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Differential approach for the study of duals of
algebraic-geometric codes on surfaces

par Alain COUVREUR

Résumé. L’objet de cet article est l’étude des orthogonaux de
codes fonctionnels sur des surfaces algébriques. Nous en donnons
une description géométrique directe à l’aide de formes différentiel-
les. Bien que moins élémentaire, cette approche peut être vue
comme une extension naturelle aux surfaces du résultat affirmant
que l’orthogonal d’un code CL(D,G) sur une courbe est le code
différentiel CΩ(D,G). Nous étudions les paramètres de ces codes
et établissons un résultat de minoration de leur distance mini-
male. À l’aide de cette borne, on peut étudier certains exemples
de codes sur des surfaces, en particulier sur des surfaces de nombre
de Picard égal à 1 comme les quadriques elliptiques ou certaines
surfaces cubiques. Les paramètres de certains codes étudiés égalent
ceux des meilleurs codes connus à l’heure actuelle.

Abstract. The purpose of the present article is the study of
duals of functional codes on algebraic surfaces. We give a direct
geometrical description of them, using differentials. Even if this
description is less trivial, it can be regarded as a natural extension
to surfaces of the result asserting that the dual of a functional
code CL(D,G) on a curve is the differential code CΩ(D,G) . We
study the parameters of such codes and state a lower bound for
their minimum distance. Using this bound, one can study some
examples of codes on surfaces, and in particular surfaces with
Picard number 1 like elliptic quadrics or some particular cubic
surfaces. The parameters of some of the studied codes reach those
of the best known codes up to now.

Introduction
Given a variety X over a finite field, a divisor G on X and a family
P1, . . . , Pn of rational points of X, one can construct the functional code
CL(X,∆, G), where ∆ denotes the formal sum P1 + · · ·+Pn. This construc-
tion, due to Manin in [22], is obtained by evaluating the global sections of
the sheaf L(G) at the points P1, . . . , Pn. Basically, the aim of this paper is
to get information on the dual CL(X,∆, G)⊥ of such a functional code.
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Most of the literature on algebraic–geometric codes deals with the case
when X is a curve. In this situation, the dual code CL(X,∆, G)⊥ is equal to
the differential code CΩ(X,∆, G) whose construction, due to Goppa in [9],
involves residues of differential forms on X. Moreover, on curves, it is also
well-known that a differential code CΩ(X,∆, G) is equal to a functional code
CL(X,∆, G′), where G′ is a divisor depending on G,∆ and the canonical
class of X. Therefore, the study of duals of functional codes on curves is
equivalent to the study of functional codes.

For higher–dimensional varieties, the geometric problems raised by cod-
ing theory become much more difficult and hence only little is known. Most
of the literature on the topic concerns the estimation of the parameters and
in particular the minimum distance of functional codes on particular sur-
faces. For instance, codes on quadric varieties are studied in [1] and [7], and
codes on surfaces with Picard number 1 are studied in [24] (see the survey
chapter of J.B. Little in [14] for a detailed survey on the topic). Concerning
the dual of such a functional code, almost nothing is known. In [3], a dif-
ferential construction for codes on surfaces is given, which turns out to be
a natural extension to surfaces of Goppa’s construction on curves (see [9]).
It is proved in the same article that such a differential code is contained
in the dual of a functional code, but that the converse inclusion is false in
general.

The aim of the present paper is to get general information on duals of
functional codes on surfaces. For that, we try to answer two questions asked
in Section 3. The first one (which was actually raised in the end of [3]) is
to find a direct geometrical description of such a code using differentials.
The second one is to get information on the parameters of such codes. As
an answer for the first question, we state and prove Theorem 5.1. This
statement asserts that even if the dual of a functional code on a surface is
not differential in general, it is always a sum of differential codes on this
surface. Afterwards, we focus our study on the estimate of the parameters
of such a code and state results yielding a lower bound for its minimum
distance. When the surface is the projective plane, these results yield the
exact minimum distance which is already known in this case since the
codes are Reed–Muller (see [5] Theorem 2.6.1). In addition, these results
(Theorems 6.1 and 6.2) are easy to handle provided the Picard number of
the surface is small. It is worth noting that the works on parameters of
codes on surfaces point out that surfaces with Picard number 1 yield good
functional codes. This principle was first observed by Zarzar in [24] and
is confirmed by some other works on the topic. For instance, one sees in
[7] that elliptic quadrics (which have Picard number 1) give much better
codes than hyperbolic ones (which have Picard number 2). It turns out that
this principle asserting that surfaces with small Picard number yield good



Differential approach for duals of AG codes on surfaces 97

functional codes seems to hold for duals of functional codes. Two examples
of surfaces with Picard number 1 are studied (namely, elliptic quadrics and
cubic which do not contain rational lines). The minimum distance of some
dual codes obtained from these examples turn out to reach the best known
minimum distance up to now compared to their length and dimension.

Contents. Notations are given in Section 1. They are followed by the
recall of some prerequisites in Section 2. The aims of the present article
are summarised in Section 3, where Questions 1 and 2 are raised. Section
4 is devoted to the proof of some statements which are important in what
follows. In particular, Proposition 4.1, which is the key tool for the proof
of the two main results (Theorems 5.1 and 6.1), is proved in this section.
Section 5 is devoted to the answer to Question 1. Theorem 5.1 is proved
in this section and asserts that, even if the dual of a functional code on a
surface is not in general a differential code on this surface, it is always a
sum of differential codes on this surface. Section 6 is devoted to the answer
to Question 2, that is the study of the minimum distance of the dual of a
functional code on a surface. Two results are stated: Theorem 6.1, yielding a
lower bound for the minimum distance of some of these codes, and Theorem
6.2, which improves in some situations the bounds given by Theorem 6.1
. Some applications of Theorems 6.1 and 6.2 are studied in Section 7, and
lower bounds for the minimum distance are given for explicit examples.
The parameters of these codes are compared with those of the best known
codes up to now (found in Codetables [10] and MinT [18]).

1. Notations
1.1. About coding theory. An error–correcting code is a vector sub-
space C of Fnq for some positive integer n. The integer n is called the length
of C. Elements of C are called codewords. The Hamming weight w(c) of
a vector c ∈ Fnq is the number of its nonzero coordinates. The Hamming
distance d(x, y) between two vectors x, y ∈ Fnq is d(x, y) := w(x−y). Given
a code C ∈ Fnq , the minimum distance d of C is the smallest Hamming
distance between two distinct elements of C. A code is said to have para-
meters [n, k, d] if its length is n, its dimension over Fq is k and its minimum
distance is d.

On Fnq , we consider the canonical pairing 〈., .〉 defined by 〈x, y〉 :=∑n
i=1 xiyi. Given a code C ⊂ Fnq , its orthogonal space C⊥ for this pair-

ing is called dual code of C.

1.2. About divisors and sheaves. Given a sheaf F on a variety X,
we denote by FP its stalk at a point P ∈ X. Linear equivalence between
divisors is denoted by D ∼ D′. Given a map ν : Y ↪→ X between two
varieties and a divisor G on X, then, for convenience’s sake, the pullback
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ν?G is denoted by G? whenever there is no possible confusion on ν. Given
a projective variety V , we denote by HV the hyperplane section of V and
by KV its canonical class.

1.3. About intersections. Let S be an algebraic surface, P be a smooth
point of S and X,Y be two curves embedded in S. If X and Y have no
common irreducible component in a neighbourhood of P , we denote by
mP (X,Y ) the intersection multiplicity of X and Y at P . The notion of
intersection multiplicity extends by linearity to divisors on S. Finally, the
intersection product of two divisor classes D and D′ is denoted by D.D′.

1.4. Base field extensions. Let X be a variety defined over Fq. We
denote by X the variety X := X ×Fq Fq. In the same way, let F be a sheaf
on X, then we denote by F the pullback of F on X.

2. Prerequisites
In this section we recall some facts about residues and differential forms

on surfaces. Afterwards, we give some necessary prerequisites on algebraic–
geometric codes on surfaces.

2.1. Residues of differential 2-forms on algebraic surfaces. For
further details on the definitions and the statements given in the present
subsection, see [3] and [4]. Some results on residues can also be found in [15].

2.1.1. Residues in codimension 1. Let C be an irreducible curve
embedded in a smooth surface S over an arbitrary field k. If ω is a dif-
ferential 2–form on S with valuation ≥ −1 along C, then one can define a
1–form on C denoted by res1

C(ω). See [3] Definition 1.3.

2.1.2. Residues in codimension 2. Let C be an irreducible curve
embedded in a smooth surface S and P be a rational point of S. Given
a 2-form ω on S, one defines a residue at P along C of ω denoted by
res2
C,P (ω) (see [3] Definition 3.1 and Theorem 3.6). By convention, the map

res2
C,P is identically zero when P /∈ C. This notion generalises to any arbi-

trary reduced curve C. In this situation, res2
C,P (ω) is the sum of the residues

of ω at P along each irreducible component of C. Finally, if D is a divisor
on S, we denote by res2

D,P the residue at P along the reduced support
of D. That is res2

D,P := res2
Supp(D),P . The following proposition summarises

the properties of 2–residues we need in what follows.
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Proposition 2.1. Let S be a smooth surface over an arbitrary field, D be
a divisor on S and P be a rational point of S. Let ω be a rational 2–form
on S.

(i) If in a neighbourhood of P , the pole locus of ω has no common com-
ponent with Supp(D), then res2

D,P (ω) = 0.
(ii) If in a neighbourhood of P , the pole locus of ω is entirely contained in

Supp(D), then res2
D,P (ω) = 0.

In addition, let C ⊂ S be a smooth curve at P .
(iii) If ω has valuation ≥ −1 along C, then res2

C,P (ω) = resP (res1
C(ω)).

Proof. The definition of 2–residues ([3] Definition 3.1) gives (i). From [3]
Theorem 6.3, we get (ii). Finally (iii) is a consequence of [3] Definitions 1.4
and 3.1 together with Remark 3.3. �

Remark. Basically, Proposition 2.1 asserts that res2
D,P (ω) is nonzero if

and only if in any neighbourhood of P , the support of D contains at least
one component of the pole locus of ω but does not contain entirely this pole
locus. It entails in particular that nonzero residues appear only at points
P at which at least two distinct poles of ω meet.

2.2. Algebraic–geometric codes on surfaces.

2.2.1. Context. Let S be a smooth projective geometrically connected
surface over a finite field Fq, let G be a divisor on S and P1, . . . , Pn be a
family of rational points of S avoiding the support of G. Denote by ∆ the
0–cycle ∆ := P1 + · · ·+ Pn.

2.2.2. Functional codes. Recall the definition, due to Manin in [22], of
the functional code associated to G and ∆. This code is defined to be the
image of the evaluation map

ev∆ :
{
H0(S,L(G)) −→ Fnq

f 7−→ (f(P1), . . . , f(Pn)).
It is denoted by CL(S,∆, G) or CL(∆, G) if there is no possible confusion
on the involved variety.

2.2.3. Differential codes. A differential construction of codes on sur-
faces is given in [3] 8.1. Let Da, Db be two divisors on S whose supports
have no common component, the differential code associated to ∆, Da, Db
and G is the image of the map

res2Da,∆ :
{
H0(S,Ω2(G−Da −Db)) −→ Fnq

ω 7−→ (res2
Da,P1

(ω), . . . , res2
Da,Pn

(ω)).

It is denoted by CΩ(S,∆, Da, Db, G) or CΩ(∆, Da, Db, G) when there is no
possible confusion on the involved surface.



100 Alain Couvreur

If there is no relation between the pair (Da, Db) and ∆, then there is
no interesting relation between CL(S,∆, G) and CΩ(S,∆, Da, Db, G). This
motivates the notion of ∆–convenient pair of divisors.

Definition (∆–convenience, [3] Definition 8.3). A pair (Da, Db) is said to
be ∆–convenient if

(i) the supports of Da and Db have no common irreducible component;
(ii) for all P ∈ S, the map res2

Da,P
: Ω2(−Da −Db)P → Fq is OS,P –

linear;
(iii) this map is surjective for all P ∈ Supp(∆) and zero elsewhere.

Remark. Some examples and pictures illustrating this notion are given in
[4] §II.3.4 and 5. An explicit criterion for ∆–convenience involving intersec-
tion multiplicities is given in [3] Proposition 8.6.

In what follows, we also use a weaker definition called sub–∆–convenience.

Definition (Sub–∆–convenience, [4] §III.2.1). A pair (Da, Db) is said to
be sub–∆–convenient if it is ∆′–convenient for some 0 ≤ ∆′ ≤ ∆. Equiva-
lently, the pair satisfies the conditions (i) and (ii) of the previous definition
together with

(iii′) for all P ∈ S r Supp(∆), the map res2
Da,P

: Ω2(−Da −Db)P → Fq
is zero.

3. Statement of the problems
On a curve X with a divisor G and a sum of rational points D (which

is also a divisor), it is well-known that the dual of the functional code
CL(X,D,G) equals the differential code CΩ(X,D,G) (for instance see [20]
II.2.8). On a surface S with a divisor G and a sum of rational points ∆
(which is not a divisor!), the situation is not that simple. Nevertheless, it
has been proved in [3] Theorem 9.1, that, if (Da, Db) is a ∆–convenient
pair, then CΩ(S,∆, Da, Db, G) ⊆ CL(S,∆, G)⊥.

Remark. This holds for a sub–∆–convenient pair (with the very same
proof).

As said in the introduction, the reverse inclusion is in general false. This
motivates the following questions (the first one is raised in the end of [3]).

Question 1. Can the code CL(S,∆, G)⊥ be realised as a sum of differential
codes on S associated to different pairs of (sub–)∆–convenient divisors?

Question 1b. Given c ∈ CL(S,∆, G)⊥, does there exist a (sub–)∆–conve-
nient pair (Da, Db) such that c ∈ CΩ(S,∆, Da, Db, G)?

Question 2. How can one estimate or find a lower bound for the minimum
distance of the code CL(S,∆, G)⊥?
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Theorem 5.1 answers positively to Question 1b, which entails a positive
answer for Question 1 (see Corollary 5.1). Theorems 6.1 and 6.2 yield a
method to estimate the minimum distance of duals of functional codes.

Remark. Actually, it is proved in [4] §III.3 that Questions 1 and 1b are
equivalent. However, such a proof is not necessary in what follows.

4. The main tools
The present section contains some tools which are needed to prove the

main results of this article (Theorems 5.1 and 6.1). In particular, Proposi-
tion 4.1, which is the key tool of this paper is proved here.

The reader interested in the results and their applications can skip this
section in a first reading and look at the applications in Sections 5 and 6.

4.1. A problem of interpolation. The proofs of Proposition 4.1 and
Theorem 5.1 need some result due to Poonen in [17] Theorem 1.2. To state
this result, we need to introduce some notations and definitions.

Notation 4.1. For all integers d, r ≥ 0, we denote by Sd,r the subspace of
Fq[X0, . . . , Xr] of homogeneous polynomials of degree d. We denote then by
Sr the set Sr := ∪d≥0Sd,r.

Definition (Poonen, [17] §1). The density µ(P) of a part P of Sr is defined
by

µ(P) := lim
d→+∞

](P ∩ Sd,r)
]Sd,r

·

Theorem 4.1 (Poonen, [17] 1.2). Let X be a quasi-projective subscheme
of Pr over Fq. Let Z be a finite subscheme of Pr, and assume that U :=
X \ (Z ∩X) is smooth of dimension m ≥ 0. Fix a subset T ⊆ H0(Z,OZ).
Given f ∈ Sd,r, let f|Z be the element of H0(Z,OZ) that on each connected
component Zi equals the restriction of X−dj f to Zi, where j = j(i) equals
the smallest j ∈ {0, . . . , n} such that the coordinate Xj is invertible on Zi.
Define
P := {f ∈ Sr : {f = 0} ∩ U is smooth of dimension m− 1, and f|Z ∈ T}.
Then,

µ(P) = ]T

]H0(Z,OZ)
ζU (m+ 1)−1,

where ζU (s) = ZU (q−s) denotes the Zeta function of U .

Corollary 4.1. Let S be a smooth projective surface over Fq and Q1, . . . , Qs
be a finite set of rational points of S. There exists infinitely many inte-
gers d for which there exists a hypersurface H of degree d in Pr whose
scheme–theoretic intersection with S is smooth of codimension 1 and con-
tains Q1, . . . , Qs.
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Proof. For j ∈ {1, . . . , s} denote by Ij the sheaf of ideals of OX corre-
sponding to Qj . Let I be the sheaf of ideals I := I1 · · · Is. Denote by Z the
non-reduced sub-scheme of X defined by the finite set {Q1, . . . , Qs} with
the structure sheaf OZ := OS/I2. Let T be the set

T :=
{
f ∈ H0(Z,OZ)| ∀j, f ∈ H0(Z, IjOZ) \ {0}

}
.

For all n ∈ N and all f ∈ H0(X,OX(n)), f|Z ∈ T means that the vanishing
locus of f on X contains all the Qi’s and is smooth at each of them. We
conclude by applying Theorem 4.1. �

4.2. A vanishing problem. As we see further in 4.3, the statement of
Proposition 4.1 expects a vanishing condition on the sheaf cohomology
space H1(S,Ω2(G−X)), where S is a smooth projective surface and G,X
are divisors on S. The point of the present section is to give some criteria
on G and X to satisfy such a vanishing condition.

Lemma 4.1. Let S be a smooth projective geometrically connected surface
over a field k, G be an arbitrary divisor on S and L be an ample divisor.
Then, there exists an integer m such that for all s ≥ m, we have

H1(S,L(G− sL)) = H1(S,Ω1(G− sL)) = 0.

Proof. From [11] Corollary III.7.8, the space H1(S,L(G − sL)) is zero for
all s� 0. Since S is assumed to be smooth, Serre’s duality yields the other
equality. �

Lemma 4.2. Let S be a smooth projective geometrically connected surface
over a field k which is a complete intersection in a projective space Prk for
some r ≥ 3. Denote by HS the hyperplane section on S for this projective
embedding. Let G be a divisor on S such that G ∼ mHS for some integer
m and X ⊂ S be a curve which is a complete intersection in Pr. Then,

H1(S,L(G−X)) = H1(S,Ω1(G−X)) = 0.

Proof. Consider the exact sequence of sheaves on S
0→ L(G−X)→ L(G)→ i?L(G?)→ 0,

where i denotes the canonical inclusion map i : X ↪→ S. Looking at the
long exact sequence in cohomology, we have
(4.1) H0(S,L(G))→ H0(X,L(G?))→ H1(S,L(G−X))→ H1(S,L(G)).
Since G ∼ mHS , the sheaves L(G) on S and L(G?) on X are respectively
isomorphic to OS(m) and OX(m). In addition, since S is a complete inter-
section in Pr, we have H1(S,L(G)) = H1(S,OS(m)) = 0 (see [11] Exercise
III.5.5(c)). Thus (4.1) together with the above claims yield

(4.2) H0(S,OS(m))→ H0(X,OX(m))→ H1(S,L(G−X))→ 0.
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Moreover, from [11] Exercise III.5.5(a), the natural restriction map

H0(Pr,OPr(m))→ H0(X,OX(m))
is surjective. Since this map is the composition of
H0(Pr,OPr(m))→ H0(S,OS(m)) and H0(S,OS(m))→ H0(X,OX(m)),
the right-hand map above is also surjective. The exact sequence (4.2) to-
gether with the previous assertion yield H1(S,L(G−X)) = 0. Finally, since
S is smooth, Serre’s duality entails H1(S,Ω2(G−X)) = 0. �

Remark. In Lemma 4.2, the curveX needs not to be a hypersurface section
of S, one just expects it to be a complete intersection in the ambient space
of S. For instance, Lemma 4.2 can be applied to a line X embedded in S.

4.3. The key tool. In the present subsection, we state Proposition 4.1,
which is useful to prove Theorem 5.1 (answering Question 1b) and then
to prove Theorem 6.1 (yielding lower bounds for the minimum distance of
duals of functional codes on a surface).

In what follows we always stay in the context presented in 2.2.1.

Definition (Support of a codeword). In the context of 2.2.1, given a code-
word c in CL(S,∆, G) or its dual, we call support of c and denote by Supp(c)
the set of rational points {Pi1 , . . . , Pis} whose indexes correspond to the
nonzero coordinates of c.

Proposition 4.1. In the context of 2.2.1, let c ∈ CL(S,∆, G)⊥ be a nonzero
codeword. Let X be a reduced curve embedded in S, containing the support
of c and such that H1(S,Ω2(G −X)) = 0. Then, there exists a divisor D
on S such that

(i) (D,X) is sub–∆–convenient;
(ii) c ∈ CΩ(S,D,X,G).

Moreover, if X is minimal for the property “X contains Supp(c)” (i.e. any
reduced curve X ′  X avoids at least one P ∈ Supp(c)), then
(iii) w(c) ≥ X.(G−KS −X),
where KS denotes the canonical class on S.

Remark. Since S is assumed to be smooth, by Serre’s duality, the condition
H1(S,Ω2(G−X)) = 0 is equivalent to H1(S,L(G−X)) = 0.

The following lemma is needed in the proof of Proposition 4.1.

Lemma 4.3. Let P be a point of S. Let C ⊂ S be a smooth curve at P
and X,Y ⊂ S be two other curves such that any two of the curves C,X, Y
have no common irreducible component in a neighbourhood of P . Then,

mP (X,Y ) ≥ min{mP (C,X),mP (C, Y )}.
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Proof. Let v be a local equation of C in a neighbourhood of P and let u
be a rational function on S such that (u, v) is a system of local coordinates
at P . Let φX , φY ∈ OS,P be respective local equations of X and Y in a
neighbourhood of P . Denote by aX and aY the respective P–adic valuations
of the functions φX |C and φY |C on the curve C.

Then, mP (C,X) = dimOS,P /(φX , v) = dimOC,P /(φX |C) = aX , and
in the same way, mP (C, Y ) = aY . By symmetry, one can assume that
aX ≤ aY . Then, let us prove that 1, u, . . . , uaX−1 are linearly independent
in OS,P /(φX , φY ). Let λ0, . . . , λaX−1 ∈ Fq such that

λ0 + λ1u+ · · ·+ λaX−1u
aX−1 = αφX + βφY ,

for some α, β ∈ OS,P . Reduce the above equality modulo v. This yields
an equality in OC,P whose right-hand term has (u)–adic valuation ≥ aX .
Thus, λ0 = · · · = λaX−1 = 0. This concludes the proof. �

Proof of Proposition 4.1. After a suitable reordering of the indexes, one can
say that Supp(c) = {P1, . . . , Ps} for some s ≤ n.

Step 0. Since S is projective, there exists a closed immersion S ↪→ Pr for
some r ≥ 3. Let HS be the corresponding hyperplane section.

Step 1. The curve C. From Corollary 4.1, there exists a curve C ⊂ S
such that

(1) C is smooth and geometrically connected;
(2) C * X;
(3) C contains P1, . . . , Ps;
(4) C is linearly equivalent to dHS for some positive integer d.

Moreover, Corollary 4.1 asserts that d can be chosen to be as large as
possible. Thus, from Lemma 4.1, choosing a large enough d, we have
H1(S,L(G− C)) = 0 and hence

(4) the restriction map H0(S,L(G))→ H0(C,L(G?)) is surjective.

Step 2. The codeword c?. Denote by Fc the divisor on C defined by

Fc := P1 + · · ·+ Ps ∈ Div(C).

The surjectivity of the map H0(S,L(G)) → H0(C,L(G?)), induces a na-
tural code map φ : CL(S,∆, G) → CL(C,Fc, G?) which is also surjective.
It can be actually regarded as a puncturing map on the functional code
on S (see [13] 1.9.(II) for a definition). Therefore, one sees easily that the
orthogonal map φ⊥ : CL(C,Fc, G?)⊥ → CL(S,∆, G)⊥

(a) is injective and obtained by extending codewords with n− s zero coor-
dinates on the right;

(b) preserves the Hamming distance;
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(c) induces an isomorphism between CL(C,Fc, G?)⊥ and the sub-code of
CL(S,∆, G)⊥ of codewords having their supports contained in {P1, . . . ,
Ps}.

Thus, c is in the image of φ⊥. Denote by c? the codeword of CL(C,Fc, G?)⊥
such that φ⊥(c?) = c. It is the punctured codeword (c1, . . . , cs) of c obtained
by removing all the zero coordinates. Obviously, we have w(c) = w(c?).
Step 3. The 1–form µ.From [20] Theorem II.2.8, we have CL(C,Fc, G?)⊥
= CΩ(C,Fc, G?). Thus, since c? ∈ CL(C,Fc, G?)⊥, there exists a 1–form
µ ∈ H0(C,Ω1(G? − Fc)) such that

c? = (resP1(µ), . . . , resPs(µ)).
Step 4. The 2–form ω. As said in 2.1.1, any rational 2–form ν on S with
valuation ≥ −1 along C has a 1–residue res1

C(ν) on C. This map res1
C is

actually a surjective sheaf map, yielding the following exact sequence:

0→ Ω2(G−X)→ Ω2(G−X − C)
res1
C
−→ i?Ω1(G? −X?)→ 0,

where i denotes the canonical inclusion map i : C → S. Using the cor-
responding long exact sequence in cohomology and since, by assumption,
H1(S,Ω2(G−X)) is zero, the map
(4.3) res1

C : H0(S,Ω2(G−X − C))→ H0(C,Ω1(G? −X?))
is surjective. Moreover, since X contains the points P1, . . . , Ps, we have the
following divisors inequality on C:

0 ≤ Fc ≤ X?

and hence H0(C,Ω1(G? − Fc)) ⊆ H0(C,Ω1(G? − X?)). Thus, µ ∈
H0(C, Ω1(G? − X?)) and, since the map in (4.3) is surjective, there ex-
ists a 2–form ω ∈ H0(S, Ω2(G−X − C)) such that µ = res1

C(ω).
Step 5. The divisor D. The divisor of ω is of the form
(4.4) (ω) = G−X − C +A, with A ≥ 0.
Set
(4.5) D := C −A.
Step 6. Proof of (i). From the definition of sub–∆–convenience (§2.2.3),
to prove the sub–∆–convenience of (D,X), we have to prove that res2

D,P is
OS,P –linear for all P ∈ S and is zero whenever P /∈ {P1, . . . , Pn}. Since the
pole locus of ω is contained in C ∪X, from Proposition 2.1 and the remark
following Proposition 2.1, this map is zero at each P /∈ C ∩X.

Moreover, recall that, by Definition of res2
D,P (see §2.1.2), and from (4.5)

we have res2
D,P = res2

C,P + res2
A,P (by definition, the map depends only on

the support D, thus it is an addition and not a subtraction). In addition,
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since any ν ∈ Ω2(−D −X)P has no pole along Supp(A), from Proposition
2.1(i), the map res2

A,P vanishes on Ω2(−D −X)P and hence

(4.6) res2
D,P ≡ res2

C,P on Ω2(−D −X)P .

Thus, let us prove the OS,P –linearity of res2
C,P at each P ∈ C∩X and prove

that this map is zero if P /∈ {P1, . . . , Pn} (actually, we prove that this map
is zero if and only if P /∈ {P1, . . . , Ps}, which is stronger).

Let P ∈ C ∩ X and f be a generator of L(G)P over OS,P . One sees
easily that the germ of fω generates Ω2(−D −X)P . Let ϕ ∈ OS,P . From
Proposition 2.1(iii), we have
(4.7) res2

C,P (ϕfω) = resP (res1
C(ϕfω)) = resP (ϕ|Cf|Cµ).

Moreover, the divisor of f|Cµ satisfies (f|Cµ) ≥ −Fc in a neighbourhood of
P . Thus, if P ∈ {P1, . . . , Ps}, then the 1–form f|Cµ has valuation −1 at P
and

(4.7) ⇒ res2
C,P (ϕfω) = ϕ(P )resP (f|Cµ) = ϕ(P )res2

C,P (fω).

Otherwise, if P /∈ {P1, . . . , Ps}, then f|Cµ has valuation ≥ 0 at P and

(4.7) ⇒ res2
C,P (ϕfω) = 0.

Thus, (D,X) is sub–∆–convenient. It is actually ∆′–convenient for ∆′ :=
P1 + · · ·+ Ps.
Step 7. Proof of (ii). From (4.6), we have for all P ∈ S, res2

D,P (ω) =
res2
C,P (ω). Moreover, Proposition 2.1(iii) entails res2

C,P (ω) = resP (res1
C(ω))

= resP (µ). Thus,
(4.8) c = res2

D,∆(ω) ∈ CΩ(S,X,D,G).

Step 8. Proof of (iii). From now on, assume that X is minimal for the
property “X contains Supp(c)”. First, notice that, from (4.4) and (4.5), we
have D ∼ G−KS −X. Let us prove that w(c) ≥ X.D. For that, we prove
that X and Supp(D) have no common irreducible components. Afterwards,
we get inequalities satisfied by all the local contributions mP (X,D) for all
P ∈ S and sum them up to get an inequality satisfied by X.D.
Sub-step 8.1. First, let us prove that X and Supp(D) have no common
irreducible component. By construction, C is irreducible and not contained
in X, thus we just have to check that Supp(A) and X have no common
irreducible component. Assume that A = A′ + X1, with A′ ≥ 0 and X1
is an irreducible component of X. Set X ′ := X \ X1. Then, (4.4) gives
(ω) = G−C−X ′+A′. By assumption on the minimality of X, the curve X ′
avoids at least one point in {P1, . . . , Ps}, say P1 after a suitable reordering
of the indexes. Thus, C is the only pole of ω in a neighbourhood of P1
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and, from Proposition 2.1(ii) together with (4.6), we have res2
D,P1

(ω) =
res2
C,P1

(ω) = 0. But, from (4.8), we have res2
D,P1

(ω) = c1 and c1 6= 0 since
by assumption, P1 ∈ Supp(c). This yields a contradiction.

Sub-step 8.2. Now, let us study the intersection multiplicities mP (D,X) for
all P ∈ S. First, notice that

(4.9) ∀P /∈ C, mP (X,D) ≤ 0.

Indeed, if P /∈ C, then mP (D,X) = mP (C −A,X) = −mP (A,X) which is
negative since A and X are both effective.

To get information onmP (X,D) for P ∈ C, we first studymP (C,A−X).
From [3] Lemma 8.8, we have

∀P ∈ C, mP (C, (ω) + C) = vP (µ),

where vP denotes the valuation at P . From (4.4), we get

∀P ∈ C, mP (C,G−X +A) = vP (µ)
mP (C,A−X) = vP (µ)− vP (G?).

Afterwards, recall that (µ) ≥ G? − P1 − · · · − Ps (see Step 3). Moreover,
since µ has nonzero residues at the points P1, . . . , Ps (its residues at these
points are the s first coordinates of c which are assumed to be nonzero), its
valuation at these points is equal to −1. Consequently, we obtain

(4.10) ∀P ∈ C, mP (C,A)−mP (C,X)
{
≥ 0 if P /∈ {P1, . . . , Ps}
= −1 if P ∈ {P1, . . . , Ps}

.

Therefore, from Lemma 4.3 together with (4.10), we get

∀P ∈ C, mP (X,C −A) ≤ mP (X,C)−min{mP (C,X),mP (C,A)}

≤
{

0 if P /∈ {P1, . . . , Ps}
mP (C,X −A) if P ∈ {P1, . . . , Ps}

.

Again from (4.10), if P ∈ {P1, . . . , Ps}, then mP (C,X − A) = 1. Thus, if
we summarise all the information given by the above inequalities together
with (4.9), we get,

∀P ∈ S, mP (X,D) ≤
{

0 if P /∈ {P1, . . . , Ps}
1 if P ∈ {P1, . . . , Ps}

.

Finally, summing up all these inequalities gives

X.(G−KS −X) = X.D ≤ s = w(c).

�
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5. Differential realisation of the dual of a functional code
The first possible application of Proposition 4.1 is the following theorem,

which answers Question 1b and hence the question raised in the conclusion
of [3].

Theorem 5.1. Let S be a smooth geometrically connected projective sur-
face over Fq, let G be a divisor on S and P1, . . . , Pn be rational points
of S. Denote by ∆, the 0–cycle ∆ := P1 + · · · , Pn. Let c be a codeword
of CL(S,∆, G)⊥, then there exists a sub–∆–convenient pair of divisors
(Da, Db) and a rational 2–form ω ∈ H0(S,Ω2(G−Da −Db)) such that

c := res2
Da,∆(ω).

Moreover, one of the divisors Da, Db can be chosen to be very ample.

Before proving Theorem 5.1, let us state a straightforward corollary of
it yielding a positive answer for Question 1. That is, even if the dual of a
functional code on a smooth surface S is not in general a differential code
on S, it is always a sum of differential codes on this surface.

Remark. Actually, using Theorem 5.1, one proves that the dual code
CL(∆, G)⊥ is a union of differential codes.

Corollary 5.1. Under the assumptions of Theorem 5.1, there exists a finite
family (D(1)

a , D
(1)
b ), . . . , (D(r)

a , D
(r)
b ) of sub–∆–convenient pairs such that

CL(∆, G)⊥ =
r∑
i=1
CΩ(∆, D(i)

a , D
(i)
b , G).

Proof of corollary 5.1. Inclusion ⊇ comes from [3] Theorem 9.1 and the
remark in the beginning of §3. The reverse inclusion is a consequence of
Theorem 5.1 together with the finiteness of the dimension of CL(S,∆, G)⊥.

�

Proof of Theorem 5.1. Since S is assumed to be projective, consider some
projective embedding of S and let HS be the corresponding hyperplane
section.

From Corollary 4.1, there exists a smooth geometrically irreducible curve
X containing all the support of c and such that X ∼ sHS for some
positive integer s. Moreover, such a curve X can be chosen with s as
large as possible. Therefore, from Lemma 4.1, one can choose X such that
H1(S,Ω2(G−X)) = 0. SetDb := X and conclude using Proposition 4.1. �

5.1. About Theorem 5.1, some comments and an open question.
Unfortunately, the proof of Theorem 5.1 is not constructive. Indeed, this
proof involves the existence of a curve X embedded in S such that X is
smooth, is linearly equivalent to sHS for some integer s and such that
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H1(S,Ω1(G − X)) = 0. Poonen’s Theorem together with [11] Corollary
III.7.8 assert the existence of such a curve provided s is large enough.
However, one cannot estimate or find an upper bound for the lowest possible
integer s for which such a curve X exists.

Nevertheless, Theorem 5.1 is interesting for theoretical reasons: it ex-
tends to surfaces a well-known result on codes from curves. Notice that the
construction of a differential code on a surface needs a ∆–convenient pair
which is not necessary for the construction of a functional code. Given a
functional code CL(∆, G) on a surface S, there is no canonical choice of the
(sub–)∆–convenient pair (Da, Db) to construct the code CΩ(∆, Da, Db, G).
This lack of canonicity entails the lack of converse inclusion in

CΩ(∆, Da, Db, G) ⊂ CL(∆, G)⊥.
Basically, Theorem 5.1 asserts that CL(∆, G)⊥ can be obtained by sum-
ming all the differential codes CΩ(∆, D(i)

a , D
(i)
b , G) for all possible (sub–)

∆–convenient pairs (D(i)
a , D

(i)
b ). Since the dimension of a code is finite, it

is sufficient to sum on a finite set of ∆–convenient pairs. This raises the
following question.

Question 3. Under the assumptions of Theorem 5.1, what is the minimal
number of differential codes whose sum equals CL(S,∆, G)⊥?

Example. This number is 1 when S is the projective plane. Indeed, func-
tional codes on P2 are Reed–Muller codes (see [13] chapter 13) and it is
well-known that the dual of a Reed–Muller code is also Reed–Muller (for
instance see [16] XVI.5.8). Thus, the dual of a functional code on P2 is also
functional and, from [3] Theorem 9.6, a functional code can be realised as
a differential one.

Example. It has been proved in [3] Propositions 10.1 and 10.3 that this
number is 2 when S is the product of two projective lines.

6. Minimum distance of CL(S,∆, G)⊥

Another application of Proposition 4.1 is to find a lower bound for the
minimum distance of a code CL(S,∆, G)⊥. In this section we stay in the
classical context yielding codes on a surface which is described in 2.2.1. We
also introduce a notation.

Notation 6.1. Denote by d⊥ the minimum distance of CL(∆, G)⊥.

6.1. The naive approach. The key of the method is to use Proposi-
tion 4.1(iii). Consider a nonzero codeword c ∈ CL(∆, G)⊥. Let X be a
curve containing Supp(C), which is minimal for this property and such
that H1(S,Ω2(G−X)) = 0. Then, Proposition 4.1(iii) asserts that w(c) ≥
X.(G−KS −X).
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Basically, one could say that the minimum distance of CL(∆, G)⊥ is
greater than or equal to the “minimum of X.(G−KS −X) for all X ⊂ S
satisfying the cohomological condition of Proposition 4.1”. Unfortunately,
it does not make sense since the set of such integers has no lower bound.
Indeed, using Corollary 4.1 together with Lemma 4.1, one sees that for a
large enough integer r, a curve X ∼ rHS satisfies H1(S,Ω2(G −X)) = 0.
Finally, notice that rHS .(G−KS − rHS)→ −∞ when r → +∞.

Thus, the point of the method is to take a minimum in a good family of
divisor classes, yielding a positive lower bound.

6.2. The statement. The main result of the present section involves a set
of divisor classes which satisfies some properties. The description of these
properties is the point of the following definition.

Definition. Let δ be a positive integer. A set of divisor classes D on S is
said to satisfy the property Q(∆, G, δ) if it satisfies the following conditions.

(V) For all D ∈ D, we have H1(S,Ω2(G−D)) = 0.
(I) For all τ–tuple Pi1 , . . . , Piτ with τ < δ, there exists a curve X ⊂ S

whose divisor class is in D and which contains Pi1 , . . . , Piτ . More-
over, X is minimal for this property (i.e. any curve X ′  X avoids
at least one point of the τ–tuple Pi1 , . . . , Piτ ).

Notation 6.2. Given a set of divisor classes D such that the set
{D.(G − KS − D), D ∈ D} has a smallest element, we denote by δ(D)
the integer

δ(D) := min
D∈D
{D.(G−KS −D)}.

Theorem 6.1 (Lower bound for d⊥). In the context described in 2.2.1, let
D be a set of divisor classes on S. If D satisfies the property Q(∆, G, δ(D)),
then

d⊥ ≥ δ(D) = min
D∈D
{D.(G−KS −D)}.

Proof. Let c be a nonzero codeword in CL(∆, G)⊥ and assume that w(c) =
τ < δ(D). Since D satisfies Q(∆, G, δ(D)), there exists a curveX containing
Supp(c), which is minimal for this property and whose divisor class is in
D. Therefore, from Proposition 4.1(iii),

τ ≥ X.(G−KS −X) ≥ δ(D),

which yields a contradiction. �

6.2.1. The arithmetical improvement. It is possible to improve the
bound given by Theorem 6.1 using the maximal number of rational points
of an effective divisor whose class is in D. For that, let us introduce a
notation.
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Notation 6.3. Let D be a divisor class on S. If the corresponding linear
system |D| is nonempty, we denote by Θ(D) the integer

Θ(D) := max{](Supp(A))(Fq), A ∈ |D|}.

Theorem 6.2 (Improvement of the lower bound for d⊥). In the context
described in 2.2.1, let D be a set of divisor classes on S and E be a subset
of D such that,

E ⊇ {D ∈ D : Θ(D) ≥ D.(G−KS −D)}
If Q(∆, G, δ(E)) is satisfied by D, then

d⊥ ≥ δ(E).

Proof. Let c be a nonzero codeword in CL(∆, G)⊥ and assume that w(c) <
δ(E). Since Q(∆, G, δ(E)) is satisfied by D, there exists a curve X which
contains the support of c, is minimal for this property and whose divisor
class is in D. Let D ∈ D be the divisor class of X. On the one hand, we
have,

Θ(D) ≥ ]X(Fq) ≥ w(c).
On the other hand, from Proposition 4.1(iii), we have

w(c) ≥ D.(G−KS −D).
Thus, Θ(D) ≥ D.(G −KS −D) and hence D ∈ E and w(c) ≥ δ(E). This
yields a contradiction. �

6.3. How to choose D? The most natural choice for D is D = {HS , . . . ,
aHS} with a such that aH(G − KS − aH) > 0. From Lemma 4.2, the
cohomological vanishing condition of Theorem 6.1 is satisfied by all the
elements of D whenever S is a complete intersection in its ambient space.
Afterwards, one checks whether the interpolation condition is satisfied, if it
is not (in particular if the condition of minimality is not satisfied), one can
try to add some other divisor classes satisfying the cohomological vanishing
condition (for instance see 7.2.2).

7. Examples
In this section we treat some examples of surfaces and obtain lower

bounds or exact estimates of the dual minimum distance of a code. The
difficult part to apply Theorems 6.1 and Theorem 6.2 is first to choose
a good D and then to compute δ(D). It becomes easier when the Picard
number of the surface (that is the rank of its Neron-Severi group) is small.

Most of the examples we give correspond to surfaces with Picard num-
ber 1. Some examples of surfaces having a larger Picard number are treated
and it turns out that surfaces with Picard number 1 yield the better duals
of functional codes. Such a remark should be related with the works of
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Zarzar in [24] who noticed that surfaces with a small Picard number could
yield good functional codes.

7.1. The projective plane. On P2, the functional codes are Reed–Muller
codes and it is well-known that the dual Reed–Muller code is also a Reed–
Muller code ([5] Theorem 2.2.1). The minimum distance of a q–ary Reed–
Muller code is well-known (see [5] Theorem 2.6.1). Therefore, the point of
the present subsection is not to give any new result but to compare the
bound given by Theorem 6.1 to the exact value of the minimum distance
in order to check the efficiency of Theorem 6.1.

7.1.1. Context. Let H be a line on P2 and m be a nonnegative integer.
Assume that G := mH and ∆ := P1 + · · · + Pq2 is the sum of all rational
points of the affine chart P2 \H.

7.1.2. The known results on Reed–Muller codes. From [5] Theorem
2.2.1, we have CL(∆,mH)⊥ = CL(∆, (2q−3−m)H). Moreover, [5] Theorem
2.6.1 asserts that the minimum distance d⊥ of CL(∆,mH)⊥ is

(7.1) d⊥ =
{

m+ 2 if m ≤ q − 3,
q(m+ 3− q) if m ≥ q − 2.

7.1.3. Our bounds. First, recall that KP2 ∼ −3H. Therefore,
aH.(G−K − aH) = a(m+ 3− a)H2 = a(m+ 3− a)

and this integer is positive for 1 ≤ a ≤ m+ 2. Then, set D := {H, 2H, . . . ,
(m+ 2)H}. This yields δ(D) = m+ 2 (see notation 6.2). Thus, we have to
prove that D satisfies the property Q(∆, G,m+ 2). From Lemma 4.2, this
set of divisor classes satisfies the cohomological vanishing condition (V)
(see the definition of Q(∆, G, δ), §6.2). Moreover, for all l ≤ m + 1 any l–
tuple of rational points of P2 is contained in a curve of degree ≤ m+ 2 and
one of them is minimal for this property. Thus, Q(∆, G,m+ 2) is satisfied
and from Theorem 6.1, we have
(7.2) ∀m, d⊥ ≥ m+ 2.

Now, let us improve the result by using Theorem 6.2. First, notice that
any configuration of rational points of an affine chart of P2 is contained
in a curve of degree at most q. Therefore, if m + 2 ≥ q, one can set D :=
{H, . . . , qH} and the property Q(∆, G, s) is true for all s. From [19], we
have Θ(aH) = aq. Thus, if m ≥ q − 2, then

Θ(aH) < a(m+ 3− a) for all a < m+ 3− q.
Thus, set E := {(m+3−q)H, . . . , qH}. Finally, since Q(∆, G, s) is satisfied
by D for all s, it is in particular satisfied for s = δ(E). Consequently, from
Theorem 6.2, we get
(7.3) ∀m ≥ q − 2, d⊥ ≥ δ(E) = q(m+ 3− q).
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By comparing (7.1) with (7.2) and (7.3), we see that Theorems 6.1 and
6.2 yield exactly the minimum distance of a Reed–Muller code.

Remark. By the very same manner one can recover the minimum distance
of projective Reed–Muller codes.

7.2. Quadric surfaces in P3. We study the code CL(∆, G)⊥ when S is
a smooth quadric in P3. Recall that there are two isomorphism classes of
smooth quadrics in P3 respectively called elliptic and hyperbolic. A hyper-
bolic quadric contains two families of lines defined over Fq and its Picard
group is free of rank 2 and generated by the respective classes E and F of
these two families of lines. An elliptic quadric does not contain lines defined
over Fq and its Picard group is free of rank 1 and generated by HS . We
treat separately these two cases (S is hyperbolic and S is elliptic).

7.2.1. Context. Let S be a smooth quadric surface in P3. Let HS be
the scheme-theoretic intersection between S and its tangent plane at some
rational point. Let G be G := mHS for some m > 0 and ∆ be the sum
of all the rational points lying in the affine chart S \ HS . The number of
these points (and hence the length of the codes) is q2 and we denote them
by P1, . . . , Pq2 .

For all 1 ≤ m ≤ q − 1. The dimension of the code CL(∆, G) is equal to
(7.4)

dimCL(∆, G) = dim Γ(S,OS(m)) =
(
m+ 3

3

)
−
(
m+ 1

3

)
= (m+ 1)2.

Remark. For m ≥ q − 1 we get CL(∆, G) = Fq2q . Therefore, cases when
m ≥ q−1 are irrelevant. In what follows, we always assume that m ≤ q−2.

Finally, recall that, from [11] Example II.8.20.3,

(7.5) KS ∼ −2HS .

7.2.2. Hyperbolic quadrics. If S is a hyperbolic quadric, then, as said
before, its Picard group is generated by two lines denoted by E and F .
Moreover, E+F ∼ HS . As proposed in 6.3, one can set D := {HS , . . . , (m+
1)HS}. This yields δ(D) = 2m + 2. Unfortunately, since m ≤ q − 2, and
since S contains rational lines, there are collinear (m+2)–tuples of points in
{P1, . . . , Pq2}. For such a (m+ 2)–tuple, there exists hypersurface sections
of S of degree ≤ m+1 containing these points but none of them is minimal
for this property since such a curve contains the line containing the (m+2)–
tuple together with another irreducible component.

Therefore, to apply Theorem 6.1, we have to add other divisor classes to
D. Therefore, set

D := {E,F,HS , . . . , (m+ 1)HS}.
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We have δ(D) = m + 2 and for such a D, the property Q(∆, G, δ(D))
satisfied. Indeed, since E,F and hypersurface sections of S are complete
intersections in P3, from Lemma 4.2, the cohomological vanishing condition
is satisfied. The proof that the interpolating condition (I) (see the definition
of Q(∆, G, δ) in §6.2) is also satisfied is left to the reader. Finally, we have
the following result.

Proposition 7.1. The minimum distance d⊥ of CL(∆, G)⊥ satisfies

d⊥ = (D) = E.((m+ 2)HS − E) = m+ 2.

Proof. The inequality ≥ is a consequence of Theorem 6.1. For the con-
verse inequality, consider a rational line L contained in S. After a suitable
change of coordinates, one can assume that P1, . . . , Pq ∈ L. Therefore, the
punctured code C? obtained from CL(∆, G) by keeping only the q first co-
ordinates, can be regarded as a code on L, that is a a Reed–Solomon code of
length q and dimension m+ 1. From well–known results on Reed–Solomon
codes, its dual has minimum distance m+ 2 and a minimum weight code-
word c ∈ C?⊥ extended by zero coordinates yields a codeword in CL(∆, G)⊥
with the same weight. �

7.2.3. Elliptic quadrics. If S is an elliptic quadric, then, since it does
not contain rational lines, the set

D := {HS , . . . , (m+ 1)HS}

satisfies Q(∆, G, δ(D)). Indeed, from (7.4), dim Γ(S,OS(m+1)) = (m+2)2

which is > 2m+ 1. Therefore, any (2m+ 1)–tuple of points in Supp(∆) is
contained in some curve C ∼ aHS with a ≤ m + 1. Moreover, since HS
generates the Picard Group of S, for some a ≤ m + 1 there exists such a
curve C which is minimal for this property. This yields the following bound.

Proposition 7.2. The minimum distance d⊥ of CL(∆, G)⊥ satisfies

d⊥ ≥ 2m+ 2.

Moreover, using Theorem 6.2, it is possible to improve efficiently this
bound for some values of m. For that, we have to estimate Θ(mHS) for all
m ≤ q − 2 or find an upper bound for it. For that we use what we know
about the Picard group of S together with the bound proved by Aubry and
Perret in [2] Corollary 3.
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Let us give some upper bound for Θ(mHS) for some particular values of
m.

• Θ(HS) = q + 1, indeed it is the maximal number of rational points
of a plane section of S which is a plane irreducible conic.
• Θ(2HS) ≤ max(2(q+ 1), q+ 1 + b2√qc) = 2q+ 2. Indeed, a quadric

section of S is either irreducible and has arithmetical genus 1 or
reducible. If it is reducible, since the Picard group is generated by
HS , it is the union of two curves both linearly equivalent to HS and
hence the union of to plane sections (i.e. of two plane irreducible
conics).
• Θ(3HS) ≤ max(3(q + 1), q + 1 + 4b2√qc).
• etc...

7.2.4. Numerical application. To conclude this section on quadrics, let
us compare the parameters [n, k, d] of the code CL(∆, G)⊥ obtained for
particular values of q. The following results are obtained using Propositions
7.1, 7.2 and the previous estimates for Θ(mHS).
Comparison with best known codes. In what follows, the minimum
distances of the studied codes are compared with the best known minimum
distances for given length and dimension appearing in Codetables [10] and
MinT [18]. These best known minimum distances appear in the right hand
column of each array.
For q = 4.

m Length Dimension

Minimum
Distance Best Known

Hyperbolic Elliptic Distance
Quadric Quadric

1 16 12 3 ≥ 4 4
2 16 7 4 ≥ 6 8

For q = 8.

m Length Dimension

Minimum
Distance Best Known

Hyperbolic Elliptic Distance
Quadric Quadric

1 64 60 3 ≥ 4 4
2 64 55 4 ≥ 6 6
3 64 48 5 ≥ 8 11
4 64 39 6 ≥ 16 (a) 16
5 64 28 7 24 (b) 24
6 64 15 8 ≥ 32 (c) 38
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(a) Take D := {HS , . . . , 4HS}. Since Θ(HS) ≤ 9 and HS .(4HS − KS −
HS) = 10, we can choose E := {2HS , 3HS , 4HS}. We have δ(E) = 16
and Q(∆, G, 16) is satisfied by D since dim Γ(S,OS(4)) = 25 > 16.
Then, apply Theorem 6.2.

(b) Take D := {HS , . . . , 4HS}. We have Θ(2HS) ≤ 18 and 2HS .(5HS −
KS − 2HS) = 20 > 18. Take E := {3HS , 4HS} and apply Theorem 6.2.

(c) Take D := {HS , . . . , 5HS} and E := {4HS}.

Note on the [64, 28, 24] code over F8. When this article has been sub-
mitted, the best [64, 28] code over F8 on Codetables [10] and MinT [18]
had minimum distance 23. However, in [6] Table IIA, Duursma and Chen,
assert the existence of a [64, 28, 24] code from the Suzuki curve, without pro-
viding further details. After communicating our results to Markus Grassl
(from Codetables), he re-constructed our code using Construction X, based
on two cyclic codes deriving from ours. By this way, he proved by computer
that the exact minimum distance is 24. More recently, Iwan Duursma com-
municated to Markus Grassl a Magma script to generate their Suzuki code.
He also explained how to deduce the minimum distance of their code. The
result comes from a Magma computation ([6] §III.B. for k = 11) and a
duality argument ([14] page 26). Taking these contributions into account,
Codetables has been updated.

For q = 16. We do not apply the result for all the possible values of m ≤
q−2 = 14 since the array would be too long. Let us only give some of them
providing interesting codes over the elliptic quadric.

m Length Dimension

Minimum
Distance Best Known

Hyperbolic Elliptic Distance
Quadric Quadric

8 256 175 10 ≥ 32 (a) 46
9 256 156 11 ≥ 48 (b) 59
10 256 135 12 ≥ 64 (c) 74

(a) Take D := {HS , . . . , 8HS}. Since Θ(HS) ≤ 17 and HS .(8HS − KS −
HS) = 18 > 17, one can take E := {2HS , . . . , 8HS}.

(b) Take D := {HS , . . . , 8HS}. Since Θ(2HS) ≤ 34 and 2HS(9HS −KS −
2HS) = 36 > 34, one can take E := {3HS , . . . , 8HS}.

(c) Take D := {HS , . . . , 8HS}. Since Θ(3HS) ≤ 51 and 3HS(10HS −KS −
3HS) = 54 > 51, one can take E := {4HS , . . . , 8HS}.
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7.3. Cubic surfaces in P3. The classification of smooth cubic surfaces
is far from being as simple as that of smooth quadrics (see [21]). However,
in terms of codes, it is sufficient to separate them into two sets, the cubics
which contain rational lines and those which do not. As in the case of
quadrics, we see that the best codes are given by cubics which do not
contain rational lines.

7.3.1. Context. The context is almost the same as that of 7.2.1. Let S
be smooth cubic surface in P3, let G be of the form mHS where HS is
a hyperplane section and ∆ be the sum of rational points of S lying out
of the support of HS . For the same reason as in the remark in §7.2.1, we
assume that m ≤ q − 2.

If m ≤ q−2, then the dimension of CL(∆, G) equals that of Γ(S,OS(m))
which is

(7.6) dimCL(∆, G) =
(
m+ 3

3

)
−
(
m
3

)
= 3m2 + 3m+ 2

2
·

Remark. There exists cubic surfaces which do not contain any rational
line. Explicit examples are given in [24] and [23]. Moreover, it is proved
in [12] that such surfaces have Picard number 1.

7.3.2. Cubics containing rational lines.

Proposition 7.3. In the context described in 7.3.1, if S contains rational
lines, then the minimum distance d⊥ of CL(∆, G)⊥ satisfies

d⊥ = m+ 2.

Proof. Let L1, . . . , Lr be all the rational lines contained in S. Set D :=
{L1, . . . , Lr,HS , . . . ,mHS}. A computation gives δ(D) = m+ 2 (the min-
imum is reached by the lines Li). The inequality d⊥ ≥ m + 2 is given by
Theorem 6.1 and the equality is obtained using the very same argument as
that of Proposition 7.1. �

7.3.3. Cubics containing no rational lines. As for elliptic quadrics,
we first give a general lower bound based on Theorem 6.1 and then an
improvement of it based on Theorem 6.2.

Proposition 7.4. In the context described in 7.3.1, if S does not contain
any rational line, then the minimum distance d⊥ of CL(∆, G)⊥ satisfies

d⊥ ≥ 3m.

Proof. Set D := {HS , . . . ,mHS}. We get δ(D) = 3m. Using (7.6), one
proves easily that dim Γ(S,OS(m)) ≥ 3m − 1 for all m and hence, for all
r < 3m, any r–tuple of rational points of S is interpolable by some surface
section of S of degree ≤ m and one of them is minimal for this property.
Thus, the result is a consequence of Theorem 6.1. �
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It is easy to compare Propositions 7.3 and 7.4 and see that, as in the case
of quadrics, cubics containing no rational lines yield much better codes. In
what follows, we treat numerical examples based on a cubic with no rational
lines and see how to use Proposition 7.4 and how to improve its result in
some situations using Theorem 6.2.

7.3.4. Numerical application. In [24], the author looked at surfaces
with Picard number 1 to get good functional codes CL(∆, G). For that, he
noticed that in the classification of cubic surfaces up to isomorphism given
by Swinnerton–Dyer in [21] table 1, there exists cubic surfaces which do not
contain rational lines and have q2 + 2q + 1 rational points. Some explicit
examples of such surfaces are given in [24] and [23]. The following array
gives the parameters of codes arising from such a surface over F9.

m Length Dimension Minimum Best Known
Distance Distance

2 100 90 ≥ 6 6
3 100 81 ≥ 9 10
4 100 69 ≥ 12 16
6 100 36 ≥ 30 (?) 40

The box marked with a (?) corresponds to one where one can apply the
improvement given by Theorem 6.2. Indeed, Θ(HS) ≤ 9 + 1 + 2

√
9 = 16.

In the same way, using such an improvement, over F8, with m = 5 one
can get a [81, 35, 24]–code.

7.4. Comment and conclusion. Looking at the results given in [1] and
[8] it is clear that codes of the form CL(∆,HS) and CL(∆, 2HS) on elliptic
quadrics are much better than codes on hyperbolic ones. Such a fact holds
probably for codes CL(∆, G) on a quadric for more general divisors G.

The previous result shows that elliptic quadrics yield also better codes
of the form CL(∆, G)⊥ than hyperbolic ones. In both cases, the weakness
of hyperbolic quadrics comes from the numerous rational lines they con-
tain. This fact can be related to the work of Zarzar who noticed in [24]
that one could find good codes of the form CL(∆, G) on surfaces having a
small Picard Number. This is well illustrated by quadrics, since hyperbolic
quadrics have Picard number 2 and elliptic ones have Picard number 1.

Moreover, the principle asserting that surfaces with a small Picard num-
ber yield good codes seems to hold for codes of the form CL(∆, G)⊥. At
least, the above examples on quadrics and cubic surfaces encourage to look
in this direction. Another explanation makes feel that such surfaces should
give good codes: basically, if the Picard number is small, the set of divisor
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classes D of Theorem 6.1 may be small and yield a larger candidate δ(D)
for a lower bound of the minimum distance of CL(∆, G)⊥.

Finally, surfaces with small Picard number are twice interesting for cod-
ing theory: for functional codes or for their duals.
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