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Landau’s problems on primes

par János PINTZ

Résumé. Au congrès international de Cambridge en 1912, Lau-
dau dressa la liste de quatre problèmes de base sur les nombres pre-
miers. Ces problèmes furent caractérisés dans son discours comme
“inaccessibles en l’état actuel de la science”. Ces problèmes sont
les suivants :

(1) Existe-t-il une infinité de nombres premiers de la forme
n2 + 1 ?

(2) La conjecture (binaire) de Goldbach, que chaque nombre
pair supérieur à 2 est somme de deux nombres premiers.

(3) La conjecture des nombres premiers jumeaux.
(4) Existe-t-il toujours un nombre premier entre deux carrés

consécutifs ?
Tous ces problèmes sont encore ouverts. Le travail présenté

ici est un exposé des résultats partiels aux problèmes (2)–(4),
avec une attention particuliere concernant les résultats récents de
D. Goldston, C. Yıldırım et de l’auteur sur les petits écarts entre
nombres premiers.

Abstract. At the 1912 Cambridge International Congress Lan-
dau listed four basic problems about primes. These problems were
characterised in his speech as “unattackable at the present state
of science”. The problems were the following :
(1) Are there infinitely many primes of the form n2 + 1?
(2) The (Binary) Goldbach Conjecture, that every even number

exceeding 2 can be written as the sum of two primes.
(3) The Twin Prime Conjecture.
(4) Does there exist always at least one prime between neigh-

bouring squares?
All these problems are still open. In the present work a survey

will be given about partial results in Problems (2)–(4), with special
emphasis on the recent results of D. Goldston, C. Yıldırım and the
author on small gaps between primes.

The author was supported by OTKA grants No. 67676, 72731, ERC-AdG No. 228005 and the
Balaton program.



358 János Pintz

1. Introduction

In his invited address at the 1912 International Congress of Mathemati-
cians, held in Cambridge, Edmund Landau (1912) gave a survey about de-
velopments in the theory of prime numbers and the Riemann zeta-function.
Besides this he mentioned (without any further discussion) four specific
problems about primes which he considered as “unattackable at the present
state of science”. The four problems (in the original order) were the follow-
ing

(1) Does the function u2 + 1 represent infinitely many primes for integer
values of u?

(2) Does the equality m = p+ p′ have for any even m > 2 a solution?
(3) Does the equality 2 = p−p′ have infinitely many solutions in primes?
(4) Does there exist at least one prime between n2 and (n+ 1)2 for any

positive integer n?
In the present work we will begin with some historical remarks referring

to these problems including the few results known in 1912 about those prob-
lems and analyse the connections between the four problems. After this we
will give a survey of the most important results of the past nearly 100 years.
We will discuss the results in connection with Problems (2)–(4) in more de-
tail and briefly those connected with Problem 1 (Section 19), with special
emphasis on recent developments concerning various approximations of the
Goldbach and Twin Prime Problems.

2. History of the problems and related results before 1912

Whereas the conjecture that there are infinitely many twin primes may
originate from the time of Euclid and Eratosthenes, it seems that it ap-
peared first in print in the work of de Polignac (1849), although in a more
general form already. We know much more about the origin of Goldbach’s
Conjecture, however there are some interesting (and partly not well known)
facts to mention concerning its origin. In a letter to Euler, written June 7,
1742, Goldbach formulated his conjecture in two different forms. The first
one asserted that

(2.1)
if a number N is the sum of two primes, then it
can be written as a sum of arbitrarily many primes.

In these formulations we have to keep in mind that in his time the number
one was considered to be a prime. The second formulation was interestingly
found on the margin of the same letter. This states that
(2.2)
every number greater than 2 can be written as the sum of three primes.

Euler pointed out in his answer of June 30 that the first formulation of
Goldbach’s Conjecture follows from the conjecture that every even number
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can be written as the sum of two primes. As Euler remarks in his letter
this latter conjecture was communicated to him earlier orally by Goldbach
himself. So it is really justified to attribute the Binary Goldbach Conjecture
to Goldbach. The correspondence of Euler and Goldbach appeared already
in 1843 (cf. Fuss (1843)). While the second formulation (2.2) of Goldbach
is clearly equivalent to the usual Binary Goldbach Conjecture, this is not
obvious with the first formulation (2.1). However, surprisingly, this is really
the case. Let us suppose namely that an even number 2k is the sum of two
primes. Then 2k is also a sum of three primes. One of them has to be even,
so 2k−2 is also a sum of two primes. Continuing the procedure we see that
every even integer below 2k is the sum of two primes. Since all numbers of
the form 2p are sums of two primes, the usual Binary Goldbach Conjecture
follows from the existence of arbitrarily large primes.

Waring stated Goldbach’s Problem in 1770 (Waring (1770)) and added
that every odd number is either a prime or is a sum of three primes.

It is much less well known that Descartes formulated a related but not
equivalent conjecture much earlier than Goldbach since he died already in
1650. According to this every even number is the sum of at most 3 primes.
It is unclear why he formulated this only for even integers, but it is very
easy to show that this is equivalent to the following, more natural version
(where we do not consider one to be prime):

Descartes’ Conjecture. Every integer greater than one can be written as
the sum of at most 3 primes.

Let us introduce the following

Definition. An even number is called a Goldbach number (their set will
be denoted by G further on) if it can be written as the sum of two primes.

Then it is easy to see that the Descartes’ Conjecture is equivalent to

(2.3) If N > 2 is even, then N ∈ G or N − 2 ∈ G.

It is worth remarking that (as one can easily derive from (2.3)) Descartes’
Conjecture is equivalent to a stronger form of it, namely

(2.4)
Every integer greater than 1 can be written as a sum of three
primes, where the third summand, if it exists, can be chosen as
2, 3 or 5.

Although Descartes’ Conjecture is not equivalent to Goldbach’s, the
question arises: could Euler or Goldbach have been aware of Descartes’
Conjecture? Theoretically yes, since some copies of his notes and manu-
scripts circulated in Europe. However, the above two-line long conjecture
was not included in his collected works which appeared in 1701 in Amster-
dam. It is only contained in the edition of Descartes (1908), under Opuscula
Posthuma, Excerpta Mathematica (Vol. 10, p. 298).
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Apart from a numerical verification by Desboves (1855) up to 10,000 and
Ripert (1903) up to 50,000 actually no result was proved before Landau’s
lecture. We have to mention however the conjectural asymptotic formula
of J. J. Sylvester (1871) for the number P2(n) of representation of an even
n as the sum of two primes:

(2.5) P2(n) ∼ 4e−γC0
n

log2 n

∏
p|n
p>2

(
1 +

1
p− 2

)
,

where C0 is the so-called twin prime constant,

(2.6) C0 =
∏
p>2

(
1− 1

(p− 1)2

)
= 0.66016 . . . .

Here and later p (as further on p′, p′′, pi) will always denote primes, P will
denote the set of all primes.

It was proved later by Hardy and Littlewood (1923) that this formula is
definitely not correct. They made the same conjecture with 4e−γC0 replaced
by 2C0. By now, we know that the analogue of (2.5) with 2C0 is true for
almost all even numbers.

The only area where some non-trivial results existed before Landau’s
lecture was Problem 4 about large gaps between primes. Bertrand (1845)
stated the assertion – called Bertrand’s Postulate – that there is always
a prime between n and 2n. The same assertion – also without any proof
– appeared about 100 years earlier in one of the unpublished manuscripts
of Euler (see Narkiewicz (2000), p. 104). Bertrand’s Postulate was proven
already 5 years later by Čebyšev (1850). He used elementary tools to show

(2.7) 0.92129
x

log x
< π(x) < 1.10555

x

log x
for x > x0,

where π(x) denotes the number of primes not exceeding x. Further on we
will use the notation

(2.8) dn = pn+1 − pn.

Čebyšev’s proof implies

(2.9) dn <

(
6
5

+ ε

)
pn for n > n0(ε).

The next step

(2.10) dn = o(pn)

was a consequence of the Prime Number Theorem (PNT)

(2.11) π(x) ∼ x

log x
∼ lix :=

x∫
0

dt

log t
,
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shown simultaneously using different arguments by J. Hadamard (1896)
and de la Vallée Poussin (1896).

The last step before 1912, the inequality

(2.12) dn < pn exp
(
−c
√

log pn

)
was a consequence of the Prime Number Theorem with remainder term

(2.13) π(x) = lix+O
(
x exp

(
−c
√

log x
))
,

proved by de la Vallée Poussin (1899).
Finally we mention that H. Brocard (1897) gave an incorrect proof of

the closely related conjecture that there exists a prime between any two
consecutive triangular numbers. This shows that Problem 4 of Landau was
examined before 1912, although in a slightly different form.

As we mentioned already, the Twin Prime Conjecture appeared in print
already the first time in a more general form, due to de Polignac (1849):

(2.14)
Every even number can be written in an infini-
tude of ways as the difference of two consecutive
primes.

Kronecker (1901) mentioned the same conjecture (with reference to an
unnamed writer) in a weaker form as

(2.15) Every even number can be expressed in an in-
finitude of ways as the difference of two primes.

Maillet (1905) commented on de Polignac’s conjecture that

(2.16) Every even number is the difference of two primes.

When the even number is 2 or 4 then (2.14) and (2.15) are equivalent,
otherwise (2.15) is weaker than (2.14), while (2.16) is weaker than (2.15).
The form (2.16) is trivial for every concrete small even number and today
we know its truth for almost all even numbers. In strong contrast to this
we do not know whether there is any number for which (2.15) or (2.14) is
true.

The Goldbach and Twin Prime Conjecture were mentioned in the cele-
brated address of Hilbert at the International Congress of Mathematicians
in Paris, 1900 (see Hilbert (1935)). In his Problem No. 8 he mentioned them
together with the Riemann Hypothesis, using the following words:

“After a comprehensive discussion of Riemann’s prime number formula
we might be some day in the position to give a rigorous answer on Gold-
bach’s Problem, whether every even number can be expressed as the sum
of two primes, further on the problem whether there exist infinitely many
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primes with difference 2 or on the more general problem whether the dio-
phantine equation

(2.17) ax+ by + c = 0

is always solvable in primes x, y if the coefficients a, b, c are given pairwise
relatively prime integers.”

There are close ties between Landau’s problems. These connections de-
pend strongly upon which formulation of the Conjectures (2.14)–(2.16) we
consider. The first two are really generalizations of the Twin Prime Con-
jecture, the third one, (2.16), is obviously trivial if the difference is two. As
the cited lines of Hilbert’s lecture also indicate, both Goldbach’s Conjec-
ture and the Twin Prime Conjecture are special cases of linear equations
of type (2.17) for primes. Using the formulation of (2.16) there is really a
very strong similarity between the equations p + p′ = N and p − p′ = N
for even values of N . In fact, most of the results for Goldbach’s Conjecture
are transferable to the other equation, too.

On the other hand, the Twin Prime Conjecture is also connected with
Problem 4. The former one refers to the smallest possible gaps between
consecutive primes, the latter one to the largest possible gaps.

Finally, the Twin Prime Conjecture and Problem 1 admit a common
generalization, formulated first by A. Schinzel (Schinzel, Sierpiński 1958):
if f1, . . . , fk are irreducible polynomials in Z[X] and their product does
not have a fixed factor, then for infinitely many integers n all values fi(n)
are prime. Bateman and Horn (1962) formulated a quantitative form of
it. The special case fi(x) = x + hi, hi ∈ Z of Schinzel’s conjecture was
formulated by L. E. Dickson (1904) more than a hundred years ago, while
the quantitative version of it is due to Hardy and Littlewood (1923). In the
simplest case k = 2, Dickson’s conjecture is clearly equivalent to (2.15).
On the other hand, if k = 1 and f(x) = ax + h, then this is Dirichlet’s
theorem (see Dirichlet (1837). Landau’s Problem No. 1 is the simplest case
of Schinzel’s conjecture if k = 1 and deg f > 1. There is no single non-
linear polynomial for which we know the answer to Schinzel’s conjecture,
even for k = 1. However, if primes are substituted by almost primes, then
Schinzel’s conjecture is true in the case k = 1 for an arbitrary polynomial f
(see Section 19 for the case when f is an irreducible polynomial).

According to the above connections between Landau’s problems we will
organize the material into four areas as follows (the first three discussed in
detail, the fourth one briefly):

(i) Large gaps between primes
(ii) Small gaps between primes and the prime k-tuple conjecture of Dick-

son, Hardy and Littlewood
(iii) Goldbach’s Conjecture and numbers of the form N = p1 − p2

(iv) Approximations to Problem No. 1.
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3. Upper bounds for large gaps between consecutive primes

As mentioned in Section 2, the only area where significant results existed
before 1912 was the upper estimation of the differences dn = pn+1 − pn.
These estimations were trivial consequences of the deep results (2.7), (2.11)
and (2.13) concerning estimation and asymptotics of π(x). However, this
approach has its natural limits. The Riemann–Von Mangoldt Prime Num-
ber Formula (cf. Davenport (1980), Chapter 17)

(3.1) ∆(x) := ψ(x)− x :=
∑
n≤x

Λ(n)− x = −
∑
|γ|≤T

x%

%
+O

(
x log2 x

T

)

(where % = β + iγ denotes the zeros of Riemann’s Zeta-function, T ≤ x
and Λ(n) = log p if n = pm, Λ(n) = 0 otherwise) tells us that any zero %
itself implies an expected oscillation of size xβ/|%| for the remainder term
∆(x). Answering a question of Littlewood, this was proved rigorously in
an effective way first by Turán (1950), later in an improved form by Pintz
(1980a) and in the sharpest (in some sense optimal) form

(3.2) sup
x

|∆(x)|
xβ/|%0|

≥ π

2
,

by Révész (1988).
The crucial observation that helps to produce improvements of the es-

timate (2.12) is that, subtracting the two formulas of type (3.1) for x + y
and x, we obtain

(3.3) ψ(x+ y)− ψ(x) = y −
∑
|γ|≤T

(x+ y)% − x%

%
+O

(
x log2 x

T

)

and in (3.3) any single zero % has only an effect of size

(3.4)
(x+ y)% − x%

%
≤ min

(
2
(x+ y)β

|%|
, yxβ−1

)
,

which is alone always inferior to y. So, unlike in the problem of estimating
∆(x) as in (3.2), one single zero itself can never destroy everything. It is the
number of zeros with large real part β and not too large imaginary parts
|γ| that influences the estimation of dn. The earliest of such results, called
density theorems today, was proved by Carlson (1920):

(3.5) N(α, T ) =
∑

ζ(%)=0
β≥α,|γ|≤T

1 � T 4α(1−α)+ε.

Based on this, Hoheisel (1930) could reach the first result of type

(3.6) dn � pϑ1
n (ϑ1 < 1)

with the value ϑ1 = 1− 1/33 000.
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His result was improved later significantly as

ϑ1 = 3/4 + ε Čudakov (1936),
ϑ1 = 5/8 + ε Ingham (1937),
ϑ1 = 3/5 + ε Montgomery (1969),
ϑ1 = 7/12 + ε Huxley (1972).

The result of Ingham shows that we always have primes between n3 and
(n+1)3 if n is sufficiently large. These results all showed beyond (3.6) that
the PNT is valid in intervals of length xϑ1 .

(3.7) π(x+ y)− π(x) ∼ y

log x
(
y = xϑ1

)
.

Riemann’s Hypothesis (RH) implies (cf. v. Koch (1901))

(3.8) ∆(x) �
√
x log2 x,

and thereby

(3.9) dn �
√
x log2 x.

This result was improved under RH by Cramér (1920) to

(3.10) dn �
√
x log x,

which still falls short of answering Landau’s question No. 4 positively, even
assuming the RH.

In the case of the unconditional estimates the exponent 7/12 is still the
best one known for which (3.7) holds. However, concerning (3.6), a break-
through occurred when Iwaniec and Jutila (1979) obtained by an ingenious
combination of analytic and sieve methods the result

(3.11) ϑ1 = 13/23.

An important theoretical consequence of the results of Iwaniec and Jutila
was to overcome the ‘parity obstacle’ (to be discussed later in Sections 10–
11) which in general prevents sieve methods from revealing the existence
of primes in a suitable set (cf. Greaves (2001) p. 171).

The later developments all used both analytic and sieve methods and
showed, similarly to Iwaniec and Jutila (1979), an inequality weaker than
(3.7) but stronger than (3.6), namely

(3.12) π(x+ y)− π(x) � y

log x
(
y = xϑ1

)
.
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(3.13)

ϑ1 = 11/20 Heath-Brown, Iwaniec (1979),
ϑ1 = 17/31 Pintz (1981, 1984),
ϑ1 = 23/42 Iwaniec–Pintz (1984),
ϑ1 = 11/20− 1/384 Mozzochi (1986),
ϑ1 = 6/11 Lou–Yao (1992, 1993),
ϑ1 = 7/13 Lou–Yao (1992, 1993),
ϑ1 = 107/200 Baker–Harman (1996).

Finally the best known result is

Theorem (Baker–Harman–Pintz (2001)). dn � p
21/40
n .

If we are contented with results which guarantee the existence of primes
in almost all short intervals of type

(3.14) [x, x+ y], y = xϑ2 ,

then the method of Huxley (1972) yields this with (3.7) for

(3.15) ϑ2 = 1/6 + ε.

Further, the combination of analytic and sieve methods led to (3.12) in
almost all short intervals with

(3.16)

ϑ2 = 1/10 + ε Harman (1982)
ϑ2 = 1/14 + ε Ch. Jia (1995a), Watt (1995)
ϑ2 = 1/15 + ε H. Z. Li (1997)
ϑ2 = 1/20 + ε Ch. Jia (1996a).

These results will also have later significance in the examination of gaps
between consecutive Goldbach numbers in Section 14.

Landau’s Problem No. 4 can be approximated in other ways if primes
are substituted by almost primes. We call an integer a Pr number if it has
at most r prime factors (counted with multiplicity). Already Viggo Brun
(1920) showed that there is a P11 number in any interval of type (x, x+

√
x)

for x > x0 (consequently between neighboring squares, if n > n0). After
various improvements, J. R. Chen (1975) showed this for P2 numbers, too.

Another approach is to show that we have a number n in every interval
of type (x, x+

√
x) such that the greatest prime factor of it

(3.17) P (n) > nc1

with a c1 < 1, possibly near to 1. The first and the last results of this type
are

(3.18)
c1 = 15/26 = 0.5769 . . . Ramachandra (1969),
c1 = 0.738 H. Q. Liu, J. Wu (1999).

It is interesting to observe that if we consider the slightly larger interval
[x, x+x1/2+ε] then we have already numbers with much larger prime factors,
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namely P (n) > nc2 , where again the earliest and the latest results are the
following

(3.19)
c2 = 2/3− ε Jutila (1973),
c2 = 25/26− ε Ch. Jia, M. Ch. Liu (2000).

We mention that the methods leading to the strong results about P (n),
use, similarly to the work of Iwaniec and Jutila, a combination of ana-
lytic and sieve methods including the linear sieve with Iwaniec’s bilinear
expression of the error term.

4. The expected size of large gaps. Cramér’s probabilistic model

Empirical data suggest that the largest gaps between primes are much
smaller than the size dn < 2

√
pn which would imply Landau’s conjecture

(and is of about the same strength). It was Cramér who first used a prob-
abilistic approach to predict the size of the largest possible gaps between
consecutive primes. His probabilistic model (Cramér (1935, 1936)) is a good
starting point to formulate conjectures about the asymptotic behaviour of
primes. Based on the Prime Number Theorem (2.11) he defined the inde-
pendent random variables ξ(n) for n ≥ 3 by

(4.1) P(ξn = 1) =
1

log n
, P(ξn = 0) = 1− 1

log n
.

On the basis of his model he conjectured

(4.2) lim sup
n→∞

dn

log2 pn
= 1,

which would be true with probability 1 in his model.
This model would predict the truth of all four conjectures of Landau and

seemed to agree with our knowledge about primes when used for appropri-
ate problems. The Cramér model (CM) predicts asymptotically the same
number of even and odd primes below a given bound, which is clearly not
true. That was not an issue as long as the mathematical community be-
lieved it knew which were the appropriate problems for the model. Cramér’s
model predicted the truth of PNT in short intervals of size (log x)λ for any
λ > 2, for example, that is, the relation (cf. (3.7))

(4.3) π(x+ y)− π(x) ∼ y

log x
, y = (log x)λ, λ > 2.

It is naturally quite difficult to check numerically conjectures like (4.3)
for all short intervals for really large values of x. However, the general
belief was that this is an appropriate problem and CM can be applied to
predict relations like (4.3) despite the obvious deficiencies of the model. It
was therefore a great surprise when Maier (1985) showed that, taking an
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arbitrarily large fixed λ, the relation (4.3) will be always false for suitable
values xn, yn = (log xn)λ →∞.

As explained in Granville (1994, 1995) the reason why CM makes an
incorrect prediction for (4.3) is the same as mentioned already: the model
does not contain the trivial information that primes have no small divisors.
If CM is corrected in the way that all numbers having a divisor below a
given parameter z = z(x)

(
with log z(x)

log log x → ∞
)

are a priori excluded from
the set of possible primes (and the remaining numbers are chosen with a
probability proportional to 1/ log n), then the contradiction discovered by
Maier disappears. The corrected CM (CCM) will predict falsity of (4.3) for
a suitable (rare) set of short intervals. On the basis of this corrected model,
Granville (1993) conjectures that (4.2) holds with 1 replaced by 2e−γ .

However, the present author has shown that any type of modification
preserving the independence of the variables ξn will still be in a ‘non-trivial’
contradiction with the true distribution of primes. Specifically, we still have
a contradiction with the global result

(4.4)
1
X

X∫
0

(
π(x)−

∑
2<n≤x

1
log n

)2

dx� X

log2X
,

valid on RH. If RH is not true, then we have a much more significant
contradiction with CM-type probabilistic models, since then we have much
larger oscillation than

√
X as shown by the result (3.2) of Révész. We

remark that in case of existence of zeros with β0 > 1/2, also the average
size of the error is larger, as shown first by Knapowski (1959) and later in
a stronger form by Pintz (1980b, c).

What makes the contradiction between (4.4) and Cramér’s model more
peculiar is the fact that the result (4.4) was proved 15 years before the
discovery of Cramér’s model and the mathematician who showed (4.4) was
Harald Cramér (1920) himself.

The theorem below shows that in order to avoid conflict with reality,
our set from which we choose our ‘possible primes’ (which was the set of
numbers without prime divisors of size O(logλ x) for any λ earlier) has to
coincide nearly exactly with the set of primes. Our freedom is just to add
a thin set of composite numbers to the primes whose cardinality is less
than that of the primes by a factor at least c log x. This means that any
reasonable new model has to give up the simple condition of independence.

Theorem 1 (J. Pintz (200?)). Let x be a large even number, I = (x/2, x]∩
Z. Let S∗x be arbitrary with

(4.5) P∗x := P ∩ I ⊆ S∗x ⊆ I, A =
|I|
|S∗x|

.
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Let us define independent random variables ηn for all n ∈ I as

(4.6) ηn = 0 if n /∈ S∗x;

while for n ∈ S∗x let

(4.7) P(ηn = 1) =
A

log n
, P(ηn = 0) = 1− A

log n
.

Then the truth of the relation

(4.8) D2
(∑

n∈I

ηn

)
� x

log2 x

implies

(4.9) |S∗x \ P∗x| �
x

log2 x
.

5. Lower bounds for large gaps between primes. The
Erdős–Rankin Problem

The Prime Number Theorem (2.11) obviously implies

(5.1) λ := lim sup
n→∞

dn

log n
≥ 1.

This was improved to λ ≥ 2 by Backlund (1929) and λ ≥ 4 by Brauer,
Zeitz (1930). Soon after this, further improvements were made. Westzyn-
thius (1931) proved just one year later that λ = ∞, by showing

(5.2) lim sup
n→∞

dn

log pn log3 pn/ log4 pn
≥ 2eγ ,

where logν x denotes the ν-fold iterated logarithmic function. Erdős (1935)
succeeded in improving log log log pn to log log pn. More precisely, he proved

(5.3) lim sup
n→∞

dn

log pn log2 pn/(log2
3 pn)

> 0.

Rankin (1938) was able to add a further factor log4 pn to it:

(5.4) lim sup
n→∞

dn

log pn log2 pn log4 pn/(log2
3 pn)

≥ c0 with c0 = 1/3.

The value of c0 = 1
3 was increased to eγ by Ricci (1952) and Rankin

(1962/63).
In 1979 Erdős offered a prize of USD 10,000 for the proof that (5.4) is true

with c0 = ∞, the highest prize ever offered by Erdős for any mathematical
problem. Two improvements of the constant c0 were achieved in the past
28 years. Maier and Pomerance (1990) showed this with c0 = 1.31 . . . eγ ,
while the best known result is the following

Theorem (Pintz (1997)). (5.4) is true with c0 = 2eγ.
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The usual way to find lower estimation for dn is by showing a lower esti-
mate for the function J(x) = max

n≤x
j(n), where j(n) stands for the maximal

gap between consecutive integers prime to n (Jacobsthal’s function).
The results before 1970 used Brun’s sieve and estimates of de Bruĳn

for the number of integers below a given x composed of primes less than
a suitably chosen y = y(x). The work of Maier and Pomerance relied on
deep analytic results about the distribution of generalized twin primes in
arithmetic progressions. Finally, the work of the author needed beyond the
tools of Maier and Pomerance a new result about colorings of graphs, which
was shown in Pintz (1997) by probabilistic methods.

6. Small gaps between primes. Earlier results

Contrary to the uncertainty concerning the size of possible large gaps
between primes, the smallest possible gaps dn occurring infinitely often
between consecutive primes are generally believed to be 2, as predicted by
the Twin Prime Conjecture. Hence, we try to give upper estimates for the
size of the small gaps in terms of pn. Since the average value of dn is log pn

by the Prime Number Theorem, analogously to (5.1) we try to give upper
bounds for the corresponding quantity

(6.1) ∆1 := lim inf
n→∞

dn

log pn
≤ 1.

Progress in the case of the analogous problem of the lower estimation of
λ was rather quick. One year after the first non-trivial estimate of Backlund
(1929), the bound λ ≥ 4 was obtained; two years after that, λ = ∞ was
reached. This was not the case with this problem (cf. (6.7)). The first non-
trivial result was reached 80 years ago: Hardy and Littlewood (1926) showed

(6.2) ∆1 ≤ 2/3 on GRH

by the circle method, where GRH stands for the Generalized Riemann
Hypothesis. It was 14 years later that Rankin (1940) improved (6.2) to
∆1 ≤ 3/5, also assuming GRH. In the same year Erdős (1940) succeeded
in obtaining the first unconditional estimate

(6.3) ∆1 < 1− c

with an unspecified but explicitly calculable small positive constant c.
Specifically, he could show that values of dn cannot accumulate too strongly
around the mean value log pn, since every even value 2k appears as a dif-
ference of two primes p1, p2 at most

(6.4) CS(2k)
N

log2N

S(2k) :=
∏

p|k, p>2

(
1 +

1
p− 2

)
times for p1 = p2 + 2k ≤ N .
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This result was improved by Ricci (1954) to ∆1 ≤ 15/16, later by Wang,
Xie, Yu (1965) to ∆1 ≤ 29/32.

A breakthrough came when Bombieri and Davenport (1966) refined and
made unconditional the method of Hardy and Littlewood by substituting
the Bombieri–Vinogradov theorem for the GRH and obtained ∆1 ≤ 1/2.
They also combined their method with that of Erdős to obtain

(6.5) ∆1 ≤
2 +

√
3

8
= 0.4665 . . . .

Their result was further improved to

(6.6)

0.4571 . . . Pilt’ai (1972),
0.4542 . . . Uchiyama (1975),
0.4463 . . . Huxley (1973),
0.4425 . . . Huxley (1977),
0.4393 . . . Huxley (1984),
0.4342 Fouvry, Grupp (1986).

Finally, Maier (1988) succeeded to apply his celebrated matrix method
to improve Huxley’s estimate by a factor e−γ , where γ is Euler’s constant.
He obtained

(6.7) ∆1 ≤ e−γ · 0.4425 · · · = 0.2484 . . . ,

which was the best result until 2005.
The method of Bombieri and Davenport (1966) was also suitable to give

an estimate for chains of consecutive primes. They showed

(6.8) ∆ν = lim inf
n→∞

pn+ν − pn

log pn
≤ ν − 1

2
,

which was improved by Huxley (1968/69, 1977) to

(6.9) ∆ν ≤ ν − 5
8

+O

(
1
ν

)
.

Finally, similarly to the case ν = 1, Maier (1988) obtained an improvement
by a factor e−γ :

(6.10) ∆ν ≤ e−γ
(
ν − 5

8
+O

(
1
ν

))
.

The method of Huxley (1968/69) also yielded an extension of the result
(6.9) to small gaps between consecutive primes in an arithmetic progression
of a fixed difference q.

Finally we have to mention an important conditional result of Heath–
Brown (1983). He proved that the existence of Siegel zeros implies the
Twin Prime Conjecture, and more generally that every even number can be
expressed in infinitely many ways as the difference of two primes. Naturally
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most mathematicians believe that there are no Siegel zeros. (The truth of
GRH trivially implies this, for example.) So there is not much hope to prove
the Twin Prime Conjecture via Heath-Brown’s result. However, this result
means that if we try to prove the Twin Prime Conjecture, or any weaker
version of it as the Small Gap Conjecture or Bounded Gap Conjecture (see
Section 7), for example, then we are entitled to assume that there are no
Siegel zeros. In the light of the results of the next section it is also interesting
to note that both

(i) the existence of Siegel zeros, that is, extreme irregularities in the
distribution of primes in some arithmetic progressions (AP), and

(ii) improvements of the Bombieri–Vinogradov theorem, that is, a very
regular distribution of primes in most AP’s
imply the Bounded Gap Conjecture.

7. Small gaps between primes. Recent results

In the present section, extending the discussion of Section 2, we will
formulate in more detail several conjectures related to the Twin Prime
Conjecture and describe some recent results about them. All these results
were reached in collaboration with D. A. Goldston and C. Y. Yıldırım. The
results of Section 6 raised the goal to prove the

Small Gap Conjecture. ∆1 = 0,

as an approximation to the Twin Prime Conjecture. A much better approx-
imation would be to show the

Bounded Gap Conjecture. lim inf
n→∞

(pn+1 − pn) <∞.

It turned out (as it often happens in mathematics) that in order to ap-
proach the above weaker form of the Twin Prime Conjecture it is worth to
examine the much stronger generalizations of it, formulated in a qualitative
form by Dickson (1904), and in a quantitative form by Hardy and Little-
wood (1923). Let H = {hi}k

i=1 be a set composed of k distinct non-negative
integers, and let us examine whether we have infinitely many natural num-
bers n such that all n+ hi are simultaneously primes, that is

(7.1) {n+ hi}k
i=1 ∈ Pk i.o.,

where i.o. stands for ‘infinitely often’.
Dickson (1904) formulated the conjecture that if a trivial necessary condi-

tion is true forH, then (7.1) really happens for infinitely many values n. The
condition is that the number νp(H) of residue classes covered by H mod p
should satisfy

(7.2) νp(H) < p for every prime p.
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Such sets H are called admissible. Hardy and Littlewood (1923) examined
also the frequency of values n for which (7.1) is expected to be true. They
arrived by an analytic method at the conjecture that

(7.3)
∑
n≤N

{n+hi}∈Pk

1 ∼ S(H)
N

logk N
,

where S(H) is the so-called singular series, the convergent non-negative
product defined by

(7.4) S(H) :=
∏
p

(
1− νp(H)

p

)(
1− 1

p

)−k

.

It is easy to show that

(7.5) S(H) > 0 ⇐⇒ H is admissible.

Heuristic reasoning was provided by Pólya (1959) for the validity of (7.3)
on a probabilistic basis (at least for k = 2). If the probabilities

(7.6) n+ hi ∈ P, n+ hj ∈ P
were pairwise independent, we would obtain (7.3) without the extra factor
S(H). However, for a fixed p we have

(7.7) P
(
p - (n+ hi), i = 1, 2, . . . , k

)
= 1− νp(H)

p

in contrast to (1 − 1/p)−k, which would be the probability if the events
p | n + hi, p | n + hj would be pairwise independent. Hence we have
to multiply the naive probability (logN)−k with the product of all the
correction factors mod p: this is exactly the quantity S(H) in (7.4).

Since the conjecture about the infinitude of prime k-tuples is usually
associated with the names of Hardy and Littlewood and they were the first
who examined it in greater detail, we will define the qualitative form of it
as

Hardy–Littlewood–Dickson (HLD) Conjecture. If H = {hi}k
i=1 is

admissible, then all components n+hi are simultaneously primes for infin-
itely many natural numbers n.

Since this conjecture is extremely deep, we will formulate an easier ver-
sion of it as

HLD(k, ν) Conjecture. If H = {hi}k
i=1 is admissible, then there are at

least ν primes among {n+ hi} for infinitely many values of n.

In order to see the depth of this we may remark that if there are any
k, ν ≥ 2 and any single H = {hi}k

i=1 for which the above conjecture is true,
then the Bounded Gap Conjecture is obviously also true.
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In the next section we will sketch an almost successful attempt to prove
HLD(k, 2) for sufficiently large values of k, which will, however, yield the
truth of the Short Gap Conjecture. The method will also yield HLD(k, 2)
for sufficiently large values k > k(δ), and thus the Bounded Gap Conjec-
ture, if the Bombieri–Vinogradov Theorem can be improved as to include
arithmetic progressions with differences up to X1/2+δ with a fixed δ > 0.
We will introduce the

Definition. We say that ϑ is an admissible level of the distribution of
primes if for any A > 0, ε > 0 we have

(7.8)
∑

q≤Xϑ−ε

max
a

(a,q)=1

∣∣∣∣ ∑
p≡a(q)

log p− X

ϕ(q)

∣∣∣∣�ε,A
X

(logX)A
.

By the Bombieri–Vinogradov theorem (Bombieri (1965), A. I. Vino-
gradov (1965)) the number ϑ = 1/2 is an admissible level. The Elliott–
Halberstam Conjecture (EH) asserts that ϑ = 1 is an admissible level (see
Elliott–Halberstam (1968/69)).

The following results are proved in Goldston–Pintz–Yıldırım (200?):

Theorem 2 (Goldston–Pintz–Yıldırım (200?)). If the primes have an ad-
missible level ϑ > 1/2 of distribution, then for k > C(ϑ) any admissible
k-tuple contains at least two primes infinitely often. If ϑ > 0.971, then this
is true for k ≥ 6.

Since the 6-tuple (n, n+4, n+6, n+10, n+12, n+16) is admissible, the
Elliott–Halberstam (EH) Conjecture implies

(7.9) lim inf
n→∞

dn ≤ 16,

that is, pn+1 − pn ≤ 16 for infinitely many n. Unconditionally we are able
to show the truth of the Short Gap Conjecture.

Theorem 3 (Goldston–Pintz–Yıldırım (200?)).

∆1 = lim inf
n→∞

(dn/ log pn) = 0.

(For a simplified but self-contained proof of this assertion see Goldston–
Motohashi–Pintz–Yıldırım (2006).)

Remark. We have to mention here that the HLD(k, 2) Conjecture is for
any given value of k in some sense much stronger than its immediate con-
sequence, the Bounded Gap Conjecture. Specifically, let us return to the
three different analogues of the twin prime conjecture, given in (2.14)–
(2.16), more specially to the formulation (2.15) of Kronecker. Let us denote
by K the set of all even integers which can be expressed in an infinitude
of ways as the difference of two primes. Although we believe that every
even integer belongs to K (as formulated in (2.15)), even the assertion that
K 6= ∅ is very deep. The following assertion is trivial:
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Proposition 1. K 6= ∅ is equivalent to the Bounded Gap Conjecture.

On the other hand it is easy to show

Proposition 2. If the HLD(k, 2) Conjecture is true for any given k then
the lower asymptotic density of K, d(K) > c(k), with an explicitly calculable
positive constant c(k), depending only on k.

The same approach yields more generally for blocks of consecutive primes
the following

Theorem 4 (Goldston–Pintz–Yıldırım (200?)). If the primes have an ad-
missible level ϑ of distribution, then for ν ≥ 2 we have

(7.10) ∆ν ≤
(√
ν −

√
2ϑ
)2
.

In particular we have on EH

(7.11) ∆2 = lim inf
n→∞

pn+2 − pn

log pn
= 0.

It is also possible to combine Maier’s method with the method of Gold-
ston–Pintz–Yıldırım (200?) to obtain an improved form of the result (6.10)
of Maier, generalized for arithmetic progressions, where, extending the re-
sults of Huxley (1968/69) we may allow q to tend (slowly) to infinity withN .

Theorem 5 (Goldston–Pintz–Yıldırım (2006)). Let ν be an arbitrary fixed
positive integer and ε and A be arbitrary fixed positive numbers. Let q and
N be arbitrary, sufficiently large integers, satisfying

(7.12) q0(A, ε, ν) < q < (log logN)A, N > N0(A, ε, ν),

and let a be arbitrary with (a, q) = 1. Let p′1, p′2, . . . denote the consecutive
primes ≡ a(mod q). Then there exists a block of ν + 1 primes p′n, . . . , p′n+ν

such that

(7.13)
p′n+ν − p′n
ϕ(q) log p′n

< e−γ (√ν − 1
)2 + ε, p′n ∈ [N/3, N ].

Consequently,

(7.14) ∆ν(q, a) := lim inf
n→∞

p′n+ν − p′n
ϕ(q) log p′n

≤ e−γ (√ν − 1
)2
,

and in particular

(7.15) ∆1(q, a) = 0.

The above results left open the quantitative question: how can we esti-
mate dn as a function of pn from above, beyond the relation dn = o(log pn)
infinitely often ⇐⇒ ∆1 = 0. We mentioned that we are not able to show
dn ≤ C infinitely often, for example. However, we were able to substantially
refine the methods of proof of ∆1 = 0 so as to yield the following result.
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Theorem 6 (Goldston–Pintz–Yıldırım (200??)).

(7.16) lim inf
n→∞

dn

(log pn)1/2(log log pn)2
<∞.

We may remark that although the result ∆1 = 0 was proved 75 years
later than the analogous λ = ∞ (cf. (5.2)), our present understanding (7.16)
of small gaps is much better than of large gaps (cf. (5.4)).

8. The ideas of the proof on the small gaps

The idea is based on a variant of Selberg’s sieve, which appears in con-
nection with almost primes in Selberg (1991) in the special case k = 2, and
for general k in Heath-Brown (1997).

We can sketch the ideas leading to Theorems 2 and 3 as follows.
Step 1. Instead of the special problem of twin primes we consider the

general problem of Dickson: we try to show that for any admissible set
H = {hi}k

i=1 we have infinitely many k-tuples of primes in {n+hi}k
i=1, that

is

(8.1) {n+ hi}k
i=1 ∈ Pk i.o.

The simultaneous primality of all components n+hi is essentially equivalent
to

(8.2) Λ(n;H) :=
∑

d|PH(n)

µ(d)
(

log
n

d

)k

6= 0 i.o.,

where

(8.3) PH(n) =
k∏

i=1

(n+ hi),

since the generalized von Mangoldt function Λ(n;H) detects numbers PH(n)
with at most k different prime factors. If we were able to evaluate for any
fixed tuple H the average of Λ(n;H) for n ∈ (N, 2N ], that is, n ∼ N , this
could answer our question. Unfortunately this is not the case, essentially
due to the large divisors d of PH(n).

Step 2. As usual in sieve theory we try to approximate the detector
function Λ(n;H) of the prime k-tuples by the truncated divisor sum

(8.4) ΛR(n;H) :=
∑

d|PH(n)
d≤R

µ(d)
(

log
R

d

)k

.

In this case we can evaluate the average of ΛR(n;H) for n ∼ N if R ≤
N(logN)−B0(k). However, we do not obtain any direct arithmetic informa-
tion from this. The reason for this is that, although we believe that ΛR(n;H)
and Λ(n;H) are on average close to each other, we have no means to prove
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this. Further, the sum (8.4) might take negative values too, which is a
handicap for us.

Step 3. More generally we look for non-negative weights (depending on
the given set H, |H| = k)

(8.5) a(n) ≥ 0 for n ∼ N, A :=
∑
n∼N

a(n) > 0, w(n) =
a(n)
A

,

such that the average number of primes of the form n+ hi,

(8.6) E(N ;H) =
k∑

i=1

∑
n∼N

w(n)χP(n+ hi)

should be as large as possible, where χP(n) is the characteristic function of
primes,

(8.7) χP(n) = 1 if n ∈ P, χP(n) = 0 otherwise.

If we obtain

(8.8) E(N ;H) > 1 for N > N0

(or at least for a sequence N = Nν → ∞), we showed that there are at
least two primes in the given k-tuple. If we obtained

(8.9) E(N ;H) > k − 1 for N = Nν →∞,

then we would prove the HLD prime k-tuple conjecture for the given k-
tuple. Some candidates for a(n) are the following:

(8.10)

a1(n) = 1 =⇒ E(N,H) ∼ k

logN
(N →∞)

a2(n) = χP(n+ hj) with a given j =⇒ E(N ;H) ≥ 1

a3(n) = 1 if {n+ hi}k
i=1 ∈ Pk ?

a′3(n) = Λ(n,H) ?

The first choice of the uniform weights a1(n) shows the difficulty of (8.8).
Although a2(n) nearly yields (8.8), we have no idea how to proceed further.
The other two, nearly equivalent choices a3(n) and a′3(n) could lead to (8.9)
(in fact in case of a3(n) we would obtain E(N,H) = k) if we had

(8.11) A3(N) =
∑
n∼N

a3(n) > 0, resp.
∑
n∼N

a′3(n) > 0.

However, A3(N) > 0 for N = Nν → ∞ is trivially equivalent to the HLD
conjecture. So all these obvious choices clearly seem to be dead ends. Nev-
ertheless, our final choice will still originate from a′3(n). As we have seen in
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Step 2, the truncated version ΛR(n,H) of a′3(n) can be evaluated on aver-
age and we believe that it is close to a′3(n) in some sense. Since it does not
satisfy the non-negativity condition, we can try to square it and examine

(8.12) a4(n) = Λ2
R(n;H).

We can still evaluate their sum A4(N) asymptotically, but, due to the
squaring, only for

(8.13) R ≤ N1/2(logN)−B1 B1 = B1(k).

If we restrict R further to

(8.14) R = Nϑ/2−ε

where ϑ is an admissible level for the distribution of primes (cf. (7.8)), we
can also evaluate

(8.15) Ei(N,H) :=
∑
n∼N

w4(n)χP(n+ hi) =
ϑ− ε0(k)

k
.

This yields

(8.16) E(N,H) = ϑ− ε0(k), lim
k→∞

ε0(k) = 0,

which is much better than the result k/ logN obtained with the trivial
choice a(n) = 1 for all n, but still less than 1, even supposing EH, that
is, ϑ = 1. (However, as we will see later, this approach could already yield
∆1 = 0 on EH with some additional ideas.)

Step 4. Since we would be very happy to find at least two primes in the
k-tuple {n+hi}k

i=1 for infinitely many n, there is no compelling (heuristic)
reason to restrict our attention for the approximation of the detector func-
tion Λ(n,H) (cf. (8.2)) of prime k-tuples. We can try also to approximate
the detector function of those values n for which

(8.17) ω
(
PH(n)

)
= ω

( k∏
i=1

(n+ hi)
)
≤ k + `, 0 ≤ ` < k − 2,

where ` is a free parameter, to be chosen later. This leads to the weight

(8.18) a5(n) = Λ2
R(n;H, `) :=

( ∑
d|PH(n)

d≤R

µ(d)
(

log
R

d

)k+`
)2

.

This approximation is twice as good as a4(n) in the sense that under the
mild restriction

(8.19) ` = `(k) →∞, ` = o(k),
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we obtain on average twice as many primes as in Step 4. Namely, supposing
(8.19) with these weights we obtain in place of (8.16)

(8.20) E(N,H) = 2ϑ− ε1(k, `), lim
k→∞

ε1(k, `) = 0.

If ϑ > 1/2 we immediately obtain (8.8), which implies Theorem 2. How-
ever, unconditionally we must take ϑ = 1/2, so we have only

(8.21) E(N,H) = 1− ε1(k, `),

which is still weaker than the result by the trivial choice a2(n).
Step 5. We missed by a hairbreadth an unconditional proof of the ex-

istence of at least two primes in any k-tuple which implies the Bounded
Gap Conjecture, but what about the Small Gap Conjecture, ∆1 = 0? The
fact that we obtained on average already 1 − ε1(k, `) primes is of crucial
importance. We missed the proof of the Bounded Gap Conjecture but the
primes we found during our trial are still there. If we can collect more than
ε1(k, `) primes on average among

(8.22) n+ h, 1 ≤ h ≤ H := η logN, h 6= hi,

where η > 0 is an arbitrary fixed parameter, then we obtain ∆1 = 0.
Since the weights a5(n) are not especially sensitive for the primality (or
prime divisors) of n+h for h 6= hi, we can expect, similarly to the uniform
distribution a1(n), to obtain on average

(8.23)
∑
n∼N

w5(n)χP(n+ h) ∼ 1
logN

primes for any h 6= hi. This would yield in total on average

(8.24) ∼ H − k

logN
∼ H

logN
= η > ε1(k, `) if k > k0(η)

new primes among n+ h for h ∈ [1,H], h 6= hi.
This heuristic works in practice too, with a slight change. Although (8.23)

is not true in the exact form given above, we can show the similar relation
(h 6= hi)

(8.25)
∑
n∼N

w5(n)χP(n+ h) ∼ S(H ∪ {h})
S(H)

· 1
logN

(N →∞).

After this, in order to show ∆1 = 0, it is sufficient to show

(8.26)
1
X

X∑
h=1

S(H ∪ {h})
S(H)

≥ C(H) X > X0(H)
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for at least one choice of an admissible H, |H| = k for any k (or for a
sequence kν →∞). Let us choose H as

(8.27) P =
∏

p≤3k

p, hi = iP, i = 1, 2, . . . , k.

Then we have for any given even h

(8.28) ν ′(p) := νp(H ∪ {h}) ≤ νp(H) + 1 := ν(p) + 1 ≤ k + 1,

(8.29)

S(H ∪ {h})
S(H)

≥
∏

2<p≤3k

1− 2
p(

1− 1
p

)2

∏
p>3k

1− ν(p)+1
p(

1− ν(p)
p

) (
1− 1

p

)
≥

∏
2<p≤3k

(
1− 1

(p− 1)2

) ∏
p>3k

1

1 + ν(p)
p(p−1−ν(p))

≥
(
2C0 + ok(1)

)
exp

(
−
∑

p>3k

k

p2/2

)
≥ 2C0 + ok(1),

which clearly proves (8.26) with C(H) = C0 = 0.66 . . . (cf. (2.6)). We
remark that it is also easy to show (8.26) for any fixed admissible H and
with the better lower estimate 1 + ok(1). However, the exact analogue of
(8.29) is not true for all admissible tuplesH, although some similar estimate
can be given ifH∪{h} is admissible. To have an idea about (8.26) for general
H we may note that the contribution of primes with p > 3k is for any single
h at least 1+ok(1), as in (8.29). On the other hand, the contribution of the
primes p ≤ 3k to the left-hand side of (8.29) depends only on h modulo

(8.30) P0 = P0(3k) =
∏

p≤3k

p,

and for a full period we have the average (with νp(H) = ν(p))

(8.31)

1
P0

P0∑
p=1

∏
p≤3k

1− νp(H∪{h})
p(

1− ν(p)
p

) (
1− 1

p

)
=
∏

p≤3k

(
1− ν(p)

p

) (
1− ν(p)+1

p

)
+ ν(p)

p

(
1− ν(p)

p

)
(
1− ν(p)

p

) (
1− 1

p

) = 1.

We remark that, by changing the above argument slightly, even the de-
pendence of ok(1) on k can be omitted and we can prove for any given H
and k

(8.32) lim inf
X→∞

1
X

X∑
h=1

S(H ∪ {h})
S(H)

≥ 1.
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9. Linear equations with almost primes

In Section 3 we mentioned the work of Brun (1920), according to which
Problem 4 is true if primes are substituted by almost primes of the form P11

(that is, numbers with at most 11 prime factors). In the same work Brun
showed the first significant results concerning the Goldbach and Twin Prime
Conjectures. Using his sieve method he was able to prove that

(9.1) P9 = P ′9 + 2 infinitely often

and that all even numbers N > 2 can be expressed as

(9.2) N = P9 + P ′9.

Brun’s sieve was used later to show several results of similar type, where
by {a, b} we abbreviate the assertion that every large even integer can be
written as a sum of type Pa +Pb. The same method leads to results of type
Pa = Pb + 2 or Pa = Pb + 2d for every integer d

(9.3)

{7, 7} H. Rademacher (1924),
{6, 6} T. Estermann (1932),
{5, 7}, {4, 9}, {3, 15} {2, 366} G. Ricci (1936, 1937),
{5, 5} A. A. Buhštab (1938),
{4, 4} W. Tartakowski (1939a, 1939b),

A. A. Buhštab (1940).

These results were further improved by the weighted sieve of P. Kuhn
(1941) who was able to show in that and later works (cf. Kuhn (1953, 1954))
that every even number can be written as a sum of two numbers having
altogether at most 6 prime factors.

The first result where at least one of the summands could be taken as a
prime {1,K} was proved by A. Rényi (1947, 1948) using Linnik’s large sieve.
(Here K was a large unspecified constant.) The main novelty of the method
was that he (essentially) showed that primes have a positive distribution
level (cf. Section 7).

A few years later Selberg (1950) noted that his sieve can yield {2, 3}
without working out the details. In fact, the results below were reached by
Selberg’s sieve:

(9.4)
{3, 4} Wang Yuan (1956),
{3, 3} A. I. Vinogradov (1957),
{2, 3} Wang Yuan (1958).

For the detailed proof of Selberg see Selberg (1991).
The next developments were based on the method introduced by Rényi.

The distribution level of primes was proved to be at least ϑ = 1/3, later
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3/8 by Pan Cheng Dong and Barban. These results led to the strong ap-
proximation of the Goldbach and Twin Prime Conjectures as

(9.5) {1, 4} Pan Cheng Dong (1962, 63), M. B. Barban (1963),
{1, 3} A. A. Buhštab (1965).

The celebrated Bombieri–Vinogradov theorem, the level ϑ = 1/2 (cf.
(7.8)) enabled a simpler proof of Buhštab’s result {1, 3}, but did not yield
K = 2.

The presently best known results were reached by Jing Rum Chen (1966,
1973). He used a form of Kuhn’s weighted sieve, the switching principle and
the newly invented Bombieri–Vinogradov theorem to show

Chen’s Theorem. Every sufficiently large even integer can be written as a
sum of a prime and a P2 number. Further, every even number can be written
in infinitely many ways as the difference of a prime and a P2 number.

10. Small gaps between products of two primes. The
Hardy–Littlewood–Dickson Conjecture for almost primes

Chen’s theorem (see Section 9) showed that at least one of the equations
(p, p′, pi ∈ P)

p+ 2 = p′,(10.1)
p+ 2 = p1p2(10.2)

has infinitely many solutions. The phenomenon that we cannot specify
which one of the two equations (10.1) and (10.2) has infinitely many solu-
tions (in reality most probably both) is the most significant particular case
of the parity problem. This is a heuristic principle (observed and formulated
by Selberg in the 1950’s, see p. 204 of Selberg (1991) for example) stating
that sieve methods cannot differentiate between integers with an even and
odd number of prime factors.

Whereas Chen’s theorem is relatively close to the Twin Prime Conjecture,
it might be surprising to note that the seemingly much easier assertion
that for infinitely many primes p, p + 2 has an odd (or even) number of
prime factors, is still open. The reason for this is the parity obstacle (cf.
Hildebrand (2002)).

According to this, until very recently, problems involving numbers with
exactly two distinct prime factors seemed to be as difficult as problems
involving primes. We will introduce the

Definition. We call a natural number an E2-number if it is the product
of two distinct primes.
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Denoting the consecutive E2-numbers by q1 < q2 < . . . we may remark
that the analogue of ∆1 = 0 (cf. (6.1)), the relation

(10.3) lim inf
n→∞

qn+1 − qn
log qn/ log log qn

= 0

was not known (the function in the denominator corresponds to the average
distance between E2-numbers as the function log p in case of primes).

In collaboration with D. Goldston S. W. Graham, C. Y. Yıldırım (Gold-
ston, Graham, Pintz, Yıldırım 200?, 200?? to be abbreviated later by GGPY
200? and GGPY 200??) we examined various problems. The results ob-
tained (cf. the present and the next section) showed that the method of
Section 8 is suitable to discuss these problems as well. We are not only able
to prove analogous results for E2 numbers, but we obtain much stronger
ones. For the difference of E2 numbers we obtained the analogue of the
Bounded Gap Conjecture in the following strong form.

Theorem 7 (GGPY 200?). lim inf
n→∞

(qn+1 − qn) ≤ 6.

Let us consider more generally the appearance of almost primes in admis-
sible k-tuples, the qualitative analogue of the Hardy–Littlewood–Dickson
(HLD) conjecture for almost primes. (As we will see, Theorem 7 is the
consequence of such a result – Theorem 9 – as well.) Chen’s theorem (Sec-
tion 9) gives a complete answer (for the qualitative case): for any integer
d, we have

(10.4) p+ 2d ∈ P2 i.o.

This trivially implies that we have infinitely often at least two P2 num-
bers in any admissible k-tuple. In other words, the HLD(k, 2) Conjecture,
formulated in Section 7 is true for P2 numbers for any k ≥ 2.

We will examine the problem of whether we can guarantee for every ν
the existence of ν P2-numbers (or at least ν Pr-numbers with a given fixed
r, independent of ν) in any admissible k-tuple if k is sufficiently large, that
is, k ≥ C0(ν). Such a result seems to be unknown for any fixed value of r.
The strongest result in this direction is due to Heath-Brown (1997). He
showed for any admissible k-tuple {hi}k

i=1

(10.5) max
1≤i≤k

ω(n+ hi) < C log k,

where ω(n) stands for the number of distinct prime divisors of n.
Our method enables us to prove that the HLD(k, ν) Conjecture is true

for k > C(ν) if primes are replaced by E2-numbers (or Er-numbers, for
any fixed r). This will imply the existence of infinitely many blocks of ν
consecutive E2-numbers with a bounded diameter (depending on ν) for any
given ν. We remark that in the case of primes we cannot prove ∆ν = 0 if
ν > 2 (cf. (6.8)) and Theorem 5). In the case ν = 2 we were able to show
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∆2 = 0 (but not bounded gaps pn+2 − pn i.o.) only under the very deep
Elliott–Halberstam Conjecture (cf. (7.10)–(7.11)).

We can prove the result in a more general form. Let

(10.6) Li(x) = aix+ bi (1 ≤ i ≤ k) ai, bi ∈ Z, ai > 0

be an admissible k-tuple of distinct linear forms, that is, we suppose that∏
Li(x) has no fixed prime divisor.

Theorem 8 (GGPY 200?). Let D be any constant, Li(x) as above. Then
there are ν + 1 forms among them, which take simultaneously E2-number
values with both prime factors greater than D if

(10.7) k ≥ C1(ν) = (e−γ + o(1))eν .

Corollary. lim inf
n→∞

(qn+ν − qn) ≤ C2(ν) = (e−γ + o(1))νeν .

Theorem 8 does not specify how many forms we need in order to find
among them ν+1 E2-number for given small values of ν. The most impor-
tant particular case is the following, which clearly implies Theorem 7.

Theorem 9 (GGPY2). Let Li(x) be an admissible triplet of linear forms.
Among these there exist two forms Li, Lj such that Li(n) and Lj(n) are
both E2-numbers infinitely often.

11. Small gaps between almost primes and some conjectures of
Erdős on consecutive integers

Erdős had many favourite problems on consecutive integers (see the work
of Hildebrand (2002)). Let us denote by Ω(n) and ω(n), resp., the number
of prime factors of n with and without multiplicity. Let d(n) stand for the
divisor-function. The celebrated Erdős–Mirsky Conjecture (1952) refers to
the divisor function, the others to consecutive values of Ω and ω.

Conjecture C1 (Erdős–Mirsky). d(x) = d(x+ 1) infinitely often.

Conjecture C2 (Erdős (1983)). Ω(x) = Ω(x+ 1) infinitely often.

Conjecture C3 (Erdős (1983)). ω(x) = ω(x+ 1) infinitely often.

These conjectures would follow from the Twin Prime Conjecture with
x+ 1 replaced by x+ 2 in the following sharp form:

(11.1) d(x) = d(x+2) = 2, Ω(x) = Ω(x+2) = ω(x) = ω(x+2) = 1 i.o.

In their original forms Conjectures 11–11 would follow from an analogue
of the conjecture of Sophie Germain. Sophie Germain conjectured that 2p+
1 ∈ P for infinitely many primes p. It is possible to show by Chen’s method
that, similarly to (10.1)–(10.2), either

(11.2) 2p+ 1 ∈ P
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or

(11.3) 2p+ 1 = p1p2 pi ∈ P
is true for infinitely many primes p. Now if (11.3) itself holds infinitely
often, then Conjectures C1–C3 hold, namely,
(11.4)
d(2p) = d(2p+ 1) = 4, ω(2p) = Ω(2p) = Ω(2p+ 1) = ω(2p+ 1) = 2.

Due to this connection also Conjectures C1–C3 were considered ex-
tremely difficult, if not hopeless. (Problem 11.3 is believed to be of the
same depth as the Twin Prime Conjecture, as remarked by Hildebrand
(2002)).

It was a great surprise when C. Spiro (1981) was able to prove

(11.5) d(n) = d(n+ 5040) i.o.

Independently of (11.5) Heath-Brown (1982) found a conditional proof of
C2 under EH. Finally he succeeded (Heath-Brown (1984)) in showing C1
unconditionally using the ideas of Spiro, in combination with significant
new ideas of his own.

His method led also to C2, but C3 remained open. C3 was proved just
recently by J.-C. Schlage-Puchta (2003/2005). His method involved both
theoretical and computational methods.

An important feature of all these results were, as pointed out by Heath-
Brown (1982) in connection with the conditional solution of C2: ‘It should
be noted at this point that in solving Ω(n) = Ω(n + 1) we shall not have
specified Ω(n), or even the parity of Ω(n). Thus we avoid the parity problem,
rather than solve it.’

Our Theorem 9 yields in a rather quick way a new solution of Conjectures
C1–C3 with the additional advantage that we can solve them even if the
common consecutive value of f(n) = f(n+ 1) (f = d,Ω or ω) is specified.

More precisely we can prove

Theorem 10 (GGPY 200??). For any A ≥ 3 we have ω(n) = ω(n+1) = A,
i.o.

Theorem 11 (GGPY 200??). For any A ≥ 4 we have Ω(n) = Ω(n+ 1) =
A, i.o.

Theorem 12 (GGPY 200??). For any 24 | A we have d(n) = d(n+1) = A,
i.o.

Conjectures C1–C3 are also interesting if the shift 1 is replaced by 2 or
by a general shift b ∈ Z+, that is, the problem of whether

(11.6) f(n) = f(n+ b)

holds infinitely often if f = d,Ω or ω.
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These results were proved by C. Pinner (1997) for every value b using an
ingenious extension of Heath-Brown’s method for f = d and Ω. Y. Butt-
kewitz (2003) extended Puchta’s result for f = ω and for infinitely many
integer shifts b.

Our methods yield a full extension of the results for f = ω and Ω with
specified common values of f(n) = f(n + b) = A and a partial extension
for d(n) = d(n+ b) = A.

Theorem 13 (GGPY 200??). If b ∈ Z+, A ≥ 4, then Ω(n) = Ω(n+b) = A,
i.o.

Theorem 14 (GGPY 200??). If b ∈ Z+, A ≥ A(b), then ω(n) = ω(n+b) =
A, i.o.

Theorem 15 (GGPY 200??). If b ∈ Z+, b 6≡ 15 (mod 30), 48 | A, then
d(n) = d(n+ b) = A, i.o.

We will show below the simple deduction of Theorem 10 from Theorem 9
in the most important case A = 3. We consider the admissible system

(11.7) 18m+ 1, 24m+ 1, 27m+ 1

and the relations

(11.8)

3(18m+ 1) = 2(27m+ 1) + 1,

4(18m+ 1) = 3(24m+ 1) + 1,

9(24m+ 1) = 8(27m+ 1) + 1.

Since by Theorem 9 at least two of the forms in (11.7) will be simulta-
neously E2-numbers not divisible by 2 and 3 for infinitely many values m,
we obtain by (11.8) a sequence xi →∞ with

(11.9) ω(xi) = ω(xi + 1) = 2 + 1 = 3.

The case of a general A > 3 can be deduced in a similar way from
Theorem 9 with some additional ideas.

12. The exceptional set in Goldbach’s Problem

Hardy and Littlewood (1924) examined the problem whether one can
bound from above the number E(X) of Goldbach exceptional even numbers
below X, which cannot be expressed as a sum of two primes, i.e.

(12.1) E(X) = |E| =
∣∣{n ≤ X, 2 | n, n 6= p+ p′}

∣∣.
They attacked the problem with the celebrated circle method, invented

by Hardy, Littlewood and Ramanujan. They could not prove any result
unconditionally. However, they showed

(12.2) E(X) � X1/2+ε
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under the assumption of GRH. This result is even today the best conditional
one, apart from the improvement of Goldston (1989/1992) who replaced Xε

with log3X.
The first unconditional estimate of type E(X) = o(X) was made possible

more than a decade later by the method of I. M. Vinogradov (1937), which
yielded the celebrated Vinogradov’s three prime theorem. This theorem
states that every sufficiently large odd number can be written as a sum of
three primes.

Thus, using Vinogradov’s method, van der Corput (1937), Estermann
(1938) and Čudakov (1938) simultaneously and independently proved the
unconditional estimate

(12.3) E(X) �A X(logX)−A for any A > 0.

This shows that Goldbach’s Conjecture is true in the statistical sense
that almost all even numbers are Goldbach numbers. The above result was
the best known for 35 years when Vaughan (1972) improved it to

(12.4) E(X) � X exp
(
−c
√

logX
)
.

Just three years later Montgomery and Vaughan (1975) succeeded in
showing the very deep estimate

(12.5) E(X) ≤ X1−δ for X > X0(δ),

with an unspecified, but explicitly calculable, δ > 0. Several attempts were
made to show (12.5) with a reasonable (not too small) value of δ. These
investigations led to the values

(12.6)

δ = 0.05 (Chen, Liu (1989)),
δ = 0.079 (H. Z. Li (1999)),
δ = 0.086 (H. Z. Li (2000a)).

Finally, the author could show unconditionally (see Section 18 for some
details)

Theorem 16 (J. P.). There exists a fix ϑ < 2/3 such that E(X) � Xϑ.

If we consider the analogous problem (cf. (12.6)) for the difference of
primes, then the above-mentioned results are all transferable to this case
as well, thereby furnishing an approximation to the Generalized Twin Prime
Conjecture. Thus, defining analogously to E(X) in (12.1)

(12.7) E′(X) = {n ≤ X, 2 | n, n 6= p− p′},

we can show that all but X2/3 even integers below X can be written as the
difference of two primes.

Theorem 17 (J. P.). E′(X) � Xϑ with a fixed constant ϑ < 2/3.



Landau’s problems on primes 387

Naturally, we are not able to prove the stronger generalization of the
twin prime conjecture (2.15) for any single even number N since this would
imply the Bounded Gap Conjecture.

13. The Ternary Goldbach Conjecture and Descartes’
Conjecture. Primes as a basis

The name Ternary Goldbach Conjecture refers to the conjecture that
every odd integer larger than 5 can be written as a sum of three primes.
This conjecture appeared first actually at Waring (1770). The first, albeit
conditional, result concerning this was achieved in the above-mentioned pi-
oneering work of Hardy and Littlewood (1923). They showed that if there
is a θ < 3/4 such that no Dirichlet L-function vanishes in the halfplane
Re s > θ (a weaker form of GRH), then every sufficiently large odd num-
ber can be written as a sum of three primes. As an approximation to the
Goldbach Conjecture we may consider the problem of whether the set P of
primes (extended with the element 0) forms a basis or an asymptotic basis
of finite order. The existence of a number S∗ such that every integer larger
than 1 can be written as the sum of at most S∗ primes was first proved by
Schnirelman (1930, 1933). Let us denote by S the smallest number S∗ with
the above property. Similarly let S1 denote the smallest number with the
property that all sufficiently large numbers can be expressed as the sum
of S1 primes. As we mentioned in Section 2, the conjecture formulated by
Descartes prior to Goldbach is equivalent to S = 3. So we may restate it as

Descartes’ Conjecture. S = S1 = 3.

Approaching the Goldbach Conjecture from this direction we can try to
give upper bounds for S and S1. The original work of Schnirelman relied
on two basic results, proved by Brun’s sieve and combinatorial methods,
respectively.

(i) The number G(x) of Goldbach numbers below x satisfies G(x) ≥ cx
for x ≥ 4 with an absolute constant c > 0.

(ii) Every set A ⊂ Z+ with positive lower asymptotic density forms an
asymptotic basis of finite order.

This combinatorial approach led to the estimates

(13.1)
S1 ≤ 2208 Romanov (1935),
S1 ≤ 71 Heilbronn–Landau–Scherk (1936),
S1 ≤ 67 Ricci (1936, 1937).

The breakthrough came in 1937 when I. M. Vinogradov (1937) invented
his method to estimate trigonometric sums over primes and proved his
celebrated theorem, according to which every sufficiently large odd number
can be written as the sum of three primes, which implies

Theorem (I. M. Vinogradov). S1 ≤ 4.
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Although his result is nearly optimal, it gave no clue for a good estimate
of S. The estimates for S were first reached by the elementary method of
Schnirelman. Later results used a combination of elementary and analytic
methods involving in many cases heavy computations as well. Subsequent
improvements for S were as follows:

S < 2 · 1010 Šanin (1964),
S ≤ 6 · 109 Klimov (1969),
S ≤ 159 Deshouillers (1972/73),
S ≤ 115 Klimov, Pilt’ai, Šeptickaja (1972),
S ≤ 61 Klimov (1978),
S ≤ 55 Klimov (1975),
S ≤ 27 Vaughan (1977),
S ≤ 26 Deshouillers (1975/76),
S ≤ 25 Zhang, Ding (1983),
S ≤ 19 Riesel, Vaughan (1983),
S ≤ 7 Ramaré (1995).

The best known conditional results are the following.

Theorem (Kaniecki (1995)). RH implies S ≤ 6.

Theorem (Deshouillers, Effinger, te Riele, Zinoview (1997), Saouter
(1998)). The assumption of GRH implies the validity of the Ternary Gold-
bach Conjecture for every odd integer N > 5, and consequently the estimate
S ≤ 4.

It is unclear yet whether it is easier to deal with the Descartes Con-
jecture than with the (Binary) Goldbach Conjecture. Earlier methods for
estimation of the exceptional set would yield the same estimates for the ex-
ceptional sets of the two different problems. However, the method leading
to Theorem 16 (for a brief discussion see Section 18, for more details see
Pintz (2006)) yields a better bound for this case. Specifically, we can prove
the following.

Theorem 18. All but O(X3/5 log10X) integers below X can be written as
the sum of at most three primes, where the last prime (if it exists) can be
chosen as 2, 3 or 5.

We remark that while the methods of proving Theorems 16 and 18 are
similar, neither one implies the other. (However, the proof of Theorem 18 is
easier, comparable to an estimate of type E(X) � X4/5 logcX (cf. (12.1))
for Goldbach’s Problem.)
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14. Gaps between consecutive Goldbach numbers

Denoting the consecutive Goldbach numbers by 4 = g1 < g2 < . . . we
may try to give upper bounds for the occurring maximal gaps

(14.1) A(X) = max
gk≤X

(gk+1 − gk)

in this sequence. Goldbach’s Conjecture is naturally equivalent to A(X) = 2
for X ≥ 4. Thus, the problem of upper estimation of A(X) represents
a new approximation to Goldbach’s Conjecture. In other words we may
ask: for which functions f(X) can we guarantee at least one Goldbach
number in an interval of type (X,X + f(X)). This problem differs from
the other approximations in the following respect. The sharpest results for
the problems of Sections 12–13 and 15–18 all use the circle method, which
is specifically designed to treat additive problems. In contrast to this, the
best estimates for A(X) can be derived from information concerning the
distribution of primes.

The following proposition is contained in the special case ϑ1 = 7/12 + ε,
ϑ2 = 1/6 + ε in the work of Montgomery and Vaugham (1975).

Proposition. Let us suppose we have four positive constants ϑ1, ϑ2, c1 and
c2 < c1ϑ1 with the following properties:

(a) every interval of type [X − Y,X] with Xϑ1 < Y < X/2 contains at
least c1 Y/ logX primes for any X > X0,

(b) for all but c2X/ logX integer values n ∈ [X, 2X] the interval
[n−Xϑ2 , n] contains a prime for any X > X0. Then

(14.2) A(X) � Xϑ1ϑ2 .

In this way, the combination of any pair of estimates from (3.13) and
(3.16) implies a bound for A(x). Combining the result ϑ1 = 21/40 of Baker–
Harman–Pintz (2001) with the estimate ϑ2 = 1/20+ε of Ch. Jia (and taking
into account that the first-mentioned work gives actually some exponent ϑ1

slightly less than 21/40) we obtain

Theorem (Baker, Harman, Jia, Pintz). All intervals of type [X,X+X
21
800 ]

contain at least one Goldbach number, that is,

(14.3) gn+1 − gn � g21/800
n ⇔ A(X) � X21/800.

The first conditional estimate,

(14.4) gn+1 − gn � log3 gn ⇔ A(X) � log3X on RH

was proved by Linnik (1952), while the best is the following:

Theorem (Kátai (1967)). RH implies gn+1 − gn � log2 gn ⇔ A(X) �
log2X.
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15. Goldbach exceptional numbers in short intervals

The results of Section 12 raise the problem of whether we can prove the
analogue of E(X) = o(X) for short intervals, that is,

(15.1) E(X,Y ) := E(X + Y )− E(X) = o(Y ),

for some function Y = Y (X). The above relation means that almost all even
integers are Goldbach numbers in a short interval of type [X,X + Y (X)].

The first result of such type was proved by Ramachandra (1973) with an
interval of type

(15.2) Y = Y (X) = Xϑ3 , ϑ3 =
3
5

+ ε.

The result of Ramachandra was improved to ϑ3 = 1/2 + ε in Perelli, Pintz
(1992). Soon afterwards, simultaneously and independently Perelli–Pintz
(1993) and Mikawa (1992) proved the significantly stronger estimates ϑ3 =
7/36 + ε and ϑ3 = 7/48 + ε, respectively. A new feature of Mikawa’s result
was that, similarly to the work of Iwaniec and Jutila (1979), it was based
on a combination of analytic and sieve methods. Further refinements of this
method yielded the sharper results

(15.3)
ϑ3 = 7/78 + ε Ch. Jia (1995b, 1995c),
ϑ3 = 7/81 + ε H. Z. Li (1995),
ϑ3 = 11/160 + ε Baker, Harman, Pintz (1995/97).

Currently, the best known estimates are the following.

Theorem (Ch. Jia 1996b). Almost all even integers are Goldbach numbers
in every interval of type [X,X +Xϑ3 ], for ϑ3 = 7/108 + ε. More precisely
we have

(15.4) E(X,Xϑ3) �A Xϑ3 log−AX for any A > 0.

Theorem (Kaczorowski–Perelli–Pintz (1993)). Under the GRH we have

(15.5) E(X, log6+εX) = o(log6+εX) for any ε > 0.

We conclude this section with a further problem, which is a combination
of the approaches of Section 12 and the present section. Specifically, we can
ask for the shortest interval Y = Y (X) for which we can guarantee beyond
(15.1) an estimate of type

(15.6) E(X,Y ) � Y 1−δ,

with a given absolute constant δ > 0. The strongest known result of this
kind was achieved recently by A. Languasco (2004).

Theorem (Languasco). The estimate (15.6) is true for Y = X7/24+ε if
ε > 0 is arbitrary, with a suitably chosen δ = δ(ε) > 0.
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16. The Goldbach–Linnik Problem

As another approximation to Goldbach’s Problem, Linnik (1951, 1953)
proved that every even integer can be expressed as a sum of two primes and
K powers of two. In his original work K was an unspecified large number.
One can try to show Linnik’s theorem with explicitly given values of K,
at least for even numbers N > N0. The best possible estimate K = 0 is
clearly equivalent to Goldbach’s Conjecture for N > N0.

Linnik’s proof was significantly simplified by Gallagher (1975). Later
explicit estimates for K were based on Gallagher’s work:

(16.1)

K = 54 000 Liu–Liu–Wang (1998b),
K = 25 000 H. Z. Li (2000b),
K = 2250 T. Z. Wang (1999),
K = 1906 H. Z. Li (2001).

The conditional estimates, proved under GRH, were the following:

(16.2)
K = 770 J. Y. Liu, M. C. Liu, T. Z. Wang (1998a),
K = 200 J. Y. Liu, M. C. Liu, T. Z. Wang (1999),
K = 160 Tianze Wang (1999).

These results were improved by D. R. Heath-Brown, J.-C. Puchta (2002)
to K = 13 (and K = 7 on GRH) and simultaneously and independently by
I. Ruzsa and the author to

Theorem 19 (Pintz–Ruzsa (2003, 200?)). All sufficiently large even inte-
gers can be expressed as a sum of two primes and at most eight powers of
two. Under GRH the same result is true with at most seven powers of two.

The proof of Theorem 19 relies on the Structural Theorem of Section 18

and on a much more effective treatment of the exponential sum
L∑

ν=1
exp(2να)

than those applied in (16.1)–(16.2).
As a natural refinement of the result of Linnik we may ask for an asymp-

totic formula for the number R′k(N) of representation of an even integere as
the sum of two primes and k powers of two. This problem is open for every
value of k. Recently, however, in collaboration with A. Languasco and A.
Zaccagnini, we were able to show the following.

Theorem 20 (Languasco–Pintz–Zaccagnini (2007)). Let k be any positive
integer, X sufficiently large. Then, after the eventual deletion of at most
C(k)X3/5(logX)(10) even integers below X, we can give an asymptotic for-
mula for R′k(N) for the remaining even values of N < X.
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17. Further approximations to Goldbach’s Conjecture

H. Mikawa (1993) studied the moments of the differences of Goldbach
numbers G = {gk}∞k=1,

(17.1) Mα(X) =
∑

gn≤X

(g∗n+1 − gn)α, g∗k = min(gk, X), α ≥ 0, 00 = 1.

He proved that M3(X) � X log300X and

(17.2) Mα(X) = 2α−1X + o(X) for 0 < α < 3.

The above moments are sensible both for the total size E(X) of the ex-
ceptional set (cf. (12.1)) and for the concentration of Goldbach exceptional
numbers. As a sharper form of (17.2) we may formulate the

Conjecture A. Mα(X) = 2α−1X + O(X1−δ(α)) holds for any α ≥ 0 and
corresponding δ(α) > 0.

To see the difficulty of Conjecture A we remark that
(i) for α = 0 the assertion is equivalent to the deep theorem E(X) �

X1−δ of Montgomery and Vaughan (cf. (12.5)).
(ii) The truth of Conjecture A is equivalent to

Conjecture B. gn+1 − gn �ε g
ε
n for any ε > 0.

Using the Structural Theorem of Section 18 and the theorem of Baker–
Harman–Jia–Pintz (cf. (14.3)) about the gaps between consecutive Gold-
bach numbers we can deduce

Theorem 21 (J. P.). Conjecture A is true for any α < 341
21 = 16.238 . . .

The following result refers to the concentration of Goldbach exceptional
numbers.

Theorem 22 (J. P.). One can discard a set E ′ of at most O(X3/5 log10X)
Goldbach exceptional numbers m ∈ [X/2, X] so that the remaining set will
contain at most C Goldbach exceptional numbers in any interval of type
[Y, Y + Y 1/3] ⊆ [X/2, X], where C is an explicitly calculable absolute con-
stant.

The above result clearly implies that E(X) � X2/3.
In Section 16 we have seen that starting from any even number and

subtracting from it a number of the form

(17.3)
K∑

i=1

2νi , K ≤ 8,

(an empty sum means 0) we arrive at a Goldbach number. The numbers of
type (17.3) form a very thin set, having at most (logX)K elements below X.
One can prove the analogue of this result, too, that starting from any even
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number and adding to it a number of type (17.3) we can reach a Goldbach
number. The result below shows that this can be achieved for any N ≤ X
with a set having just two suitably chosen elements below X.

Theorem 23. Let X > X0. Then we have integers a, b ≤ X such that for
every N ≤ X at least one of N , N + a, N + b is a Goldbach number

From the above result we can further deduce the existence of an arbi-
trarily thin universal set S with

(17.4) Z+ = G − S.

Theorem 24. Let f(x) be an arbitrary increasing function with lim
x→∞

f(x)=
∞. Then we can find a set S such that

(17.5) |n ≤ X;n ∈ S| ≤ f(X) for X > X0, G − S = Z+,

that is, every integer can be written as the difference of a Goldbach number
and an element of S.

18. Explicit formulas in the additive theory of primes

In this section we sketch one of the basic ideas behind the new ap-
proximation of Goldbach’s Conjecture. In Section 2 we cited the fact that
Hilbert expressed the hope that the Riemann–von Mangoldt Prime Number
Formula (3.1) might help with the solution of the Goldbach, Twin Prime
and Generalized Twin Prime Conjectures. We will sketch below a two-
dimensional analogue of (3.1), which plays a basic role in the proof of all
Theorems 16–24 (in some cases directly, in some cases through Theorem 16,
for example).

Let X be any large number, P ≤
√
X a parameter to be chosen later.

We will apply the circle method with major and minor arcs defined by

(18.1) M =
⋃
q≤p

q⋃
a=1

(a,q)=1

[
a

q
− P

qX
,
a

q
+

P

qX

]
, m = [0, 1] \M.

We consider as usual

(18.2)
R(m) =

∑
p1+p2=m

log p1 · log p2 =
1∫

0

S2(α)e(−mα)dα

=
∫
M

+
∫
m

= R1(m) +R2(m),

where

(18.3) S(α) =
∑

X1<p≤X

log pe(pα), X1 = X1−ε0 , L = logX.
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The contribution of the minor arcs can be estimated well on average by
Parseval’s identity and Vinogradov’s method or Vaughan’s method. This
yields for P ≤ X2/5

(18.4) |E2| =
∣∣∣∣{m; 2 | m,m ∈

[
X

2
, X

]
, R2(m) >

X√
L

}∣∣∣∣� L10X√
P
.

In such a way, many problems are reduced to the behaviour of R1(m).
In the classical treatment M, that is, P , is chosen in such a way that an
asymptotic evaluation of R1(m) as

(18.5) R1(m) ∼ S(m) := C0

∏
p|m

(
1 +

1
p− 1

)
would be possible, due to the uniform distribution of primes in the arith-
metic progressions with moduli q ≤ P . This requires by Siegel’s theorem
(cf. Siegel (1936)) the strong upper bound

(18.6) P � logAX

for any arbitrarily large but fixed A > 0. This yields a relatively weak
bound in (18.4) for |E2|.

The idea of Montgomery and Vaughan (1975) was to evaluate exactly
the effect of the possible (essentially unique) Siegel zero and to show some
weaker positive lower bound for R1(m) in place of (18.5) by using a deep
theorem of Gallagher (1970) about the statistically good distribution of
primes in arithmetic progressions modulo

(18.7) q ≤ P := Xδ

with a small but fixed positive value of δ.
As a generalization of this idea we evaluate exactly the effect of all ‘gen-

eralized exceptional zeros’ % = β + iγ of all L-functions modulo

(18.8) q ≤ P := X2/5

with

(18.9) β ≥ 1− H

logX
, |γ| ≤ T,

where H and T are large parameters. We denote the set of the above zeros
by E(H,T ). In practice we may choose H and T as large absolute constants.

The evaluation gives rise to ‘generalized singular series’ S(χi, χj ,m) sat-
isfying

(18.10) |S(χi, χj ,m)| ≤ S(χ0, χ0,m) = S(m).

The evaluation of R1(m) depends on the generalized exceptional zeros,
whose number is bounded by Ce4H by a density theorem of Jutila (1977).
The resulting explicit formula forms the basis for many further results.
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Theorem 25 (J. P.). Under the above conditions we have for even n ∈
[X/2, X] the explicit formula:

(18.11)

R1(m) = S(m) +
∑∑

%i,%j∈E(H,T )

S(χi, χj ,m)
Γ(%i)Γ(%j)
Γ(%i + %j)

m%i+%j−1

+O(Xe−cH) +O(X−1/3H) +O

(
X√
T

)
,

where the generalized singular series S(χi, χj ,m) satisfy

(18.12) |S(χi, χj ,m)| ≤ ε

unless the following three conditions all hold (condχ is the conductor of χ,
C(ε) a constant depending on ε)

(18.13) condχi | C(ε)m, condχj | C(ε)m, condχiχj < ε−3.

Introducing the notation

(18.14) E0(X) =
{
m; 2 | m, m ∈

[
X

2
, X

]
, m /∈ G

}
,

one can deduce from Theorem 24 results about the ‘structure’ of a set E1(X)
containing the even m’s with R1(m) < X√

L
.

Theorem 26 (J. P., Weak Structural Theorem). There are positive abso-
lute constants c0,K and a set E1(X) with the properties:
(18.15)

E0(X) ⊆ E1(X)∪ E2(X), |E2(X)| � L10X3/5, E1(X) ⊆
K⋃

ν=1

Adν , dν > Xc0 ,

where Ad denotes the multiples of an integer d.

Theorem 26 clearly implies E(X) � X1−δ. However, in a much more
sophisticated way we can show the much stronger

Theorem 27 (J. P., Strong Structural Theorem). Theorem 26 is true with
some c0 > 1/3.

This result immediately yields Theorem 16 and plays a crucial role in
the proofs of some other results among Theorems 17–24.

Finally, we just briefly mention that an analogous explicit formula and
results analogous to Theorems 19–27 can be proved for the representation
of even integers as differences of two primes.



396 János Pintz

19. Approximations to Landau’s first problem

In this last section we will briefly summarize the most important results
in connection with the problem of whether the polynomial n2+1 represents
infinitely many primes.

Let f be a polynomial with integer coefficients irreducible over the ra-
tionals and without a fixed prime divisor. Let p(f) be the minimal number
such that f represents integers with at most p(f) prime factors infinitely
often, and let deg f be the degree of f . The first result

(19.1) p(f) ≤ 4 deg f − 1,

was proved more than 80 years ago by H. Rademacher (1924). Later results
were

(19.2)
p(f) ≤ 3 deg f − 1 Ricci (1936),
p(f) ≤ deg f + c log(deg f) Kuhn (1953, 1954),
p(f) ≤ deg f + 1 Buhštab (1967).

If deg f = 2, then first Kuhn (1953) proved p(f) ≤ 3, while the best
result is at present

Theorem (Iwaniec (1978)). If deg f = 2 and f(0) is odd, then p(f) ≤ 2.

Corollary. n2 + 1 = P2 infinitely often.

Another approach is to ask Ω-type estimates about the largest prime
divisor P (f(n)) of f(n). For the special case of f(n) = n2+1, such estimates
were achieved by Hooley (1967)

(19.3) P (n2 + 1) > n1.1 i.o.;

finally the sharpest known estimate is

Theorem (Deshouillers, Iwaniec (1982)). P (n2 + 1) > n1.202468... i.o.

It is easy to see that Landau’s first conjecture would follow if we could
show that

(19.4)
{√

p
}
<

c
√
p

i.o.,

with a suitable constant c.
This was shown in the weaker form {√p} ≤ cp−α with

(19.5)

α =
1
15
− ε I. M. Vinogradov (1940),

α =
1
10
− ε I. M. Vinogradov (1976, Ch. 4),

α = 0.163 . . . Kaufman (1979).

The best known result is
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Theorem (Balog (1983), Harman (1983)). {√p} �ε p
− 1

4
+ε i.o.

Finally we mention that Hardy and Littlewood (1923) expressed a num-
ber of conjectures in their landmark paper about additive problems involv-
ing primes. Some of them deal with prime values of polynomials; one of
them is exactly the quantitative form of the first conjecture of Landau.

Conjecture (Hardy–Littlewood (1923)). The number of primes n2+1 ≤ x
is asymptotically equal to

(19.6)
∏
p>2

(
1− 1

p− 1

(−1
p

)) √
X

logX
.
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