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Journal de Théorie des Nombres
de Bordeaux 23 (2011), 603-627

Computing the number of certain Galois
representations mod p

par Tommaso Giorgio CENTELEGHE

Résumé. En utilisant le lien entre représentations galoisiennes et
formes modulaires provenant de la Conjecture de Serre, nous cal-
culons, pour tout premier p ≤ 2593, une borne pour le nombre de
classes d’isomorphismes des représentations galoisiennes de Q sur
un Fp–espace vectoriel de dimension deux qui sont irréductibles,
impaires, et non–ramifiées en dehors de p.

Abstract. Using the link between Galois representations and
modular forms established by Serre’s Conjecture, we compute, for
every prime p ≤ 2593, a lower bound for the number of isomor-
phism classes of Galois representation of Q on a two–dimensional
vector space over Fp which are irreducible, odd, and unramified
outside p.

1. Introduction
Let p be a prime number and Fp an algebraic closure of Fp, the finite field

with p elements. LetGQ denote the absolute Galois group of Q, with respect
to the choice of an algebraic closure Q of Q. An important consequence
of (the level one case of) Serre’s Modularity Conjecture is the following
finiteness theorem:

Theorem 1.1. There are only finitely many isomorphism classes of con-
tinuous representations ρ : GQ → GL2(Fp) that are irreducible, odd, and
unramified outside p.

Continuity in this context means that ρ has open kernel; compactness
of GQ implies that ρ has finite image, and there exists a finite extension
F(ρ) of Fp for which a model of ρ over F(ρ) can be found. The statement
obtained from Theorem 1.1 replacing Fp by a finite subfield F was known
to be true classically as a consequence of the Hermite–Minkowski Theorem.
The point of Theorem 1.1 is that for every prime p one can find a finite
subfield F of Fp so that all the representations considered can be realized
over F.
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Let R(p) denote the non–negative integer defined by Theorem 1.1. From
the refined version of Serre’s Conjecture one immediately sees that R(p) is
bounded from above by a function U(p) that behaves like p3/48 + O(p2)
(cf. §3, (3.1) and (3.2)). Professor Khare has raised the question of whether
this upper bound gave the correct asymptotic of R(p) (cf. [10], §8). In his
University of Utah thesis the author conjectured a positive answer. The
conjecture predicts that congruences modulo p between characteristic zero
eigenforms of weight k ≤ p + 1 are “rare” and that, moreover, the mod p
Galois representations of Q associated to classical cusp forms of level one
tend to be irreducible and wildly ramified at p.

In the computations presented in this paper we collected for all primes
p ≤ 2593 a lower bound L(p) of R(p). Using the link between Galois repre-
sentations and modular forms established by Serre’s Conjecture, we com-
puted L(p) by estimating the number of systems of Hecke eigenvalues aris-
ing from modular forms mod p of level one and corresponding to Galois
representations of Q that are irreducible. The method adopted is based
on the analysis of a single Hecke operator Tn to deduce information about
the mod p arithmetic of the whole Hecke ring T0

k (cf. §3 Prop. 3.2). One
of the limits of this approach is that for a given p we are not always able
to compute the number of representations that are tamely ramified, we in-
stead obtain an upper bound. It is this very fact which prevents us from
computing the exact value of R(p) in all cases (cf. §6). Craig Citro and
Alexandru Ghitza considered the same computational project, the method
they used for computing is however different (cf. [4]). All our computations
have been performed using Magma (cf. [3]).

In section 2 standard results from the theory of modular forms and Galois
representations that are needed in the sequel are recalled. Section 3 contains
a detailed explanation of the method used for computing L(p). Sections 4
and 5 provide the commutative algebra on which our method is based, they
are independent of the rest of the paper. The table with our results appears
in section 6; among other things, the reader will find there the values of
L(p) that we have collected and the value of the ratio (U(p) − L(p))/p2,
which shows a tendency to remain close to zero.

The work presented in this paper started within my thesis project, I
would like to express my gratitude to professor Chandrashekhar Khare for
suggesting this direction of research as well as for the invaluable attention
that I have received from him. This paper benefitted from many interesting
conversations and advice that I received from professors Gebhard Böckle
and Gabor Wiese during the past year. I am grateful to them for their
important help. I would like to thank professor Ulrich Görtz for letting
me use the computer Pluto at the Institute for Experimental Mathematics
in Essen for performing the computations. I want to thank Craig Citro,
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who taught me much about computing with modular forms. I thank the
anonymous referee of the paper for helpful comments and remarks that
improved the exposition. Finally, the help of Panagiotis Tsaknias with the
implementation of the algorithm and the production of the table was vital
for me. I heartily thank him for his kindness and availability.

2. Generalities
In this preliminary section we adopt a very utilitarian point of view and

recall all the results that we need from the theory of modular forms (both
classical and mod p) and their associated mod p Galois representations.
For more details on modular forms on SL2(Z) and their Hecke operators
the reader can consult [12] and [16]. For an exposition of classical theorems
linking mod p modular forms to Galois representations, as well as some
more recent important development, the papers [5] and [6] are beautiful
references. We prefer not to say anything about Serre’s Conjecture here.
Instead, we will constantly keep this important theorem in the back of our
mind as motivation for studying systems of Hecke eigenvalues arising from
modular forms mod p.

Let Mk denote the space of classical modular forms of weight k on the
group SL2(Z), and let M0

k be its cuspidal subspace. Denote by Mk(Z) (resp.
M0
k(Z)) the submodule of Mk (resp. M0

k) given by forms f whose expansion
at infinity has integer coefficients. It is a basic fact that these submodules
define integral structures, meaning that the natural inclusions Mk(Z) ⊂ Mk

and M0
k(Z) ⊂ M0

k induce isomorphisms Mk(Z)⊗C ' Mk and M0
k(Z)⊗C '

M0
k. One way to see this is by first observing that Mk admits a C–basis given

by certain monomials in the Eisenstein series E4 and E6, whose expansions
at infinity lie in Q ⊗ Z[[q]] (cf. [12], I Thm. 2.2 and X §3, or [16], VII §3
Cor. 2 and §4), and then conclude by arguing that the Z–rank of Mk(Z)
cannot exceed the dimension of Mk.

Let p be a prime number. Following [14], we define the space Mk(Fp)
of modular forms mod p of weight k on SL2(Z) to be Mk(Z)/pMk(Z),
similarly the cuspidal subspace is M0

k(Fp) = M0
k(Z)/pM0

k(Z). If p > 3,
then these definitions agree with the geometric definitions à la Katz ([9],
Theorem 1.8.2).

For an integer n > 0, the n–th Hecke operator on the space M0
k is denoted

by Tn, without reference to the weight k. The Hecke operators all commute
with each other, and if `1, . . . , `r are the primes dividing n, the operator
Tn can be written as a polynomial in the T`1 , . . . , T`r with coefficients in Z
(cf. [16], VII §5).

By definition, the Hecke ring T0
k is the subring of EndC(M0

k) generated
by all the operators Tn, for n > 0, and the Hecke algebra (T0

k)C is the
smallest C–subalgebra of EndC(M0

k) containing all the Tn’s.
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For every n, the operator Tn is a semi–simple endomorphism preserving
the integral structure M0

k(Z). Moreover, the algebra (T0
k)C acts on M0

k with
multiplicity one (cf. [16], VII §5). As a consequence of these two facts one
can deduce the following:

Theorem 2.1. There exist number fields Ki, for 1 ≤ i ≤ r, with rings of
integers Oi, and an injective ring homomorphism

θk : T0
k −→

∏
1≤i≤r

Oi

which has finite cokernel. The Z–rank of T0
k is equal to dimC(M0

k).

A system of eigenvalues arising from M0
k is a collection (a`) of complex

numbers, indexed by all primes `, so that there exists a nonzero form f ∈ M0
k

for which T`(f) = a`f , for all `. One can show that there is a bijection
between systems of eigenvalues arising from M0

k and Homrings(T0
k,C).

If θk,i : T0
k → Oi denotes the composition of θk with the projection onto

Oi, then all the systems of eigenvalues arising from M0
k are described by

(σ(θk,i(T`))), where 1 ≤ i ≤ r and σ ∈ GQ is any element (each Ki is
considered as a subfield of C).

Let us remark that in all known examples r is equal to 1 and the sys-
tems of eigenvalues arising from M0

k form a unique Galois orbit. Maeda’s
conjecture is the statement that this happens for all k.

The Hecke ring T0
k acts naturally on the space M0

k(Fp) and, by extension
of scalars, on M0

k(Fp)⊗ Fp, denoted by M0
k(Fp) in what follows. A system

of eigenvalues mod p arising from M0
k(Fp) is a collection Φ = (a`)`6=p of

elements a` ∈ Fp, indexed by primes ` 6= p, so that there exists a nonzero
form f ∈ M0

k(Fp) with T`(f) = a`f .
If Φ = (a`)` 6=p is any system of eigenvalues mod p, one can find a nonzero

form f ∈ M0
k(Fp) giving rise to Φ that is an eigenvector for Tp. Therefore

there is a ring homomorphism λΦ : T0
k → Fp defined by T (f) = λΦ(T )f ,

for T ∈ T0
k. The p–th eigenvalue ap, and hence the morphism λΦ, is not

unique in general, for this reason we have preferred to not include it in the
definition of eigensystem mod p. However, it can be shown that uniqueness
holds when the weight is not too large with respect to p:

Proposition 2.1. If k ≤ 2p − 1 then there is a natural bijection between
mod p systems of eigenvalues arising from M0

k(Fp) and the set of Fp–valued
points of Spec(T0

k).

By a classical result of Eichler, Shimura and Deligne, to any mod p
system of eigenvalues Φ one can attach a continuous, semi–simple Galois
representation

ρΦ : GQ −→ GL2(Fp),
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which is odd, unramified outside p, and that is characterized by the equal-
ities

(2.1) tr(ρΦ(Frob`)) = a`, det(ρΦ(Frob`)) = `k−1,

for all primes ` 6= p, where Frob` is a Frobenius element of GQ at ` (cf. [6],
§11 Prop. 11.1).

If h ∈ Z≥0 is a nonnegative integer then it follows from the theory of
the θ–operator on mod p modular forms (cf. [6], §4) that the collection
(`ha`) 6̀=p is a system of eigenvalues arising from M0

k+h(p+1)(Fp), denoted
by Φ(h). We have

ρΦ(h) ' χhp ⊗ ρΦ,

where χp : GQ → F∗p is the mod p cyclotomic character, and Φ(h) is usually
called the h–fold twist of Φ.

The following theorem is due to Tate and Serre. It has been generalized
to higher levels by Jochnowitz (cf. [8]) and Ash–Stevens (cf. [2]).

Theorem 2.2. If Φ is a system of mod p eigenvalues arising from M0
k(Fp),

then there exists a twist Φ(h) that arises from M0
k′(Fp), where 2 ≤ k′ ≤ p+1.

In the weight range 2, 3, . . . , p+ 1, and when ρΦ is irreducible, a theorem
of Deligne (cf. [6], §12, Prop. 12.1) and one of Fontaine (cf. [5], §2 Thm.
2.6 and §6 ) say that the semi–simplification of the local representation
(ρΦ)p, obtained by restricting ρΦ to a decomposition subgroup Dp < GQ
at p, is determined on the inertia subgroup by the (unique) eigenvalue ap
associated to Φ. We only point out that ap 6= 0 if and only if (ρΦ)p is
reducible.

Let Φ be a system of eigenvalues mod p, and assume that ρΦ is irre-
ducible. Since we are working with modular forms of level one, the local
representation (ρΦ)p is ramified and one observes that (ρΦ)p is semi–simple
if and only if it is tamely ramified. There is the following criterion for
deciding when this happens:

Theorem 2.3. Let Φ be a system of eigenvalues arising from M0
k(Fp),

where 2 ≤ k ≤ p + 1, and so that ρΦ is irreducible. Then (ρΦ)p is tamely
ramified if and only if one of the following mutually exclusive conditions
holds:

i) Φ(2−k) arises from M0
p+3−k(Fp);

ii) Φ(1−k) arises from M0
p+1−k(Fp).

From the description of (ρΦ)p given by the theorems of Deligne and
Fontaine mentioned above, and from an elementary analysis of the θ–cycle
of Φ (cf. [7]), one sees that part i) in Theorem 2.3 is equivalent to (ρΦ)p
being irreducible. In the much harder case when (ρΦ)p is reducible, the
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criterion was conjectured by Serre and proved by Gross (cf. [6], §13 Thm.
13.10).

3. Computations
Let p be any prime number, and let E Irr(p) be the set of all systems

Φ = (a`) 6̀=p of Hecke eigenvalues mod p arising from M0
k(Fp), for some

k, so that the associated Galois representation ρΦ is irreducible. By the
level one case of Serre’s Conjecture, proved by Khare in 2005 (cf. [11]), the
cardinality of E Irr(p) is equal to the integer R(p) defined in the Introduction.

According to Theorem 2.2, any eigensystem Φ admits a twist in the
weight range 2 ≤ k ≤ p+1. Since the number of systems of eigenvalues mod
p arising from M0

k is bounded from above by dimFp
(M0

k(Fp)) = dimC(M0
k),

we have the following inequality

(3.1) R(p) = |E Irr(p)| ≤ (p− 1)
∑

2≤k≤p+1
dimC(M0

k).

Let U(p) be the upper bound for R(p) given by inequality (3.1). Using the
well–known formulas for dimC(M0

k) (cf. [12], p. 12), one finds that there is
an explicit degree 3 polynomial Fα(x) ∈ Q[x], depending only on the residue
class α of p mod 12, and unique if α 6= 2, 3 mod 12, so that Fα(p) = U(p)
for all p ∈ α. Letting p grow to infinity, one finds that
(3.2) U(p) ∼ p3/48 +O(p2).
Professor Khare has raised the question of whether this estimate gave the
correct asymptotic behaviour with p of R(p) (cf. [10], §8), in his thesis
the author was led to conjecture a positive answer. The difficulty of this
conjecture is producing lower bounds for R(p). In this direction, the best
result known today is due to Serre, who showed in an unpublished corre-
spondence with Khare that R(p) is bounded from below by a function of
the type cp2 +O(p), for a constant c > 0 (cf. also [4]).

In our computations, for all primes p ≤ 2593, we obtain a lower bound
L(p) for R(p). The values of L(p) are displayed in the fifth column of the
table of section 6 next to the ratio (U(p)−L(p))/p2, appearing in the sixth
column. In the range explored this ratio is close to zero, showing a tendency
for R(p) to approach U(p). For several primes p, we found that L(p) is the
actual value of R(p); to highlight this, L(p) appears starred in the table.
These primes p are precisely those for which our computations revealed
the non–existence of mod p representations of the type considered that are
tamely ramified at p and of non–dihedral type (cf. §3.3 for more details).

We proceed to explain in detail how we computed L(p). Since U(p) = 0
for p < 11, from now on p will be a prime ≥ 11. Part of the theoretical
basis of the method is provided by the commutative algebra explained in
sections 4 and 5 of the paper. We adopt here some of the notation there
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established; so that, for example, δR denotes the discriminant of a finite
SQ–ring R (cf. §4).

Let k be an even integer in the range 2, 4, . . . , p + 1, and let E(p, k) be
the set of mod p systems of Hecke eigenvalues Φ appearing in the space
M0
k(Fp). Consider the following subsets of E(p, k), defined in terms of the

Galois representation ρΦ associated to Φ:
EEis(p, k) = {Φ ∈ E(p, k) | ρΦ is reducible};
Ep−tame(p, k) = {Φ ∈ E(p, k)− EEis(p, k) | (ρΦ)p is tamely ramified};
Ep−wild(p, k) = {Φ ∈ E(p, k)− EEis(p, k) | (ρΦ)p is wildly ramified};
Ep−split(p, k) = {Φ ∈ E(p, k)− EEis(p, k) | (ρΦ)p is decomposable};
Ep−irr(p, k) = {Φ ∈ E(p, k)− EEis(p, k) | (ρΦ)p is irreducible}.
Notice that there are the following disjoint unions (cf. section 2):

E(p, k) = EEis(p, k) ∪ Ep−tame(p, k) ∪ Ep−wild(p, k),

Ep−tame(p, k) = Ep−split(p, k) ∪ Ep−irr(p, k).

Moreover, for k ≤ p+ 1, there are natural bijections

Ep−irr(p, k) 3 Φ←→ Φ(2−k) ∈ Ep−irr(p, p+ 3− k),

Ep−split(p, k) 3 Φ←→ Φ(1−k) ∈ Ep−split(p, p+ 1− k).

From Theorem 2.3 we deduce the formula

(3.3) |E Irr(p)| = (p−1)
∑

2≤k≤p+1

[
|E(p, k)| − |EEis(p, k)| − 1

2 |E
p−tame(p, k)|

]
For all primes p ≤ 2593 and all weights k ≤ p+1, we managed to compute

the values of |E(p, k)| and |EEis(p, k)| (cf. §3.1, §3.2). On the other hand we
obtained only an upper bound for |Ep−tame(p, k)| (cf §3.3). This resulted in
producing the lower bound L(p) of |E Irr(p)| = R(p) we were looking for.

3.1. Computation of |EEis(p, k)|. This is the simplest quantity to com-
pute, at least when k ≤ p+ 1, thanks to the following criterion:

Proposition 3.1. Let p be a prime and k ≤ p + 1 an integer so that
M0
k(Fp) 6= 0. Then EEis(p, k) is not empty if and only if p divides the numer-

ator of the k–th Bernoulli number bk. Moreover, if EEis(p, k) is not empty
then it consists only of the mod p eigensystem Φ(Ek) = (1 + `k−1)`6=p.

Proof. A possible proof can be carried out using a filtration argument. The
details can be found in ([14], §3.2 i)), where a proof in the case k < p − 1
is given. The proof there extends to the cases k ≤ p+ 1, mainly thanks to
the fact that M0

p(Fp) = 0. �
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3.2. Computation of |E(p, k)|. Let k be a weight ≤ p+1, and nk the in-
teger dimFp

(M0
k(Fp)) = dimC(M0

k). Instead of computing directly |E(p, k)|,
we find it convenient to compute the difference nk − |E(p, k)| between the
number of characteristic zero eigensystems arising from M0

k and that of mod
p eigensystems arising from the same space. Such integer can be considered
as a measure of the occurrence of mod p congruences between eigenforms
in M0

k. The method used is described in the following application of Propo-
sition 5.1 from section 5:

Proposition 3.2. Let r be a positive integer, Tr ∈ T0
k the r–th Hecke

operator, and hr(x) ∈ Z[x] its characteristic polynomial as an endomor-
phism of M0

k(C). Assume that the discriminant δr of hr(x) is nonzero.
Let f (r)

p be the number of Fp–valued points of the spectrum of the ring
Z[Tr] ' Z[x]/(hr(x)), then

(3.4) |E(p, k)| ≥ f (r)
p ≥ nk − νp(δr).

Moreover if f (r)
p = nk − νp(δr), then

(3.5) |E(p, k)| = f (r)
p = nk − νp(δr).

In this case p does not divide the index of Z[Tr] in its integral closure inside
Z[Tr]⊗Q = T0

k ⊗Q. In particular, p does not divide [T0
k : Z[Tr]], we have

νp(δT0
k
) = νp(δr), and the inclusion Z[Tr] ⊂ T0

k induces an isomorphism

Fp[x]/(h̄r(x)) ' T0
k/pT0

k,

where h̄r(x) denotes the reduction mod p of hr(x).

Notice that the integer f (r)
p is simply the degree of the largest square–free

factor of the reduction mod p of hr(x).
As stated in the proposition, the subring Z[Tr] ⊂ EndC(M0

k) is isomor-
phic to Z[x]/(hr(x)) thanks to the assumption δr 6= 0.

Definition. If the characteristic polynomial hr(x) of Tr acting on M0
k has

nonzero discriminant and satisfies the numerical condition

f (r)
p = nk − νp(δr)

appearing in the second part of the proposition, then we will say that the
Hecke operator Tr, acting on M0

k, is p–good.

Of course the proposition can only be useful if one disposes of a Hecke
operator Tr so that δr 6= 0, which amounts to the requirement that the
eigenvalues of Tr acting on M0

k be pairwise distinct. This condition is per-
haps not too restrictive since in all known cases hr(x) is even irreducible,
when r > 1.
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Consider all pairs (p, k), where p is a prime number ≤ 2593, and k is an
even integer ≤ p + 1 so that M0

k is nonzero. For each such pair, we looked
for the least integer r, with 1 < r < 13, such that Tr acting on M0

k is a
p–good Hecke operator. In the table below we describe for how many pairs
(p, k) a given r in the above range had such property.

r 2 3 5 6 7 10 11 12
222039 256 36 5 13 2 4 2

Table 3.1. Number of pairs (p, k) such that Tr is p–good on M0
k

Out of the 222370 pairs (p, k) considered, in only 13 cases there is no
integer r < 13 (and there seems to be no integer at all) so that Tr acting
on M0

k is p–good. It is the ease of finding p–good Hecke operators which
makes Proposition 3.2 efficient for computing the difference nk − |E(p, k)|.

The 13 pairs (p, k) for which we are unable to find a p–good Hecke
operator acting on M0

k are: (491, 246), (563, 282), (751, 376), (1399, 700),
(1423, 712), (1567, 784), (1747, 874), (1823, 912), (1879, 940), (1931, 916),
(2083, 1044), (2243, 1122), (2347, 1174). All these pairs are of the form
(p, (p + 1)/2), and the space M0

(p+1)/2 gives rise to a set of mod p sys-
tems of eigenvalues whose associated representations are of dihedral type.
We have a good understanding of dihedral systems, and in subsection 3.4
we explain how we computed |E(p, k)| in these cases. As it turns out, in all
these cases we have |E(p, k)| = nk.

Overall we found that nk − |E(p, k)| is always < 3, and the number of
times the values 0, 1 and 2 are attained are described by the next table,
which gives an idea of how rare congruences are in this setting.

t 0 1 2
|{(p, k) | nk − E(p, k) = t}| 222171 198 1

Table 3.2. Number of pairs (p, k) such that nk − |E(p, k)| = t

Remark. Let T̃0
k be the integral closure of the Hecke ring T0

k in T0
k ⊗Q.

For all the pairs (p, k) considered, p does not divide the index of T0
k in T̃0

k.
This follows from Proposition 3.2 whenever there exists a p–good Hecke
operator Tr acting on M0

k, and it follows from the equality |E(p, k)| =
nk in the remaining 13 cases. The conclusion is that, if k ≤ p + 1 and
p ≤ 2593, we have Homrings(T0

k,Fp) = Homrings(T̃0
k,Fp), and there is no

example of a mod p congruence between two distinct eigensystems arising
from M0

k caused by the fact that the order T0
k is not maximal at p. In other

words, all the mod p congruences between distinct characteristic zero Hecke



612 Tommaso Giorgio Centeleghe

eigensystems arising from M0
k that we had found can be explained in terms

of ramification properties above p of the components of T0
k ⊗Q.

3.3. An upper bound for |Ep−tame(p, k)|. The set Ep−tame(p, k) is the
disjoint union of Ep−split(p, k) and Ep−irr(p, k), and we will bound these two
sets separately using an analogous method. In order to bound the size of
Ep−split(p, k) (resp. Ep−irr(p, k)) we need to estimate how often there exists a
system of eigenvalues Φ arising from M0

k(Fp) so that the eigensystem Φ(1−k)

(resp. Φ(2−k)) arises from M0
p+1−k(Fp) (resp. M0

p+3−k(Fp)) (cf. Theorem
2.3).

Let h(x) and j(x) be monic polynomials in Z[x] and let p be any prime
number. Consider the greatest common divisor dp(x) ∈ Fp[x] of the reduc-
tion mod p of h(x) and j(x).

Definition. The linking number at p of h(x) and j(x) is the degree of
dp(x), it is denoted by ep(h, j).

The integer ep(h, j) is a measure of the congruences mod p between the
roots of h(x) and j(x). It is zero if and only if the reduction mod p of h(x)
and j(x) have no common roots in Fp.

Proposition 3.3. Let ` be any prime 6= p, h(x) ∈ Z[x] the characteristic
polynomial of T` acting on M0

k, and j(x) ∈ Z[x] the characteristic polyno-
mial of `k−1T` acting on M0

p+1−k. Then

|Ep−split(p, k)| ≤ ep(h, j).

Proof. Let Φ = (aq)q 6=p be a system of eigenvalues arising from M0
k(Fp)

so that ρΦ is irreducible. By the tameness criterion established by Gross
(cf. Thm. 2.3 ii)), the restriction of ρΦ to a decomposition group at p is
decomposable if and only if there exists a system of mod p eigenvalues
(bq)q 6=p arising from M0

p+1−k(Fp) so that

aq = qk−1bq,

for all primes q 6= p. In particular, setting q = `, we see that
|Ep−split(p, k)| ≤ ep(h, j),

where ep(h, j) is the linking number at p of the polynomials h(x) and j(x).
The proposition follows. �

Similarly we have (cf. Thm. 2.3 i)):

Proposition 3.4. Let ` be any prime 6= p, h(x) ∈ Z[x] the characteristic
polynomial of T` acting on M0

k, and j(x) ∈ Z[x] the characteristic polyno-
mial of `k−2T` acting on M0

p+3−k. Then

|Ep−irr(p, k)| ≤ ep(h, j).
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For any given prime ` 6= p, the two propositions provide upper bounds for
|Ep−split(p, k)| and |Ep−irr(p, k)|. In both cases we kept the best upper bound
obtained for ` = 2 and 3. In the special case where k = (p + 1)/2 (resp.
k = (p + 3)/2), in order to bound |Ep−split(p, k)| (resp. |Ep−irr(p, k)|) we
considered the Hecke operator T`0 , where `0 is smallest prime ` 6= p that is
not a quadratic residue mod p, for otherwise the characteristic polynomials
of T` and `k−1T` (resp. `k−2T`) acting on M0

k would have the same mod p
reduction and the resulting upper bound would be dimC(M0

k), the worst
possible.
Remark. The upper bounds for |Ep−split(p, k)| and |Ep−irr(p, k)| obtained
with the methods of Propositions 3.3 and 3.4 turned out to be reasonably
small. We find for example that |Ep−split(p, k)| is zero for 221984 pairs (p, k)
out of the total 222370 analyzed, and that |Ep−irr(p, k)| is zero in 222143
cases. In the third and fourth column of the table of section 6 one can find
the translation of this data in terms of an upper bound on the number of
mod p Galois representations of Q (up to twisting by the mod p cyclotomic
character), that are tamely ramified.

If h is the class number of Q(
√
−p), then for p ≡ 3 mod 4 and

k = (p+ 1)/2 it can be shown that the set Ep−split(p, k) contains precisely
(h− 1)/2 eigensystems Φ so that Φ = Φ(p−1)/2. These are the eigensystems
whose associated representations are of dihedral type (cf. §3.4), in this case
we have the inequality Ep−split(p, (p+ 1)/2) ≥ (h− 1)/2.

Summarizing, we observe that if p is a prime for which we find that
Ep−Irr(p, k) is empty for all k ≤ p + 1, and that the union of the sets
Ep−split(p, k) for k ≤ p+1 consists of only dihedral eigensystems (necessarily
all appearing in weight k = (p+ 1)/2), then our method leads to the exact
value of R(p), provided that we compute h. This happens for 201 primes,
in the table of section 6 the corresponding values L(p) appear starred.

3.4. The dihedral case. Let Φ be a system of mod p eigenvalues arising
from M0

k(Fp) so that ρΦ is of dihedral type, meaning that the projective
image G of ρΦ in PGL2(Fp) is isomorphic to a dihedral group Cn o Z/2Z,
where Cn is a cyclic group of order n ≥ 2 and the nontrivial element of
Z/2Z acts on Cn by inversion. Since ρΦ is, by definition, semi–simple, it
follows that any representation ρΦ of dihedral type acts irreducibly.

Representations of dihedral type fit in the class of “small–image” repre-
sentations and are the easiest to understand and classify. It can be shown
that
Proposition 3.5. Let Φ be an eigensystem arising from M0

k(Fp), with
2 ≤ k ≤ p + 1. The representation ρΦ is of dihedral type if and only if
Φ = Φ(p−1)/2. In this case we have

i) ρΦ is tamely ramified at p;
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ii) p ≡ 3 mod 4, k = (p+ 1)/2;
iii) the local representation (ρΦ)p is described by the sum of the trivial

character and the quadratic character χ(p−1)/2
p , where χp denotes the mod

p cyclotomic character of Gp = G(Qp/Qp);
iv) the image of ρΦ is isomorphic to Cn o Z/2Z, with n odd;
v) ρΦ = IndQK(Ψ), where K = Q(

√
−p), and Ψ : GK → F∗p is a continu-

ous, everywhere unramified character.
Furthermore, there are precisely (h − 1)/2 distinct isomorphism classes
of such ρΦ, where h is the class number of the imaginary quadratic field
Q(
√
−p).

The last statement of the proposition is essentially a modularity result
for dihedral representations. This case of Serre’s Conjecture was known
much earlier thanks to the work of Hecke (cf. [18]). For a discussion on
dihedral representations the reader might consider also [17].

Remark. For a prime p ≡ 3 mod 4, a consequence of the proposition is
that if ` is a prime that is not a quadratic residue mod p, then the mod
p reduction h̄`(x) ∈ Fp[x] of the characteristic polynomial of T` acting
on M0

k(Fp) is divisible by x(h−1)/2. Using this simple fact we succeeded in
computing the value of |E(p, k)| in the few cases where we were not able to
apply the criterion of Proposition 3.2.

4. Discriminants of SQ–rings
In the next two sections we describe the theoretical basis of our com-

putations by working in an axiomatic setting. In this section we introduce
a special class of rings generalizing orders of number fields and recall the
definition and basic properties of their discriminant.

Definition. A ring R, commutative with identity, is called a finite SQ–ring
if the following conditions are satisfied:

i) R is finite and free as a Z–module;
ii) R⊗Q is isomorphic to a product of fields.

The rank of R is its rank as a Z–module.

Condition ii) can be replaced by
ii)’ R is reduced;

without affecting the notion just introduced. These rings derive their name
from the fact that they become semi–simple after tensoring with Q. Our
motivation for considering them is that the Hecke ring T0

k is of this type.
It is clear at once that if R is a finite SQ–ring, and R′ ⊂ R is a subring

of finite index, then R′ is itself a finite SQ–ring of the same rank as R.
Furthermore, the product of finitely many finite SQ–rings is also a finite
SQ–ring. If h(x) ∈ Z[x] is a monic polynomial, then Rh = Z[x]/(h(x)) is a
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finite SQ–ring if and only if it is reduced, i.e., if and only if h(x) is square
free.

Let R be any finite SQ–ring of rank n, and regard it as a subring of
R ⊗Q via the injection a → a ⊗ 1. The Artin ring R ⊗Q decomposes as
the product of finitely many local Artin rings

R⊗Q '
∏

1≤i≤r
Ki,

and the factors of the decomposition are in correspondence with its prime
ideals. By assumption, every Ki is a field, necessarily finite over Q; we have

n =
∑

1≤i≤r
[Ki : Q].

The ring extension Z ⊂ R is finite and therefore integral. It follows that
the integral closure R̃ of R in R⊗Q coincides with that of Z. Therefore, if
Ri denotes the ring of integers of Ki, we see that

R̃ =
∏

1≤i≤r
Ri.

Moreover R has finite index in R̃, since the ranks of both rings are equal
to dimQ(R⊗Q). We have shown:

Proposition 4.1. Any finite SQ–ring R is isomorphic to a finite index
subring of the product of the rings of integers Ri of finitely many number
fields Ki.

The discriminant δR of a finite SQ–ringR is defined to be the determinant
of the bilinear form

R×R 3 (x, y) −→ tr(xy) ∈ Z,
where, for a ∈ R, tr(a) denotes the trace of the Q–linear map

la : R⊗Q −→ R⊗Q
given by multiplication by a⊗ 1. It is easy to show that

(4.1) tr(a) =
∑
σ

σ(a),

where the sum ranges over all the ring homomorphisms σ : R→ Q.
If R is the ring of integers of a number field K, then δR coincides with

the discriminant δK of K.
The discriminant is multiplicative on any finite product of finite SQ–

rings, and if R′ ⊂ R is a subring of finite index d, then δR′ = δRd
2. In

particular δR 6= 0 for any finite SQ–ring R, since δK 6= 0 for any number
field K. If h(x) ∈ Z[x] is a monic, square free polynomial of discriminant
δh, then δRh

= δh (cf. [13], Chp. 2 Thm. 8).
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5. Discriminants and Fp–valued points of Spec(R)
The goal of this section is to prove Theorem 5.1 which, for a finite SQ–

ring R, gives a lower bound for the number of Fp–valued points of Spec(R),
in terms of the p–adic valuation of the discriminant of R. We also obtain a
criterion (Proposition 5.1) which gives a sufficient condition for the index
of a monogenic subring Z[T ] ⊂ R to be prime to p.

For a prime number p, let νp denote the additive p–adic valuation of Qp,
normalized so that νp(p) = 1.

Lemma 5.1. Let R be the ring of integers of a number field K of degree n
over Q and of discriminant δK . If p is any prime, let fp be the number of
Fp–valued points of Spec(R). Then

fp ≥ n− νp(δK).
Moreover, equality holds if and only if p is tamely ramified in R.

Proof. For a prime p of K above p, let fp and ep denote, respectively, the
inertial degree and ramification index associated to p. There is the well–
known formula (cf. [15], I §5, Prop. 10)

(5.1)
∑
p

epfp = n

where the sum ranges over all the primes of R above p.
Let Kp be the completion at p of K and prp be the different of the local

extension Kp/Qp. We know that
(5.2) rp ≥ ep − 1,
and equality holds if and only if p is tamely ramified (Serre, loc. cit. III,
§6). The p–part of the discriminant δK is the product of the norms of the
fractional ideals prp of K, as p ranges among the prime ideals of R above p
(Serre, loc. cit. III, §5). Therefore we have

νp(δK) =
∑
p

fprp.

Taking into account formula 5.1 and the inequality 5.2, we have∑
p

fprp ≥
∑
p

fp(ep − 1) = n−
∑
p

fp.

Moreover, equality holds if and only if every p is tamely ramified above p,
that is if and only if p is tamely ramified in K. Observing that

∑
p fp = fp

concludes the proof of the lemma. �

From the proof of Lemma 5.1 we deduce two Corollaries:

Corollary 5.1. If νp(δK) ≤ p − 1 then p is tamely ramified in R. In
particular fp = n− νp(δK).
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Proof. Assume that p is not tamely ramified in K, then there exists a prime
p0 of R above p so that p|ep0 and, in the notation used in the proof of Lemma
5.1, rp0 > ep0 − 1. In particular

rp0 > ep0 − 1 ≥ p− 1.
By the proof of Lemma 5.1, we obtain

νp(δK) =
∑
p

fprp > p− 1,

which completes the proof of the corollary. �

Corollary 5.2. If νp(δK) = 1 then there exists exactly one prime p0 of
R that lies above p and that is ramified. We have ep0 = 2, fp0 = 1, and
Spec(R) has exactly n− 1 distinct Fp–valued points.

Proof. By assumption νp(δK) = 1 ≤ p− 1, therefore Corollary 5.1 ensures
that p is tamely ramified in R. Applying Lemma 5.1 we obtain that the
number fp of distinct Fp–valued points of Spec(R) is

fp = n− νp(δK) = n− 1,
and the last part of the corollary follows. To see the first part, observe that
fp is equal to the sum

∑
fp of the inertial degrees of the primes of R of

residual characteristic p. But since fp = n − 1, we easily see that formula
5.1 forces the existence of exactly one ramified prime above p, say p0, and
for which, moreover, we must have ep0 = 2 and fp0 = 1. �

In order to prove Theorem 5.1 we need the following lemma:

Lemma 5.2. Let R′ ⊂ R be an extension of finite SQ–rings so that R′ has
finite index d in R. Let fp and f ′p be the numbers of Fp–valued points of,
respectively, Spec(R) and Spec(R′). Then

fp ≥ f ′p ≥ fp − νp(d).

Proof. The extension R′ ⊂ R is finite, therefore integral, and any Fp–valued
point of Spec(R′) can be lifted to one of Spec(R) (cf. [1] Theorem 5.16),
and the first inequality fp ≥ f ′p readily follows.

To see the other inequality, note that the inclusion R′ ⊂ R induces an
injective ring homorphism

ι : R′/I ↪→ R/pR,

where I = pR ∩ R′ is the ideal of R′ given by the contraction of (p) ⊂ R,
and R′/I may be identified with an Fp–subalgebra of R/pR.

The cokernel of ι is an abelian group isomorphic to (R/R′)/p(R/R′), we
have

|(R/pR)/(R′/I)| = |(R/R′)/p(R/R′)| ≤ pνp(d).
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If n (resp. n′) is the dimension of R/pR (resp. R′/I) over Fp, then the
previous inequality implies

n− n′ ≤ νp(d).

Let
√

0 (resp.
√

0′) be the nilradical ideal of R/pR (resp. R′/I), and let
(R/pR)red (resp. (R′/I)red) be the reduced ring associated to R/pR (resp.
R′/I). We have the following exact sequences of Fp–vector spaces:

0 −→
√

0 −→ R/p −→
(
R/pR

)
red −→ 0,

0 −→
√

0′ −→ R′/I −→
(
R′/I

)
red −→ 0.

Now, the injection R′/I ↪→ R/p induces the inclusions
√

0′ ⊂
√

0 and
(
R′/I

)
red ⊂

(
R/pR

)
red.

Therefore there is a natural morphism between the exact sequences above,
from the lower to the upper one, described by three inclusions. If r (resp.
r′) is the dimension of

√
0 (resp.

√
0′), then we have

f ′p + r′ − n′ = fp + r − n = 0,
since r′ ≤ r, we obtain

f ′p = fp − (n− n′) + (r − r′) ≥ fp − νp(d),
and this completes the proof of the lemma. �

Lemma 5.1 generalizes as follows:

Theorem 5.1. Let R be a finite SQ–ring of rank n. If p is any prime
number, let fp denote the number of Fp–valued points of Spec(R). Then

fp ≥ n− νp(δR).
Moreover, equality holds if and only if the index of R in its integral closure
R̃ in R ⊗Q is prime to p and p is tamely ramified in each component of
R⊗Q.

Proof. By Lemma 5.1, the inequality expressed by the theorem is satisfied
when R is the ring of integers of a number field K. Note that the integers
fp and νp(δR), viewed as functions of R, are additive with respect to finite
product of SQ–rings. Therefore the inequality

fp ≥ n− νp(δR)
holds for any finite SQ–ring R that is isomorphic to a finite product of
rings of integers Ri of number fields Ki, i.e. the inequality of the theorem
is proved for any finite SQ–ring R that is integrally closed in R⊗Q. In this
case the second part of the theorem follows immediately from Lemma 5.1.

Let now R be any finite SQ–ring, let R̃ ⊂ R⊗Q be its integral closure,
and let d be the (finite) index [R̃ : R]. If f̃p denote the number of Fp–valued
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points of Spec(R̃), then Lemma 5.2 applied to the extension R ⊂ R̃ says
that

fp ≥ f̃p − νp(d).
We have seen that the theorem holds for R̃, therefore

fp ≥ n− νp(δR̃)− νp(d).

Since δR = δR̃d
2 we have

(5.3) − νp(δR̃)− νp(d) ≥ −νp(δR),

and therefore
fp ≥ n− νp(δR),

completing the proof of the first part of the theorem. Now if p divided d,
then inequality (5.3) would certainly be strict and, consequently, fp would
be strictly greater than n− νp(δR). �

The following proposition is a consequence of Theorem 5.1 and Lemma
5.2 and gives a criterion for counting the number of Fp–valued points of
Spec(R) in terms of numerical data encoded in the characteristic polyno-
mial of an element T ∈ R that generates a finite index subring Z[T ] ⊂ R.
It will be useful in our computations when R is a Hecke ring T0

k and T is
an Hecke operator T`.

Proposition 5.1. Let R be a finite SQ–ring of rank n, T ∈ R any element,
and h(x) ∈ Z[x] its characteristic polynomial. Assume that the discriminant
δh of h(x) is nonzero. Let fp be the number of Fp–valued points of Spec(R)
and f (h)

p that of the spectrum of Z[T ] = Z[x]/(h(x)), then

fp ≥ f (h)
p ≥ n− νp(δh).

Moreover if f (h)
p = n− νp(δh), then

(5.4) fp = f (h)
p = n− νp(δh).

In this case p does not divide the index Z[T ] in its integral closure in Z[T ]⊗
Q = R ⊗Q. In particular, p does not divide the index [R : Z[T ]], we have
νp(δR) = νp(δh), and the inclusion Z[T ] ⊂ R induces an isomorphism

Z[T ]/pZ[T ] ' R/pR.

The characteristic polynomial h(x) of T ∈ R alluded to in the proposition
is the monic characteristic polynomial of the endomorphism of the Q–vector
space R⊗Q given by multiplication by T ⊗ 1.

Notice that f (h)
p is simply the number of distinct roots in Fp of the

reduction mod p of h(x), and n is the degree of h(x). Thus the equality
f

(h)
p = n− νp(δh) is a numerical condition on h(x).
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Proof. The ring R is a finite SQ–ring and has no nilpotent elements. It
follows that the endomorphism of R⊗Q given by multiplication by T ⊗1 is
semi–simple, meaning that its minimal polynomial is square free. Moreover,
by assumption, the characteristic polynomial h(x) of T is square free and
we conclude that h(x) is equal to the minimal polynomial of T . It follows
that the subring Z[T ] has rank n as an abelian group, hence the index
[R : Z[T ]] is finite, say equal to d.

Lemma 5.2 says that

fp ≥ f (h)
p ≥ fp − νp(d),

from which the first part of the proposition follows. Theorem 5.1 implies
that

fp ≥ n− νp(δR),

and, since δh = δrd
2, putting together the two inequalities yields

(5.5) fp ≥ f (h)
p ≥ fp − νp(d) ≥ n− νp(δR)− νp(d) ≥ n− νp(δh).

Notice that the last inequality to the right is strict if p divides d.
Now if f (h)

p = n−νp(δh), then the last three inequalities of (5.5) are forced
to be equalities. This immediately implies that νp(d) = 0 and fp = f

(h)
p ,

and we see that (5.4) of the proposition holds.
To complete the proof of the proposition we are only left with showing

that p does not divide the index of Z[T ] in its integral closure, provided
that the equality f (h)

p = n − νp(δh) holds. We had just shown that p does
not divide the index [R : Z[T ]]. Replacing R by its integral closure R̃ and
reasoning as above we easily see that p does not divide [R̃ : Z[T ]], and the
proposition follows. �

Remark. If there exists T ∈ R so that νp(δh) ≤ 1, then one knows that
the equality f

(h)
p = n − νp(δh) is automatically satisfied. This is clear if

νp(δh) = 0, since in that case the reduction mod p of h(x) is square free,
and therefore f (h)

p = n. In the case where νp(δh) = 1, we have that h(x) has
multiple roots when reduced mod p, therefore n > f

(h)
p . On the other hand,

by Theorem 5.1, we have f (h)
p ≥ n− νp(δh) = n− 1, therefore f (h)

p = n− 1
and the equality f (h)

p = n − νp(δh) holds. In this last case, namely when
νp(δR) = 1, a complete description of the ramification of the components of
R⊗Q can be given: all of them but one are unramified above p, moreover
the ramification above p in the ramified component is that described in
Corollary 5.2.
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6. Table of results
In this last section we present and explain the table containing the results

of our computations. Recall that formula (3.3) in section 3 says

R(p) = (p− 1)
∑

2≤k≤p+1

[
|E(p, k)| − |EEis(p, k)| − 1

2 |E
p−tame(p, k)|

]
,

where E(p, k), EEis(p, k) and Ep−tame(p, k) are, respectively, the set of sys-
tems of eigenvalues mod p arising from the Hecke module M0

k(Fp); its subset
given by those eigensystems Φ for which the associated mod p Galois rep-
resentation ρΦ of Q is reducible; and the subset of the Φ such that ρΦ is
irreducible and tamely ramified at p.

In subsections 3.1 and 3.2 we discussed how we computed the cardinal-
ities of E(p, k) and EEis(p, k), and in subsection 3.3 we explained how we
obtained an upper bound for the size of Ep−tame(p, k), which is the disjoint
union of Ep−split(p, k) and Ep−irr(p, k) (cf. §3.3).

This of course results in providing a lower bound L(p) of R(p); further-
more the value of L(p) is the actual value of R(p) as soon as the estimate
that we have for |Ep−tame(p, k)| is in fact equal to its value for all k ≤ p+1.

The columns of the table contain the following data:
(p): the list of primes p ≤ 2593 for which there exists a space of cusp

forms of weight k, with k ≤ p+ 1, that is nonzero;
(r): the value

∑
2≤k≤p+1 |EEis(p, k)|, which gives the total number of sys-

tems of eigenvalues mod p corresponding to reducible representations, and
arising from the spaces M0

k(Fp), where k ≤ p+ 1;
(ua): one half of the difference between the upper bound obtained for the

sum
∑

2≤k≤p+1 |Ep−split(p, k)| and the number of dihedral representations;
(ub): one half of the upper bound of the sum

∑
2≤k≤p+1 |Ep−irr(p, k)|;

(L): the value of the lower bound L(p) of R(p);
(∆/p2): the ratio between ∆(p) = U(p)− L(p) and p2.
Observe that ua gives an upper bound on the number of isomorphisms

classes, up to twist by the mod p cyclotomic character, of Galois represen-
tations ρ of Q of the type considered, such that ρ is non–dihedral and the
local representation ρp is decomposable. Similarly, ub controls from above
the number of Galois representations of Q, up to twist, that are irreducible
locally at p. Finally, observe that whenever for given prime p the corre-
sponding values of ua and ub are zero, we can determine the exact value of∑

2≤k≤p+1 |Ep−tame(p, k)|, this in fact coincides with the number of repre-
sentations ρ of the type considered and that are dihedral (cf. §3.4). In this
case L(p) is the exact value of R(p), and appears starred in the table.
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p r ua ub L ∆/p2 p r ua ub L ∆/p2

11 0 0 0 10* 0.0000 211 0 0 0 185535* 0.0023
13 0 0 0 12* 0.0000 223 0 0 1 219225 0.0111
17 0 0 0 48* 0.0000 227 0 0 0 231424* 0.0131
19 0 0 0 72* 0.0000 229 0 2 1 237576 0.0130
23 0 0 0 143* 0.0207 233 1 0 0 250792* 0.0085
29 0 0 0 336* 0.0000 239 0 0 0 270725* 0.0145
31 0 0 0 405* 0.0156 241 0 1 0 277680 0.0123
37 1 0 0 720* 0.0262 251 0 0 0 314875* 0.0059
41 0 0 0 1080* 0.0000 257 1 0 3 337664 0.0155
43 0 0 0 1260* 0.0000 263 1 0 1 362084 0.0189
47 0 0 0 1656* 0.0208 269 0 1 1 388332 0.0111
53 0 0 0 2496* 0.0000 271 1 2 0 396495 0.0202
59 1 0 1 3393 0.0416 277 0 0 1 425040 0.0035
61 0 0 0 3900* 0.0000 281 0 0 0 444360* 0.0000
67 1 0 0 5148* 0.0294 283 1 1 2 452751 0.0158
71 0 0 0 6195* 0.0347 293 1 0 0 503408* 0.0136
73 0 0 0 6840* 0.0135 307 1 1 1 580023 0.0146
79 0 0 1 8736 0.0249 311 1 2 0 602485 0.0240
83 0 0 0 10373* 0.0059 313 0 0 1 616200 0.0031
89 0 0 0 12848* 0.0111 317 0 0 0 640532* 0.0031
97 0 0 0 16896* 0.0000 331 0 2 2 729135 0.0135
101 1 0 0 19100* 0.0098 337 0 0 0 771456* 0.0000
103 1 0 0 20196* 0.0192 347 1 1 0 842164 0.0086
107 0 1 1 22737 0.0231 349 0 0 0 857472* 0.0028
109 0 0 0 24300* 0.0000 353 2 0 2 886336 0.0141
113 0 0 0 27104* 0.0087 359 0 0 0 933127* 0.0124
127 0 0 0 38934* 0.0078 367 0 0 0 998448* 0.0054
131 1 0 1 42510 0.0303 373 0 0 1 1049040 0.0026
137 0 0 0 49368* 0.0000 379 2 1 1 1099791 0.0118
139 0 1 1 50991 0.0321 383 0 0 0 1135686* 0.0104
149 1 0 0 63788* 0.0066 389 1 0 0 1190772* 0.0076
151 0 1 1 66075 0.0230 397 0 1 0 1266804 0.0050
157 2 0 0 74256* 0.0316 401 1 0 0 1306000* 0.0049
163 0 0 0 83916* 0.0121 409 1 0 0 1386792* 0.0024
167 0 0 0 90387* 0.0148 419 0 0 1 1491006 0.0095
173 0 1 1 100620 0.0172 421 1 1 0 1513260 0.0047
179 0 1 0 111784 0.0166 431 0 1 0 1623250 0.0138
181 0 0 0 115920* 0.0054 433 1 1 0 1646352 0.0115
191 0 2 0 136040 0.0260 439 0 1 1 1716303 0.0124
193 0 1 1 140928 0.0103 443 0 0 0 1766232* 0.0022
197 0 0 0 150528* 0.0000 449 0 0 0 1839040* 0.0044
199 0 0 0 154836* 0.0099 457 0 0 0 1939824* 0.0043
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461 1 0 0 1992260* 0.0021 739 0 0 0 8281836* 0.0027
463 1 0 1 2017323 0.0075 743 0 1 0 8414280 0.0094
467 2 0 0 2070205* 0.0096 751 1 2 0 8690625 0.0086
479 0 1 1 2233216 0.0187 757 1 0 0 8904924* 0.0026
487 0 0 0 2351025* 0.0051 761 1 0 1 9047800 0.0026
491 3 2 2 2406880 0.0182 769 0 0 1 9337344 0.0025
499 0 0 1 2530587 0.0049 773 1 1 0 9484792 0.0025
503 0 1 0 2590320 0.0138 787 0 0 0 10012854* 0.0012
509 0 0 0 2688336* 0.0000 797 1 0 0 10401332* 0.0012
521 0 0 0 2883400* 0.0038 809 2 0 0 10878912* 0.0037
523 1 0 0 2916414* 0.0057 811 1 0 1 10958895 0.0055
541 1 0 1 3230820 0.0036 821 1 0 0 11373400* 0.0024
547 2 0 0 3339609* 0.0063 823 0 0 0 11457036* 0.0024
557 1 0 0 3528376* 0.0035 827 1 0 0 11624711* 0.0042
563 0 1 0 3643446 0.0070 829 0 0 0 11712060* 0.0000
569 0 1 0 3763000 0.0035 839 1 0 1 12133402 0.0142
571 0 0 0 3803040* 0.0034 853 0 0 1 12762960 0.0011
577 1 1 1 3924288 0.0051 857 0 1 0 12943576 0.0023
587 2 0 0 4132765* 0.0076 859 0 0 0 13035165* 0.0017
593 1 0 0 4263584* 0.0016 863 0 0 0 13215322* 0.0069
599 0 1 1 4389918 0.0166 877 1 0 0 13874964* 0.0022
601 0 0 1 4438800 0.0033 881 1 0 0 14066800* 0.0022
607 1 0 0 4572876* 0.0065 883 0 0 1 14163597 0.0016
613 1 0 0 4712400* 0.0016 887 1 0 0 14352314* 0.0090
617 3 0 0 4804184* 0.0064 907 0 0 1 15355341 0.0016
619 1 2 0 4851300 0.0064 911 0 1 0 15553265 0.0104
631 2 0 0 5140170* 0.0079 919 0 1 0 15970905 0.0070
641 0 0 0 5393280* 0.0000 929 2 0 0 16504480* 0.0021
643 0 1 0 5443197 0.0023 937 0 0 0 16937856* 0.0000
647 3 0 1 5541065 0.0146 941 0 0 0 17156880* 0.0000
653 1 0 3 5701088 0.0061 947 0 0 0 17487756* 0.0010
659 1 0 0 5861135* 0.0053 953 1 0 0 17822392* 0.0020
661 0 0 0 5914260* 0.0060 967 0 2 0 18619167 0.0056
673 2 0 0 6245568* 0.0029 971 1 0 0 18853405* 0.0046
677 1 0 0 6357780* 0.0044 977 0 0 0 19210608* 0.0000
683 1 0 0 6529468* 0.0043 983 0 1 0 19558985 0.0096
691 2 0 0 6762000* 0.0057 991 0 1 0 20046510 0.0050
701 0 0 1 7063700 0.0014 997 0 0 0 20418996* 0.0000
709 0 0 0 7309392* 0.0014 1009 0 1 0 21164976 0.0029
719 0 0 1 7619057 0.0131 1013 0 0 0 21422016* 0.0000
727 1 0 0 7881456* 0.0054 1019 0 1 0 21800470 0.0058
733 0 1 0 8080548 0.0027 1021 0 0 0 21935100* 0.0000
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1031 0 0 0 22580175* 0.0082 1319 1 0 0 47392644* 0.0098
1033 0 0 0 22720512* 0.0000 1321 0 1 1 47622960 0.0015
1039 0 0 0 23113665* 0.0062 1327 1 0 0 48273693* 0.0033
1049 0 0 1 23795888 0.0009 1361 0 0 0 52097520* 0.0000
1051 0 0 1 23931600 0.0019 1367 1 0 0 52778142* 0.0073
1061 1 0 2 24622740 0.0028 1373 0 1 2 53486048 0.0029
1063 0 0 1 24758937 0.0061 1381 1 0 2 54429960 0.0021
1069 0 0 1 25187712 0.0009 1399 0 1 0 56586147 0.0053
1087 0 0 1 26484282 0.0027 1409 1 0 0 57820928* 0.0007
1091 1 0 0 26776940* 0.0045 1423 0 1 0 59561892 0.0028
1093 0 2 0 26927628 0.0018 1427 0 0 1 60066685 0.0031
1097 0 2 0 27224640 0.0027 1429 1 1 0 60321576 0.0020
1103 0 0 0 27672873* 0.0049 1433 0 0 0 60835656* 0.0000
1109 0 0 0 28134336* 0.0000 1439 1 0 1 61588821 0.0079
1117 1 0 1 28747044 0.0017 1447 0 0 0 62631321* 0.0044
1123 0 0 1 29214636 0.0017 1451 0 0 0 63159100* 0.0020
1129 1 0 2 29684448 0.0035 1453 0 0 1 63423360 0.0006
1151 3 0 0 31449050* 0.0121 1459 0 0 0 64211049* 0.0023
1153 1 0 0 31627008* 0.0017 1471 0 0 0 65808225* 0.0044
1163 0 0 0 32459889* 0.0021 1481 0 0 1 67169800 0.0013
1171 0 0 0 33137325* 0.0012 1483 1 0 1 67440633 0.0023
1181 0 1 2 33992260 0.0042 1487 0 0 0 67980042* 0.0067
1187 0 0 3 34513786 0.0050 1489 0 0 1 68266464 0.0013
1193 1 0 0 35047184* 0.0008 1493 0 0 0 68822976* 0.0000
1201 1 1 0 35756400 0.0024 1499 1 0 0 69649510* 0.0039
1213 0 0 0 36846012* 0.0000 1511 0 1 0 71329380 0.0085
1217 3 0 0 37208384* 0.0032 1523 1 0 0 73062849* 0.0016
1223 0 0 0 37757967* 0.0069 1531 0 0 1 74219535 0.0029
1229 1 0 1 38325880 0.0016 1543 0 1 0 75979737 0.0042
1231 0 0 1 38506995 0.0060 1549 0 1 0 76879872 0.0006
1237 1 0 0 39081084* 0.0016 1553 0 0 3 77474288 0.0025
1249 0 0 1 40234272 0.0007 1559 1 0 0 78363505* 0.0086
1259 0 0 1 41206419 0.0043 1567 0 0 0 79594299* 0.0022
1277 0 1 1 43008856 0.0015 1571 0 0 0 80206590* 0.0025
1279 1 0 0 43205985* 0.0050 1579 0 0 1 81442158 0.0018
1283 1 0 0 43618127* 0.0027 1583 0 0 0 82056758* 0.0050
1289 0 0 0 44237648* 0.0007 1597 1 3 0 84262416 0.0031
1291 2 0 1 44437920 0.0046 1601 0 0 0 84905600* 0.0006
1297 2 0 0 45067104* 0.0015 1607 0 0 0 85857563* 0.0040
1301 1 0 0 45485700* 0.0023 1609 1 0 0 86185584* 0.0012
1303 0 1 0 45694341 0.0034 1613 1 0 0 86831992* 0.0012
1307 2 0 0 46118125* 0.0034 1619 1 0 1 87799961 0.0040
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1621 1 0 0 88134480* 0.0006 1979 1 0 0 160561183* 0.0037
1627 0 0 1 89116995 0.0015 1987 1 1 0 162525303 0.0022
1637 1 0 1 90775096 0.0012 1993 1 0 0 164011320* 0.0005
1657 0 1 0 94151880 0.0006 1997 2 0 1 164995348 0.0025
1663 2 1 0 95171106 0.0042 1999 0 0 0 165487347* 0.0037
1667 0 0 0 95868304* 0.0017 2003 2 1 0 166490324 0.0024
1669 2 1 0 96213576 0.0017 2011 0 1 0 168501315 0.0012
1693 0 0 0 100438812* 0.0000 2017 1 0 0 170019360* 0.0004
1697 0 1 0 101152832 0.0005 2027 0 0 0 172561511* 0.0017
1699 0 0 0 101508987* 0.0014 2029 0 0 3 173069520 0.0024
1709 0 2 0 103315212 0.0017 2039 1 1 0 175628726 0.0068
1721 1 0 0 105513400* 0.0011 2053 1 0 2 179299656 0.0014
1723 0 0 1 105880614 0.0017 2063 0 1 1 181917888 0.0062
1733 2 0 2 107737328 0.0023 2069 0 0 0 183539136* 0.0000
1741 0 0 0 109245900* 0.0000 2081 0 0 0 186756960* 0.0000
1747 0 0 0 110376882* 0.0017 2083 0 2 0 187283187 0.0031
1753 1 0 0 111523560* 0.0005 2087 2 0 1 188356413 0.0055
1759 1 0 0 112662309* 0.0048 2089 0 0 1 188920152 0.0004
1777 1 0 0 116175264* 0.0011 2099 1 0 0 191642859* 0.0026
1783 0 1 0 117353610 0.0028 2111 1 0 2 194932350 0.0075
1787 1 0 2 118144793 0.0036 2113 0 0 0 195520512* 0.0000
1789 2 0 0 118546188* 0.0022 2129 0 0 0 200004336* 0.0000
1801 0 1 0 120958200 0.0005 2131 0 0 0 200560800* 0.0018
1811 3 0 1 122974115 0.0052 2137 1 0 1 202264248 0.0014
1823 0 1 0 125433768 0.0071 2141 0 1 0 203409140 0.0004
1831 1 0 0 127107225* 0.0035 2143 1 0 0 203971950* 0.0023
1847 3 0 0 130463281* 0.0073 2153 1 0 0 206854544* 0.0004
1861 0 0 0 133481040* 0.0005 2161 0 0 0 209174400* 0.0000
1867 0 0 0 134777448* 0.0010 2179 0 0 0 214449147* 0.0011
1871 1 0 0 135629230* 0.0064 2203 0 0 1 221626896 0.0009
1873 0 0 0 136086912* 0.0000 2207 0 1 0 222820339 0.0047
1877 1 1 1 136953628 0.0026 2213 1 2 1 224659568 0.0018
1879 1 1 0 137386029 0.0045 2221 0 0 0 227117100* 0.0000
1889 1 0 0 139610048* 0.0005 2237 0 1 1 232065496 0.0008
1901 1 1 0 142291000 0.0010 2239 1 1 0 232668075 0.0051
1907 0 1 0 143639972 0.0026 2243 0 2 2 233929159 0.0033
1913 0 1 1 145006080 0.0015 2251 0 0 1 236455875 0.0011
1931 0 2 3 149133030 0.0051 2267 1 0 1 241531807 0.0033
1933 2 0 0 149612148* 0.0010 2269 0 0 1 242186112 0.0004
1949 0 2 0 153366040 0.0010 2273 2 0 0 243467520* 0.0013
1951 1 0 0 153821850* 0.0056 2281 0 0 0 246055320* 0.0004
1973 0 1 2 159108848 0.0020 2287 0 0 0 247992138* 0.0030
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2293 1 0 3 249958644 0.0017 2423 2 0 0 294987490* 0.0049
2297 0 0 0 251278832* 0.0004 2437 0 0 0 300163920* 0.0004
2309 2 0 0 255239412* 0.0012 2441 2 0 0 301642560* 0.0012
2311 0 1 0 255892560 0.0034 2447 0 4 0 303849458 0.0057
2333 0 0 0 263299124* 0.0004 2459 0 0 1 308367161 0.0026
2339 0 0 0 265331437* 0.0019 2467 0 0 1 311392917 0.0022
2341 0 0 0 266020560* 0.0004 2473 0 0 1 313684440 0.0004
2347 0 0 0 268075074* 0.0004 2477 0 0 0 315212132* 0.0004
2351 0 0 0 269416925* 0.0065 2503 1 0 0 325244988* 0.0023
2357 1 0 0 271521932* 0.0004 2521 0 0 0 332337600* 0.0000
2371 2 0 0 276387030* 0.0021 2531 0 0 1 336302780 0.0019
2377 1 0 0 278502840* 0.0004 2539 0 1 0 339506991 0.0017
2381 1 1 0 279911800 0.0008 2543 1 0 0 341104625* 0.0037
2383 2 0 1 280599600 0.0041 2549 0 1 0 343549388 0.0003
2389 1 0 0 282748752* 0.0004 2551 0 0 0 344336700* 0.0039
2393 0 1 0 284174384 0.0004 2557 1 1 0 346795524 0.0007
2399 0 0 1 286284031 0.0068 2579 1 0 1 355825872 0.0027
2411 1 0 1 290627925 0.0035 2591 2 0 0 360797360* 0.0065
2417 0 0 2 292819200 0.0012 2593 0 2 0 361672128 0.0007

Table 6.1. Table of results



Computing Galois representations mod p 627

References
[1] M. F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra. Addison-Wesley,

1969.
[2] A. Ash, G. Stevens, Modular Forms in characteristic ` and special values of their L-

functions. Duke Math. J. 53 (1986), no.3, 849–868.
[3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language.

J. Symbolic Comput. 24 (1997), 235–265.
[4] C. Citro, A. Ghitza, Enumerating Galois representations in Sage. Preprint available at

http://arxiv.org/abs/1006.4084.
[5] B. Edixhoven, The weight in Serre’s conjecture on modular forms. Invent. Math. 109

(1992), 563–594.
[6] B. Gross, A tameness criterion for Galois representations associated to modular forms

(mod p). Duke Math. J. 61 (1990), no. 2, 445–517.
[7] N. Jochnowitz, A study of the local components of the Hecke Algebra mod l. Trans. Amer.

Math. Soc. 270 (1982), no.1, 253–267.
[8] N. Jochnowitz, Congruences between systems of eigenvalues of modular forms. Trans.

Amer. Math. Soc. 270 (1982), no.1, 269–285.
[9] N. Katz, p-adic properties of modular schemes and modular forms. Modular Functions of

One Variable III, Lecture Notes in Math. 350, 69–190. Springer–Verlag, 1973.
[10] C. Khare, Modularity of Galois representations and motives with good reduction proper-

ties. J. Ramanujan Math. Soc. 22 (2007), No. 1, 1-26.
[11] C. Khare, Serre’s modularity conjecture: the level one case. Duke Math. J. 134 (2006),

no.3, 557–589.
[12] S. Lang, Introduction to Modular Forms. Springer–Verlag, 1976.
[13] D.A. Marcus, Number Fields. Springer–Verlag, 1977.
[14] J.–P. Serre, Congruences et formes modulaires (d’après H.P.F. Swinnerton-Dyer). Sém.

Bourbaki 1972/72, no. 416.
[15] J.–P. Serre, Corps Locaux. Hermann, Quatrième édition, corrigée, 2004.
[16] J.–P. Serre, A Course in Arithmetiic. Springer-Verlag, 1973.
[17] J.–P. Serre, Modular forms of weight one and Galois representations. Algebraic Number

Fields, Edited by A. Fröhlich, 193–268. Acad. Press, 1977.
[18] G. Wiese, Dihedral Galois representations and Katz modular forms. Documenta Math. 9

(2004), 123–133.

Tommaso Giorgio Centeleghe
Universität Heidelberg
IWR, Im Neuenheimer Feld 368
69120 Heidelberg, Germany
E-mail: tommaso.centeleghe@iwr.uni-heidelberg.de
URL: http://www.iwr.uni-heidelberg.de/groups/arith-geom/centeleghe/

mailto:tommaso.centeleghe@iwr.uni-heidelberg.de 
http://www.iwr.uni-heidelberg.de/groups/arith-geom/centeleghe/

	1. Introduction
	2. Generalities
	3. Computations
	3.1. Computation of |EEis(p,k)|
	3.2. Computation of |E(p,k)|
	3.3. An upper bound for |Ep-tame(p,k)|
	3.4. The dihedral case

	4. Discriminants of SQ–rings
	5. Discriminants and Fp–valued points of `39`42`"613A``45`47`"603ASpec(R)
	6. Table of results
	References

