OURNAL de Théorie des Nombres de Bordeaux

 anciennement Séminaire de Théorie des Nombres de BordeauxFethi BEN SAÏD, Jean-Louis NICOLAS et Ahlem ZEKRAOUI
On the parity of generalized partition functions, III
Tome 22, no 1 (2010), p. 51-78.
http://jtnb.cedram.org/item?id=JTNB_2010___22_1_51_0
© Université Bordeaux 1, 2010, tous droits réservés.
L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

On the parity of generalized partition functions, III

par Fethi BEN SAÏD, Jean-Louis NICOLAS et Ahlem ZEKRAOUI

RÉSumé. Dans cet article, nous complétons les résultats de J.-L. Nicolas [15], en déterminant tous les éléments de l'ensemble $\mathcal{A}=$ $\mathcal{A}\left(1+z+z^{3}+z^{4}+z^{5}\right)$ pour lequel la fonction de partition $p(\mathcal{A}, n)$ (c-à-d le nombre de partitions de n en parts dans \mathcal{A}) est paire pour tout $n \geq 6$. Nous donnons aussi un équivalent asymptotique à la fonction de décompte de cet ensemble.

Abstract. Improving on some results of J.-L. Nicolas [15], the elements of the set $\mathcal{A}=\mathcal{A}\left(1+z+z^{3}+z^{4}+z^{5}\right)$, for which the partition function $p(\mathcal{A}, n)$ (i.e. the number of partitions of n with parts in \mathcal{A}) is even for all $n \geq 6$ are determined. An asymptotic estimate to the counting function of this set is also given.

1. Introduction.

Let \mathbb{N} (resp. \mathbb{N}_{0}) be the set of positive (resp. non-negative) integers. If $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ is a subset of \mathbb{N} and $n \in \mathbb{N}$ then $p(\mathcal{A}, n)$ is the number of partitions of n with parts in \mathcal{A}, i.e., the number of solutions of the diophantine equation

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\ldots=n \tag{1.1}
\end{equation*}
$$

in non-negative integers x_{1}, x_{2}, \ldots As usual we set $p(\mathcal{A}, 0)=1$.
The counting function of the set \mathcal{A} will be denoted by $A(x)$, i.e.,

$$
\begin{equation*}
A(x)=|\{n \leq x, n \in \mathcal{A}\}| . \tag{1.2}
\end{equation*}
$$

Let \mathbb{F}_{2} be the field with 2 elements, $P=1+\epsilon_{1} z^{1}+\ldots+\epsilon_{N} z^{N} \in \mathbb{F}_{2}[z], N \geq 1$. Although it is not difficult to prove (cf. [14], [5]) that there is a unique subset

[^0]$\mathcal{A}=\mathcal{A}(P)$ of \mathbb{N} such that the generating function $F(z)$ satisfies
\[

$$
\begin{equation*}
F(z)=F_{\mathcal{A}}(z)=\prod_{a \in \mathcal{A}} \frac{1}{1-z^{a}}=\sum_{n \geq 0} p(\mathcal{A}, n) z^{n} \equiv P(z) \quad(\bmod 2) \tag{1.3}
\end{equation*}
$$

\]

the determination of the elements of such sets for general $P^{\prime} s$ seems to be hard.

Let the decomposition of P into irreducible factors over \mathbb{F}_{2} be

$$
\begin{equation*}
P=P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}} \ldots P_{l}^{\alpha_{l}} \tag{1.4}
\end{equation*}
$$

We denote by $\beta_{i}=\operatorname{ord}\left(P_{i}\right), 1 \leq i \leq l$, the order of P_{i}, that is the smallest positive integer β_{i} such that $P_{i}(z)$ divides $1+z^{\beta_{i}}$ in $\mathbb{F}_{2}[z]$. It is known that β_{i} is odd (cf. [13]). We set

$$
\begin{equation*}
\beta=\operatorname{lcm}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{l}\right) \tag{1.5}
\end{equation*}
$$

Let $\mathcal{A}=\mathcal{A}(P)$ satisfy (1.3) and $\sigma(\mathcal{A}, n)$ be the sum of the divisors of n belonging to \mathcal{A}, i.e.,

$$
\begin{equation*}
\sigma(\mathcal{A}, n)=\sum_{d \mid n, d \in \mathcal{A}} d=\sum_{d \mid n} d \chi(\mathcal{A}, d) \tag{1.6}
\end{equation*}
$$

where $\chi(\mathcal{A},$.$) is the characteristic function of the set \mathcal{A}$, i.e, $\chi(\mathcal{A}, d)=1$ if $d \in \mathcal{A}$ and $\chi(\mathcal{A}, d)=0$ if $d \notin \mathcal{A}$. It was proved in [6] (see also [4], [12]) that for all $k \geq 0$, the sequence $\left(\sigma\left(\mathcal{A}, 2^{k} n\right) \bmod 2^{k+1}\right)_{n \geq 1}$ is periodic with period β defined by (1.5), in other words,

$$
\begin{equation*}
n_{1} \equiv n_{2} \quad(\bmod \beta) \Rightarrow \forall k \geq 0, \sigma\left(\mathcal{A}, 2^{k} n_{1}\right) \equiv \sigma\left(\mathcal{A}, 2^{k} n_{2}\right)\left(\bmod 2^{k+1}\right) \tag{1.7}
\end{equation*}
$$

Moreover, the proof of (1.7) in [6] allows to calculate $\sigma\left(\mathcal{A}, 2^{k} n\right) \bmod 2^{k+1}$ and to deduce the value of $\chi(\mathcal{A}, n)$ where n is any positive integer. Indeed, let

$$
\begin{equation*}
S_{\mathcal{A}}(m, k)=\chi(\mathcal{A}, m)+2 \chi(\mathcal{A}, 2 m)+\ldots+2^{k} \chi\left(\mathcal{A}, 2^{k} m\right) \tag{1.8}
\end{equation*}
$$

If n writes $n=2^{k} m$ with $k \geq 0$ and m odd, (1.6) implies

$$
\begin{equation*}
\sigma(\mathcal{A}, n)=\sigma\left(\mathcal{A}, 2^{k} m\right)=\sum_{d \mid m} d S_{\mathcal{A}}(d, k) \tag{1.9}
\end{equation*}
$$

which, by Möbius inversion formula, gives

$$
\begin{equation*}
m S_{\mathcal{A}}(m, k)=\sum_{d \mid m} \mu(d) \sigma\left(\mathcal{A}, \frac{n}{d}\right)=\sum_{d \mid \bar{m}} \mu(d) \sigma\left(\mathcal{A}, \frac{n}{d}\right), \tag{1.10}
\end{equation*}
$$

where $\bar{m}=\prod_{p \mid m} p$ denotes the radical of m with $\overline{1}=1$.
In the above sums, $\frac{n}{d}$ is always a multiple of 2^{k}, so that, from the values of $\sigma\left(\mathcal{A}, \frac{n}{d}\right)$, by (1.10), one can determine the value of $S_{\mathcal{A}}(m, k) \bmod 2^{k+1}$ and by (1.8), the value of $\chi\left(\mathcal{A}, 2^{i} m\right)$ for all $i, i \leq k$.

Let β be an odd integer ≥ 3 and $(\mathbb{Z} / \beta \mathbb{Z})^{*}$ be the group of invertible elements modulo β. We denote by $<2>$ the subgroup of $(\mathbb{Z} / \beta \mathbb{Z})^{*}$ generated by 2 and consider its action \star on the set $\mathbb{Z} / \beta \mathbb{Z}$ given by $a \star x=a x$ for all $a \in<2>$ and $x \in \mathbb{Z} / \beta \mathbb{Z}$. The quotient set will be denoted by $(\mathbb{Z} / \beta \mathbb{Z}) /<2>$ and the orbit of some n in $\mathbb{Z} / \beta \mathbb{Z}$ by $O(n)$. For $P \in \mathbb{F}_{2}[z]$ with $P(0)=1$ and $\operatorname{ord}(P)=\beta$, let $\mathcal{A}=\mathcal{A}(P)$ be the set obtained from (1.3). Property (1.7) shows (after [3]) that if n_{1} and n_{2} are in the same orbit then

$$
\begin{equation*}
\sigma\left(\mathcal{A}, 2^{k} n_{1}\right) \equiv \sigma\left(\mathcal{A}, 2^{k} n_{2}\right)\left(\bmod 2^{k+1}\right), \forall k \geq 0 \tag{1.11}
\end{equation*}
$$

Consequently, for fixed k, the number of distinct values that $\left(\sigma\left(\mathcal{A}, 2^{k} n\right) \bmod 2^{k+1}\right)_{n \geq 1}$ can take is at most equal to the number of orbits of $\mathbb{Z} / \beta \mathbb{Z}$.

Let φ be the Euler function and s be the order of 2 modulo β, i.e., the smallest positive integer s such that $2^{s} \equiv 1(\bmod \beta)$. If $\beta=p$ is a prime number then $(\mathbb{Z} / p \mathbb{Z})^{*}$ is cyclic and the number of orbits of $\mathbb{Z} / p \mathbb{Z}$ is equal to $1+r$ with $r=\frac{\varphi(p)}{s}=\frac{p-1}{s}$. In this case, we have

$$
\begin{equation*}
(\mathbb{Z} / p \mathbb{Z}) /<2>=\left\{O(g), O\left(g^{2}\right), \ldots, O\left(g^{r}\right)=O(1), O(p)\right\} \tag{1.12}
\end{equation*}
$$

where g is some generator of $(\mathbb{Z} / p \mathbb{Z})^{*}$. For $r=2$, the sets $\mathcal{A}=\mathcal{A}(P)$ were completely determined by N. Baccar, F. Ben Saïd and J.-L. Nicolas ([2], [8]). Moreover, N. Baccar proved in [1] that for all $r \geq 2$, the elements of \mathcal{A} of the form $2^{k} m, k \geq 0$ and m odd, are determined by the 2 -adic development of some root of a polynomial with integer coefficients. Unfortunately, his results are not explicit and do not lead to any evaluation of the counting function of the set \mathcal{A}. When $r=6$, J.-L. Nicolas determined (cf. [15]) the odd elements of $\mathcal{A}=\mathcal{A}\left(1+z+z^{3}+z^{4}+z^{5}\right.$). His results (which will be stated in Section 2, Theorem 2.1) allowed to deduce a lower bound for the counting function of \mathcal{A}. In this paper, we will consider the case $p=31$ which satisfies $r=6$. In $\mathbb{F}_{2}[z]$, we have

$$
\begin{equation*}
\frac{1-z^{31}}{1-z}=P^{(1)} P^{(2)} \ldots P^{(6)} \tag{1.13}
\end{equation*}
$$

with

$$
\begin{gathered}
P^{(1)}=1+z+z^{3}+z^{4}+z^{5}, P^{(2)}=1+z+z^{2}+z^{4}+z^{5}, P^{(3)}=1+z^{2}+z^{3}+z^{4}+z^{5}, \\
P^{(4)}=1+z+z^{2}+z^{3}+z^{5}, P^{(5)}=1+z^{2}+z^{5}, P^{(6)}=1+z^{3}+z^{5} .
\end{gathered}
$$

In fact, there are other primes p with $r=6$. For instance, $p=223$ and $p=433$.

In Section 2, for $\mathcal{A}=\mathcal{A}\left(P^{(1)}\right)$, we evaluate the $\operatorname{sum} S_{\mathcal{A}}(m, k)$ which will lead to results of Section 3 determining the elements of the set \mathcal{A}. Section 4 will be devoted to the determination of an asymptotic estimate to the counting function $A(x)$ of \mathcal{A}. Although, in this paper, the computations
are only carried out for $P=P^{(1)}$, the results could probably be extended to any $P^{(i)}, 1 \leq i \leq 6$, and more generally, to any polynomial P of order p and such that $r=6$.

Notation. We write a mod b for the remainder of the euclidean division of a by b. The ceiling of the real number x is denoted by

$$
\lceil x\rceil=\inf \{n \in \mathbb{Z}, x \leq n\} .
$$

2. The $\operatorname{sum} S_{\mathcal{A}}(m, k), \mathcal{A}=\mathcal{A}\left(1+z+z^{3}+z^{4}+z^{5}\right)$.

From now on, we take $\mathcal{A}=\mathcal{A}(P)$ with

$$
\begin{equation*}
P=P^{(1)}=1+z+z^{3}+z^{4}+z^{5} . \tag{2.1}
\end{equation*}
$$

The order of P is $\beta=31$. The smallest primitive root modulo 31 is 3 that we shall use as a generator of $(\mathbb{Z} / 31 \mathbb{Z})^{*}$. The order of 2 modulo 31 is $s=5$ so that

$$
\begin{equation*}
(\mathbb{Z} / 31 \mathbb{Z}) /_{<2>}=\left\{O(3), O\left(3^{2}\right), \ldots, O\left(3^{6}\right)=O(1), O(31)\right\} \tag{2.2}
\end{equation*}
$$

with

$$
\begin{equation*}
O\left(3^{j}\right)=\left\{2^{k} 3^{j}, 0 \leq k \leq 4\right\}, 1 \leq j \leq 6 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
O(31)=\{31\} . \tag{2.4}
\end{equation*}
$$

For $k \geq 0$ and $0 \leq j \leq 5$, we define the integers $u_{k, j}$ by

$$
\begin{equation*}
u_{k, j}=\sigma\left(\mathcal{A}, 2^{k} 3^{j}\right) \bmod \quad 2^{k+1} . \tag{2.5}
\end{equation*}
$$

The Graeffe transformation. Let \mathbb{K} be a field and $\mathbb{K}[[z]]$ be the ring of formal power series with coefficients in \mathbb{K}. For an element

$$
f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}+\ldots
$$

of this ring, the product

$$
f(z) f(-z)=b_{0}+b_{1} z^{2}+b_{2} z^{4}+\ldots+b_{n} z^{2 n}+\ldots
$$

is an even power series. We shall call $\mathcal{G}(f)$ the series

$$
\begin{equation*}
\mathcal{G}(f)(z)=b_{0}+b_{1} z+b_{2} z^{2}+\ldots+b_{n} z^{n}+\ldots . \tag{2.6}
\end{equation*}
$$

It follows immediately from the above definition that for $f, g \in \mathbb{K}[[z]]$,

$$
\begin{equation*}
\mathcal{G}(f g)=\mathcal{G}(f) \mathcal{G}(g) \tag{2.7}
\end{equation*}
$$

Moreover if q is an odd integer and $f(z)=1-z^{q}$, we have $\mathcal{G}(f)=f$. We shall use the following notation for the iterates of f by \mathcal{G} :

$$
\begin{equation*}
f_{(0)}=f, \quad f_{(1)}=\mathcal{G}(f), \ldots, \quad f_{(k)}=\mathcal{G}\left(f_{(k-1)}\right)=\mathcal{G}^{(k)}(f) \tag{2.8}
\end{equation*}
$$

More details about the Graeffe transformation are given in [6]. By making the logarithmic derivative of formula (1.3), we get (cf. [14]):

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sigma(\mathcal{A}, n) z^{n}=z \frac{F^{\prime}(z)}{F(z)} \equiv z \frac{P^{\prime}(z)}{P(z)}(\bmod 2) \tag{2.9}
\end{equation*}
$$

which, by Propositions 2 and 3 of [6], leads to

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sigma\left(\mathcal{A}, 2^{k} n\right) z^{n} \equiv z \frac{P_{(k)}^{\prime}(z)}{P_{(k)}(z)}=\frac{z}{1-z^{31}}\left(P_{(k)}^{\prime}(z) W_{(k)}(z)\right)\left(\bmod 2^{k+1}\right) \tag{2.10}
\end{equation*}
$$

with $P_{(k)}^{\prime}(z)=\frac{\mathrm{d}}{\mathrm{d} z}\left(P_{(k)}(z)\right)$ and

$$
\begin{equation*}
W(z)=(1-z) P^{(2)}(z) \ldots P^{(6)}(z) \tag{2.11}
\end{equation*}
$$

Formula (2.10) proves (1.11) with $\beta=31$, and the computation of the k-th iterates $P_{(k)}$ and $W_{(k)}$ by the Graeffe transformation yields the value of $\sigma\left(\mathcal{A}, 2^{k} n\right) \bmod \quad 2^{k+1}$. For instance, for $k=11$, we obtain:
$u_{k, 0}=1183, u_{k, 1}=1598, u_{k, 2}=1554, u_{k, 3}=845, u_{k, 4}=264, u_{k, 5}=701$.
A divisor of $2^{k} 3^{j}$ is either a divisor of $2^{k-1} 3^{j}$ or a multiple of 2^{k}. Therefore, from (2.5) and (1.6), $u_{k, j} \equiv u_{k-1, j}\left(\bmod 2^{k}\right)$ holds and the sequence $\left(u_{k, j}\right)_{k \geq 0}$ defines a 2 -adic integer U_{j} satisfying for all $k^{\prime} \mathrm{s}$:

$$
\begin{equation*}
U_{j} \equiv u_{k, j}\left(\bmod 2^{k+1}\right), 0 \leq j \leq 5 \tag{2.12}
\end{equation*}
$$

It has been proved in [1] that the $U_{j}^{\prime} \mathrm{s}$ are the roots of the polynomial

$$
R(y)=y^{6}-y^{5}+3 y^{4}-11 y^{3}+44 y^{2}-36 y+32 .
$$

Note that $R(y)^{5}$ is the resultant in z of $\phi_{31}(z)=1+z+\ldots+z^{30}$ and $y+z+z^{2}+z^{4}+z^{8}+z^{16}$.

Let us set

$$
\theta=U_{0}=1+2+2^{2}+2^{3}+2^{4}+2^{7}+2^{10}+\ldots
$$

It turns out that the Galois group of $R(y)$ is cyclic of order 6 and therefore the other roots U_{1}, \ldots, U_{5} of $R(y)$ are polynomials in θ. With Maple, by factorizing $R(y)$ on $\mathbb{Q}[\theta]$ and using the values of $u_{11, j}$, we get

$$
\begin{gathered}
U_{0}=\theta \equiv 1183 \quad\left(\bmod 2^{11}\right) \\
U_{1}=\frac{1}{32}\left(3 \theta^{5}+5 \theta^{3}-36 \theta^{2}+84 \theta\right) \equiv 1598 \quad\left(\bmod 2^{11}\right) \\
U_{2}=\frac{1}{32}\left(-3 \theta^{5}-5 \theta^{3}+20 \theta^{2}-100 \theta\right) \equiv 1554 \quad\left(\bmod 2^{11}\right) \\
U_{3}=\frac{1}{32}\left(-\theta^{5}-7 \theta^{3}+12 \theta^{2}-44 \theta+32\right) \equiv 845 \quad\left(\bmod 2^{11}\right) \\
U_{4}=\frac{1}{32}\left(-\theta^{5}+4 \theta^{4}+\theta^{3}+24 \theta^{2}-68 \theta+96\right) \equiv 264 \quad\left(\bmod 2^{11}\right)
\end{gathered}
$$

$$
\begin{equation*}
U_{5}=\frac{1}{16}\left(\theta^{5}-2 \theta^{4}+3 \theta^{3}-10 \theta^{2}+48 \theta-48\right) \equiv 701 \quad\left(\bmod 2^{11}\right) \tag{2.13}
\end{equation*}
$$

For convenience, if $j \in \mathbb{Z}$, we shall set

$$
\begin{equation*}
U_{j}=U_{j \bmod 6} \tag{2.14}
\end{equation*}
$$

We define the completely additive function $\ell: \mathbb{Z} \backslash 31 \mathbb{Z} \rightarrow \mathbb{Z} / 6 \mathbb{Z}$ by

$$
\begin{equation*}
\ell(n)=j \quad \text { if } n \in O\left(3^{j}\right) \tag{2.15}
\end{equation*}
$$

so that $\ell\left(n_{1} n_{2}\right) \equiv \ell\left(n_{1}\right)+\ell\left(n_{2}\right)(\bmod 6)$. We split the odd primes different from 31 into six classes according to the value of ℓ. More precisely, for $0 \leq j \leq 5$,

$$
\begin{equation*}
p \in \mathcal{P}_{j} \Longleftrightarrow \ell(p)=j \Longleftrightarrow p \equiv 2^{k} 3^{j}(\bmod 31), k=0,1,2,3,4 \tag{2.16}
\end{equation*}
$$

We take $L: \mathbb{N} \backslash 31 \mathbb{N} \longrightarrow \mathbb{N}_{0}$ to be the completely additive function defined on primes by

$$
\begin{equation*}
L(p)=\ell(p) \tag{2.17}
\end{equation*}
$$

We define, for $0 \leq j \leq 5$, the additive function $\omega_{j}: \mathbb{N} \longrightarrow \mathbb{N}_{0}$ by

$$
\begin{equation*}
\omega_{j}(n)=\sum_{p \mid n, p \in \mathcal{P}_{j}} 1=\sum_{p \mid n, \ell(p)=j} 1, \tag{2.18}
\end{equation*}
$$

and $\omega(n)=\omega_{0}(n)+\ldots+\omega_{5}(n)=\sum_{p \mid n} 1$. We remind that additive functions vanish on 1 .

From (2.5), (2.3), (1.11) and (2.12), it follows that if $n=2^{k} m \in O\left(3^{j}\right)$ (so that $j=\ell(n)=\ell(m)$),

$$
\begin{equation*}
\sigma(\mathcal{A}, n)=\sigma\left(\mathcal{A}, 2^{k} m\right) \equiv U_{\ell(m)} \quad\left(\bmod 2^{k+1}\right) \tag{2.19}
\end{equation*}
$$

We may consider the 2 -adic number

$$
\begin{equation*}
S(m)=S_{\mathcal{A}}(m)=\chi(\mathcal{A}, m)+2 \chi(\mathcal{A}, 2 m)+\ldots+2^{k} \chi\left(\mathcal{A}, 2^{k} m\right)+\ldots \tag{2.20}
\end{equation*}
$$

satisfying from (1.8),

$$
\begin{equation*}
S(m) \equiv S_{\mathcal{A}}(m, k) \quad\left(\bmod 2^{k+1}\right) \tag{2.21}
\end{equation*}
$$

Then (1.10) implies for $\operatorname{gcd}(m, 31)=1$,

$$
\begin{equation*}
m S(m)=\sum_{d \mid \bar{m}} \mu(d) U_{\ell\left(\frac{m}{d}\right)} . \tag{2.22}
\end{equation*}
$$

If 31 divides m, it was proved in $[3,(3.6)]$ that, for all $k^{\prime} \mathrm{s}$,

$$
\begin{equation*}
\sigma\left(\mathcal{A}, 2^{k} m\right) \equiv-5 \quad\left(\bmod 2^{k+1}\right) \tag{2.23}
\end{equation*}
$$

Remark 2.1. No element of \mathcal{A} has a prime factor in \mathcal{P}_{0}. This general result has been proved in [3], but we recall the proof on our example: let us assume that $n=2^{k} m \in \mathcal{A}$, where m is an odd integer divisible by some prime p in \mathcal{P}_{0}, in other words $\omega_{0}(m) \geq 1$. (1.10) gives

$$
\begin{aligned}
m S_{\mathcal{A}}(m, k) & =\sum_{d \mid m} \mu(d) \sigma\left(\mathcal{A}, \frac{n}{d}\right)=\sum_{d \mid \bar{m}} \mu(d) \sigma\left(\mathcal{A}, 2^{k} \frac{m}{d}\right) \\
& =\sum_{d \left\lvert\, \frac{\bar{m}}{p}\right.} \mu(d) \sigma\left(\mathcal{A}, 2^{k} \frac{m}{d}\right)+\sum_{d \left\lvert\, \frac{\bar{m}}{p}\right.} \mu(p d) \sigma\left(\mathcal{A}, 2^{k} \frac{m}{p d}\right) \\
& =\sum_{d \left\lvert\, \frac{\bar{m}}{p}\right.} \mu(d)\left(\sigma\left(\mathcal{A}, 2^{k} \frac{m}{d}\right)-\sigma\left(\mathcal{A}, 2^{k} \frac{m}{p d}\right)\right)
\end{aligned}
$$

In the above sum, both $\frac{m}{d}$ and $\frac{m}{p d}$ are in the same orbit, so that from (1.11), $\sigma\left(\mathcal{A}, 2^{k} \frac{m}{d}\right) \equiv \sigma\left(\mathcal{A}, 2^{k} \frac{m}{p d}\right)\left(\bmod 2^{k+1}\right)$ and therefore $m S_{\mathcal{A}}(m, k) \equiv 0(\bmod$ 2^{k+1}). Since m is odd and (cf. (1.8)) $0 \leq S_{\mathcal{A}}(m, k)<2^{k+1}$ then $S_{\mathcal{A}}(m, k)=$ 0 , so that by (1.8), $2^{h} m \notin \mathcal{A}$, for all $0 \leq h \leq k$.

In [15], J.-L. Nicolas has described the odd elements of \mathcal{A}. In fact, he obtained the following:

Theorem 2.1. ([15])
(a) The odd elements of \mathcal{A} which are primes or powers of primes are of the form $p^{\lambda}, \lambda \geq 1$, satisfying one of the following four conditions:

$$
\begin{array}{rll}
p \in \mathcal{P}_{1} & \text { and } & \lambda \equiv 1,3,4,5(\bmod 6) \\
p \in \mathcal{P}_{2} & \text { and } & \lambda \equiv 0,1(\bmod 3) \\
p \in \mathcal{P}_{4} & \text { and } & \lambda \equiv 0,1(\bmod 3) \\
p \in \mathcal{P}_{5} & \text { and } & \lambda \equiv 0,2,3,4(\bmod 6) .
\end{array}
$$

(b) No odd element of \mathcal{A} is a multiple of 31^{2}. If m is odd, $m \neq 1$, and not a multiple of 31 , then

$$
m \in \mathcal{A} \text { if and only if } 31 m \in \mathcal{A} .
$$

(c) An odd element $n \in \mathcal{A}$ satisfies $\omega_{0}(n)=0$ and $\omega_{3}(n)=0$ or 1 ; in other words, n is free of prime factor in \mathcal{P}_{0} and has at most one prime factor in \mathcal{P}_{3}.
(d) The odd elements of \mathcal{A} different from 1, not divisible by 31, which are not primes or powers of primes are exactly the odd $n^{\prime} s, n \neq 1$, such that (where $\bar{n}=\prod_{p \mid n} p$):
(1) $\omega_{0}(n)=0$ and $\omega_{3}(n)=0$ or 1 .
(2) If $\omega_{3}(n)=1$ then $\ell(n)+\ell(\bar{n}) \equiv 0$ or $1(\bmod 3)$.
(3) If $\omega_{3}(n)=0$ and $\omega_{1}(n)+\ell(n)-\ell(\bar{n})$ is even then

$$
2 \ell(n)-\ell(\bar{n}) \equiv 2 \text { or } 3 \text { or } 4 \text { or } 5(\bmod 6)
$$

(4) If $\omega_{3}(n)=0$ and $\omega_{1}(n)+\ell(n)-\ell(\bar{n})$ is odd then

$$
2 \ell(n)-\ell(\bar{n}) \equiv 0 \text { or } 4(\bmod 6)
$$

Remark 2.2. Point (b) of Theorem 2.1 can be improved in the following way: No element of \mathcal{A} is a multiple of 31^{2}. Indeed, from (1.10), we have for m odd, $k \geq 0$ and $\tau \geq 2$,

$$
\begin{aligned}
31^{\tau} m S_{\mathcal{A}}\left(31^{\tau} m, k\right) & =\sum_{d \mid 31^{\tau} m} \mu(d) \sigma\left(\mathcal{A}, 2^{k} 31^{\tau} \frac{m}{d}\right) \\
& =\sum_{d \mid 31 \bar{m}} \mu(d) \sigma\left(\mathcal{A}, 2^{k} 31^{\tau} \frac{m}{d}\right) \\
& =\sum_{d \mid \bar{m}} \mu(d)\left\{\sigma\left(\mathcal{A}, 2^{k} 31^{\tau} \frac{m}{d}\right)-\sigma\left(\mathcal{A}, 2^{k} 31^{\tau-1} \frac{m}{d}\right)\right\} .
\end{aligned}
$$

Since $31^{\tau} \frac{m}{d}$ and $31^{\tau-1} \frac{m}{d}$ are in the same orbit $O(31)$ then (1.11) and (2.23) give $\sigma\left(\mathcal{A}, 2^{k} 31^{\tau} \frac{m}{d}\right) \equiv \sigma\left(\mathcal{A}, 2^{k} 31^{\tau-1} \frac{m}{d}\right) \equiv-5\left(\bmod 2^{k+1}\right)$, so that we get $S_{\mathcal{A}}\left(31^{\tau} m, k\right) \equiv 0\left(\bmod 2^{k+1}\right)$. Hence, from (1.8), $S_{\mathcal{A}}\left(31^{\tau} m, k\right)=0$ and for all $0 \leq h \leq k$ and all $\tau \geq 2,2^{h} 31^{\tau} m$ does not belong to \mathcal{A}.

In view of stating Theorem 2.2 which will extend Theorem 2.1 , we shall need some notation. The radical \bar{m} of an odd integer $m \neq 1$, not divisible by 31 and free of prime factors belonging to \mathcal{P}_{0} will be written

$$
\begin{equation*}
\bar{m}=p_{1} \ldots p_{\omega_{1}} p_{\omega_{1}+1} \ldots p_{\omega_{1}+\omega_{2}} p_{\omega_{1}+\omega_{2}+1} \ldots \ldots p_{\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}+1} \ldots p_{\omega} \tag{2.24}
\end{equation*}
$$

where $\ell\left(p_{i}\right)=j$ for $\omega_{1}+\ldots+\omega_{j-1}+1 \leq i \leq \omega_{1}+\ldots+\omega_{j}, \omega_{j}=\omega_{j}(m)=\omega_{j}(\bar{m})$ and $\omega=\omega(m)=\omega(\bar{m}) \geq 1$. We define the additive functions from $\mathbb{Z} \backslash 31 \mathbb{Z}$ into $\mathbb{Z} / 12 \mathbb{Z}$:

$$
\begin{align*}
\alpha & =\alpha(m)=2 \omega_{5}-2 \omega_{1}+\omega_{4}-\omega_{2} \bmod \quad 12 \tag{2.25}\\
a & =a(m)=\omega_{5}-\omega_{1}+\omega_{2}-\omega_{4} \bmod 12 \tag{2.26}
\end{align*}
$$

Let $\left(v_{i}\right)_{i \in \mathbb{Z}}$ be the periodic sequence of period 12 defined by

$$
v_{i}=\left\{\begin{array}{cl}
\frac{2}{\sqrt{3}} \cos \left(i \frac{\pi}{6}\right) & \text { if } i \text { is odd } \tag{2.27}\\
2 \cos \left(i \frac{\pi}{6}\right) & \text { if } i \text { is even. }
\end{array}\right.
$$

The values of $\left(v_{i}\right)_{i \in \mathbb{Z}}$ are given by:

$i=$	0	1	2	3	4	5	6	7	8	9	10	11
$v_{i}=$	2	1	1	0	-1	-1	-2	-1	-1	0	1	1

Note that

$$
\begin{equation*}
v_{i+6}=-v_{i} \tag{2.28}
\end{equation*}
$$

$$
\begin{align*}
v_{i}+v_{i+2} & =\left\{\begin{array}{cc}
v_{i+1} & \text { if } i \text { is odd } \\
3 v_{i+1} & \text { if } i \text { is even },
\end{array}\right. \tag{2.29}\\
v_{2 i} & \equiv-2^{i}(\bmod 3) \tag{2.30}
\end{align*}
$$

and

$$
\begin{equation*}
v_{i} \equiv v_{i+3} \equiv v_{2 i}(\bmod 2) . \tag{2.31}
\end{equation*}
$$

From the U_{j} 's (cf. (2.12) and (2.13)), we introduce the following 2-adic integers:

$$
\begin{equation*}
E_{i}=\sum_{j=0}^{5} v_{i+2 j} U_{j}, \quad i \in \mathbb{Z} \tag{2.32}
\end{equation*}
$$

$$
\begin{equation*}
F_{i}=\sum_{j=0}^{5} v_{i+4 j} U_{j}, \quad i \in \mathbb{Z} \tag{2.33}
\end{equation*}
$$

$$
\begin{equation*}
G=\sum_{j=0}^{5}(-1)^{j} U_{j} \tag{2.34}
\end{equation*}
$$

From (2.28), we have

$$
\begin{equation*}
E_{i+6}=-E_{i}, E_{i+12}=E_{i}, F_{i+6}=-F_{i}, F_{i+12}=F_{i} . \tag{2.35}
\end{equation*}
$$

From (2.29), it follows that, if i is odd,

$$
\begin{equation*}
E_{i}+E_{i+2}=E_{i+1}, \quad F_{i}+F_{i+2}=F_{i+1} \tag{2.36}
\end{equation*}
$$

while, if i is even,

$$
\begin{equation*}
E_{i}+E_{i+2}=3 E_{i+1}, \quad F_{i}+F_{i+2}=3 F_{i+1} \tag{2.37}
\end{equation*}
$$

The values of these numbers are given in the following array:

Z		$Z \bmod 2^{11}$
$E_{0}=$	$\frac{1}{32}\left(11 \theta^{5}-8 \theta^{4}+29 \theta^{3}-124 \theta^{2}+500 \theta-256\right)$	1157
$E_{1}=$	$\frac{1}{16}\left(3 \theta^{5}-2 \theta^{4}+9 \theta^{3}-26 \theta^{2}+136 \theta-64\right)$	1533
$E_{2}=$	$3 E_{1}-E_{0}$	1394
$E_{3}=$	$2 E_{1}-E_{0}$	1909
$E_{4}=$	$3 E_{1}-2 E_{0}$	237
$E_{5}=$	$E_{1}-E_{0}$	376
$F_{0}=$	$\frac{1}{32}\left(-3 \theta^{5}-21 \theta^{3}+36 \theta^{2}-36 \theta+64\right)$	1987
$F_{1}=$	$\frac{1}{32}\left(-3 \theta^{5}-4 \theta^{4}-13 \theta^{3}+24 \theta^{2}-28 \theta-64\right)$	166
$F_{2}=$	$3 F_{1}-F_{0}$	559
$F_{3}=$	$2 F_{1}-F_{0}$	393
$F_{4}=3 F_{1}-2 F_{0}$	620	
$F_{5}=$	$F_{1}-F_{0}$	227
$G=$	$\frac{1}{4}\left(-\theta^{5}+\theta^{4}-\theta^{3}+11 \theta^{2}-34 \theta+20\right)$	1905

TABLE 1

Lemma 2.1. The polynomials $\left(U_{j}\right)_{0 \leq j \leq 5}$ (cf. (2.13)) form a basis of $\mathbb{Q}[\theta]$. The polynomials $E_{0}, E_{1}, F_{0}, F_{1}, G, U_{0}$ form another basis of $\mathbb{Q}[\theta]$. For all $i^{\prime} s, E_{i}$ and F_{i} are linear combinations of respectively E_{0} and E_{1} and F_{0} and F_{1}.

Proof. With Maple, in the basis $1, \theta, \ldots, \theta^{5}$, we compute determinant $\left(U_{0}, \ldots, U_{5}\right)=\frac{1}{1024}$. From (2.32), (2.33) and (2.34), the determinant of $\left(E_{0}, E_{1}, F_{0}, F_{1}, G, U_{0}\right)$ in the basis $U_{0}, U_{1}, \ldots, U_{5}$ is equal to 12 . The last point follows from (2.36) and (2.37).

We have
Theorem 2.2. Let $m \neq 1$ be an odd integer not divisible by 31 with \bar{m} of the form (2.24). Under the above notation and the convention

$$
0^{\omega}= \begin{cases}1 & \text { if } \omega=0 \tag{2.38}\\ 0 & \text { if } \omega>0\end{cases}
$$

we have:
(1) The 2-adic integer $S(m)$ defined by (2.20) satisfies

$$
\begin{gathered}
m S(m)=2^{\omega_{3}-1} 3^{\left\lceil\frac{\omega_{2}+\omega_{4}}{2}-1\right\rceil} E_{\alpha-2 \ell(m)}+\frac{0^{\omega_{3}}}{2} 3^{\left\lceil\frac{\omega}{2}-1\right\rceil} F_{a-4 \ell(m)} \\
+\frac{0^{\omega_{2}+\omega_{4}}}{3} 2^{\omega-1}(-1)^{\ell(m)} G
\end{gathered}
$$

(2) The 2-adic integer $S(31 m)$ satisfies

$$
\begin{equation*}
S(31 m)=-31^{-1} S(m) \tag{2.40}
\end{equation*}
$$

where 31^{-1} is the inverse of 31 in \mathbb{Z}_{2}. In particular, for all $k \in$ $\{0,1,2,3,4\}$, we have

$$
2^{k} m \in \mathcal{A} \quad \Longleftrightarrow 31 \cdot 2^{k} m \in \mathcal{A}
$$

since the inverse of 31 modulo 2^{k+1} is -1 for $k \leq 4$.
Proof of Theorem 2.2 (1). From (2.22), we have

$$
\begin{equation*}
m S(m)=\sum_{d \mid \bar{m}} \mu(d) U_{\ell\left(\frac{m}{d}\right)}=\sum_{d \mid \bar{m}} \mu(d) U_{\ell(m)-\ell(d)} \tag{2.41}
\end{equation*}
$$

Further, (2.41) becomes

$$
\begin{equation*}
m S(m)=\sum_{j=0}^{5} T(m, j) U_{\ell(m)-j}=\sum_{j=0}^{5} T(m, \ell(m)-j) U_{j} \tag{2.42}
\end{equation*}
$$

with

$$
\begin{equation*}
T(m, j)=T(\bar{m}, j)=\sum_{d \mid \bar{m}, \ell(d) \equiv j(\bmod 6)} \mu(d) \tag{2.43}
\end{equation*}
$$

Therefore (2.39) will follow from (2.42) and from the following lemma.
Lemma 2.2. The integer $T(m, j)$ defined in (2.43) with the convention (2.38) and the definitions (2.18) and (2.24)-(2.27), for $m \neq 1$, is equal to

$$
T(m, j)=2^{\omega_{3}-1} 3^{\left\lceil\frac{\omega_{2}+\omega_{4}}{2}-1\right\rceil} v_{\alpha-2 j}+\frac{0^{\omega_{3}}}{2} 3^{\left\lceil\frac{\omega}{2}-1\right\rceil} v_{a-4 j}
$$

Proof of Lemma 2.2. Let us introduce the polynomial

$$
\begin{equation*}
f(X)=(1-X)^{\omega_{1}}\left(1-X^{2}\right)^{\omega_{2}} \ldots\left(1-X^{5}\right)^{\omega_{5}}=\sum_{\nu \geq 0} f_{\nu} X^{\nu} \tag{2.45}
\end{equation*}
$$

If the five signs were plus instead of minus, $f(X)$ would be the generating function of the partitions in at most ω_{1} parts equal to $1, \ldots$, at most ω_{5} parts equal to 5 . More generally, the polynomial

$$
\widetilde{f}(X)=\prod_{i=1}^{\omega}\left(1+a_{i} X^{b_{i}}\right)=\sum_{\nu \geq 0} \widetilde{f_{\nu}} X^{\nu}
$$

is the generating function of

$$
\widetilde{f_{\nu}}=\sum_{\epsilon_{1}, \ldots, \epsilon_{\omega} \in\{0,1\}, \sum_{i=1}^{\omega} \epsilon_{i} b_{i}=\nu} \prod_{i=1}^{\omega} a_{i}^{\epsilon_{i}}
$$

To the vector $\underline{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{\omega}\right) \in \mathbb{F}_{2}^{\omega}$, we associate

$$
d=\prod_{i=1}^{\omega} p_{i}^{\epsilon_{i}}, \mu(d)=\prod_{i=1}^{\omega}(-1)^{\epsilon_{i}}, L(d)=\sum_{i=1}^{\omega} \epsilon_{i} \ell\left(p_{i}\right)
$$

where L is the arithmetic function defined by (2.17) and we get

$$
\begin{equation*}
f_{\nu}=\sum_{d \mid \bar{m}, L(d)=\nu} \mu(d) . \tag{2.46}
\end{equation*}
$$

Consequently, by setting $\xi=\exp \left(\frac{i \pi}{3}\right),(2.43),(2.45)$ and (2.46) give

$$
\begin{align*}
T(m, j) & =\sum_{\nu, \nu \equiv j(\bmod 6)} \sum_{d \mid \bar{m}, L(d)=\nu} \mu(d) \\
& =\sum_{\nu \equiv j(\bmod 6)} f_{\nu} \\
& =\frac{1}{6} \sum_{i=0}^{5} \xi^{-i j} f\left(\xi^{i}\right) \\
& =\frac{1}{6} \sum_{i=1}^{5} \xi^{-i j} f\left(\xi^{i}\right) \\
(2.47) & =\frac{1}{6} \sum_{i=1}^{5} \xi^{-i j}\left(1-\xi^{i}\right)^{\omega_{1}}\left(1-\xi^{2 i}\right)^{\omega_{2}}\left(1-\xi^{3 i}\right)^{\omega_{3}}\left(1-\xi^{4 i}\right)^{\omega_{4}}\left(1-\xi^{5 i}\right)^{\omega_{5}} . \tag{2.47}
\end{align*}
$$

By observing that
$1-\xi=\xi^{5}, 1-\xi^{2}=\varrho=\sqrt{3}\left(\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right), 1-\xi^{3}=2,1-\xi^{4}=\bar{\varrho}, 1-\xi^{6}=0$, the sum of the terms in $i=1$ and $i=5$ in (2.47), which are conjugate, is equal to

$$
\begin{equation*}
\frac{2}{6} \mathcal{R}\left(\xi^{-j} \xi^{5 \omega_{1}} \varrho^{\omega_{2}} 2^{\omega_{3}} \varrho^{\omega_{4}} \xi^{\omega_{5}}\right)=\frac{2^{\omega_{3}}}{3} \sqrt{3}^{\omega_{2}+\omega_{4}} \cos \frac{\pi}{6}\left(2 \omega_{5}-2 \omega_{1}+\omega_{4}-\omega_{2}-2 j\right) \tag{2.48}
\end{equation*}
$$

Now, the contribution of the terms in $i=2$ and $i=4$ is

$$
\begin{align*}
\frac{2}{6} \mathcal{R}\left(\xi^{-2 j} \varrho^{\omega_{1}} \varrho^{\omega_{2}} 0^{\omega_{3}} \varrho^{\omega_{4}} \varrho^{\omega_{5}}\right)= & 0^{\omega_{3}} \frac{\sqrt{3} \omega^{\omega_{1}+\omega_{2}+\omega_{4}+\omega_{5}}}{3} \\
& \times \cos \frac{\pi}{6}\left(\omega_{2}+\omega_{5}-\omega_{1}-\omega_{4}-4 j\right) \\
& =0^{\omega_{3}} \frac{\sqrt{3}^{\omega}}{3} \cos \frac{\pi}{6}\left(\omega_{2}+\omega_{5}-\omega_{1}-\omega_{4}-4 j\right) \tag{2.49}
\end{align*}
$$

Finally, the term corresponding to $i=3$ in (2.47) is equal to

$$
\begin{equation*}
\frac{1}{6}(-1)^{j} 2^{\omega_{1}} 0^{\omega_{2}} 2^{\omega_{3}} 0^{\omega_{4}} 2^{\omega_{5}}=0^{\omega_{2}+\omega_{4}} \frac{(-1)^{j}}{6} 2^{\omega_{1}+\omega_{3}+\omega_{5}}=0^{\omega_{2}+\omega_{4}} \frac{(-1)^{j}}{6} 2^{\omega} \tag{2.50}
\end{equation*}
$$

Consequently, by using our notation (2.24)-(2.26), (2.47) becomes

$$
T(m, j)=\frac{2^{\omega_{3}}}{3} \sqrt{3}^{\omega_{2}+\omega_{4}} \cos \frac{\pi}{6}(\alpha-2 j)+0^{\omega_{3}} \frac{\sqrt{3}^{\omega}}{3} \cos \frac{\pi}{6}(a-4 j)
$$

$$
\begin{equation*}
+0^{\omega_{2}+\omega_{4}} \frac{(-1)^{j}}{6} 2^{\omega} \tag{2.51}
\end{equation*}
$$

Observing that $\alpha-2 j$ has the same parity than $\omega_{2}+\omega_{4}$ and similarly for $a-4 j$ and ω (when $\omega_{0}=\omega_{3}=0$), via (2.27), we get (2.44).
Proof of Theorem 2.2 (2). For all $k \geq 0$, from (1.10), we have

$$
\begin{aligned}
31 m S_{\mathcal{A}}(31 m, k) & =\sum_{d \mid 31 m} \mu(d) \sigma\left(\mathcal{A}, 31 \cdot 2^{k} \frac{m}{d}\right)=\sum_{d \mid 31 \bar{m}} \mu(d) \sigma\left(\mathcal{A}, 31 \cdot 2^{k} \frac{m}{d}\right) \\
& =\sum_{d \mid \bar{m}} \mu(d) \sigma\left(\mathcal{A}, 31 \cdot 2^{k} \frac{m}{d}\right)-\sum_{d \mid \bar{m}} \mu(d) \sigma\left(\mathcal{A}, 2^{k} \frac{m}{d}\right) \\
& =\sum_{d \mid \bar{m}} \mu(d) \sigma\left(\mathcal{A}, 31 \cdot 2^{k} \frac{m}{d}\right)-m S_{\mathcal{A}}(m, k)
\end{aligned}
$$

Since for all d dividing $\bar{m}, 31 \cdot 2^{k} \frac{m}{d} \in O(31)$ then, from (2.23), $\sigma(\mathcal{A}, 31$. $\left.2^{k} \frac{m}{d}\right) \equiv \sigma\left(\mathcal{A}, 31 \cdot 2^{k}\right) \equiv-5\left(\bmod 2^{k+1}\right)$, so that (2.52) gives

$$
\begin{equation*}
31 m S_{\mathcal{A}}(31 m, k)+m S_{\mathcal{A}}(m, k) \equiv-5 \sum_{d \mid \bar{m}} \mu(d) \quad\left(\bmod 2^{k+1}\right) \tag{2.53}
\end{equation*}
$$

Since $\bar{m} \neq 1,31 m S_{\mathcal{A}}(31 m, k)+m S_{\mathcal{A}}(m, k) \equiv 0\left(\bmod 2^{k+1}\right)$. Recalling that m is odd, by using (2.20), (2.21) and their similar for $S(31 m)$, we obtain the desired result.

3. Elements of the set $\mathcal{A}=\mathcal{A}\left(1+z+z^{3}+z^{4}+z^{5}\right)$.

In this section, we will determine the elements of the set \mathcal{A} of the form $n=2^{k} 31^{\tau} m$, where $\bar{m} \neq 1$ satisfies (2.24) and $\tau \in\{0,1\}$, since from Remark $2.2,2^{k} 31^{\tau} m \notin \mathcal{A}$ for all $\tau \geq 2$. The elements of the set $\mathcal{A}\left(1+z+z^{3}+z^{4}+z^{5}\right)$ of the form $31^{\tau} 2^{k}, \tau=0$ or 1 , were shown in [1] to be solutions of 2 -adic equations. More precisely, the following was proved in that paper.

1) The elements of the set $\mathcal{A}\left(1+z+z^{3}+z^{4}+z^{5}\right)$ of the form $2^{k}, k \geq 0$, are given by the 2 -adic solution

$$
\sum_{k \geq 0} \chi\left(\mathcal{A}, 2^{k}\right) 2^{k}=S(1)=U_{0}=1+2+2^{2}+2^{3}+2^{4}+2^{7}+2^{10}+2^{11}+\ldots
$$

of the equation

$$
y^{6}-y^{5}+3 y^{4}-11 y^{3}+44 y^{2}-36 y+32=0
$$

Note that $S(1)=U_{0}$ follows from (2.22).
2) The elements of the set $\mathcal{A}\left(1+z+z^{3}+z^{4}+z^{5}\right)$ of the form $31 \cdot 2^{k}, k \geq 0$, are given by the solution

$$
\sum_{k \geq 0} \chi\left(\mathcal{A}, 31 \cdot 2^{k}\right) 2^{k}=S(31)=y=2^{2}+2^{5}+2^{11}+\ldots
$$

of the equation
$31^{5} y^{6}+31^{5} y^{5}+13 \cdot 31^{4} y^{4}+91 \cdot 31^{3} y^{3}+364 \cdot 31^{2} y^{2}+796 \cdot 31 y+752=0$, since, from (2.53) with $m=1$, we have $31 S(31)=-5-U_{0}$, so that

$$
S(31)=\frac{5+U_{0}}{1-32}=\left(1+4+U_{0}\right)\left(1+2^{5}+2^{10}+\ldots\right)=2^{2}+2^{5}+2^{11}+\ldots
$$

Theorem 3.1. Let $m \neq 1$ be an odd integer not divisible by any prime $p \in \mathcal{P}_{0}$ (cf. (2.16)) neither by 31^{2}. Then the sum $S(m)$ defined by (2.20) does not vanish. So we may introduce the 2-adic valuation of $S(m)$:

$$
\begin{equation*}
\gamma=\gamma(m)=v_{2}(S(m)) \tag{3.1}
\end{equation*}
$$

Then, if 31 does not divide m, we have

$$
\begin{equation*}
\gamma(31 m)=\gamma(m) \tag{3.2}
\end{equation*}
$$

Let us assume now that m is coprime with 31 . We shall use the quantities $\omega_{i}=\omega_{i}(m)$ defined by (2.18), $\ell(m), \alpha=\alpha(m), a=a(m)$ defined by (2.15), (2.25) and (2.26),
$\alpha^{\prime}=\alpha^{\prime}(m)=\alpha-2 \ell(m) \bmod 12=2 \omega_{5}-2 \omega_{1}+\omega_{4}-\omega_{2}-2 \ell(m) \bmod 12$,
(3.4) $a^{\prime}=a^{\prime}(m)=a-4 \ell(m) \bmod 12=\omega_{5}-\omega_{1}+\omega_{2}-\omega_{4}-4 \ell(m) \bmod 12$,

$$
\begin{align*}
t & =t(m)=\left\lceil\frac{\omega_{1}+\omega_{5}+\omega_{2}+\omega_{4}}{2}-1\right\rceil-\left\lceil\frac{\omega_{2}+\omega_{4}}{2}-1\right\rceil \\
& =\left\{\begin{array}{cc}
\left\lceil\frac{\omega_{1}+\omega_{5}}{2}\right\rceil & \text { if } \omega_{1}+\omega_{5} \equiv \omega_{2}+\omega_{4} \equiv 1(\bmod 2) \\
\left\lceil\frac{\omega_{1}+\omega_{5}}{2}-1\right\rceil & \text { if not. }
\end{array}\right. \tag{3.5}
\end{align*}
$$

We have:
(i) if $\omega_{3} \neq 0$ and $\omega_{2}+\omega_{4} \neq 0$, the value of $\gamma=\gamma(m)$ is given by

$$
\gamma=\left\{\begin{array}{ccc}
\omega_{3}-1 & \text { if } & \alpha^{\prime} \equiv 0,1,3,4(\bmod 6) \\
\omega_{3} & \text { if } & \alpha^{\prime} \equiv 2(\bmod 6) \\
\omega_{3}+2 & \text { if } & \alpha^{\prime} \equiv 5(\bmod 6)
\end{array}\right.
$$

(ii) If $\omega_{2}+\omega_{4}=0$ and $\omega_{3} \geq 1$, we set $\alpha^{\prime \prime}=\alpha^{\prime}+6 \ell(m) \bmod 12$ and $\delta(i)=v_{2}\left(E_{i}+2^{v_{2}\left(E_{i}\right)} G\right)$ and we have

$$
\begin{array}{lll}
\text { if } & \omega_{1}+\omega_{5}<v_{2}\left(E_{\alpha^{\prime \prime}}\right), & \text { then } \\
\text { if } & \omega_{1}+\omega_{5}=\omega_{2}\left(E_{\alpha^{\prime \prime}}\right), & \text { then } \\
\text { if } & \gamma=\omega_{1}+\omega_{5}, \\
\text { if } & \omega_{1}+\omega_{5}>v_{2}\left(E_{\alpha^{\prime \prime}}\right), & \text { then } \\
\gamma=\omega_{3}-1+v_{2}\left(E_{\alpha^{\prime \prime}}\right) .
\end{array}
$$

(iii) If $\omega_{3}=0$ and $\omega_{2}+\omega_{4} \neq 0$, we have

$$
\gamma=-1+v_{2}\left(E_{\alpha^{\prime}}+3^{t} F_{a^{\prime}}\right)
$$

(iv) If $\omega_{3}=\omega_{2}=\omega_{4}=0$ and $\omega_{1}+\omega_{5} \neq 0$, we have

$$
\gamma=-1+v_{2}\left(E_{\alpha^{\prime}}+3^{t} F_{a^{\prime}}+2^{\omega_{1}+\omega_{5}}(-1)^{\ell(m)} G\right)
$$

Proof. We shall prove that $S(m) \neq 0$ in each of the four cases above. Assuming $S(m) \neq 0$, it follows from Theorem 2.2, (2) that $S(31 m) \neq 0$ and that $\gamma(31 m)=\gamma(m)$, which sets (3.2).
Proof of Theorem 3.1 (i). In this case, formula (2.39) reduces to

$$
m S(m)=2^{\omega_{3}-1} 3^{\left\lceil\frac{\omega_{2}+\omega_{4}}{2}-1\right\rceil} E_{\alpha^{\prime}} .
$$

Since $E_{\alpha^{\prime}} \neq 0, S(m)$ does not vanish; we have

$$
\gamma=v_{2}(S(m))=\omega_{3}-1+v_{2}\left(E_{\alpha^{\prime}}\right)
$$

and the result follows from the values of $E_{\alpha^{\prime}}$ modulo 2^{11} given in Table 1. Proof of Theorem 3.1 (ii). If $\omega_{2}+\omega_{4}=0$ and $\omega_{3} \neq 0$, formula (2.39) becomes (since, cf. (2.35), $E_{i+6}=-E_{i}$ holds)

$$
\begin{aligned}
m S(m) & =\frac{2^{\omega_{3}-1}}{3}\left(E_{\alpha^{\prime}}+2^{\omega_{1}+\omega_{5}}(-1)^{\ell(m)} G\right) \\
& =(-1)^{\ell(m)} \frac{2^{\omega_{3}-1}}{3}\left(E_{\alpha^{\prime \prime}}+2^{\omega_{1}+\omega_{5}} G\right)
\end{aligned}
$$

As displaid in Table $1, E_{i}$ is a linear combination of E_{0} and E_{1} so that, from Lemma 2.1, $S(m)$ does not vanish and $\gamma=\omega_{3}-1+v_{2}\left(E_{\alpha^{\prime \prime}}+2^{\omega_{1}+\omega_{5}} G\right)$, whence the result. The values of $v_{2}\left(E_{i}\right)$ and $\delta(i)$ calculated from Table 1 are given below.

i	0	1	2	3	4	5	6	7	8	9	10	11
$v_{2}\left(E_{i}\right)$	0	0	1	0	0	3	0	0	1	0	0	3
$\delta(i)$	1	1	2	1	1	8	2	2	4	2	2	4

Proof of Theorem 3.1 (iii). If $\omega_{3}=0$ and $\omega_{2}+\omega_{4} \neq 0$ it follows, from (2.39) and the definition of t above, that

$$
m S(m)=\frac{1}{2} 3^{\left\lceil\frac{\omega_{2}+\omega_{4}}{2}-1\right\rceil}\left(E_{\alpha^{\prime}}+3^{t} F_{a^{\prime}}\right)
$$

But E_{i} and F_{i} are non-zero linear combinations of, respectively, E_{0} and E_{1} and F_{0} and F_{1}; by Lemma 2.1, $E_{\alpha^{\prime}}+3^{t} F_{a^{\prime}}$ does not vanish and $\gamma=$ $-1+v_{2}\left(E_{\alpha^{\prime}}+3^{t} F_{a^{\prime}}\right)$.

Proof of Theorem 3.1 (iv). If $\omega_{3}=\omega_{2}=\omega_{4}=0$ and $m \neq 1$, formula (2.39) gives

$$
m S(m)=\frac{1}{6}\left(E_{\alpha^{\prime}}+3^{t} F_{a^{\prime}}+2^{\omega_{1}+\omega_{5}}(-1)^{\ell(m)} G\right)
$$

From Lemma 2.1, we obtain $E_{\alpha^{\prime}}+3^{t} F_{a^{\prime}}+2^{\omega_{1}+\omega_{5}}(-1)^{\ell(m)} G \neq 0$, which implies $S(m) \neq 0$ and $\gamma=-1+v_{2}\left(E_{\alpha^{\prime}}+3^{t} F_{a^{\prime}}+2^{\omega_{1}+\omega_{5}}(-1)^{\ell(m)} G\right)$.

Theorem 3.2. Let m be an odd integer satisfying $m \neq 1, \operatorname{gcd}(m, 31)=1$, and with \bar{m} of the form (2.24). Let $\gamma=\gamma(m)$ as defined in Theorem 3.1 and $Z(m)$ be the odd part of the right hand-side of (2.39), so that

$$
\begin{equation*}
m S(m)=2^{\gamma(m)} Z(m) \tag{3.6}
\end{equation*}
$$

(i) If $k<\gamma$, then $2^{k} m \notin \mathcal{A}$ and $2^{k} 31 m \notin \mathcal{A}$.
(ii) If $k=\gamma$, then $2^{k} m \in \mathcal{A}$ and $2^{k} 31 m \in \mathcal{A}$.
(iii) If $k=\gamma+r, r \geq 1$, then we set $\mathcal{S}_{r}=\left\{2^{r}+1,2^{r}+3, \ldots, 2^{r+1}-1\right\}$ and we have

$$
\begin{aligned}
2^{\gamma+r} m \in \mathcal{A} & \Longleftrightarrow \exists l \in \mathcal{S}_{r}, m \equiv l^{-1} Z(m) \quad\left(\bmod 2^{r+1}\right), \\
2^{\gamma+r} 31 m \in \mathcal{A} & \Longleftrightarrow \exists l \in \mathcal{S}_{r}, m \equiv-(31 l)^{-1} Z(m) \quad\left(\bmod 2^{r+1}\right) .
\end{aligned}
$$

Proof of Theorem 3.2, (i). We remind that m is odd and (cf. 2.21) $S(m) \equiv$ $S_{\mathcal{A}}(m, k)\left(\bmod 2^{k+1}\right)$. It is obvious from (3.6) that if $\gamma>k$ then $S_{\mathcal{A}}(m, k) \equiv$ $0\left(\bmod 2^{k+1}\right)$. So that from $(1.8), S_{\mathcal{A}}(m, k)=0$ and $2^{h} m \notin \mathcal{A}$, for all $h, 0 \leq h \leq k$. To prove that $2^{k} 31 m \notin \mathcal{A}$, it suffices to use this last result and (2.40) modulo 2^{k+1}.
Proof of Theorem 3.2, (ii). If $\gamma=k$ then the same arguments as above show that

$$
m S_{\mathcal{A}}(m, k) \equiv 2^{k} Z(m)\left(\bmod 2^{k+1}\right)
$$

So that, by using Theorem 3.2, (i) and (1.8), we obtain

$$
2^{k} m \chi\left(\mathcal{A}, 2^{k} m\right) \equiv 2^{k} Z(m)\left(\bmod 2^{k+1}\right)
$$

Since both m and $Z(m)$ are odd, we get $\chi\left(\mathcal{A}, 2^{k} m\right) \equiv 1(\bmod 2)$, which shows that $2^{k} m \in \mathcal{A}$. Once again, to prove that $2^{k} 31 m \in \mathcal{A}$, it suffices to use this last result and (2.40) modulo 2^{k+1}.
Proof of Theorem 3.2, (iii). Let us set $k=\gamma+r, r \geq 1$. (3.6) and (2.21) give

$$
\begin{equation*}
m S_{\mathcal{A}}(m, k) \equiv 2^{\gamma} Z(m)\left(\bmod 2^{\gamma+r+1}\right) \tag{3.7}
\end{equation*}
$$

So that, by using Theorem 3.2, (i) and (ii), we get
$m\left(2^{\gamma}+2^{\gamma+1} \chi\left(\mathcal{A}, 2^{\gamma+1} m\right)+\ldots+2^{\gamma+r} \chi\left(\mathcal{A}, 2^{\gamma+r} m\right)\right) \equiv 2^{\gamma} Z(m)\left(\bmod 2^{\gamma+r+1}\right)$, which reduces to

$$
m\left(1+2 \chi\left(\mathcal{A}, 2^{\gamma+1} m\right)+\ldots+2^{r} \chi\left(\mathcal{A}, 2^{\gamma+r} m\right)\right) \equiv Z(m)\left(\bmod 2^{r+1}\right)
$$

By observing that $2^{\gamma+r} m \in \mathcal{A}$ if and only if $l=1+2 \chi\left(\mathcal{A}, 2^{\gamma+1} m\right)+\ldots+$ $2^{r} \chi\left(\mathcal{A}, 2^{\gamma+r} m\right)$ is an odd integer in \mathcal{S}_{r}, we obtain

$$
2^{\gamma+r} m \in \mathcal{A} \quad \Longleftrightarrow \quad m \equiv l^{-1} Z(m) \quad\left(\bmod 2^{r+1}\right), l \in \mathcal{S}_{r}
$$

To prove the similar result for $2^{\gamma+r} 31 m$, one uses the same method and (2.40) modulo 2^{k+1}.

4. The counting function.

In Theorem 4.1 below, we will determine an asymptotic estimate to the counting function $A(x)$ (cf. (1.2)) of the set $\mathcal{A}=\mathcal{A}\left(1+z+z^{3}+z^{4}+z^{5}\right)$. The following lemmas will be needed.

Lemma 4.1. Let K be any positive integer and $x \geq 1$ be any real number. We have

$$
|\{n \leq x: \operatorname{gcd}(n, K)=1\}| \leq 7 \frac{\varphi(K)}{K} x
$$

where φ is the Euler function.
Proof. This is a classical result from sieve theory: see Theorems $3-5$ of [11].

Lemma 4.2. (Mertens's formula) Let θ and η be two positive coprime integers. There exists an absolute constant C_{1} such that, for all $x>1$,

$$
\pi(x ; \theta, \eta)=\prod_{p \leq x, p \equiv \theta(\bmod \eta)}\left(1-\frac{1}{p}\right) \leq \frac{C_{1}}{(\log x)^{\frac{1}{\varphi(\eta)}}}
$$

Proof. For θ and η fixed, Mertens's formula follows from the Prime Number Theorem in arithmetic progressions. It is proved in [9] that the constant C_{1} is absolute.

Lemma 4.3. For $i \in\{2,3,4\}$, let

$$
K_{i}=K_{i}(x)=\prod_{p \leq x, \ell(p) \in\{0, i\}} p=\prod_{p \leq x,} p \in \mathcal{P}_{0} \cup \mathcal{P} i
$$

where ℓ, \mathcal{P}_{0} and \mathcal{P}_{i} are defined by (2.15)-(2.16). Then for x large enough,

$$
\left|\left\{n: 1 \leq n \leq x, \operatorname{gcd}\left(n, K_{i}\right)=1\right\}\right|=\mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right)
$$

Proof. By Lemma 4.1 and (2.16), we have

$$
\begin{aligned}
\left|\left\{n: n \leq x, \operatorname{gcd}\left(n, K_{i}\right)=1\right\}\right| & \leq 7 x \frac{\varphi\left(K_{i}\right)}{K_{i}} \\
& =7 x \prod_{0 \leq j \leq 4, \tau \in\{0, i\}} \prod_{\substack{p \leq x, p \equiv 2^{j} 3^{\tau}(\bmod 31)}}\left(1-\frac{1}{p}\right)
\end{aligned}
$$

So that by Lemma 4.2 , for all $i \in\{2,3,4\}$ and x large enough,

$$
\left|\left\{n: n \leq x, \operatorname{gcd}\left(n, K_{i}\right)=1\right\}\right| \leq \frac{7 C_{1}^{10} x}{(\log x)^{\frac{10}{\varphi(31)}}}=\mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right)
$$

Lemma 4.4. Let $r, u \in \mathbb{N}_{0}$, ℓ and α^{\prime} be the functions defined by (2.15) and (3.3), ω_{j} be the additive function given by (2.18). We take ξ to be a Dirichlet character modulo 2^{r+1} with ξ_{0} as principal character and we let ϱ be the completely multiplicative function defined on primes p by

$$
\varrho(p)=\left\{\begin{array}{lr}
0 & \text { if } \ell(p)=0 \text { or } p=31 \tag{4.1}\\
1 & \text { otherwise } .
\end{array}\right.
$$

If y and z are respectively some 2^{u}-th and 12 -th roots of unity in \mathbb{C}, and if x is a real number >1, we set

$$
\begin{equation*}
S_{y, z, \xi}(x)=\sum_{2^{\omega_{3}(n)} n \leq x} \varrho(n) \xi(n) y^{\omega_{2}(n)+\omega_{4}(n)} z^{\alpha^{\prime}(n)} \tag{4.2}
\end{equation*}
$$

Then, when x tends to infinity, we have

- If $\xi \neq \xi_{0}$,

$$
\begin{equation*}
S_{y, z, \xi}(x)=\mathcal{O}\left(x \frac{\log \log x}{(\log x)^{2}}\right) . \tag{4.3}
\end{equation*}
$$

- If $\xi=\xi_{0}$,

$$
\begin{equation*}
S_{y, z, \xi_{0}}(x)=\frac{x}{(\log x)^{1-f_{y, z}(1)}}\left(\frac{H_{y, z, \xi_{0}}(1) C_{y, z}}{\Gamma\left(f_{y, z}(1)\right)}+\mathcal{O}\left(\frac{\log \log x}{\log x}\right)\right) \tag{4.4}
\end{equation*}
$$

where Γ is the Euler gamma function,

$$
\begin{equation*}
f_{y, z}(s)=\frac{5}{\varphi(31)} \sum_{1 \leq j \leq 5} g_{j, y, z}(s) \tag{4.5}
\end{equation*}
$$

$$
\begin{gather*}
g_{1, y, z}(s)=z^{8}, \quad g_{2, y, z}(s)=y z^{7}, \quad g_{3, y, z}(s)=\frac{z^{6}}{2^{s}}, \tag{4.6}\\
g_{4, y, z}(s)=y z^{5}, \quad g_{5, y, z}(s)=z^{4}, \\
H_{y, z, \xi}(s)=\prod_{1 \leq j \leq 5} \prod_{p, \ell(p)=j}\left(1+\frac{g_{j, y, z}(s) \xi(p)}{p^{s}-z^{-2 j} \xi(p)}\right)\left(1-\frac{\xi(p)}{p^{s}}\right)^{g_{j, y, z}(s)}, \tag{4.7}\\
C_{y, z}=\prod_{1 \leq j \leq 5}\left\{\prod_{p, \ell(p)=j}\left(1-\frac{1}{p}\right)^{-g_{j, y, z}(1)} \prod_{p}\left(1-\frac{1}{p}\right)^{\frac{g_{j, y, z}(1)}{30}}\right\} . \tag{4.8}
\end{gather*}
$$

Proof. The evaluation of such sums is based, as we know, on the SelbergDelange method. In [7], one finds an application towards direct results on such problems. In our case, to apply Theorem 1 of that paper, one should start with expanding, for complex number s with $\mathcal{R} s>1$, the Dirichlet series

$$
F_{y, z, \xi}(s)=\sum_{n \geq 1} \frac{\varrho(n) \xi(n) y^{\omega_{2}(n)+\omega_{4}(n)} z^{\alpha^{\prime}(n)}}{\left(2^{\omega_{3}(n)} n\right)^{s}}
$$

in an Euler product given by

$$
\begin{aligned}
F_{y, z, \xi}(s) & =\prod_{1 \leq j \leq 5} \prod_{p, \ell(p)=j}\left(1+\sum_{m=1}^{\infty} \frac{\xi\left(p^{m}\right) y^{\omega_{2}\left(p^{m}\right)+\omega_{4}\left(p^{m}\right)} z^{\alpha^{\prime}\left(p^{m}\right)}}{\left(2^{\omega_{3}\left(p^{m}\right)} p^{m}\right)^{s}}\right) \\
& =\prod_{1 \leq j \leq 5} \prod_{p, \ell(p)=j}\left(1+\frac{g_{j, y, z}(s) \xi(p)}{p^{s}-z^{-2 j} \xi(p)}\right),
\end{aligned}
$$

which can be written

$$
F_{y, z, \xi}(s)=H_{y, z, \xi}(s) \prod_{1 \leq j \leq 5} \prod_{p, \ell(p)=j}\left(1-\frac{\xi(p)}{p^{s}}\right)^{-g_{j, y, z}(s)}
$$

where $g_{j, y, z}(s)$ and $H_{y, z, \xi}(s)$ are defined by (4.6) and (4.7). To complete the proof of Lemma 4.4, one has to show that $H_{y, z, \xi}(s)$ is holomorphic for $\mathcal{R} s>$ $\frac{1}{2}$ and, for y and z fixed, that $H_{y, z, \xi}(s)$ is bounded for $\mathcal{R} s \geq \sigma_{0}>\frac{1}{2}$, which can be done by adapting the method given in [7] (Preuve du Théorème 2, p. 235).

Lemma 4.5. We keep the above notation and we let \mathcal{G} be the set of integers of the form $n=2^{\omega_{3}(m)} m$ with the following conditions:

- m odd and $\operatorname{gcd}(m, 31)=1$,
- $m=m_{1} m_{2} m_{3} m_{4} m_{5}$, where all prime factors p of m_{i} satisfy $\ell(p)=$ i.
If $G(x)$ is the counting function of the set \mathcal{G} then, when x tends to infinity,

$$
\begin{equation*}
G(x)=\frac{C x}{(\log x)^{1 / 4}}\left(1+\mathcal{O}\left(\frac{\log \log x}{\log x}\right)\right) \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
C=\frac{H_{1,1, \xi_{0}}(1) C_{1,1}}{\Gamma\left(f_{1,1}(1)\right)}=0.61568378 \ldots \tag{4.10}
\end{equation*}
$$

$H_{1,1, \xi_{0}}(1), C_{1,1}$ and $f_{1,1}(1)$ are defined by (4.7),(4.8) and (4.5).
Proof. We apply Lemma 4.4 with $y=z=1, \xi=\xi_{0}$ and remark that $G(x)=S_{1,1, \xi_{0}}(x)$. By observing that $\left(1+\frac{1}{p-1}\right)\left(1-\frac{1}{p}\right)=1$, we have

$$
\begin{aligned}
H_{1,1, \xi_{0}}(1) & =\prod_{p \in \mathcal{P}_{3}}\left(1+\frac{1}{2(p-1)}\right)\left(1-\frac{1}{p}\right)^{\frac{1}{2}}=\prod_{p \in \mathcal{P}_{3}}\left(1-\frac{1}{2 p}\right)\left(1-\frac{1}{p}\right)^{-\frac{1}{2}} \\
& \approx 1.000479390466
\end{aligned}
$$

$$
C_{1,1}=\lim _{x \rightarrow \infty} \prod_{\substack{p \in \mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{P}_{4} \cup \mathcal{P}_{5} \\ p \leq x}}\left(1-\frac{1}{p}\right)^{-1} \prod_{\substack{p \in \mathcal{P}_{3}, p \leq x}}\left(1-\frac{1}{p}\right)^{-\frac{1}{2}} \prod_{p \leq x}\left(1-\frac{1}{p}\right)^{\frac{3}{4}}
$$

$$
\approx 0.75410767606
$$

The numerical value of the above Eulerian products has been computed by the classical method already used and described in [7]. Since $\Gamma\left(f_{1,1}(1)\right)=$ $\Gamma\left(\frac{3}{4}\right)=1.225416702465 \ldots$, we get (4.10).

Lemma 4.6. We keep the notation introduced in Lemmas 4.4 and 4.5. If $(y, z) \in\{(1,1),(-1,-1)\}$, we have

$$
\begin{equation*}
S_{y, z, \xi_{0}}(x)=\frac{C x}{(\log x)^{1 / 4}}\left(1+\mathcal{O}\left(\frac{\log \log x}{\log x}\right)\right) \tag{4.11}
\end{equation*}
$$

while, if $(y, z, \xi) \notin\left\{\left(1,1, \xi_{0}\right),\left(-1,-1, \xi_{0}\right)\right\}$, we have

$$
\begin{equation*}
S_{y, z, \xi}(x)=\mathcal{O}_{r}\left(\frac{x}{(\log x)^{1 / 4+2^{-2 u-3}}}\right) \tag{4.12}
\end{equation*}
$$

Proof. For $y=z=1$, Formula (4.11) follows from Lemma 4.5. For $y=$ $z=-1$ (which does not occur for $u=0$), it follows from (4.4) and by observing that the values of $g_{j, y, z}(s), f_{y, z}(s), H_{y, z, \xi}(s), C_{y, z}$ do not change when replacing y by $-y$ and z by $-z$.

Let us define

$$
M_{y, z}=\Re\left(f_{y, z}(1)\right)=\frac{1}{6} \Re\left(z^{6}\left(z^{2}+z^{-2}+\frac{1}{2}+y\left(z+z^{-1}\right)\right)\right) .
$$

When $\xi \neq \xi_{0}$, (4.3) implies (4.12) while, if $\xi=\xi_{0}$, it follows from (4.4) and from the inequality to be proved

$$
\begin{equation*}
M_{y, z} \leq \frac{3}{4}-\frac{1}{2^{2 u+3}}, \quad(y, z) \notin\{(1,1),(-1,-1)\} \tag{4.13}
\end{equation*}
$$

To show (4.13), let us first recall that z is a twelfth root of unity.
If $z \neq \pm 1,6 f_{y, z}(1)$ is equal to one of the numbers $-3 / 2 \pm y \sqrt{3},-1 / 2 \pm y$, $3 / 2$ so that

$$
M_{y, z} \leq\left|f_{y, z}(1)\right| \leq \frac{1}{6}\left(\frac{3}{2}+\sqrt{3}\right)<0.55 \leq \frac{3}{4}-\frac{1}{2^{2 u+3}}
$$

for all $u \geq 0$, which proves (4.13).
If $z=1$ and $y \neq 1$ (which implies $u \geq 1$), we have

$$
\Re y \leq \cos \frac{2 \pi}{2^{u}}=1-2 \sin ^{2} \frac{\pi}{2^{u}} \leq 1-2\left(\frac{2}{\pi} \frac{\pi}{2^{u}}\right)^{2}=1-\frac{8}{2^{2 u}}
$$

and

$$
M_{y, 1}=\frac{5}{12}+\frac{1}{3} \Re y \leq \frac{3}{4}-\frac{8}{3 \cdot 2^{2 u}}<\frac{3}{4}-\frac{1}{2^{2 u+3}} .
$$

If $z=-1$ and $y \neq-1$, (4.13) follows from the preceding case by observing that $f_{y, z}(1)=f_{-y,-z}(1)$, which completes the proof of (4.13).

Lemma 4.7. Let \mathcal{G} be the set defined in Lemma 4.5, ω_{j} and α^{\prime} be the functions given by (2.18) and (3.3). For $0 \leq j \leq 11, r, u, \lambda, t \in \mathbb{N}_{0}$ such that t is odd, we let $\mathcal{G}_{j, r, u, \lambda, t}$ be the set of integers $n=2^{\omega_{3}(m)} m$ in \mathcal{G} with the following conditions:

- $\alpha^{\prime}(m) \equiv j(\bmod 12)$,
- $\omega_{2}(m)+\omega_{4}(m) \equiv \lambda\left(\bmod 2^{u}\right)$,
- $m \equiv t\left(\bmod 2^{r+1}\right)$.

If ρ is the function given by (4.1), the counting function $G_{j, r, u, \lambda, t}(x)$ of the set $\mathcal{G}_{j, r, u, \lambda, t}$ is equal to

$$
G_{j, r, u, \lambda, t}(x)=\sum_{\substack{2^{\omega_{3}(m)} m \leq x, m \equiv t\left(\bmod 2^{r+1}\right)}} \rho(m) .
$$

If $u \geq 1$ and $\lambda \not \equiv j(\bmod 2), \mathcal{G}_{j, r, u, \lambda, t}$ is empty while, if $\lambda \equiv j(\bmod 2)$, when x tends to infinity, we have

$$
G_{j, r, u, \lambda, t}(x)=\frac{C}{6 \cdot 2^{r+u}} \frac{x}{(\log x)^{\frac{1}{4}}}\left(1+\mathcal{O}\left(\frac{1}{(\log x)^{2-2 u-3}}\right)\right),
$$

where C is the constant given by (4.10).
If $u=0$, then

$$
G_{j, r, 0,0, t}(x)=\frac{C}{12 \cdot 2^{r}} \frac{x}{(\log x)^{\frac{1}{4}}}\left(1+\mathcal{O}\left(\frac{1}{(\log x)^{1 / 8}}\right)\right),
$$

Proof. If $u \geq 1$, it follows from (3.3) that $\alpha^{\prime}(m) \equiv \omega_{2}(m)+\omega_{4}(m)(\bmod 2)$; therefore, if $j \not \equiv \lambda(\bmod 2)$, then $\mathcal{G}_{j, r, u, \lambda, t}$ is empty. Let us set

$$
\zeta=e^{\frac{2 i \pi}{2 u}}, \mu=e^{\frac{2 i \pi}{12}} .
$$

By using the relations of orthogonality:

$$
\begin{gathered}
\sum_{j_{2}=0}^{11} \mu^{j_{2} \alpha^{\prime}(m)} \mu^{-j j_{2}}=\left\{\begin{array}{cl}
12 & \text { if } \alpha^{\prime} \equiv j(\bmod 12) \\
0 & \text { if not, }
\end{array}\right. \\
{ }^{1} \zeta^{j_{1}\left(\omega_{2}(m)+\omega_{4}(m)\right)}= \begin{cases}2^{u} & \text { if } \omega_{2}(m)+\omega_{4}(m) \equiv \lambda\left(\bmod 2^{u}\right) \\
0 & \text { if not, }\end{cases}
\end{gathered}
$$

$$
\sum_{\xi \bmod 2^{r+1}} \bar{\xi}(t) \xi(m)=\left\{\begin{array}{cl}
\varphi\left(2^{r+1}\right)=2^{r} & \text { if } m \equiv t\left(\bmod 2^{r+1}\right) \\
0 & \text { if not }
\end{array}\right.
$$

we get

$$
G_{j, r, u, \lambda, t}(x)=\frac{1}{12 \cdot 2^{r+u}} \sum_{\xi \bmod 2^{r+1}} \sum_{j_{1}=0}^{2^{u}-1} \sum_{j_{2}=0}^{11} \bar{\xi}(t) \zeta^{-\lambda j_{1}} \mu^{-j j_{2}} S_{\zeta^{j_{1}}, \mu^{j_{2}}, \xi}(x) .
$$

In the above triple sums, the main contribution comes from $S_{1,1, \xi_{0}}(x)$ and $S_{-1,-1, \xi_{0}}(x)$, and the result follows from (4.11) and (4.12).

If $u=0$, we have

$$
G_{j, r, 0,0, t}(x)=\frac{1}{12 \cdot 2^{r}} \sum_{\xi \bmod 2^{r+1}} \sum_{j_{2}=0}^{11} \bar{\xi}(t) \mu^{-j j_{2}} S_{1, \mu^{j}, \xi}(x)
$$

and, again, the result follows from Lemma 4.6.
Theorem 4.1. Let $\mathcal{A}=\mathcal{A}\left(1+z+z^{3}+z^{4}+z^{5}\right)$ be the set given by (1.3) and $A(x)$ be its counting function. When $x \rightarrow \infty$, we have

$$
A(x) \sim \kappa \frac{x}{(\log x)^{\frac{1}{4}}},
$$

where $\kappa=\frac{74}{31} C=1.469696766 \ldots$ and C is the constant of Lemma 4.5 defined by (4.10).

Proof. Let us define the sets $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}$ and \mathcal{A}_{4} containing the elements $n=2^{k} m$ (m odd) of \mathcal{A} with the restrictions:

$$
\begin{array}{cc}
\mathcal{A}_{1}: & \omega_{3}(m) \neq 0 \text { and } \omega_{2}(m)+\omega_{4}(m) \neq 0 \\
\mathcal{A}_{2}: & \omega_{3}(m) \neq 0 \text { and } \omega_{2}(m)=\omega_{4}(m)=0 \\
\mathcal{A}_{3}: & \omega_{3}(m)=0 \text { and } \omega_{2}(m)+\omega_{4}(m) \neq 0 \\
\mathcal{A}_{4}: & \omega_{2}(m)=\omega_{3}(m)=\omega_{4}(m)=0 .
\end{array}
$$

We have

$$
\begin{equation*}
A(x)=A_{1}(x)+A_{2}(x)+A_{3}(x)+A_{4}(x) . \tag{4.14}
\end{equation*}
$$

Further, for $i=2,3,4$, it follows from Lemma 4.3 that $A_{i}(x)=\mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right)$ and therefore

$$
\begin{equation*}
A(x)=A_{1}(x)+\mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right) \tag{4.15}
\end{equation*}
$$

Now, we split \mathcal{A}_{1} in two parts \mathcal{B} and $\widehat{\mathcal{B}}$ by putting in \mathcal{B} the elements $n \in \mathcal{A}_{1}$ which are coprime with 31 and in $\widehat{\mathcal{B}}$ the elements $n \in \mathcal{A}_{1}$ which are multiples of 31 . Let us recall that, from Remark 2.2, no element of \mathcal{A} is a multiple of 31^{2}. Therefore,

$$
\begin{equation*}
A_{1}(x)=\mathcal{B}(x)+\widehat{\mathcal{B}}(x) \tag{4.16}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{B}(x)=\sum_{n=2^{k}}^{m \in \mathcal{A}_{1}, n \leq x}<~ \rho(m), \widehat{\mathcal{B}}(x)=\sum_{n=2^{k} 31} \rho(m) . \tag{4.17}
\end{equation*}
$$

Let us consider $\mathcal{B}(x)$; the case of $\widehat{\mathcal{B}}$ will be similar. We define

$$
\nu_{i}=v_{2}\left(E_{i}\right)-1=\left\{\begin{array}{ccc}
-1 & \text { if } & i \equiv 0,1,3,4 \quad(\bmod 6) \tag{4.18}\\
0 & \text { if } & i \equiv 2 \quad(\bmod 6) \\
2 & \text { if } & i \equiv 5 \quad(\bmod 6)
\end{array}\right.
$$

so that, if $\widehat{E_{i}}$ is the odd part of E_{i} (cf. (2.32) and Table 1), we have

$$
\begin{equation*}
\widehat{E_{i}}=2^{-1-\nu_{i}} E_{i} . \tag{4.19}
\end{equation*}
$$

In view of Theorem $3.1(\mathrm{i})$, if $i=\alpha^{\prime}(m) \bmod 12$ then

$$
\begin{equation*}
\gamma(m)-\omega_{3}(m)=\nu_{i} . \tag{4.20}
\end{equation*}
$$

Further, an element $n=2^{k} m$ (m odd) belonging to \mathcal{A}_{1} is said of index $r \geq 0$ if $k=\gamma(m)+r$. For $r \geq 0$ and $0 \leq i \leq 11$,

$$
T_{r}^{(i)}(x)=\sum_{\substack{n=2^{\gamma(m)+r} \tag{4.21}\\
\alpha^{\prime}(m) \equiv i}} \rho \sum_{\substack{m \in \mathcal{A}_{1}, n \leq x \\
(\bmod 12)}} \rho(m)=\sum_{\substack{n=2^{\gamma(m)+r} m \in \mathcal{A}_{1}, 2^{\omega_{3}(m)} \begin{array}{c}
m \leq 2^{-r-\nu_{i}} \\
\alpha^{\prime}(m) \equiv i \\
(\bmod 12)
\end{array}}} \rho(m)
$$

will count the number of elements of \mathcal{A}_{1} up to x of index r and satisfying $\alpha^{\prime}(m) \equiv i(\bmod 12)$, so that

$$
\begin{equation*}
\mathcal{B}(x)=\sum_{r \geq 0} \sum_{i=0}^{11} T_{r}^{(i)}(x) \tag{4.22}
\end{equation*}
$$

Since $\gamma(m) \geq 0$, from the first equality in (4.21), each n counted in $T_{r}^{(i)}(x)$ is a multiple of 2^{r}, hence the trivial upper bound

$$
\begin{equation*}
\sum_{i=0}^{11} T_{r}^{(i)}(x) \leq \frac{x}{2^{r}} \tag{4.23}
\end{equation*}
$$

Since $\nu_{i} \geq-1$, the second equality in (4.21) implies

$$
\begin{equation*}
\sum_{i=0}^{11} T_{r}^{(i)}(x) \leq G\left(2^{1-r} x\right) \tag{4.24}
\end{equation*}
$$

with G defined in Lemma 4.5. Moreover, from Lemma 4.5, there exists an absolute constant K such that, for $x \geq 3$,

$$
\begin{equation*}
G(x) \leq K \frac{x}{(\log x)^{\frac{1}{4}}} \tag{4.25}
\end{equation*}
$$

Now, let R be a large but fixed integer; R^{\prime} is defined in terms of x by $2^{R^{\prime}-1} \leq \sqrt{x}<2^{R^{\prime}}$ and $R^{\prime \prime}=\frac{\log x}{\log 2}$. Since $T_{r}^{(i)}(x)$ is a non-negative integer, (4.23) implies that $T_{r}^{(i)}(x)=0$ for $r>R$ ". If x is large enough, $R<R^{\prime}<R^{\prime \prime}$ holds. Setting

$$
\begin{equation*}
\mathcal{B}_{R}(x)=\sum_{r=0}^{R} \sum_{i=0}^{11} T_{r}^{(i)}(x) \tag{4.26}
\end{equation*}
$$

from (4.22), we have

$$
\mathcal{B}(x)-\mathcal{B}_{R}(x)=S^{\prime}+S^{\prime \prime},
$$

with

$$
S^{\prime}=\sum_{r=R+1}^{R^{\prime}} \sum_{i=0}^{11} T_{r}^{(i)}(x), \quad S^{\prime \prime}=\sum_{r=R^{\prime}+1}^{R^{\prime \prime}} \sum_{i=0}^{11} T_{r}^{(i)}(x) .
$$

The definition of R^{\prime} and (4.23) yield

$$
S^{\prime \prime} \leq \sum_{r=R^{\prime}+1}^{R "} \frac{x}{2^{r}} \leq \sum_{r=R^{\prime}+1}^{\infty} \frac{x}{2^{r}}=\frac{x}{2^{R^{\prime}}} \leq \sqrt{x}
$$

while (4.24), (4.25) and the definition of R^{\prime} give

$$
\begin{aligned}
S^{\prime} & \leq \sum_{r=R+1}^{R^{\prime}} G\left(\frac{x}{2^{r-1}}\right) \leq \sum_{r=R+1}^{R^{\prime}} \frac{2 K x}{2^{r}\left(\log \frac{x}{2^{R^{\prime}-1}}\right)^{\frac{1}{4}}} \\
& \leq \frac{2^{\frac{5}{4}} K x}{(\log x)^{\frac{1}{4}}} \sum_{r=R+1}^{R^{\prime}} \frac{1}{2^{r}} \leq \frac{3 K x}{2^{R}(\log x)^{\frac{1}{4}}},
\end{aligned}
$$

so that, for x large enough, we have

$$
\begin{equation*}
0 \leq \mathcal{B}(x)-\mathcal{B}_{R}(x) \leq \sqrt{x}+\frac{3 K x}{2^{R}(\log x)^{\frac{1}{4}}} . \tag{4.27}
\end{equation*}
$$

We now have to evaluate $T_{r}^{(i)}(x)$; we shall distinguish two cases, $r=0$ and $r \geq 1$.
Calculation of $T_{0}^{(i)}(x)$.
From (4.21), we have

$$
T_{0}^{(i)}(x)=\sum_{\substack{n=2^{\gamma(m)} \\ \alpha^{\prime}(m) \equiv i}} \rho(m)=\sum_{\substack{n=\mathcal{A}_{1}, n \leq x \\(\bmod 12)}} \rho(m) .
$$

From Theorem 3.2, we know that $2^{\gamma(m)} m \in \mathcal{A}$. Hence,

$$
T_{0}^{(i)}(x)=\sum_{\substack{2^{\gamma(m)} m \leq x, \omega_{3} \neq 0, \omega_{2}+\omega_{4} \neq 0 \\ \alpha^{\prime}(m) \equiv i \\(\bmod 12)}} \rho(m),
$$

which, by use of (4.20), gives

$$
T_{0}^{(i)}(x)=\sum_{\substack{2^{\omega_{3}(m)}}} \rho(m) .
$$

But, at the cost of an error term $\mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right)$, Lemma 4.3 allows us to remove the conditions $\omega_{3} \neq 0, \omega_{2}+\omega_{4} \neq 0$, and to get from the second part
of Lemma 4.7,

$$
\begin{align*}
T_{0}^{(i)}(x) & =G_{i, 0,0,0,1}\left(\frac{x}{2^{\nu_{i}}}\right)+\mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right) \\
& =\frac{C}{12} \frac{x}{2^{\nu_{i}}(\log x)^{\frac{1}{4}}}\left(1+\mathcal{O}\left(\frac{1}{(\log x)^{1 / 12}}\right)\right) . \tag{4.28}
\end{align*}
$$

Calculation of $T_{r}^{(i)}(x)$ for $r \geq 1$.
Under the conditions $\omega_{3} \neq 0$ and $\omega_{2}+\omega_{4} \neq 0$, from (3.6), (2.39), (3.3), (4.19) and (4.20), we get

$$
Z(m)=3^{\left\lceil\frac{\omega_{2}+\omega_{4}}{2}-1\right\rceil} \widehat{E}_{\alpha^{\prime}(m)}
$$

From (4.21), it follows that

Now, by Theorem 3.2, we know that $2^{\gamma(m)+r} m$ belongs to \mathcal{A} if there is some $l \in \mathcal{S}_{r}=\left\{2^{r}+1, \ldots, 2^{r+1}-1\right\}$ such that $m \equiv l^{-1} Z(m) \bmod 2^{r+1}$. Note that the order of 3 modulo 2^{r+1} is 2^{r-1} if $r \geq 2$ and 2^{r} if $r=1$. We choose

$$
u=r+1
$$

so that $\omega_{2}+\omega_{4} \equiv \lambda\left(\bmod 2^{r+1}\right)$ implies $3^{\left\lceil\frac{\lambda}{2}-1\right\rceil} \equiv 3^{\left\lceil\frac{\omega_{2}+\omega_{4}}{2}-1\right\rceil}\left(\bmod 2^{r+1}\right)$. Therefore, we have

$$
T_{r}^{(i)}(x)=\sum_{l \in \mathcal{S}_{r}} \sum_{\lambda=0}^{2^{r+1}-1} \sum_{\substack{2^{\omega_{3}(m)}}} \sum_{\substack{m \leq 2^{-\nu_{i}-r} x, \omega_{3} \neq 0, \omega_{2}+\omega_{4} \neq 0 \\ \alpha^{\prime}(m) \equiv i(\bmod 12), \omega_{2}+\omega_{4} \equiv \lambda\left(\bmod 2^{r+1}\right) \\ m \equiv l^{-1} 3^{\left.\Gamma \frac{\lambda}{2}-1\right\rceil} \widehat{E}_{i}\left(\bmod 2^{r+1}\right)}} \rho(m) .
$$

As in the case $r=0$, we can remove the conditions $\omega_{3} \neq 0$ and $\omega_{2}+\omega_{4} \neq 0$ in the last sum by adding a $\mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right)$ error term, and we get by Lemma 4.7 for r fixed

$$
\begin{align*}
T_{r}^{(i)}(x) & =\sum_{l \in \mathcal{S}_{r}} \sum_{\substack{\lambda=0 \\
\lambda \equiv i \\
(\bmod 2)}}^{2^{r+1}-1} G_{i, r, r+1, \lambda, l^{-1} 3^{\left\lceil\frac{\lambda}{2}-1\right\rceil} \widehat{E}_{i}}\left(\frac{x}{2^{\nu_{i}+r}}\right)+\mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right) \\
(4.29) & =\frac{C}{24} \frac{x}{2^{\nu_{i}+r}(\log x)^{\frac{1}{4}}}\left(1+\mathcal{O}\left(\frac{1}{(\log x)^{2-2 r-5}}\right)\right) . \tag{4.29}
\end{align*}
$$

From (4.26), (4.28), (4.29) and (4.18), we have

$$
\begin{aligned}
\mathcal{B}_{R}(x) & =\frac{C x}{12(\log x)^{\frac{1}{4}}}\left(\left(\sum_{i=0}^{11} \frac{1}{2^{\nu_{i}}}\right)\left(1+\frac{1}{2} \sum_{r=1}^{R} \frac{1}{2^{r}}\right)+\mathcal{O}\left(\frac{1}{(\log x)^{2^{-2 R-5}}}\right)\right) \\
& =\frac{37}{24} \frac{C x}{(\log x)^{\frac{1}{4}}}\left(\frac{3}{2}-\frac{1}{2^{R}}\right)\left(1+\mathcal{O}\left(\frac{1}{(\log x)^{2^{-2 R-5}}}\right)\right)
\end{aligned}
$$

By making R going to infinity, the above equality together with (4.27) show that

$$
\begin{equation*}
\mathcal{B}(x) \sim \frac{37}{16} \frac{C x}{(\log x)^{\frac{1}{4}}}, x \rightarrow \infty \tag{4.30}
\end{equation*}
$$

In a similar way, we can show that $\widehat{\mathcal{B}}(x)$ defined in (4.17) satisfies

$$
\widehat{\mathcal{B}}(x) \sim \frac{1}{31} \mathcal{B}(x) \sim \frac{37}{16 \cdot 31} \frac{x}{(\log x)^{\frac{1}{4}}}
$$

which, with (4.16) and (4.15), completes the proof of Theorem 4.1 with

$$
\kappa=\frac{37}{16}\left(1+\frac{1}{31}\right) C=\frac{74}{31} C=1.469696766 \ldots
$$

Numerical computation of $A(x)$.

There are three ways to compute $A(x)$. The first one uses the definition of \mathcal{A} and simultaneously calculates the number of partitions $p(\mathcal{A}, n)$ for $n \leq x$; it is rather slow. The second one is based on the relation (1.10) and the congruences (2.19) and (2.23) satisfied by $\sigma(\mathcal{A}, n)$. The third one calculates $\omega_{j}(n), 0 \leq j \leq 5$, in view of applying Theorem 2.2. The two last methods can be encoded in a sieving process

The following table displays the values of $A(x), A_{1}(x), \ldots, A_{4}(x)$ as defined in (4.14) and also

$$
c(x)=\frac{A(x)(\log x)^{\frac{1}{4}}}{x}, c_{1}(x)=\frac{A_{1}(x)(\log x)^{\frac{1}{4}}}{x}
$$

It seems that $c(x)$ and $c_{1}(x)$ converge very slowly to $\kappa=1.469696766 \ldots$, which is impossible to guess from the table.

x	$A(x)$	$c(x)$	$A_{1}(x)$	$c_{1}(x)$	$A_{2}(x)$	$A_{3}(x)$	$A_{4}(x)$
10^{3}	480	0.7782	20	0.032	44	233	183
10^{4}	4543	0.7914	361	0.063	532	2294	1356
10^{5}	43023	0.7925	5087	0.094	5361	21810	10765
10^{6}	411764	0.7939	60565	0.117	52344	208633	90222
10^{7}	3981774	0.7978	680728	0.136	506199	2007168	787679
10^{8}	38719773	0.8022	7403138	0.153	4887357	19390529	7038749

References

[1] N. Baccar, Sets with even partition functions and 2-adic integers. Periodica Math. Hung. 55 (2) (2007), 177-193.
[2] N. Baccar and F. Ben Saïd, On sets such that the partition function is even from a certain point on. International Journal of Number Theory $5 \mathbf{n}^{\circ} 3$ (2009), 407-428.
[3] N. Baccar, F. Ben Saïd and A. Zekraoui, On the divisor function of sets with even partition functions. Acta Math. Hungarica 112 (1-2) (2006), 25-37.
[4] F. Ben Saïd, On a conjecture of Nicolas-Sárközy about partitions. Journal of Number Theory 95 (2002), 209-226.
[5] F. Ben Saïd, On some sets with even valued partition function. The Ramanujan Journal 9 (2005), 63-75.
[6] F. Ben Saïd and J.-L. Nicolas, Sets of parts such that the partition function is even. Acta Arithmetica 106 (2003), 183-196.
[7] F. Ben Saïd and J.-L. Nicolas, Sur une application de la formule de Selberg-Delange. Colloquium Mathematicum 98 n $^{\circ} 2$ (2003), 223-247.
[8] F. Ben Saïd and J.-L. Nicolas, Even partition functions. Séminaire Lotharingien de Combinatoire 46 (2002), B 46 i (http//www.mat.univie.ac.at/ slc/).
[9] F. Ben Saïd, H. Lahouar and J.-L. Nicolas, On the counting function of the sets of parts such that the partition function takes even values for n large enough. Discrete Mathematics 306 (2006), 1089-1096.
[10] P. M. Cohn, Algebra, Volume 1, Second Edition. John Wiley and Sons Ltd, 1988).
[11] H. Halberstam and H.-E. Richert, Sieve methods. Academic Press, New York, 1974.
[12] H. Lahouar, Fonctions de partitions à parité périodique. European Journal of Combinatorics 24 (2003), 1089-1096.
[13] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications. Cambridge University Press, revised edition, 1994.
[14] J.-L. Nicolas, I.Z. Ruzsa and A. Sárközy, On the parity of additive representation functions. J. Number Theory 73 (1998), 292-317.
[15] J.-L. Nicolas, On the parity of generalized partition functions II. Periodica Mathematica Hungarica 43 (2001), 177-189.

Fethi Ben Saïd
Université de Monastir
Faculté des Sciences de Monastir
Avenue de l'Environement
5000 Monastir, Tunisie
E-mail: Fethi.Bensaid@fsm.rnu.tn
Jean-Louis Nicolas
Université de Lyon 1
Institut Camile Jordan, UMR 5208
Batiment Doyen Jean Braconnier
21 Avenue Claude Bernard
F-69622 Villeurbanne, France
E-mail: jlnicola@in2p3.fr
Ahlem Zekraoui
Université de Monastir
Faculté des Sciences de Monastir
Avenue de l'Environement
5000 Monastir, Tunisie
E-mail: ahlemzekraoui@yahoo.fr

[^0]: Manuscrit reçu le 9 octobre 2008.
 Research partially supported by CNRS, Région Rhône-Alpes, contract MIRA 2004, Théorie des Nombres Lyon, Saint-Etienne, Monastir and by DGRST, Tunisia, UR 99/15-18.

 We are pleased to thank A. Sárközy who first considered the sets \mathcal{A} 's such that the number of partitions $p(\mathcal{A}, n)$ is even for n large enough for his interest in our work and X . Roblot for valuable discussions about 2 -adic numbers.

 Mots clefs. Partitions, periodic sequences, order of a polynomial, orbits, 2-adic numbers, counting function, Selberg-Delange formula.

 Classification math.. 11P81, 11N25, 11N37.

