € py then Np,jp, (a) —1€ p2+c/p_UK(nji).

Proof. The congruences n;f = 1n;, mod p% imply that all conjugates of 77;'1

over L;_; are congruent modulo p%p . Therefore, Ny, /1, , (17;,) = n; mod p%p :

This gives part a) of Lemma.
For property b), we can assume that a = 1 + [0]77;? € Ug(L;), where

9 € KN) and b € N. Then all conjugates of a over L;_; are congruent
; b—1,¢c/p ) —1 _ci+c/p

modulo 7}~ pt =10 P and this implies that Ny, /r, | (a) =al =
1mod (n;-i_lp(;é%/p). O

We continue the proof of Proposition 4.1.

Consider the following system of topological generators of the group
U (K4 (Kpq1)). For any a = (a1,...,an) € Z]>V(—), set gq9 = 14 [0]n°,
where 6 € K™ and

—1 —
a1 10s(a)—1 P~ Qs(a)+1 1

a __ P "an
n = Ji e js(a)—l js(a)+1 e n]N

Here 0 < s(a) < N is such that ay = -+ = ag44)41 = Omodp but
as(q) 7 Omodp. (Note that if s(a) = 0, ie. a € pZ~N, then n € Ky.)
With this notation, U (Kp41) is topologically generated by all 49 such
that v (n®) > c1. Therefore, Ug (K& (Ky41)) is topologically generated by
the symbols

. / / / /
Aafi = {5(19777]‘17-'-anjl-_lv'"anji+la"'7an}

witha € ZN,a>0,1<i< N and ey € U (Kps1) - Ifa ¢ pZ~N then it
will be enough to keep in this list only the generators with i = s(a) and
denote them by g := aggs(a)-

By Lemma 4.1a) and the properties of the norm map from Subsection
1.4, we obtain that NLN/LS@ (crap) is congruent to the symbol

{5a97 "7;'1a ERR 777;'5(a)71777js(a)+17 < 777jN}
modulo U¢ (K% (L)) if a ¢ pZY with

' =ci4c/p— maX{UK(n;'S(a>+1)a vk (M)} < e t+efp - e(Kpi1/K)™
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Applying Lemma 4.1b) and using that .9 € Ly(q) but 7}, ... ,ng-s(a)_l €
Ly(a)—1, we obtain that the norm NLN/LS(@A(O‘CL@) € U(Ky(Lg)-1))

for o = ¢1 4 ¢/p — e(Kpy1/K)~'. This implies that Ny /. (aes) €

Ug (Ky(Lo))-
Similarly, we can consider the case a € pZ", where the index i plays the
role of s(a) and we use that e,9 € Lo C L;—. O

Corollary 4.1. For a special SDR tower K,, the limit of the projective
system (Ui K\ (Ky), Nk, ., /K, )n>0 45 trivial.

Proposition 4.2. Suppose K, is a special SDR tower with parameters
(no,c). Then there is 0 < ¢ < ¢ such that for all n > 0, the morphisms
Jn in the projective system (4.3) with c replaced by c°, are induced by the
norm maps Ni, ., /k, : Kn(Kni1) — Ki(Ky).

Proof. Let ng > no be such that e(K,, 1/K) < ¢/p and & = c¢/p -
(K 11/K). Take n > nj and use the notation from Proposition 4.1. The
group K4 (K,41) is topologically generated by the symbol (s
and all aag = {ely,Mj1s- -+ My }» Where a € ZN \ pZN, a > 0. Applying
arguments from the proof of Proposition 4.1, we obtain that

CO
Nicyor /i (Lo 1) = ol Y mod U (K y (Kn))

0
NKn+1/Kn (aa9> = {5297 77;1177 s 777272(“)71’77;}:((1”1: te 777;];)\7}[]]0{ (KFV(K'IZ))
Il

Proposition 4.3. Suppose K, is a special SDR tower. Then for alln > 0,
there are homomorphisms Nic/k, : Ki(K) — K§(K,) such that

a) the system of morphisms {Ni K, fn=0 maps K% (K) to the projective
system (K& (Ky), Nk, 1 /K, )nz0 and defines a group isomorphism

b) for sufficiently small ¢ > 0, the projective limit of the compositions of
Nx /K, with projections Ki(Ky,) — K§(Kp)/Uf (K (Ky)) coincides with

the isomorphism 9 from Subsection 4.2.

Proof. Suppose (nj,c?) are the parameters for K, from Proposition 4.2.
For any a € K&(K) and m > n{, choose a,, € K4 (K,,) such that
tm(amod U,%O(KfV(IC)) = apymod Uf(o (K (Kpm)), where iy, are isomor-
phisms from Subsection 4.2.
This allows us to set Nk, (@) = limy, 00 Nk, , /K, (am) for any n > ng.
Then Corollary 4.1 can be used to prove that the maps Ny /K, are well-
defined and satisfy the requirements of our Proposition. O
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Finally, notice the following properties:

Corollary 4.2. Suppose K, is a special SDR tower, K = X(K,) and
Uy, ..., uN 1s a system of local parameters of K. Then

a) QONKH/KOKFV(Kn) = Nic/ ko K5 (K);

b) for all n > 0, Nk, ({t1,...,un}) = {u(ln),...,ug\?)}, where the
(n)

elements uy 7, . .. ,ug\?) form a system of local parameters of K.

4.4. The case of an arbitrary SDR tower F,. Suppose L/K is a finite
Galois extension of N-dimensional local fields in a fixed algebraic closure
K of K and G = Gal(K/K). Then there is a unique maximal purely
unramified extension Ky of K in L. This means that [Ky : K] = [ko : k],
where kg and k are the N-th residue fields of L and K, respectively. Let
Go = Gal(L/Kp) and let G; = {r € Gy | 7(a)/a € 1 + mp,Va € L}, where
my, is the maximal ideal of the N-dimensional valuation ring Oy, of L. Then
GG is a p-group, it is normal in G and the order of Gy/G is prime to p. The
field extension K; := L¢! of K is the maximal tamely ramified extension
of K in L. Note that in our setting, any tamely ramified field extension is
always assumed to be Galois. Keeping the above notation we obtain the
following property.

Proposition 4.4. Let Ky bea tamely ramified extension of K in K with
the N-th residue field ko and d = [K; : Ko|. If [a] is the Teichmiiller

representative of a generator o of ki and uy,...,un s a system of local
parameters in K then K1 C K({/[o], $u,..., Jun).

Corollary 4.3. Suppose d is a natural number and d = p™d, where d is
prime to p. Let l%/k: be a field extension of degree d. Choose a generator
a of k*, a system of local parameters u,...,un of K and set K(CZ) =
K({[a], ur,. .., yun). Then K(d) contains any tamely ramified exten-

sion of K of degree dividing d.

Proposition 4.5. Suppose K, is an SDR tower with parameters (ng,c).
Then there is a tamely ramified extension K, of Kn, such that the tower
K, ={K,K], | n> 0} is a special SDR tower.

Proof. We need the following Lemma.

Lemma 4.2. Suppose N €N and L/K is a totally rgmiﬁed separable
extension of K of degree pV, i.e. L) = k. Let d = (pN)! = p™d where
m,d € N and d is prime to p. Then there is a fields tower Ly C L} C --- C
L/ﬁ such that

a) Ly is a tamely ramified extension of K of degree dividing d;

b) for 1 <i< N, [L,:L;_|]=p;

¢) L'~ = LiL.

N
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Proof of Lemma. Since L/K is separable there is 6 € L such that L = K(0).

Therefore, there is a Galois extension K of K of degree dividing d := (pﬁ )!

such that L ¢ K. Let L be the maximal tamely ramified extension of K
in K. Then Ly C L := LyL C K, [L; : Ly) = p™ and G := Gal(K/Lj)
is a finite p-group. Then elementary group theoretic arguments (e.g. any

finite p-group has a central subgroup of order p) show the existence of a
decreasing sequence of subgroups

7 g R 7. . 7!
Hy:=GDH1D>---DHy |.DHg ._Gal(K/Lﬁ)
such that for 1 <i < N, (H; : Hi—1) = p and we can take ngﬁHi. O

For every n > ng, let K], := L{; where L is the field from the above
Lemma chosen for K = K,, and L = K, ;1. Since [K! : K, divides d =
(pN)!, the field K/ is contained in the tamely ramified extension K, (d)
of K, from Corollary 4.3. It remains to notice that for every n > no,

K, (d) = K,,(d)K,. The Proposition is proved. O

Remind that for any N-dimensional local field K we use the notation
Kn(K)y i= Kn(K)/p™. If L is a finite extension of K and ¢ > 0 denote
by U$ Kn(L)y the image of UL K (L) in Ky (L)as-

Proposition 4.6. Suppose F, is an SDR tower such that a primitive pM -th
root of unity (ar € Foo = L>JOFn. Then for any ¢ > 0, yLnUprN(Fn)M =0.
nz n
Proof. We can assume that F, has (0,¢) and (yy € F := Fy. Let F’ be a
tamely ramified extension of F' such that the SDR tower F! = {F'F,, | n >
0} is special. Let C), be the kernel of the natural map Ui Kn(F,)m to
ULKN(F))y induced by the embedding F, C F). By Corollary 4.1,
@U;KN(F;L)M = 0. It remains to prove that imC), = 0.
n n

Suppose F is the maximal absolutely unramified extension of F' in F’
of p-power degree. Then property (2) of norm maps from Subsection 1.4
implies that the natural map KN(Fnﬁ’)M — Ky (F,F")) is injective.
Therefore, for n > 0, C,, is the kernel of the natural map from Ky (F,)n
to K N(Fnﬁ1 ) M-

Consider the Shafarevich bases of these Ky-groups from Subsection 1.3
using the Hasse pM-primary elements €. By extending an IF,-basis of FéN)
to an Fj-basis of (Fnﬁ YN we can assume that the corresponding part
of the Shafarevich basis for K N(Fnﬁ‘ )ar extends the corresponding part
of the Shafarevich basis for Ky (F,)ar. This implies that C), is contained
in the subgroup of Kn(F),,)a which is generated by the elements of the
Shafarevich basis which depend on €. Going again to the SDR tower F!



30 Victor ABRASHKIN, Ruth JENNI

we obtain that if y is a such generator in K, (F,11)m then Np /g (y) €
pKn(Fy,) . Therefore, @Cn = 0, as required.
n

Corollary 4.4. Suppose F, is an SDR tower such that a primitive p™ -th
root of unity (pr belongs to Foo and F = X (F,). Then
a) for n = 0, there is a system of homomorphisms

mapping Kn(F)un to the projective system (Kn(Fn)m, Np,,, /5, )nz0 and
defining a group isomorphism Ky (F)a =~ @KN(F,L)M;

b) for any n > 0, there is an m > n such that
Nz/p, (KN (F)m) = Np, /5, (Kn (Fin) m)-

¢) for all n > 0, Ng/p, ({t1,...,tn}m) = {7T§n),...,7'('](\r;)}M, where

t1,...,tn and 7T§n), e ,71'](\?) are the systems of local parameters in F and,

resp., Fy, and { ,..., }ar denotes the symbol { ,..., } taken modulo p™.

5. Applications to the Hilbert symbol

As earlier let F' be an N-dimensional local field of characteristic 0 with
the first residue field of characteristic p and a fixed system of local param-
eters my, ..., wn; we use the notation F for an N-dimensional local field
of characteristic p with a system of local parameters ¢i,...,tx. The last
residue field of both F' and F will be denoted by k.

5.1. Parshin’s reciprocity map. Consider the non-degenerate perfect
Witt-Artin-Schreier pairing

(5.1) W (F) /oW (F) x Tr(p) /o™ — Z/p™,

where for any w € Wy (F), p(w) = o(w)—w, and I'#(p) is the Galois group
of the maximal abelian p-extension F(p) of F. Then the Witt symbol, cf.
Subsection 2.2, implies the existence of injective group homomorphisms

6% : Kiy(F)m — Tr(p)/p" = Hom(W (F)/o(War(F)), Z/p™).

By taking the projective limit over M € N, we obtain an injective homo-
morphism ©% : K% (F) — T#(p). Here, as in the Introduction, we use the
same notation for homomorphisms and their reductions modulo p™. Then
the explicit formula for the Witt symbol from Subsection 2.2 implies that
éfi_ is P-continuous. In [14, 15, 16] Parshin used éfi_ to develop class field
theory of higher local fields of characteristic p by proving that for all finite
abelian extensions £ of F in F(p), (:)5; induces the group isomorphisms

0% 5 : KN(F)/Neyr K (€) — Gal(E/F).



Field-of-norms functor and Hilbert symbol 31

The explicit formula for the Witt symbol implies that the intersection of all
Ng/rK 3 (E), where € runs over the family of all finite abelian extensions of

F, is trivial. Therefore, éi— is the composition of the canonical embedding

jr : KN(F) — Ki(F) := ImK} (F)/Ne /7 Ky (€)
&

and the isomorphism (:)5; = @ég/f : f(\fv(]:) — I'z(p).
&

This gives the morphisms
@P o .
(5.2) L9 /™ =2 K (F)ar €7 Kiy(F)ur,

where @; = (ég / f> ' is a group isomorphism and jr is embedding with
a dense image.

Let F“" be the maximal absolutely unramified extension of F in F(p).
Denote by ¢pr € Gal(F*/F) the Frobenius automorphism of this ex-
tension. Let FT be the subfield in F(p) invariant under the action of
OZ({t1,...,tx}). Using the explicit formula for the pairing (2.2) from Sub-
section 2.2 one can easily obtain the following properties:

a) F(p) = FTFY and F* NF = F;

b) {t1,...,tn} generates the group ﬂNg/fov(E), where £ runs over the

&

family of all 7 C £ C F* such that [ : F] < oo
¢) OF(VKn(F))is a closed subgroup in I'z(p)® and its invariant subfield
is FU;
d) OF({t1, ..., tn})|Fer = o F;
e) VK§(F) = NNg/rK i (E), where £ runs over the family of all finite
&

extensions of F in FY.

5.2. Fesenko’s reciprocity map. In [6], Fesenko defined the reciprocity
map for higher local fields of arbitrary characteristic. This construction can
be specified in our situation as follows.

Let K be either F or F. Let L be a finite extension of K in its maximal
abelian p-extension K (p). Denote by L*" and K™ the maximal absolutely
unramified extensions of L and, resp. K, in K(p). Set Ly = K"" N L.

For any 7 € Gal(L/K), consider its lift 7 € Gal(L""/K) such that
Flgur = @b, where i € N and ¢ is the Frobenius automorphism of K% /K.
Such lift exists because K" and L are linearly disjoint over Lg. Let ¥ be
the subfield of 7-invariants in L“". Then ¥ is a finite extension of K such
that YK"" = L. Denote by 77, ... ,ﬂ]% a system of local parameters in
Y. Then Fesenko’s reciprocity map is defined to be

O7/x : Gal(L/K) — Kj(K)/Np/x (K (L))
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such that for any 7 € Gal(L/K), @‘IL)/K(T) = clp/k (Nsyx({7E, ..., 7n ),
where for any a € Ky (K), cly/k(a) is the image of a under the natu-
ral projection of K (K) to Ky (K)/Np k(Kj(L)). The maps @%’/K are
well-defined group homomorphisms. The proof generalises Neukirch’s 1-
dimensional approach from [13].

Remark. Fesenko establishes his construction of class field theory for
higher local fields by proving that all @qL) /K Are isomorphisms. We do not

assume this until the introduction of the M-th Hilbert symbol in Subsection
5.5.

Taking projective limit we obtain Fesenko’s reciprocity map in the form

O : T — limKY (K) /Ny K k(L) == Kiy(K).
L

The following properties follow directly from the above definitions.

a) Suppose L C K" and 7 = ¢k|r. Then @%’/K(T) = clp/cua, .-, un}),
where u1,...,uy is a system of local parameters in K.

b) Suppose L/K is a finite abelian extension, K is a finite field extension

of K and L1 = LK;. Then there is a natural group homomorphism « :
Gal(L1/K,) — Gal(L/K) and the diagram

o
9L1/K1

Gal(L1/K1) Ky (K1) /Np, ke, Ky (L)

K \LNKI/K
@dﬁ

Cal(L/K) M KY(K)/NpKY (L)

is commutative.
The following proposition shows that Parshin’s and Fesenko’s reciprocity
maps coincide in the case of fields of characteristic p.

Proposition 5.1. Suppose &€ is a finite abelian extension of F in F(p).
Then the diagram

Cr(p) > K4 ()
l |

Le)r K§(F)/Ng/rKx(E)

is commutative, where the vertical maps are the natural projections.

Proof. The group Kj(F) is generated by the symbols {t7,...,#y}, where
th,...,ty run over all systems of local parameters in F. Therefore, it will
be sufficient to consider the images of « = {t1,...,tx}. By Subsection 3.1
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we have é;(a)’fur = pr and éfi_(a)bmr = id. According to properties a)
and b) of Subsection 5.2, this implies that @g’/]_-(@P(a)) belongs to

— clg/r (QN&/}'(KFV(El))) , where & runs over the set of all finite

extensions of F in F*, which is a group generated by clg,();
— clg/r(amod VKN (F)).
Therefore, G)?/]_-(ép(a)) = clg/r(a). O

5.3. Compatibility of class-field theories. Suppose E is a finite field
extension of F' and F, = (F),)n>0 with Fy = F, is a special SDR tower.
Then E, = (Ep)n>0, where E, = EF,, is also a special SDR tower and
€ = X(E,) is a finite separable extension of F = X(F,). Notice that for
any n > 0, there is a commutative diagram

Ne,r
Ky(E) K§(F)
lNg/En iNf/Fn
N
K4 (En) S K (F)

We shall use the notation Ng /F,n for the morphism
KN (F)/Ney(Kn(€) — Kn(Fa)/Np, 5, Ky (En)

induced by Nr/p, .
Suppose that E is abelian over F. Then £ is also abelian over F, and for
any n > 0, we have natural homomophisms

te i : Gal(E/F) — Gal(E,/Fy)

which are isomorphisms for n > 0.
Let tg)r0 = tg/r and N r o = Ng) 7.

Proposition 5.2. The diagram

Gal(&/7) KA Ne K (€)
iLS/F \LN&‘/J—'
Gal(E/F) Oz/s K4(F)/Ng pK4(E)

15 commutative.

Proof. Let 7 € Gal(€/F). Construct 7 € Gal(E" /F) and S = E"|7=iq to
define Fesenko’s element

Og5(1) = Nsyr({un,.... an}) € Kj(K)/NgycK iy (£).

where w1, ...,uy is a system of local parameters of S.
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For any n > 0, consider an analogue
//5“7‘/]:771 . Gal((c/‘ur/f) — Gal(E;f/Fn)

of tg/icm- Let Tn = tg)rn(T), Tn = tewF, (7) and set X, = Ly'|7,=id-
Then from the construction of the field-of-norms functor X it follows that
Y. = (Zn)n>0 is an SDR tower and X (X,) = S. Therefore, for n > 0,

Ng/f,n(@g’)/}'(T)) = Ng/rn(Ns/z({t, ..., un}) mod Ng/r K (€))
= Ny, /5, Nsys, ({t1, ... un}) mod Ng, 5, Kiy(En)) = OF 5, (12)-
It remains to apply the property b) from Subsection 5.2. U

Finally, we can use the results of Subsection 4.4 to establish the com-
patibility of class field theories for the fields F' and F = X (F,) if F, is an
arbitrary SDR tower such that (j; € F,. This property can be stated in
the following form.

Corollary 5.1. With the above notation and assumptions one has the fol-
lowing commutative diagram

S} _
rg/pM s Rn(F) KN (F)a
\LL]:/F ﬁf/Fi NF/F

b/, M @;}; 7>
L'y /p Kn(F)m Kn(F)m

where the right horizontal maps are natural embeddings and vr/p : I'r —
'z is given by the field-of-norms functor.

5.4. Relating Witt-Artin-Schreier and Kummer theories. Consider
an N-dimensional analogue R(N) of Fontaine’s ring. By definition, R(N) =
@(Op/p)n, where the connecting morphisms are induced by the p-th
n
power map on Op. If r = (r, modp),>o € R(N) with all r, € O and
m € Z, set r™ = lim, rﬁHm € OFOO and consider Fontaine’s map
v: W(R(N)) — Op_ given by the correspondence
(Woy -« oy Why et ) > Zp”wgo).
n=0
Let F, be an SDR tower with parameters (0,c¢). Then we have natural
embeddings
OF =m0y, /p§ C lm Op/py = lm Op/p = R(N),
n n n

where Or,OF, and Of are the corresponding N-dimensional valuation
rings. This implies that F C Ro(N) := Frac R(N). Note that Ro(N) is
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algebraicly closed and equals the completion (with respect to the first val-
uation) of the algebraic closure of F in Ry(N). We have also a natural
embedding O,z C W(Ro(N)). In particular, I'r acts on Ro(N). In terms
of the fixed system of local parameters in L(]—" ), F and F,, where n > 0,

we have for all 1 < i < N, that ¢; = L , ti = [ti] € W(R(N)) and
v(t;) = nhngoﬁ( "

Suppose w € Z>p and F, is w-admissible, cf. Introduction for the de-
inition of an w-admissible tower. Then we can fix a primitive p™+¥-th
primitive root of unity (yr+. € Fi, and introduce an element H, € Opr)
as follows.

Let H' € F be such that

(5.3) H' modp};;wc = (M+w mod p%

under the identification O;:/pé’: ¢ = Op,/p% from the definition of F =
X(F,). Take any H € Opr) such that Hmodp = H' and set H, =
Hp]M«H/J - 1

Suppose f € m® = {3 wat® | wa € W(k)}. For any 7 € Tz, let a(f) =
a>0
7(T) — T, where T € W(Ry(N)) is such that o(T) — T = f/H,. Clearly,

a-(f) € Zy for all T € T'r.
Suppose g € F* For any 7 € I'r, define b.(g) € Z/p™ such that

(O UL = (ﬂ_ﬁ;g), where U € F is such that UP" = g. We use the
identification I'z = Gal(F/Fy,) given by the field-of-norms functor X.

Recall that

Zwata =y (HE(waata))

a>0 a>0

defines a homomorphism 6 : m® — F% | where E(w, X) is the Shafarevich
generalisation of the Artin-Hasse exponential, cf. Introduction.

Proposition 5.3. For any f € m°

ar(f) mod pM = b, (6(f)).

Proof. Let ¢ € R(N) be such that £® =1 but e # 1. We assume that
eM+w) — ¢/, Then relation (5.3) implies that

and T € T'r, we have the equality

—(M+w) p¥c
Hmodp =¢&P mod p'r °.

The ideal p’;f © is generated by the element (— 1)C(p_1)/ rvr(P) and, therefore,

w-+1

HP " modp = M mod (e — 1)CP“(p71)/vF(p).
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Using that F, is w-admissible, we obtain the existence of w; € W(R(N))
and w9 € W(Ro(N)) such that

5 = (e 4 (] - 1)2wn + pud.

Therefore, there are wy € W(R(N)) and w) € W(Ry(N)) such that
H, = [g] — 1+ ([¢] — 1)*wa + p™w

and for some w € W(R(N)) we have

;w - <[€]1_1 + w> mod pM W (Ry(N)).

For any 7 € T'z, let a..(f) = 71" — T' € Z,, where T' € W(Ry(N)) is

such that o(T")—T" = f/([e] —1). Clearly, slg)goas(fw) = 0 and this implies
that a’ (f) = a-(f) mod p™.

Now one can proceed along the lines of the Main Lemma from [1] (or cf

also [2]) to establish that a’ (f)modp™ = b, (8(f)). O

Corollary 5.2. If ag € W (k) is such that Tr(ag) = 1 then

a) 0(aoHy) is a pM-primary element of F;

b) if ¢ denotes the Frobenius automorphism of the extension Fy,./F then
¢(0(anHo)) = Cu(0(coHo))-

Proof. Indeed, 8(agHy) € 14+ mp and therefore we can study I' p-properties
of the extension F( P/ O(apHyp)) by studying I' z-properties of the exten-
sion F(T'), where T' € Wiy (Ro(N)) is such that o(T") — T = «ag. But this
extension is absolutely unramified of degree p™ by Witt’s explicit formula
from Section 2). This proves part a). In order to prove b), it is sufficient to
note that ¢(T) — T = o*(T) — T = Tr(ag) = 1, where [k : F,] = s and then
to apply Proposition 5.3. O

5.5. Proof of Theorem 0.1. Suppose F, is an SDR w-admissible tower
with parameters (0, c), Fo = F, F = X(F,) and § € Ky (F). Then there is
an 7 € I'% such that (in the notation of Subsection 4)

OF(rmodp"") = Np/p(Bmodp™).

By Corollary 5.1, there is an 7 € T'% such that 7 = vr/r(7) and O%(F) = 3,
using the notation from the Introduction.

For any f € m?, let (@(f),./\/’]:/p(ﬂ))ﬁ = Cﬁfw, where A € Z/pM.

We construct the corresponding H, € m', cf. Introduction and use

Proposition 5.3 to deduce that:
— if U € W(Ry(N)) is such that o(U) — U = f/H,, then

U — U)mod p™ = A.
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Finally, by Proposition 2.3,

A="Tr <ReSL(]:)hJ;d10g(Colﬁ)) :

Theorem 0.1 is proved.

5.6. Relation to Vostokov’s pairing. Suppose that (3 € F and FY =
{F? | n > 0} is a very special tower given in notation of Subsection 4.3
such that F) = F. Recall that each F has a system of local parameters
w&“), - ,ﬂ]({,l) such that for 1 <7 < N, wgo) = m; and 7T§n+1)p = Wz(n). Then
FY is a 0-admissible SDR. tower. As earlier, F = X (F?) with system of local
(n)

parameters t; = yLmri , where 1 < ¢ < N, and L(F) is the corresponding

n
absolutely unramified lift of F to characteristic 0 with local parameters
p,t1,...,tn such that t;modp = t;, 1 < i < N. We have the following
result.

Theorem 5.1. For above SDR tower F?, the explicit formula for the M-
th Hilbert symbol from Theorem 0.1 coincides with Vostokov’s pairing. In
other words, for very special towers the field-of-norms functor transforms
Witt’s pairing to Vostokouv’s pairing.

Proof. Note that the very special tower F¥ has the following advantages:

— themap 7 : 1+m® — F is given by the correspondences t; — m;, 1 <
1 < N, and hence coincides with the evaluation map x from the beginning
of section 3;

— the Coleman map Col : K4 (F) — K4 (L(F)) has a very simple
explicit description in terms of the standard topological generators of the
corresponding K-groups, cf. the beginning of Subsection 2.3.

It will be sufficient to verify the coincidence of the both explicit formulae
on the standard topological generators of F*/p™ and Ky (F)/p™ from
Subsections 1.2 and 1.3. It can be seen that on these generators (due to
the above mentioned properties of very special towers) the formula from
Theorem 0.1 coincides with the “¢ = 0”-term of Vostokov’s formula. In the
notation of Section 3 we, therefore, need to verify that for 1 < i < N, the
1-parts

V= Tr(ResHO_lfi(a/p)dloguo N+ N(0/p)diogtii—1 Adiogtit1 A« - - Adiggun )

of Vostokov’s formula give a zero contribution on standard generators.
The variable ug can take the following values:
ai) tj, where 1 < j < N;
ag) 1+ [0]t%, where 0 € k and a = (a1, ...,ay) € ZV \ pZ", a > 0;
a3) apHp in the notation from Subsection 5.5.
The symbol {ui,...,un} can take the following values (the generators
containing €y do not come from Ky (F)):
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bl) {tl,...,tN};
b2) {1+[01]zb’t1’ s 7ti(b)—lati(b)+17 ERR) tN}’ where 0’ € k,b= (bla SRR bN)
belongs to ZN \ pZN, b > 0, by = . - biy+1 = 0mod p and by # 0 mod p.

In the case b;) V; = 0 for any ug, because f; = 0.

In the case a3z) V; = 0 for any {ui,...,un}, because (c/p)diogHo €
ngoo.

In the case ajbe) we can assume that j = i(b) and ¢ = 1. Then the
differential form from the expression of Vj is a linear combination of the
differential forms Ho_lﬁwd]ogtl A Ndiggty for w € N, u # Omodp. All
these differential forms have zero residue because Hy € o(m®)modp™.

Similarly, in the case agsbz) we can assume that ¢ = 1 and that the
corresponding differential form is a linear combination of the forms

Ho_lﬁ‘Spa—i_ubd]Ogtl VANIERIVAY d]ogtN

for s,u € Z>o and u # Omod p. All these forms have zero residue for the
same reason.
The Theorem is proved. O
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