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Degeneration of the Kummer sequence in
characteristic p > 0

par Yuji TSUNO

Résumé. Nous étudions une déformation de la suite de Kummer à
la suite radicielle sur une Fp-algèbre, qui est duale en un sens pour
la déformation de la suite d’Artin-Schreier à la suite radicielle,
étudiée par Saidi. Nous examinons aussi quelques relations entre
nos suites et l’immersion d’un schéma en groupes commutatifs,
fini et plat dans un schéma en groupes commutatifs, lisse, affine
et connexe, construite par Grothendieck.

Abstract. We study a deformation of the Kummer sequence to
the radicial sequence over an Fp-algebra, which is somewhat dual
for the deformation of the Artin-Schreier sequence to the radicial
sequence, studied by Saidi. We also discuss some relations between
our sequences and the embedding of a finite flat commutative
group scheme into a connected smooth affine commutative group
schemes, constructed by Grothendieck.

Introduction
Let p be a prime number. The Artin-Schreier sequence

0 −→ Z/pZ −→ Ga,Fp
F−I−→ Ga,Fp −→ 0

has an important role in algebraic geometry in characteristic p. Indeed we
obtain a description of cyclic extensions of degree p over a field of charac-
teristic p or more generally of cyclic coverings of a variety over a field of
characteristic p, applying the theory of Galois cohomology or étale coho-
mology to the Artin-Schreier sequence.

Mohamed Saidi [4] studies the degeneration of cyclic coverings of a curve
over a ring of characteristic p, using the exact sequence

0 −→ NA −→ Ga,A
F−µI−→ Ga,A −→ 0,(0)

where A is an Fp-algebra and µ ∈ A. When µ = 0, we obtain an exact
sequence

0 −→ αp,A −→ Ga,A
F−→ Ga,A −→ 0,
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called the radicial sequence.
As is well known, the Cartier dual of Z/pZ is isomorphic to µp,A, the

group scheme of p-th roots of unity, and αp,A is auto-dual for the Cartier
duality. Hence the Cartier dual of NA is a deformaion of µp,A to αp,A.

On the other hand, we have an exact sequence

0 −→ µp,A −→ Gm,A
F−→ Gm,A −→ 0,

called the Kummer sequence. It would be interesting to consider an ana-
logue of the sequence which combines the Artin-Schreier sequence and the
radicial sequence.

The main results of this article are the following theorems:

Theorem 1 (= Theorem 2.6.) Let A be an Fp-algebra and λ ∈ A. Put
NA = Ker[F − λp−1I : Ga,A → Ga,A]. Then there exists an exact sequnce
of group A-schemes:

0 −→ N∨A −→ G
(λ)
A

F−→ G(λp)
A −→ 0.(1)

Theorem 2 (= Theorem 2.9.) Let A be an Fp-algebra and λ ∈ A. Put
NA = Ker[F−λ(p−1)/2I : Ga,A → Ga,A]. Then there exists an exact sequence
of group A-schemes:

0 −→ N∨A −→ GB/A
F−→ GB̃/A −→ 0.(2)

(For the notation, see Section 1. We owe the description of the group scheme
GB/A to Waterhouse-Weisfeiler [14].)

Now we explain the contents of the article. In Section 1, we recall needed
facts on group schemes. In Section 2, after giving a precise description of
the Cartier dual of NA, we prove Theorem 1 and Theorem 2. The exact
sequence (1) gives a deformation of the Kummer sequence to the radicial
sequence. Moreover, applying the cohomology theory of group schemes, we
obtain an analogue of the classical Kummer theory:
Corollary 1 (= Corollary 2.11.) Under the assumption of Theorem 1,
suppose that SpecS has a structure of N∨A-torsor over SpecR. If R is a
local ring or λ is nilpotent, then there exists a morphism SpecR → G(λp)

A
such that the square

SpecS −−−−→ G(λ)
Ay yF

SpecR −−−−→ G(λp)
A

is cartesian.
Furthermore, the exact sequence (2) is a quadratic twist of (1), that is,

after the base change by the quadratic extension A[
√
λ]/A, the sequence
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(2) is isomorphic to a sequence of the form (1). We have also a similar
assertion as above:
Corollary 2 (= Corollary 2.17.) Under the assumption of Theorem 2,
suppose that SpecS has a structure of N∨A-torsor over SpecR. If R is a
local ring or λ is nilpotent, then there exists a morphism SpecR → GB̃/A
such that the square

SpecS −−−−→ GB/Ay yF
SpecR −−−−→ GB̃/A

is cartesian.
In Section 3, we compare our sequences and the exact sequence con-

structed by Grothendieck. In fact,

Theorem 3 (= Theorem 3.12.) Let A be an Fp-algebra and λ ∈ A. Put
NA = Ker[F − λp−1I : Ga,A → Ga,A]. Then there exist commutative dia-
grams of group schemes

N∨A −−−−→
∏
NA/A

Gm,NA∥∥∥ yχ̃
N∨A −−−−→ G(λ)

A

and
N∨A −−−−→ G(λ)

A∥∥∥ yσ̃
N∨A −−−−→

∏
NA/A

Gm,NA .

Theorem 4 (= Theorem 3.15.) Let p be a prime number > 2, A an
Fp-algebra and λ ∈ A. Put NA = Ker[F − λ

p−1
2 I : Ga,A → Ga,A]. Then

there exist commutative diagrams of group schemes

N∨A −−−−→
∏
NA/A

Gm,NAyo yχ̃
N∨A −−−−→ GB/A
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and
N∨A −−−−→ GB/Ayo yσ̃
N∨A −−−−→

∏
NA/A

Gm,NA .

It should be mentioned that the argument in Section 3 is an analogue of
the statement for the unit group schemes of group algebras, developed in
Suwa [10] after Serre [7, Ch.IV, 8].

Notation. Throughout the article, p denotes a prime number and Fp de-
notes the finite field of order p. Unless otherwise indicated, F denotes the
Frobenius endomorphism.

For a scheme X and a commutative group scheme G over X, H∗(X,G)
denotes the cohomology group with respect to the fppf-topology. It is known
that, if G is smooth over X, the fppf-cohomology group coincides with the
étale cohomology group (Grothendieck [2], III.11.7). By the abbreviation,
H∗(R,G) denotes H∗(SpecR,G) when R is a ring.

For an A-algebra B,
∏
B/A

denotes the Weil restriction functor.

List of group schemes
Ga,A: the additive group scheme over A
Gm,A: the multiplicative group scheme over A
µn,A : Ker[n : Gm,A → Gm,A]
αp,A : Ker[F : Ga,A → Ga,A] when A is of characteristic p
G(λ)
A : recalled in 1.2
GB/A : defined in 1.3

Acknowledgement. The author expresses his hearty gratitude to Profes-
sor Noriyuki Suwa for valuable advices and the patience. He is also grateful
to Professors Tsutomu Sekiguchi, Fumiyuki Momose and Akira Masuoka
for their useful suggestion. He thanks Dr. Michio Amano, Mr. Nobuhiro
Aki and Dr. Yasuhiro Niitsuma for their warm encouragement. Finally is
very grateful to the referee for useful remarks.

1. Preliminaries
Definition 1.1. Let A be a ring. The additive group scheme Ga,A over A
is defined by

Ga,A = SpecA[T ]
with

(a) the multiplication: T 7→ T ⊗ 1 + 1⊗ T ,
(b) the unit: T 7→ 0,
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(c) the inverse: T 7→ −T .

On the other hand, the multiplicative group scheme Gm,A over A is
defined by

Gm,A = SpecA[T, 1
T

]

with
(a) the multiplication: T 7→ T ⊗ T ,
(b) the unit: T 7→ 1,
(c) the inverse: T 7→ 1/T .

Definition 1.2. Let A be a ring and λ ∈ A. A commutative group scheme
G(λ)
A over A is defined by

G(λ)
A = SpecA[T, 1

1 + λT
]

with
(a) the multiplication: T 7→ T ⊗ 1 + 1⊗ T + λT ⊗ T ,
(b) the unit: T 7→ 0,
(c) the inverse: T 7→ −T/(1 + λT ).
A homomorphism α(λ) : G(λ)

A → Gm,A of group schemes over A is defined
by

U 7→ λT + 1 : A[U, 1
U

] −→ A[T, 1
1 + λT

].

If λ is invertible in A, then α(λ) is an isomorphism. On the other hand, if
λ = 0, G(λ)

A is nothing but the additive group scheme Ga,A.

Definition 1.3. Let A be a ring and λ ∈ A. Put B = A[
√
λ] = A[t]/(t2−λ).

Then the functor from A-algebras to groups R 7→ (R⊗AB)× is represented
by the group scheme∏

B/A

Gm,B = SpecA[U, V, 1
U2 − λV 2 ]

with the multiplication

U 7→ U ⊗ U + λV ⊗ V, V 7→ U ⊗ V + V ⊗ U.

Moreover, the canonical injection R× → (R ⊗A B)× is represented by the
homomorphism of group schemes

i : Gm,A = SpecA[T, 1
T

]→
∏
B/A

Gm,B = SpecA[U, V, 1
U2 − λV 2 ]

defined by
U 7→ T, V 7→ 0.
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On the other hand, the norm map Nr : (R⊗AB)× → R× is represented by
the homomorphism of group schemes

Nr :
∏
B/A

Gm,B = SpecA[U, V, 1
U2 − λV 2 ]→ Gm,A = SpecA[T, 1

T
]

defined by
U 7→ U2 − λV 2.

We define a group scheme UB/A over A by

UB/A = Ker[Nr :
∏
B/A

Gm,B → Gm,A].

More precisely

UB/A = SpecA[U, V ]/(U2 − λV 2 − 1)

with the multiplication

U 7→ U ⊗ U + λV ⊗ V, V 7→ U ⊗ V + V ⊗ U.

If 2λ is invertible in A, then UB/A is an algebraic torus over A.
Moreover, we define a group scheme GB/A over A by

GB/A = SpecA[X,Y ]/(X2 − λY 2 − Y )

with
(a) the multiplication:

X 7→ X⊗1+1⊗X+2λX⊗Y+2λY⊗X, Y 7→ Y⊗1+1⊗Y+2λY⊗Y+2X⊗X;

(b) the unit:
X 7→ 0, Y 7→ 0;

(c) the inverse:
X 7→ −X, Y 7→ Y.

Remark 1.4. We define a homomorphism of group A-schemes

r :
∏
B/A

Gm,B = SpecA[U, V, 1
U2 − λV 2 ]

→ GB/A = SpecA[X,Y ]/(X2 − λY 2 − Y )

by

X 7→ UV

U2 − λV 2 , Y 7→
V 2

U2 − λV 2

It is readily seen that the sequence

0 −→ Gm,A
i−→
∏
B/A

Gm,B
r−→ GB/A −→ 0
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is exact. If 2 is invertible in A, then T 7→ 2(X +
√
λY ) defines an isomor-

phism over B:

σ : GB/A ⊗A B = SpecB[X,Y ]/(X2 − λY 2 − Y )
∼→ G(

√
λ)

B = SpecB[T, 1
1 +
√
λT

]

The inverse of σ is given by

X 7→ 2T +
√
λT 2

4(1 +
√
λT )
, Y 7→ T 2

4(1 +
√
λT )

Furthermore,
U 7→ 1 + 2λY, V 7→ 2X

define a homomorphism

α : GB/A = SpecA[X,Y ]/(X2 − λY 2 − Y )
→ UB/A = SpecA[U, V ]/(U2 − λV 2 − 1)

If 2λ is invertible in A, then α is an isomorphism. Indeed, the inverse of α
is given by

X 7→ −V
2
, Y 7→ −1− U

2λ

2. Deformations of the Kummer sequence
Throughout this section, A denotes an Fp-algebra. We fix µ ∈ A and put
NA = Ker[F − µI : Ga,A → Ga,A] and G = N∨A .

Defintion 2.1. Let A be an Fp-algebra and µ ∈ A. Put NA = Ker[F −µI :
Ga,A → Ga,A]. Then NA is a commutative group scheme, finite and flat
of order p over A. Indeed, NA = SpecA[T ]/(T p − µT ) and the addition is
given by T 7→ T ⊗ 1 + 1⊗ T .

Lemma 2.2. Under the notation of 2.1, let R be an A-algebra and a ∈ R.
If ap = 0, then

U 7→
p−1∑
i=0

ai

i!
T i

defines a homomorphism of group schemes
c : NR = SpecR[T ]/(T p − µT )→ Gm,R = SpecR[U, 1/U ].

Furthermore, the map

a 7→
p−1∑
i=0

ai

i!
T i

gives rise to a bĳection between Ker[F : R→ R] and HomR−gr(NR,Gm,R).
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Proof. Put f(T ) =
p−1∑
i=0

ai

i!
T i. If ap = 0, then f(T ) is inversible inR[T ]/(T p−

µT ). Moreover, we obtain a functional equation f(X + Y ) = f(X)f(Y ).
Hence U 7→ f(T ) defines a homomorphism of group R-schemes c : NR →

Gm,R. Conversely, assume that U 7→ f(T ) =
p−1∑
i=0
aiT
i defines a homomor-

phism of group R-schemes

c : NR = SpecR[T ]/(T p − µT )→ Gm,R = SpecR[U, 1/U ].

Then we obtain (1) f(0) = 1, (2) f(X + Y ) = f(X)f(Y ). By (1), a0 = 1.
Furthermore, comparing the coefficients of XiY j in

f(X + Y ) = 1 + a1(X + Y ) + a2(X + Y )2 + · · ·+ ap−1(X + Y )p−1

and

f(X)f(Y ) = (1 + a1X + a2X2 + · · ·+ ap−1X
p−1)

× (1 + a1Y + a2Y 2 + · · ·+ ap−1Y
p−1)

for each i, j, we obtain

aiaj =


(
i+ j
i

)
ai+j (i+ j < p)

0 (i+ j ≥ p)

In particular, we have a1ap−1 = 0 and iai = a1ai−1 for each i ≥ 1. It follows

that ai = a
i
1
i!

for 1 ≤ i < p and ap1 = 0.

Notation 2.3. Let p be a prime number. We put

W (X,Y ) = X
p + Y p − (X + Y )p

p
= −

p−1∑
i=1

1
p

(
p

i

)
Xp−iY i ∈ Z[X,Y ].

Definition 2.4. Let A be an Fp-algebra and µ ∈ A. Define a finite flat
commutative group scheme G over A by G = SpecA[T ]/(T p) with

(a) the multiplication:

T 7→ T⊗1+1⊗T+µW (T⊗1, 1⊗T ) = T⊗1+1⊗T−µ
p−1∑
i=1

1
p

(
p

i

)
T p−i⊗T i,

(b) the unit: T 7→ 0,
(c) the inverse: T 7→ −T .

Proposition 2.5. Let A be an Fp-algebra and µ ∈ A. Then the Cartier
dual N∨A of NA = Ker[F − µI : Ga,A → Ga,A] is isomorphic to the group
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scheme
G = SpecA[T ]/(T p)

with the multiplication

∆ : T 7→ T ⊗ 1 + 1⊗ T + µW (T ⊗ 1, 1⊗ T ).

Proof. For an A-algebra R, we have G(R) = {a ∈ R ; ap = 0}. Therefore,
the map η : G(R)→ N∨(R) = HomR−gr(NR,Gm,R) defined by

a 7→
p−1∑
i=0

ai

i!
T i

is bĳective by Lemma 2.4. Moreover, for any a, b ∈ G(R), we have(p−1∑
i=0

ai

i!
T i
)(p−1∑
i=0

bi

i!
T i
)

=
p−1∑
i=0

ci

i!
T i

for some c ∈ G(R). Comparing the coefficients of T , we obtain

c = a+ b+ µ
p−1∑
i=1

1
(p− i)!i!

ap−ibi = a+ b− µ
p−1∑
i=1

1
p

(
p

i

)
ap−ibi

since T p = µT in R[T ]/(T p−µT ). Therefore the map η : G(R)→ N∨A(R) =
HomR−gr(NR,Gm,R) is an isomorphism of groups.
Remark 2.6. The Cartier duality asserts that the character group
HomR−gr(G⊗AR,Gm,R) is isomorphic to NA(R) for any A-algebra R. The
assertion is verified directly as follows.

Let R be an A-algebra and a ∈ R. If ap = µa, then

U 7→
p−1∑
i=0

ai

i!
T i

defines a homomorphism of group schemes

G⊗A R = SpecR[T ]/(T p)→ Gm,R = SpecR[U, 1/U ]

since
p−1∑
i=1

ai

i!

{
X + Y + µW (X,Y )

}i
≡
(p−1∑
i=0

ai

i!
Xi
)(p−1∑
i=0

ai

i!
Y i
)

mod (Xp, Y p).

Furthermore,

a 7→
p−1∑
i=0

ai

i!
T i

gives rise to a bĳection

ξ : NA(R) = {a ∈ R ; ap = µa} ∼→ HomR−gr(G⊗A R,Gm,R).
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In fact, assume that U 7→ f(T ) =
p−1∑
i=0
aiT
i defines a homomorphism of

group R-schemes

G⊗A R = SpecR[T ]/(T p)→ Gm,R = SpecR[U, 1/U ].

Then we obtain (1) f(0) = 1 and (2) f(X + Y + µW (X,Y )) = f(X)f(Y ).
By (1), a0 = 1. Furthermore, comparing the coefficients of XiY j in

f(X + Y + µW (X,Y )) = 1 + a1{X + Y + µW (X,Y )}
+ a2{X + Y + µW (X,Y )}2 + · · ·
+ ap−1{X + Y + µW (X,Y )}p−1

and

f(X)f(Y ) = (1 + a1X + a2X2 + · · ·+ ap−1X
p−1)

× (1 + a1Y + a2Y 2 + · · ·+ ap−1Y
p−1)

for each i, j, we obtain

aiaj =



(
i+ j
i

)
ai+j (i+ j < p)

−(i+ j − p+ 1)1
p

(i+ j − p+ 1)
(
i+ j
i

)
µai+j−p+1 (i+ j ≥ p)

In particular, we have a1ap−1 = µa1 and iai = a1ai−1 for each i ≥ 1. It

follows that ai = a
i
1
i!

for 1 ≤ i < p and ap1 = µa1. Hence ξ is surjective. It is
readily seen that ξ is injective.

Moreover, for any a, b ∈ NA(R), we have(p−1∑
i=0

ai

i!
T i
)(p−1∑
i=0

bi

i!
T i
)

=
p−1∑
i=0

ci

i!
T i

for some c ∈ NA(R). Comparing the coefficients of T , we obtain c = a+ b
since T p = 0 in R[T ]/(T p). Therefore the map ξ : NA(R) → G∨(R) =
HomR−gr(G⊗A R,Gm,R) is an isomorphism of groups.

Theorem 2.7. Let A be an Fp-algebra and µ ∈ A. If µ = λp−1 for some
λ ∈ A, then G is isomorphic to

Ker[F : G(λ)
A → G

(λp)
A ] = SpecA[X]/(Xp)

with the multiplication

∆ : X 7→ X ⊗ 1 + 1⊗X + λX ⊗X.

Here F denotes the absolute Frobenius map.
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Proof. Define a homomorphism of A-algebra η̃ : A[X]/(Xp)→ A[T ]/(T p)
by

X 7→
p−1∑
i=1

λi−1

i!
T i.

Then η̃ is an isomorphism. Indeed, the inverse of η̃ is given by

T 7→
p−1∑
i=1

(−λ)i−1

i
Xi.

Hereafter we show that η̃ is a Hopf homomorphism. It is sufficient to
verify that

p−1∑
k=1

λk−1

k!

{
X + Y + λp−1W (X,Y )

}k
=
p−1∑
k=1

λk−1

k!
Xk +

p−1∑
k=1

λk−1

k!
Y k

+ λ
(p−1∑
k=1

λk−1

k!
Xk
)(p−1∑
k=1

λk−1

k!
Y k
)

in A[X,Y ]/(Xp, Y p). At first note that

p−1∑
k=1

λk−1

k!
Xk +

p−1∑
k=1

λk−1

k!
Y k + λ

(p−1∑
k=1

λk−1

k!
Xk
)(p−1∑
k=1

λk−1

k!
Y k
)

=
p−1∑
k=1

λk−1

k!
Xk +

p−1∑
k=1

λk−1

k!
Y k +

p−1∑
k=1

λk−1

k!

{k−1∑
l=1

(
k

l

)
Xk−lY l

}

+
2p−2∑
k=p
λk−1

p−1∑
l=k−p+1

1
l!(k − l)!

Xk−lY l

=
p−1∑
k=1

λk−1

k!
(X + Y )k +

p−1∑
k=1
λk+p−2

(p−1∑
l=k

1
(k + p− 1− l)!l!

Xk+p−1−lY l
)
.

We have
p−1∑
k=1

λk−1

k!

{
X + Y + λp−1W (X,Y )

}k

=
p−1∑
k=1

λk−1

k!

{
(X + Y )k + kλp−1(X + Y )k−1W (X,Y )

}

=
p−1∑
k=1

λk−1

k!
(X + Y )k +

p−1∑
k=1

λk+p−2

(k − 1)!
(X + Y )k−1W (X,Y )

}
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since Xp = Y p = 0. Note now that we have a congruence relation

(X + Y )k−1W (X,Y ) = (X + Y )k−1X
p + Y p − (X + Y )p

p

≡ −1
p

(X + Y )k+p−1

≡ −
p−1∑
l=k

1
p

(
k + p− 1
l

)
Xk+p−1−lY l mod (Xp, Y p)

in Q[X,Y ], and therefore

(X + Y )k−1W (X,Y ) ≡ −
p−1∑
l=k

1
p

(
k + p− 1
l

)
Xk+p−1−lY l mod (Xp, Y p)

in Z[X,Y ]. Moreover, we have

−1
p

(
k + p− 1
l

)

= − 1
p l!

(k + p− 1)(k + p− 2) · · ·

× (k + p− k + 1)(k + p− k)(k + p− k − 1) · · · (k + p− l)

≡ −(k − 1)!(p− 1)(p− 2) · · · (k + p− l)
l!

= − (k − 1)!(p− 1)!
(k + p− l − 1)!l!

≡ (k − 1)!
(k + p− l − 1)!l!

mod p

in Z(p). Hence the result.

Remark 2.8. We obtain an exact sequence of group A-schemes

0 −→ G η−→ G(λ)
A

F−→ G(λp)
A −→ 0.(1)

When λ = 0, the sequence (1) is nothing but the radicial sequence

0 −→ αp,A −→ Ga,A
F−→ Ga,A −→ 0.

On the other hand, if λ is invertible A, we have a commutative diagram
of group A-schemes with exact rows

0 −−−−→ G
η−−−−→ G(λ)

A
F−−−−→ G(λp)

A −−−−→ 0yo yo α(λ)
yo α(λp)

0 −−−−→ µp,A −−−−→ Gm,A
F−−−−→ Gm,A −−−−→ 0.



Degeneration of the Kummer sequence in characteristic p > 0 231

Therefore, the exact sequence (1) gives a deformation of the Kummer se-
quence to the radicial sequence.

Corollary 2.9. Let R be an A-algebra. If R is a local ring or λ is nilpotent,
then H1(R,G) is isomorphic to Coker[F : G(λ)

A (R)→ G(λp)
A (R)].

Proof. From the exact sequence of group schemes over R

0→ G→ G(λ)
A
F→ G(λp)

A → 0,
we obtain a long exact sequence

G(λ)
A (R) F−→ G(λp)

A (R) −→ H1(R,G) −→ H1(R,G(λ)
A ) F−→ H1(R,G(λp)

A ).

We know that H1(R,G(λ)
A ) = 0 under the assumption ([5], Cor 1.3), which

implies the assertion.

The above assertion is restated as follows :
Corollary 2.10. Let R be an A-algebra and S an R-algebra. Assume that
SpecS has a structure of G-torsor over SpecR. If R is a local ring or λ
is nilpotent, then there exists a morphism SpecR → G(λp)

A such that the
square

SpecS −−−−→ G(λ)
Ay yF

SpecR −−−−→ G(λp)
A

is cartesian. More precisely, S is isomorphic to
R[X]/(Xp − a)

for some a ∈ R with 1 + λpa ∈ R×, and the action of G on SpecS over R
is defined by

R[X]/(Xp − a) → R[T ]/(T p)⊗R R[X]/(Xp − a)

X 7→
p−1∑
i=1

λi−1

i!
T i ⊗ 1 +

p−1∑
i=0

λi

i!
T i ⊗X.

Hereafter we study a quadratic twist of the exact sequence (1).

Notation 2.11. Let A be a ring and λ ∈ A. Put B = A[
√
λ] = A[t]/(t2−λ)

and B̃ = A[
√
λ
p] = A[t]/(t2−λp). As is done in 1.4, we define group schemes

GB/A and GB̃/A over A by

GB/A = SpecA[X,Y ]/(X2 − λY 2 − Y )
with the multiplication:
X 7→ X⊗1+1⊗X+2λX⊗Y+2λY⊗X, Y 7→ Y⊗1+1⊗Y+2λY⊗Y+2X⊗X,
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GB̃/A = SpecA[X,Y ]/(X2 − λpY 2 − Y )
with the multiplication:

X 7→ X ⊗ 1 + 1⊗X + 2λpX ⊗ Y + 2λpY ⊗X,
Y 7→ Y ⊗ 1 + 1⊗ Y + 2λpY ⊗ Y + 2X ⊗X.

Furthermore a homomorphism of group A-schemes

F : GB/A = SpecA[X,Y ]/(X2 − λY 2 − Y )
→ GB̃/A = SpecA[X,Y ]/(X2 − λpY 2 − Y )

is defined by
X 7→ Xp, Y 7→ Y p.

It is readily seen that F : GB/A → GB̃/A is finite flat.

Theorem 2.12. Let p be a prime number > 2, A an Fp-algebra and µ ∈ A.
If µ = λ(p−1)/2 for some λ ∈ A, then G is isomorphic to

Ker[F : GB/A → GB̃/A] = SpecA[X,Y ]/(X2 − λY 2 − Y,Xp, Y p)

with the multiplication
∆ : X 7→ X ⊗ 1 + 1⊗X + 2λX ⊗ Y + 2λY ⊗X,
Y 7→ Y ⊗ 1 + 1⊗ Y + 2λY ⊗ Y + 2X ⊗X.

Here F denotes the absolute Frobenius map.
Proof. We verify that

X 7→ 1
2

p−1
2∑
i=1

λi−1

(2i− 1)!
T 2i−1, Y 7→ 1

2

p−1
2∑
i=1

λi−1

(2i)!
T 2i

defines a homomorphism of group schemes

ξ : G = SpecA[X]/(T p)→ GB/A = SpecA[X,Y ]/(X2 − λY 2 − Y )

Noting

sinh
√
ΛT√
Λ

=
∞∑
i=1

Λi−1

(2i− 1)!
T 2i−1,

cosh
√
ΛT − 1
Λ

=
∞∑
i=1

Λi−1

(2i)!
T 2i,

and (1
2

sinh
√
ΛT√
Λ

)2
−Λ

(1
2

cosh
√
ΛT − 1
Λ

)2
−1

2
cosh
√
ΛT − 1
Λ

= 0

we obtain an identity in Q[Λ][[T ]]{1
2

∞∑
i=1

Λi−1

(2i− 1)!
T 2i−1

}2
− Λ

{1
2

∞∑
i=1

Λi−1

(2i)!
T 2i
}2
− 1

2

∞∑
i=1

Λi−1

(2i)!
T 2i = 0,
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and therefore an identity in Q[Λ][T ]/(T p)

{1
2

p−1
2∑
i=1

Λi−1

(2i− 1)!
T 2i−1

}2
− Λ

{1
2

p−1
2∑
i=1

Λi−1

(2i)!
T 2i
}2
− 1

2

p−1
2∑
i=1

Λi−1

(2i)!
T 2i = 0,

which reads as an identity in Fp[Λ][T ]/(T p)

{1
2

p−1
2∑
i=1

Λi−1

(2i− 1)!
T 2i−1

}2
− Λ

{1
2

p−1
2∑
i=1

Λi−1

(2i)!
T 2i
}2
− 1

2

p−1
2∑
i=1

Λi−1

(2i)!
T 2i = 0

since
p−1

2∑
i=1

Λi−1

(2i− 1)!
T 2i−1,

1
2

p−1
2∑
i=1

Λi−1

(2i)!
T 2i ∈ Z(p)[Λ][T ].

Specializing Λ to λ, we obtain

{1
2

p−1
2∑
i=1

λi−1

(2i− 1)!
T 2i−1

}2
− λ

{1
2

p−1
2∑
i=1

λi−1

(2i)!
T 2i
}2
− 1

2

p−1
2∑
i=1

λi−1

(2i)!
T 2i = 0

in A[T ]/(T p), which implies that

X 7→ 1
2

p−1
2∑
i=1

λi−1

(2i− 1)!
T 2i−1, Y 7→ 1

2

p−1
2∑
i=1

λi−1

(2i)!
T 2i

defines a homomorphism of A-algebras

ξ̃ : A[X,Y ]/(X2 − λY 2 − Y,Xp, Y p)→ A[T ]/(T p).

Furthermore, as is remarked in 1.4,

X 7→ 2(X +
√
λY )

gives rise to an isomorphism of group scheme over B = A[
√
λ]

σ : GB/A ⊗A B = SpecB[X,Y ]/(X2 − λY 2 − Y )
∼→ G(

√
λ)

B = SpecB[X, 1
1 +
√
λX

].

On the other hand,

X 7→
p−1∑
i=1

√
λ
i−1

i!
T i

gives an isomorphism of group scheme over B

ηB : G⊗A B = SpecB[T ]/(T p)
∼→ Ker[F : G(

√
λ)

B → G(
√
λ
p)

B ] = SpecB[X]/(Xp).
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Moreover, we have σ ◦ ηB = ξB since

2
{1

2

p−1
2∑
i=1

λi−1

(2i− 1)!
T 2i−1 +

√
λ

1
2

p−1
2∑
i=1

λi−1

(2i)!
T 2i
}

=
p−1∑
i=1

√
λ
i−1

i!
T i.

Hence, ξB is an homomorphism of group schemes over B. It follows that ξ
is an homomorphism of group schemes over A since B = A[

√
λ] is faithfully

flat over A.

Remark 2.13. We obtain an exact sequence of group schemes

0→ G ξ→ GB/A
F→ GB̃/A → 0.(2)

In the proof of 2.12, we obtained an isomorphism of exact sequences:

0 −−−−→ G⊗A B
ξB−−−−→ GB/A ⊗A B

F−−−−→ GB̃/A ⊗A B −−−−→ 0∥∥∥ yo σ yo σ̃
0 −−−−→ G⊗A B

ηB−−−−→ G(
√
λ)

B
F−−−−→ G(

√
λp)

B −−−−→ 0.
That is to say, the sequence (2) is a quadratic twist of (1).

Corollary 2.14. Let R be an A-algebra. If R is a local ring or λ is nilpotent,
then H1(R,G) is isomorphic to Coker[F : GB/A(R)→ GB̃/A(R)].
Proof. From the exact sequence of group schemes over R

0→ G→ GB/A
F→ GB̃/A → 0,

we obtain a long exact sequence

GB/A(R) F−→ GB̃/A(R) −→ H1(R,G) −→ H1(R,GB/A) F−→ H1(R,GB̃/A).

We know that H1(R,GB/A) is annihilated by 2 under the assumption ([9],
Prop 4.3.) and thatH1(R,G) is annihilated by p, which imply the assertion.

The above assertion is restated as follows :
Corollary 2.15. Let R be an A-algebra and S an R-algebra. Assume that
SpecS has a structure of G-torsor over SpecR. If R is a local ring or λ
is nilpotent, then there exists a morphism SpecR → GB̃/A such that the
square

SpecS −−−−→ GB/Ay yF
SpecR −−−−→ GB̃/A

is cartesian. More precisely, S is isomorphic to
R[X,Y ]/(Xp − a, Y p − b,X2 − λY 2 − Y )
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for some a, b ∈ R with a2 − λpb2 − b = 0, and the action of G on SpecS
over R is defined by

R[X,Y ]/(Xp − a, Y p − b,X2 − λY 2 − Y )
→ R[T ]/(T p)⊗R R[X,Y ]/(Xp − a, Y p − b,X2 − λY 2 − Y ) :

X 7→ 1
2

p−1
2∑
i=1

λi−1

(2i− 1)!
T 2i−1 ⊗ 1 +

p−1
2∑
i=1

λi

(2i− 1)!
T 2i−1 ⊗ Y +

p−1
2∑
i=0

λi

(2i)!
T 2i ⊗X,

Y 7→ 1
2

p−1
2∑
i=1

λi−1

(2i)!
T 2i ⊗ 1 +

p−1
2∑
i=0

λi

(2i)!
T 2i ⊗ Y +

p−1
2∑
i=1

λi−1

(2i− 1)!
T 2i−1 ⊗X.

Remark 2.16. The Artin-Hasse exponential series Ep(T ) ∈ Z(p)[[T ]] is
defined by

Ep(T ) = exp
( ∞∑
r=0

T p
r

pr

)
.

For an Z(p)-algebra R and a = (ak)k≥0 ∈ RN , we define Ep(a;T ) ∈ A[[T ]]
by

Ep(a;T ) =
∞∏
k=0
Ep(akT p

k).

It is known that
Ep(a+ b;T ) = Ep(a;T )Ep(b;T )

where + denotes the addition of Witt vectors.
Let Ŵ denote the formal completion of the additive group scheme of

Witt vectors. Then, if R is an Fp -algebra, we have

Ŵ (R) =
{

(a0, a1, a2, . . .) ∈W (R) ; ai is nilpotent for all i and ai = 0
for all but a finite number of i

}
.

Moreover,

a = (ak)k≥0 7→ Ep(a;T ) =
∞∏
k=0

(p−1∑
i=0

aik
i!
T p
ki
)

gives rise to an isomorphism

η :F Ŵ (R) = Ker[F : Ŵ (R)→ Ŵ (R)] ∼→ HomR−gr(Ga,R,Gm,R)

(cf. [1, Ch II, Sec 2, 2.7]). Under this identification,

F − µI : Ga,R → Ga,R
induces

V − [µ]I :F Ŵ (R)→F Ŵ (R).
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In fact, if a ∈F Ŵ (R), we have

Ep(a;T p − µT ) =
∞∏
k=0

(p−1∑
i=0

ak
i

i!
(T p − µT )pki

)

=
∞∏
k=0

(p−1∑
i=0

ak
i

i!
(T pk+1 − µpkT pk)i

)
.

Now, by the functional equation of the exponential series, we obtain

p−1∑
i=0

ak
i

i!
(T pk+1 − µpkT pk)i =

(p−1∑
i=0

ak
i

i!
(T pk+1)i

)(p−1∑
i=0

(µpkak)i

i!
(T pk)i

)−1

for each k since we have akp = 0. Therefore, we have gotten

Ep(a;T p − µT ) =
∞∏
k=0

(p−1∑
i=0

ak
i

i!
(T pk+1)i

)(p−1∑
i=0

(µpkak)i

i!
(T pk)i

)−1

= Ep(V a;T )Ep([µ]a;T )−1

= Ep((V − [µ])a;T ).

Moreover, we obtain a commutative diagram with exact rows:

0 −−−−−−→ Hom
R−gr

(Ga,R,Gm,R)
(F−[µ]I)∗
−−−−−−−→ Hom

R−gr
(Ga,R,Gm,R) −−−−−−→ Hom

R−gr
(N,Gm,R) −−−−−−→ 0yo η yo η yo η

0 −−−−−−→ F Ŵ (R)
V−[µ]I
−−−−−−→ F Ŵ (R) −−−−−−→ G(R) −−−−−−→ 0.

Remark 2.17. Put Λp = Z[ζ, 1/p(p − 1)] ∩ Zp, where ζ is a primitive
(p − 1)-th root of unity in the ring of p-adic integers. For any scheme S
over Λp. In [11] Tate and Oort defined a commutative group scheme GLa,b
over S, where L is an invertible OS-module and a ∈ Γ(S,L⊗(p−1)), b ∈
Γ(S,L⊗(1−p)) with a⊗ b = p. The group scheme GLa,b is finite flat of order
p over S, and the Cartier dual (GLa,b)∨ is isomorphisc to GL∨b,a . If A is an
Fp-algebra, S = SpecA and L = OS , then we have ab = 0 and

GLa,b = SpecA[T ]/(T p − aT )

with the multiplication

∆ : T 7→ T ⊗ 1 + 1⊗ T + bW (T ⊗ 1, 1⊗ T ).

In particular, we have N = GAµ,0 and G = GA0,µ.



Degeneration of the Kummer sequence in characteristic p > 0 237

3. Relations with the Grothendieck resolution
Throughtout the section, A denotes an Fp-algebra.

3.1. First we recall a resolution of a finite flat commutative group scheme
by smooth affine commutative group schemes, constructed by Grothendieck
(cf. [3. Sec 6]). Let S be a scheme and F an affine commutative S-group
scheme such that OF is a locally free OS-module of finite rank. Then the
functor HomS−gr(F,Gm,S) is represented by a commutative group scheme
F∨, called the Cartier dual of F . The OS-module OF∨ is also locally free
of finite rank. The Cartier duality asserts that HomS−gr(F∨,Gm,S) is iso-
morphic to F .

Furthermore the functor HomS−sch(F∨,Gm,S) is nothing but the Weil
restriction

∏
F∨/S

Gm,F∨ , which is representable since OF∨ is a locally free

OS-module of finite rank (cf. [1, Ch.I, Sec.1,6.6]). Then we obtain an exact
sequence of commutative group schemes:

0→ F i→
∏
F∨/S

Gm,F∨ →
( ∏
F∨/S

Gm,F∨
)
/F → 0.

The Weil restriction
∏
F∨/S

Gm,F∨ is smooth over S since Gm,F∨ is smooth

over F∨, and therefore the quotient
( ∏
F∨/S

Gm,F∨
)
/F is also smooth over

S.
The canonical map

H1
(
S,

∏
F∨/S

Gm,F∨
)
→ H1

(
F∨,Gm,F∨

)
= Pic (F∨)

is an isomorphism since F∨ is finite over S and Gm,F∨ is is smooth over F∨.
Let X be an F -torsor over S. Then the inclusion F →

∏
F∨/S

Gm,F∨ defines

a class [X] in Pic (F∨).

First we treat the sequence: (0) 0 −→ NA −→ Ga,A
F−µI−→ Ga,A −→ 0.

3.2. Let A be an Fp-algebra, and B = A[T ]/(T p). Then
∏
B/A

Gm,B is repre-

sented by

SpecA
[
T0, T1, . . . , Tp−1,

1
T0

]
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with the multiplication

Tk 7→
k∑
i=0
Tk−1 ⊗ Ti (0 ≤ k ≤ p− 1)

with the unit
T0 7→ 1, Tk 7→ 0 (1 ≤ k ≤ p− 1)

In fact, let R be an A-algebra. The multiplication of R[T ]/(T p) =
R⊗A A[T ]/(T p) is given by

(p−1∑
i=0
aiT
i
)(p−1∑
i=0
biT
i
)

=
p−1∑
k=1

( k∑
i=0
ak−ibi

)
T k.

It is now sufficient to note that
p−1∑
k=0
akT

k is invertible in R[T ]/(T p) if and

only if a0 is invertible in R.

Theorem 3.3. Let A be an Fp-algebra and µ ∈ A. Put NA = Ker[F − µI :
Ga,A → Ga,A] and B = A[T ]/(T p). Then:
(1) A homomorphism of group schemes

χ̃ :
∏
B/A

Gm,B = SpecA
[
T0, T1, . . . , Tp−1,

1
T0

]
→ Ga,A = SpecA[T ]

is defined by

T 7→ T1
T0
.

Moreover, the diagram of group schemes

NA
i−−−−→

∏
B/A

Gm,B∥∥∥ yχ̃
NA −−−−→

ξ
Ga,A

is commutative.
(2) A homomorphism of group schemes

σ̃ : Ga,A = SpecA[T ]→
∏
B/A

Gm,B = SpecA
[
T0, T1, . . . , Tp−1,

1
T0

]
is defined by

T0 7→ 1, Tk 7→
1
k!
T k (1 ≤ k ≤ p− 1).
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Moreover, the diagram of group schemes

NA
ξ−−−−→ Ga,A∥∥∥ yσ̃

NA −−−−→
i

∏
B/A

Gm,B

is commutative, and σ̃ is a section of χ̃.
Proof. The addition of Ga,A is given by

T 7→ T ⊗ 1 + 1⊗ T.

On the other hand, we have

T1
T0
7→ T1 ⊗ T0 + T0 ⊗ T1

T0 ⊗ T0
= T1
T0
⊗ 1 + 1⊗ T1

T0

by the definition of multiplication of
∏
B/A

Gm,B. Therefore χ̃ is a homomor-

phism of group. Futhermore, comparing

1
k!
T k 7→ 1

k!
(T ⊗ 1 + 1⊗ T )k =

k∑
i=1

1
(k − i)!

T k−i ⊗ 1
i!
T i

and

Tk 7→
k∑
i=0
Tk−i ⊗ Ti,

we find that σ̃ is group homomorphism.
We obtain the commutativity of the two squares, noting that

i : NA →
∏
B/A

Gm,B

is defined by

A
[
T0, T1, . . . , Tp−1,

1
T0

]
→ A[T ]/(T p − µT )

T0 7→ 1,

Tk 7→
1
k!
T k (1 ≤ k ≤ p− 1).

Next we examine the exact sequence: (1) 0 −→ G η−→ G(λ)
A

F−→
G(λp)
A −→ 0.
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Notation 3.4. Let A be an Fp-algebra and µ ∈ A. Put

∆(µ;T0, T1, . . . , Tp−1) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T0 0 0 . . . 0 O
T1 T0 + µTp−1 µTp−2 . . . µT2 µT1
T2 T1 T0 + µTp−1 . . . µT3 µT2
...

...
... . . . ...

...
Tp−2 Tp−3 Tp−4 . . . T0 + µTp−1 µTp−2
Tp−1 Tp−2 Tp−3 . . . T1 T0 + µTp−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proposition 3.5. Let A be an Fp-algebra and µ ∈ A. Then f(T ) =
p−1∑
k=0
akT

k is invertible in A[T ]/(T p−µT ) if and only if ∆(µ; a0, a1, . . . , ap−1)

is invertible in A.
Proof. The A-module A[T ]/(T p − µT ) has a basis {1, T, T 2, . . . , T p−1}.
Moreover, we have

(1 T T 2 . . . T p−1)(a0+a1T+a2T 2+· · ·+ap−1T
p−1) = (1 T T 2 . . . T p−1)

×



a0 0 0 . . . 0 0
a1 a0 + µap−1 µap−2 . . . µa2 µa1
a2 a1 a0 + µap−1 . . . µa3 µa2
...

...
... . . . ...

...
ap−2 ap−3 ap−4 . . . a0 + µap−1 µap−2
ap−1 ap−2 ap−3 . . . a1 a0 + µap−1


.

Hence the result.

Corollary 3.6. Let A be an Fp-algebra, µ ∈ A and B = A[T ]/(T p − µT ).
Then

∏
B/A

Gm,B is represented by

SpecA
[
T0, T1, . . . , Tp−1,

1
∆(µ;T0, T1, . . . , Tp−1)

]
with

(a) the multiplication : T0 7→ T0 ⊗ T0, Tk 7→
k∑
i=0
Ti ⊗ Tk−i +

µ
p−1∑
i=k
Ti ⊗ Tk+p−i−1 (1 ≤ k ≤ p− 1),

(b) the unit : T0 7→ 1, Tk 7→ 0 (1 ≤ k ≤ p− 1).
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Proof. Let R be an A-algebra. The multiplication of R[T ]/(T p − µT ) =
R⊗A A[T ]/(T p − µT ) is given by

(p−1∑
i=0
aiT
i
)(p−1∑
i=0
biT
i
)

= a0b0 +
p−1∑
k=1

( k∑
i=0
aibk−i + µ

p−1∑
i=k
aibk+p−i−1

)
T k.

Lemma 3.7. Let A be an Fp-algebra and λ ∈ A. Then we have

∆(λp−1; a0, a1, . . . , ap−1) = a0
p−1∏
k=1

{p−1∑
l=0

(kλ)lal
}

for a0, a1, . . . , ap−1 ∈ A.
Proof. We define ek(T ) ∈ A[Λ,Λ−1][T ] (0 ≤ k < p) by

e0(T ) = 1− Λ−p+1T p−1,

ek(T ) = 1− Λ−p+1(T − kΛ)p−1 = −
p−1∑
l=1

(kΛ)−lT l (0 < k < p).

Then we obtain

ek(jΛ) =
{

1 (j = k)
0 (j 6= k).

Therefore {e0(T ), e1(T ), e2(T ), . . . , ep−1(T )} is a basis over A[Λ,Λ−1] of
A[Λ,Λ−1][T ]/(T p − Λp−1T ). Moreover, we have

1 = e0(T ) + e1(T ) + e2(T ) + · · ·+ ep−1(T ),
T = Λe1(T ) + 2Λe2(T ) + · · ·+ (p− 1)Λep−1(T ),
T 2 = (Λ)2e1(T ) + (2Λ)2e2(T ) + · · ·+ ((p− 1)Λ)2ep−1(T ),

...
T p−1 = Λp−1e1(T ) + (2Λ)p−1e2(T ) + · · ·+ ((p− 1)Λ)p−1ep−1(T ).
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Hence we obtain

(e0(T ) e1(T ) e2(T ) . . . ep−1(T ))(a0 + a1T + a2T 2 + · · ·+ ap−1T
p−1) =

(e0(T ) e1(T ) e2(T ) . . . ep−1(T ))

×



a0 0 0 . . . 0

0
p−1∑
k=0
Λkak 0 . . . 0

0 0
p−1∑
k=0

(2Λ)kak . . . 0

...
...

... . . . ...

0 0 0 . . .
p−1∑
k=0

((p− 1)Λ)kak


.

Therefore we obtain an identity in A[Λ]

∆(Λp−1; a0, a1, . . . , ap−1) = a0
p−1∏
k=1

{p−1∑
l=0

(kΛ)lal
}
.

Furthermore, we obtain the required result, specializing Λ to λ.
Combining the above assertion with Proposition 3.5, we obtain the fol-

lowing:

Corollary 3.8. Let A be an Fp-algebra, λ ∈ A and f(T ) ∈ A[T ]/(T p −
λp−1T ). Then f(T ) is invertible if and only if f(jλ) ∈ A× for 0 ≤ j < p.

Notation 3.9. Let A be an Fp-algebra and λ, a ∈ A. We put

Fp(λ, a;T ) = 1 + aT + a
2

2!
T (T − λ) + a

3

3!
T (T − λ)(T − 2λ) + · · ·

· · ·+ ap−1

(p− 1)!
T (T − λ) · · · (T − (p− 2)λ).

Notation 3.10. Recall now the definition of the Stirling number Sk,l of
first kind:

T (T − 1) . . . (T − (k − 1)) =
k∑
l=1
Sk,lT

l

For example, we have
S1,1 = 1,
S2,1 = −1, S2,2 = 1,
S3,1 = 2, S3,2 = −3, S3,3 = 1,
S4,1 = −6, S4,2 = 11, S4,3 = −6, S4,4 = 1,
S5,1 = 24, S5,2 = −50, S5,3 = 35, S5,4 = −10, S5,5 = 1.



Degeneration of the Kummer sequence in characteristic p > 0 243

Lemma 3.11. Let A be an Fp-algebra and λ, a ∈ A. Then Fp(λ, a;T )
is invertible in A[T ]/(T p−λp−1T ) if and only if 1+λa is invertible in A.

Proof. By Corollary 3.8, we obtain the result since Fp(λ, a; jλ) = (1+λa)j
for 1 ≤ j < p.

Theorem 3.12. Let A be an Fp-algebra, λ ∈ A, NA = Ker[F − λp−1I :
Ga,A → Ga,A] and G = N∨A. Then:
(1) A homomorphism of group schemes

χ̃ :
∏
NA/A

Gm,NA = SpecA
[
T0, T1, . . . , Tp−1,

1
∆(λp−1;T0, T1, . . . , Tp−1)

]
→ G(λ)

A = SpecA
[
X,

1
1 + λX

]
is defined by

X 7→
p−1∑
l=1
λl−1Tl

/
T0.

Moreover, the diagram of group schemes

G
i−−−−→

∏
NA/A

Gm,NA∥∥∥ yχ̃
G −−−−→

η
G(λ)
A

is commutative.
(2) A homomorphism of group schemes

σ̃ : G(λ)
A = SpecA

[
X,

1
1 + λX

]
→∏

NA/A

Gm,NA = SpecA
[
T0, T1, . . . , Tp−1,

1
∆(λp−1;T0, T1, . . . , Tp−1)

]
.

is defined by

T0 7→ 1, Tl 7→
p−1∑
k=l

Sk,l
k!
λk−lXk (1 ≤ l ≤ p− 1).

Moreover, the diagram of group schemes

G
η−−−−→ G(λ)

A∥∥∥ yσ̃
G −−−−→

i

∏
NA/A

Gm,NA
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is commutative, and σ̃ is a section of χ̃
Proof. (1) At first we consider the case where A = Fp[Λ] and λ = Λ. Let

R be an A-algebra and f(T ) =
p−1∑
k=0
akTk ∈

∏
NA/A

Gm,NA(R) = (R[T ]/(T p −

Λp−1T ))×. Then we obtain

χ̃(f(T )) =
p−1∑
k=0
akΛ

k−1 = 1
Λ

{f(Λ)
f(0)

− 1
}

by the definition of χ̃. Moreover, we obtain

1
Λ

{f(Λ)
f(0)

− 1
}

+ 1
Λ

{g(Λ)
g(0)
− 1

}
+ Λ 1
Λ

{f(Λ)
f(0)

− 1
} 1
Λ

{g(Λ)
g(0)
− 1

}
= 1
Λ

{f(Λ)g(Λ)
f(0)g(0)

− 1
}

for f(T ), g(T ) ∈ (R[T ]/(T p−Λp−1T ))×, which means that χ̃ is a group ho-
momorphism. In the general case, we see that χ̃ is a group homomorphism,
specializing Λ to λ.

Let R be an A-algebra. By definition,
(a) i : G(R)→

( ∏
NA/A

Gm,NA
)
(R) =

(
R[T ]/(T p − Λp−1T )

)× is given by

a 7→
p−1∑
i=1

ai

i!
T i;

(b) χ̃ :
( ∏
NA/A

Gm,NA
)
(R) =

(
R[T ]/(T p − Λp−1T )

)×→ G(λ)
A (R) is given by

p−1∑
i=0
aiT
i 7→

p−1∑
i=0
λi−1ai

/
a0;

(c) η : G(R)→ G(λ)
A (R) is given by

a 7→
p−1∑
i=1
λi−1ai.

These imply the commutativity of the first square.
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(2) Let R be an A-algebra. Then, by definition, we have

Fp(λ, a;T ) = 1 + aT + a
2

2!
T (T − λ) + · · ·

+ ap−1

(p− 1)!
T (T − λ) · · · (T − (p− 2)λ)

= 1 +
p−1∑
l=1

(p−1∑
k=l

Sk,l
k!
λk−lak

)
T l

for a ∈ R. If a ∈ G(λ)
A (R), then 1 + λa is invertible in R, and therefore

Fp(λ, a;T ) is invertible in R[T ]/(T p − λp−1T ).
At first we consider the case where A = Fp[Λ] and λ = Λ. We define a

ring homomorphism

ϕ : R[Λ][T ]/(T p − Λp−1T )→ R[Λ]p

by
f(T ) 7→ (f(0), f(Λ), f(2Λ), . . . , f(p− 1)Λ)).

Then,

ϕ⊗R[Λ] R[Λ,Λ−1] : R[Λ,Λ−1][T ]/(T p − Λp−1T )→ R[Λ,Λ−1]p

is an isomorphism of R[Λ,Λ−1]-algebra since we have

T p − Λp−1T = T (T − Λ)(T − 2Λ) · · · (T − (p− 1)Λ).

Therefore the map ϕ : R[Λ][T ]/(T p−Λp−1T )→ R[Λ]p is injective. Now we
have

ϕ(Fp(Λ, a : T )) = (1, 1 + Λa, (1 + Λa)2, . . . , (1 + Λa)p−1).

Moreover, we have an identity in R[Λ][T ]/(T p − Λp−1T )

Fp(Λ, a;T )Fp(Λ, b;T ) = Fp(Λ, a+ b+ Λab;T )

since (1 + Λa)(1 + Λb) = 1 + Λ(a + b + Λab). Therefore σ̃ is a group
homomorphism.

By the definition of χ̃, we have also

χ̃(σ̃((a)) = χ̃(Fp(Λ, a;T )) = a

for f(T ) ∈ (R[T ]/(T p − Λp−1T ))×. It follows that σ̃ is a section of χ̃.
Now we verify the commutativity of the second square. As is known, we

have an identity in Q[[U ]]
∞∑
k=l

Sk,l
k!
Uk = 1

l!
{log(1 + U)}l
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for each l ≥ 1 (cf.[8, 1.1.11]). Then we obtain in Q[Λ, T ][[U ]]
p−1∑
k=l

Sk,l
k!
Λk−lUk ≡ 1

l!

{ log(1 + ΛU)
Λ

}l
mod Up

for 1 ≤ l ≤ p− 1, and therefore,

1 +
p−1∑
l=1

(p−1∑
k=l

Sk,l
k!
Λk−lUk

)
T l ≡ 1 +

∞∑
l=0

1
l!

{T log(1 + ΛU)
Λ

}l
= exp

[T
Λ

log(1 + ΛU)
]

mod Up.

Furthermore we obtain

1 +
p−1∑
l=1

{p−1∑
k=l

Sk,l
k!
Λk−l

(p−1∑
i=1

Λi−1

i!
U i
)k}
T l ≡ expTU mod Up,

noting that
p−1∑
i=1

Λi−1

i!
U i ≡ expΛU − 1

Λ
mod Up.

At last we have gotten an identity in Z(p)[Λ,U, T ]/(Up)

1 +
p−1∑
l=1

{p−1∑
k=l

Sk,l
k!
Λk−l

(p−1∑
i=1

Λi−1

i!
U i
)k}
T l =

p−1∑
i=0

U i

i!
T i,

which reads as an identity in Fp[Λ,U, T ]/(Up). This implies the commuta-
tivity of the second square.

In the general case, we obtain the required results, specializing Λ to λ.

Corollary 3.13. Let S be an A-scheme and X a G-torsor over S. Then
the class [X] belongs to Ker[H1(S,G) → H1(S,G(λ)

A )] if and only if [X] is
trivial in Pic(S ×A NA).
Proof. By Theorem 3.12.(1), we obtain a commutative diagram of coho-
mology groups

H1(S,G) i−−−−→ H1(S,
∏
NA/A

Gm,NA)

∥∥∥ yχ̃
H1(S,G) −−−−→

η
H1(S,G(λ)

A )

.

Hence we obtain an implication

[X] is trivial in Pic(S ×A NA)⇒ [X] ∈ Ker[H1(S,G)→ H1(S,G(λ)
A )].
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On the other hand, by Theorem 3.12. (2), we obtain a commutative
diagram of cohomology groups

H1(S,G) η−−−−→ H1(S,G(λ)
A )∥∥∥ yσ̃

H1(S,G) −−−−→
i
H1(S,

∏
NA/A

Gm,NA)
.

Hence we obtain an implication

[X] ∈ Ker[H1(S,G)→ H1(S,G(λ))⇒ [X] is trivial in Pic(S ×A N).

Remark 3.14. Let A be an Fp-algebra, λ ∈ A and B = A[T ]/(T p−λp−1T ).
We define a homomorphism of group schemes

ε :
∏
B/A

Gm,B → Gm,A

by
U 7→ T0.

We define also a homomorphism of group schemes

χk :
∏
B/A

Gm,B → Gm,A

by

U 7→
p−1∑
l=0
klλlTl

for 0 < k < p.
If λ is invertible in A,

(ε, χ1, . . . , χp−1) :
∏
B/A

Gm,B → (Gm,A)p−1

is an isomorphism. The inverse of (ε, χ1, . . . , χp−1) is given by

T0 7→ U0, Tl 7→ −λ−l
p−1∑
k=1
k−lUk (1 ≤ l ≤ p− 2), Tp−1 = −λ−p+1

p−1∑
k=0
Uk.

Furthermore the homomorphism

σ0 : Gm,A →
∏
B/A

Gm,B

defined by

T0 7→ U, Tl 7→ 0 (1 ≤ l ≤ p− 2), Tp−1 7→ λ−p+1(1− U)
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is a section of ε. For 1 ≤ k ≤ p− 1, the homomorphism

σk : Gm,A →
∏
B/A

Gm,B

defined by
T0 7→ 1, Tl 7→ (kλ)−1(1− U) (1 ≤ l ≤ p− 1)

is section of χk.
The composition α(λ) ◦ χ̃ coincides with the homomorphism χ1/ε. More-

over, if λ is invertible in A, then the homomorphism σ̃ coincides with the
composition (σ1σ

2
2 · · ·σ

p−1
p−1) ◦ α(λ).

We conclude the section, examining the sequence: (2) 0→ G ξ→ GB/A
F→

GB̃/A → 0.
Lemma 3.15. Let p be a prime number > 2, A an Fp-algebra and λ ∈ A.
Put NA = Ker[F − λ

p−1
2 I : Ga,A → Ga,A] and B = A[T ]/(T 2 − λ). Then a

homomorphism of group schemes

π :
∏
NA/A

Gm,NA = SpecA
[
T0, T1, . . . , Tp−1,

1
∆(λ(p−1)/2;T0, T1, . . . , Tp−1)

]
→

∏
B/A

Gm,B = SpecA
[
U, V,

1
U2 − λV 2

is defined by

U 7→
(p−1)/2∑
l=0
λlT2l, V 7→

(p−1)/2∑
l=1
λl−1T2l−1.

Proof. Let R be an A-algebra. Then a homomorphism of R-algebra

π : R[T ]/(T p − λ
p−1

2 T )→ R[T ]/(T 2 − λ)

is defined by π(f(T )) = f(
√
λ) since the polynomial T p−1−λ

p−1
2 T is divis-

ible by T 2 − λ. Hence we obtain a homomorphism of multiplicative groups

π :
(
R[T ]/(T p − λ

p−1
2 T )

)× → (
R[T ]/(T 2 − λ)

)×
,

which is represented by a homomorphism of group A-schemes

π :
∏
NA/A

Gm,NA = SpecA
[
T0, T1, . . . , Tp−1,

1
∆(λ(p−1)/2;T0, T1, . . . , Tp−1)

]
→

∏
B/A

Gm,B = SpecA
[
U, V,

1
U2 − λV 2 ].
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In fact, for f(T ) =
p−1∑
k=0
akT

k ∈
(
R[T ]/(T p − λ

p−1
2 )
)×, we have

π(f(T )) = F (
√
λ) =

( p−1
2∑
k=0
a2kλ

k)+
( p−1

2∑
k=0
a2k−1λ

k−1
)√
λ.

Lemma 3.16. Let p be a prime number > 2. Put

Fp(Λ,U ;T ) = 1+UT+U
2

2!
T (T−Λ)+· · ·+ U

p−1

(p− 1)!
T (T−Λ) · · · (T−(p−2)Λ)

and

Gp(Λ,X, Y ;T ) = Fp(
√
Λ, 2(X + Y

√
Λ);T )Fp(−

√
Λ, 2(X − Y

√
Λ);T ).

Then Gp(Λ,X, Y, T ) ∈ Z(p)[Λ,X, Y, T ].
Proof. The field Q(

√
Λ,X, Y, T ) is a quadratic extension of Q(Λ,X, Y, T ),

and the Galois group is generated by
√
Λ 7→ −

√
Λ. Hence we have

Gp(Λ,X, Y ;T ) ∈ Q(Λ,X, Y, T ) since Gp(Λ,X, Y ;T ) is invariant under the
action

√
Λ 7→ −

√
Λ.

We obtain the result, noting Z(p)[
√
Λ,X, Y, T ] ∩ Q(Λ,X, Y, T ) =

Z(p)[Λ,X, Y, T ].

Notation 3.17. For each l ≥ 1, we define cp,l(Λ;X,Y ) ∈ Z(p)[Λ;X,Y ] by

Gp(Λ,X, Y ;T ) = 1 +
∑
l≥1
cp,l(Λ;X,Y )T l.

Example 3.18. When p = 3, we have

c3,1(Λ;X,Y ) = 4X − 48XY Λ,
c3,2(Λ;X,Y ) = 28X2 − 144X4Λ

− 48X2Y Λ+ 20Y 2Λ+ 288X2Y 2Λ2 + 48Y 3Λ2 − 144Y 4Λ3,

c3,3(Λ;X,Y ) = 48X3 − 48XY 2Λ,

c3,4(Λ;X,Y ) = 144X4 − 288X2Y 2Λ+ 144Y 4Λ2.
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Example 3.19. When p = 5, we have

c5,1(Λ;X,Y ) = 4X + 32X3Λ− 48XY Λ− 3072X3Y Λ2 + 96XY 2Λ2

− 3072XY 3Λ3,

c5,2(Λ;X,Y ) = 28X2 + 1328X4Λ− 192X2Y Λ+ 20Y 2Λ− 8960X6Λ2

− 4224X4Y Λ2 + 8736X2Y 2Λ2 − 147456X8Λ3

− 12288X6Y Λ3 + 8448X4Y 2Λ3 + 2304X2Y 3Λ3

+ 1200Y 4Λ3 + 589824X6Y 2Λ4 + 36864X4Y 3Λ4

+ 9984X2Y 4Λ4 + 1920Y 5Λ4 − 884736X4Y 4Λ5

− 36864X2Y 5Λ5 − 9472Y 6Λ5 + 589824X2Y 6Λ6

+ 12288Y 7Λ6 − 147456Y 8Λ7,

c5,3(Λ;X,Y ) = 64X3 + 2624X5Λ− 3264X3Y Λ+ 4096X7Λ2

+ 15360X5Y Λ2 + 6016X3Y 2Λ2 − 2880XY 3Λ2

− 12288X5Y 2Λ3 − 30720X3Y 3Λ3 − 8640XY 4Λ3

+ 12288X3Y 4Λ4 + 15360XY 5Λ4 − 4096XY 6Λ5,

c5,4(Λ;X,Y ) = 304X4 + 7360X6Λ− 4992X4Y Λ+ 480X2Y 2Λ

+ 200704X8Λ2 + 15360X6Y Λ2 − 6720X4Y 2Λ2

+ 3840X2Y 3Λ2 + 240Y 4Λ2 − 802816X6Y 2Λ3

− 46080X4Y 3Λ3 − 8640X2Y 4Λ3 + 1152Y 5Λ3

+ 1204224X4Y 4Λ4 + 46080X2Y 5Λ4 + 8000Y 6Λ4

− 802816X2Y 6Λ5 − 15360Y 7Λ5 + 200704Y 8Λ6,

c5,5(Λ;X,Y ) = 448X5 − 5120X7Λ− 15360X5Y Λ+ 128X3Y 2Λ

+ 15360X5Y 2Λ2 + 30720X3Y 3Λ2 − 576XY 4Λ2

− 15360X3Y 4Λ3 − 15360XY 5Λ3 + 5120XY 6Λ4,

c5,6(Λ;X,Y ) = 1600X6 − 57344X8Λ− 3072X6Y Λ− 1728X4Y 2Λ

+ 229376X6Y 2Λ2 + 9216X4Y 3Λ2 − 1344X2Y 4Λ2

− 344064X4Y 4Λ3 − 9216X2Y 5Λ3 + 1472Y 6Λ3

+ 229376X2Y 6Λ4 + 3072Y 7Λ4 − 57344Y 8Λ5,

c5,7(Λ;X,Y ) = 1024X7Λ− 3072X5Y 2Λ+ 3072X3Y 4Λ2 − 1024XY 6Λ3,

c5,8(Λ;X,Y ) = 4096X8 − 16384X6Y 2Λ+ 24576X4Y 4Λ2 − 16384X2Y 6Λ3

+ 4096Y 8Λ4.
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Theorem 3.20. Let p be a prime number > 2, A an Fp-algebra and λ ∈ A.
Put NA = Ker[F − λ

p−1
2 I : Ga,A → Ga,A] and G = N∨A. Then:

(1) A homomorphism of group schemes

χ̃ :
∏
NA/A

Gm,NA = SpecA
[
T0, T1, . . . , Tp−1,

1
∆(λ(p−1)/2;T0, T1, . . . , Tp−1)

]
→ GB/A = SpecA[X,Y ]/(X2 − λY 2 − Y )

is defined by

X 7→

((p−1)/2∑
l=0
λlT2l

)((p−1)/2∑
l=1
λl−1T2l−1

)
((p−1)/2∑
l=0
λlT2l

)2
−λ
((p−1)/2∑
l=1
λl−1T2l−1

)2
,

Y 7→

((p−1)/2∑
l=1
λl−1T2l−1

)2

((p−1)/2∑
l=0
λlT2l

)2
−λ
((p−1)/2∑
l=1
λl−1T2l−1

)2
.

Moreover, the diagram of group schemes

G
i−−−−→

∏
NA/A

Gm,NA

square map
yo yχ̃
G −−−−→

ξ
GB/A

is commutative.
(2) A homomorphism of group schemes

σ̃ : GB/A = SpecA[X,Y ]/(X2 − λY 2 − Y )→∏
NA/A

Gm,NA = SpecA
[
T0, T1, . . . , Tp−1,

1
∆(λ(p−1)/2;T0, T1, . . . , Tp−1)

]
is defined by

T0 7→ 1, Tl 7→ cp,l(λ;X,Y ) + λ
p−1

2 cp,l+p−1(λ;X,Y ) (1 ≤ l ≤ p− 1).
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Moreover, the diagram of group schemes

G
ξ−−−−→ GB/A

square map
yo yσ̃
G −−−−→

i

∏
NA/A

Gm,NA

is commutative.
Proof. (1) At first recall that a homomorphism of group schemes

r :
∏
B/A

Gm,B = SpecA[U, V, 1
U2 − λV 2 ]

→ GB/A = SpecA[X,Y ]/(X2 − λY 2 − Y )

is defined by

X 7→ UV

U2 − λV 2 , Y 7→
V 2

U2 − λV 2 .

Then χ̃ is nothing but the composite

r ◦ π :
∏
NA/A

Gm,NA →
∏
B/A

Gm,B → GB/A.

Now we verify the commutativity of the first square. First note that
the square map on G = SpecA[T ]/(T p) is given by T 7→ 2T since the
multiplication of G is defined by

∆ : T 7→ T ⊗ 1 + 1⊗ T − µ
p−1∑
i=1

1
p

(
p

i

)
T p−i ⊗ T i.

Let R be an A-algebra. Then by the definition,
(a) i : G(R)→ (

∏
NA/A

Gm,NA)(R) =
(
R[T ]/(T p − λ

p−1
2 T )

)× is given by

a 7→
p−1∑
i=0

ai

i!
T i;

(b) χ̃ :
( ∏
NA/A

Gm,NA
)
(R) =

(
R[T ]/(T p − λ

p−1
2 )
)×→ GB/A(R) is given by

p−1∑
i=0

aiT
i 7→

( ( p−1
2∑
i=0

λia2i

)( p−1
2∑
i=1

λi−1a2i−1

)
( p−1

2∑
i=0

λia2i

)2
−λ
( p−1

2∑
i=1

λi−1a2i−1

)2

,

( p−1
2∑
i=1

λi−1a2i−1

)2

( p−1
2∑
i=0

λia2i

)2
−λ
( p−1

2∑
i=1

λi−1a2i−1

)2

)
;
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(c) ξ : G(R)→ GB/A(R) is given by

a 7→
(1

2

p−1
2∑
i=1

λi−1

(2i− 1)!
a2i−1,

1
2

p−1
2∑
i=1

λi−1

(2i)!
a2i
)
.

Hence the map χ̃ ◦ i : G(R)→ GB/A(R) is given by
p−1∑
i=0

aiT
i 7→

( { p−1
2∑
i=0

λi

(2i)!
a2i
}{ p−1

2∑
i=1

λi−1

(2i− 1)!
a2i−1

}
{ p−1

2∑
i=0

λi

(2i)!
a2i
}2
−λ
{ p−1

2∑
i=1

λi−1

(2i− 1)!
a2i−1

}2

,

{ p−1
2∑
i=1

λi−1

(2i− 1)!
a2i−1

}2

{ p−1
2∑
i=0

λi

(2i)!
a2i

}2
−λ
{ p−1

2∑
i=1

λi−1

(2i− 1)!
a2i−1

}2

)

and the map ξ ◦ square : G(R)→ GB/A(R) is given by

a 7→
(1

2

p−1
2∑
i=1

λi−1

(2i− 1)!
(2a)2i−1,

1
2

p−1
2∑
i=1

λi−1

(2i)!
(2a)2i

)
.

Then it is sufficient to verify that, for a ∈ R with ap = 0, we have

{(p−1)/2∑
i=0

λi

(2i)!
a2i
}{ p−1

2∑
i=1

λi−1

(2i− 1)!
a2i−1

}
{ p−1

2∑
i=0

λi

(2i)!
a2i
}2
−λ
{ p−1

2∑
i=1

λi−1

(2i− 1)!
a2i−1

}2
= 1

2

p−1
2∑
i=1

λi−1

(2i− 1)!
(2a)2i−1

and

{ p−1
2∑
i=1

λi−1

(2i− 1)!
a2i−1

}2

{ p−1
2∑
i=0

λi

(2i)!
a2i
}2
−λ
{ p−1

2∑
i=1

λi−1

(2i− 1)!
a2i−1

}2
= 1

2

p−1
2∑
i=1

λi−1

(2i)!
(2a)2i.

In fact, we have two identities in Q[
√
Λ][[U ]] :

cosh
√
ΛU ≡

p−1
2∑
i=0

Λi

(2i)!
U2i mod Up,

sinh
√
ΛU√
Λ

≡

p−1
2∑
i=1

Λi−1

(2i− 1)!
U2i−1 mod Up
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These imply that

{ p−1
2∑
i=0

Λi

(2i)!
U2i

}2
−Λ

{ p−1
2∑
i=1

Λi−1

(2i− 1)!
U2i−1

}2
≡ (cosh

√
ΛU)2 − Λ

(sinh
√
ΛU√
Λ

)
= 1 mod Up,

{ p−1
2∑
i=0

Λi

(2i)!
U2i

}{ p−1
2∑
i=1

Λi−1

(2i− 1)!
U2i−1

}
≡ cosh

√
ΛU

sinh
√
ΛU√
Λ

= 1
2

sinh 2
√
ΛU

2
√
Λ

≡ 1
2

p−1
2∑
i=1

Λi−1

(2i− 1)!
(2U)2i−1 mod Up,

( p−1
2∑
i=1

Λi−1

(2i− 1)!
U2i−1

)2
≡
(sinh

√
ΛU√
Λ

)2

= 1
2

cosh 2
√
ΛU − 1
Λ

≡ 1
2

p−1
2∑
i=1

Λi−1

(2i)!
(2U)2i mod Up.

Then we obtain identities in Z(p)[Λ,U ]/(Up) :

{ p−1
2∑
i=0

Λi

(2i)!
U2i

}2
−Λ

{ p−1
2∑
i=1

Λi−1

(2i− 1)!
U2i−1

}2
= 1,

{ p−1
2∑
i=0

Λi

(2i)!
U2i

}{ p−1
2∑
i=1

Λi−1

(2i− 1)!
U2i−1

}
= 1

2

p−1
2∑
i=1

Λi−1

(2i− 1)!
(2U)2i−1,

{ p−1
2∑
i=1

Λi−1

(2i− 1)!
U2i−1

}2
= 1

2

p−1
2∑
i=1

Λi−1

(2i)!
(2U)2i.

(2) As is remarked in 1.4, an isomorphism of group schemes over B

s1 : GB/A ⊗A B = SpecB[X,Y ]/(X2 − λY 2 − Y )
∼→ G(

√
λ)

B = SpecB[T, 1
1 +
√
λT

]
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is defined by
T 7→ 2(X +

√
λY ).

Then we obtain a homomorphism of group schemes over B

σ1 = σ̃1 ◦ s1 : GB/A ⊗A B
∼→ G(

√
λ)

B →
( ∏
NA/A

Gm,NA
)
⊗A B,

where σ̃1 : G(
√
λ)

B →
( ∏
NA/A

Gm,NA
)
⊗A B is the homomorphism defined as

in the statement of in Theorem 3.12. For a B-algebra R, the map σ1 :
GB/A(R)→

( ∏
NA/A

Gm,NA
)
(R) =

(
R[T ]/(T p − λ

p−1
2 T )

)× is given by

(a, b) 7→ Fp(
√
λ, 2(a+ b

√
λ);T ).

Similarly an isomorphism of group schemes over B

s2 : GB/A ⊗A B = SpecB[X,Y ]/(X2 − λY 2 − Y )
∼→ G(−

√
λ)

B = SpecB[T, 1
1−
√
λT

]

is defined by
T 7→ 2(X −

√
λY ).

Then we obtain a homomorphism of group schemes over B

σ2 = σ̃2 ◦ s2 : GB/A ⊗A B
∼→ G(−

√
λ)

B →
( ∏
NA/A

Gm,NA
)
⊗A B.

For a B-algebra R, the map σ2 : GB/A(R) →
( ∏
NA/A

Gm,NA
)
(R) =

(
R[T ]/(T p − λ

p−1
2 T )

)× is given by

(a, b) 7→ Fp(−
√
λ, 2(a− b

√
λ);T ).

Hence, by the definition, the morphism

σ̃B : GB/A ⊗A B →
( ∏
NA/A

Gm,NA
)
⊗A B

is the product of σ1 and σ2. It follows that σ̃B is a homomorphism of group
schemes over B. Furtheremore σ̃ : GB/A →

∏
NA/A

Gm,NA is a homomorphism

of group schemes over A since B is faithfully flat over A.
We verify now the commutativity of the second square. Consider the

composite of homomorphisms

G⊗A B
ξB−→ GB/A ⊗A B

s1−→ G(
√
λ)

B
σ̃1−→

(∏
N/A

Gm,N
)
⊗A B.
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As is shown in 2.12, we have

ηB = s1 ◦ ξB : G⊗A B → GB/A ⊗A B
∼→ G(

√
λ)

B .

Hence, by Theorem 3.12(2), we have σ̃1 ◦ ηB = ξB, and therefore σ1 ◦ ξB =
σ̃1 ◦ s1 ◦ ξB = iB. Similary we obtain σ2 ◦ ξB = iB. These imply that
(σ̃ ◦ ξ)B = iB ◦ square. At last we obtain the required result since B is
faithfully flat over A.

Corollary 3.21. Let S be an A-scheme and X a G-torsor over S. Then
the class [X] belongs to Ker[H1(S,G)→ H1(S,GB/A)] if and only if [X] is
trivial in Pic(S ×A NA).
Proof. By Theorem 3.18 (1), we obtain a commutative diagram of coho-
mology groups

H1(S,G) i−−−−→ H1(S,
∏
NA/A

Gm,NA)

square map
yo yχ̃

H1(S,G) −−−−→
ξ

H1(S,GB/A)

.

Hence we obtain an implication
[X] is trivial in Pic(S ×A NA)⇒ [X] ∈ Ker[H1(S,G)→ H1(S,GB/A)].
On the other hand, by Theorem 3.18 (2), we obtain a commutative dia-

gram of cohomology groups

H1(S,G) ξ−−−−→ H1(S,GB/A)

square map
yo yσ̃

H1(S,G) −−−−→
i
H1(S,

∏
NA/A

Gm,NA)
.

Hence we obtain an implication
[X] ∈ Ker[H1(S,G)→ H1(S,GB/A)⇒ [X] is trivial in Pic(S ×A NA).
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