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de Bordeaux 21 (2009), 301-312

Integral canonical models of Shimura varieties

par Mark KISIN

Résumé. Le but de cette note est de fournir une introduction à
la théorie des modèles entiers canoniques des variétés de Shimura,
et de donner une esquisse de la preuve d’existence de tels modèles
pour les variétés de Shimura de type Hodge, et plus généralement,
de type abélien. Pour plus de détails, le lecteur est renvoyé à [Ki 3].

Abstract. The aim of these notes is to provide an introduction
to the subject of integral canonical models of Shimura varieties,
and then to sketch a proof of the existence of such models for
Shimura varieties of Hodge and, more generally, abelian type. For
full details the reader is refered to [Ki 3].

1. Shimura varieties

1.1. Shimura data. We recall the definition of a Shimura datum and the
associated Shimura variety [De 1, §2.1]. Let G be a connected reductive
group over Q and X a conjugacy class of maps of algebraic groups over R

h : S = ResC/RGm → GR.

On R-points such a map induces a map of real groups C× → G(R).
We require that (G,X) satisfy the following conditions:
• Let g denote the Lie algebra of GR. We require that the composite

S→ GR → Gad
R → GL(g)

defines a Hodge structure of type (−1, 1), (0, 0), (1,−1). This means
that under the action of C× on gC = g⊗RC we have a decomposition

gC = V −1,1 ⊕ V 0,0 ⊕ V 1,−1

where z ∈ C× acts on V p,q via z−pz̄−q.
• Conjugation by h(i) induces a Cartan involution of Gad

R (note that
adh(−1) = 1 on g so h(i) induces an involution of Gad

R ). This means
that we require the real form of G defined by the involution g 7→
h(i)ḡh(i)−1 to be compact.
• Gad has no factor defined over Q whose real points form a compact

group.

The author was partially supported by NSF grant DMS-0400666 and a Sloan Research
Fellowship.
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The second condition implies that for any h0 ∈ X the stabilizer K∞ ⊂
Gad(R) (acting by conjugation) of h0 is compact and Gad(R)/K∞

∼−→ X
has a complex structure.

A pair (G,X) satisfying the above conditions is called a Shimura datum.
A morphism (G1, X1) → (G2, X2) of Shimura data is a map of groups
G1 → G2, which induces a map X1 → X2.

Now let K =
∏

pKp ⊂ G(Af ) be a compact open subgroup, where Af

denotes the finite adeles over Q. Then a theorem of Baily-Borel asserts that

ShK(G,X) = G(Q)\X ×G(Af )/K

has a natural structure of an algebraic variety over C. Results of Shimura,
Deligne, Milne and others imply that ShK(G,X) has a model over a number
field E = E(G,X) - the reflex field - which does not depend on K [Mi
2, §4,5]. We will again denote by ShK(G,X) this algebraic variety over
E(G,X).

Fix a prime p. We will sometimes consider the pro-variety

ShKp(G,X) = lim←−ShK(G,X),

where K runs through compact open subgroups as above with a fixed factor
Kp at p.

A morphism of Shimura data (G1, X1) → (G2, X2) induces a morphism
of the corresponding Shimura varieties ShK1(G1, X1)→ ShK2(G2, X2), pro-
vided the compact open subgroups are chosen so that K1 maps into K2.

1.2. Examples. (1) Let G = GL2, and let X be the PGL2(R) orbit of

h0 : C× → G(R); a+ ib 7→
(

a −b
b a

)
.

Then the map ad(g) · h0 7→ g · i identifies X with the upper and lower half
planes H±, compatibly with the action of PGL2(R). Here PGL2(R) acts on
H± in the usual way, by Möbius transformations.

(2) Fix a Q-vector space V with a perfect alternating pairing ψ. Take
G = GSp(V, ψ) the corresponding group of symplectic similitudes, and let
X = S± be the Siegel double space, defined as the set of maps h : S→ GR
such that

• The C× action on VR gives rise to a Hodge structure which is of
type (−1, 0), (0,−1) :

VC
∼−→ V −1,0 ⊕ V 0,−1.

• (x, y) 7→ (x, h(i)y) is (positive or negative) definite on VR.

If VZ ⊂ V is a Z-lattice, and h ∈ S±, then V −1,0/VZ is an abelian variety,
and ShK(G,X) = ShK(GSp, S±) has an interpretation as a moduli space
for abelian varieties.
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2. Integral canonical models

2.1. Hyperspecial subgroups. A compact open subgroup K ⊂ G(Qp)
is called hyperspecial if there exists a reductive group G over Zp extending
GQp and such that K = G(Zp). A hyperspecial subgroup is a maximal
compact open subgroup.

Such subgroups exist if G is quasi-split at p and split over an unramified
extension.

2.2. The Langlands-Milne conjecture. Fix a finite prime p, and a com-
pact open subgroup K =

∏
K` ⊂ G(Af ). Write E = E(G,X), and let

O ⊂ E be its ring of integers. For a prime λ|p of E(G,X) we will denote
by O(λ) the localization of O at λ.

The following was conjectured in a rough form by Langlands [La] and
made precise by Milne [Mi 1].

Conjecture 2.2.1. (Langlands-Milne) Suppose that K ⊂ G(Af ) is open
compact and Kp is hyperspecial. Then for λ|p, ShK(G,X) has an integral
canonical model over O(λ).

Let us make some remarks to try to explain the meaning of the conjec-
ture.

First this is a statement about the tower of Shimura varieties

ShKp(G,X) = lim←−ShK′(G,X)

where K ′ = K ′
pK

′p runs over compact open subgroups with K ′
p = Kp. The

group G(Ap
f ) of points in the ring of finite adeles with trivial p-component

acts on the pro-scheme ShKp(G,X). An integral canonical model is, in
particular, an extension of the tower of E-schemes ShK′(G,X) with its
G(Ap

f )-action to a tower of smooth O(λ) schemes with G(Ap
f )-action.

On its own the condition in the previous paragraph is vacuous, since
it is satisfied by the tower ShKp(G,X) itself ! We need another condition
which expresses the integrality of the extension. If the Shimura varieties
ShK′(G,X) happen to be proper, then we can simply insist that the exten-
sion consist of a tower of proper O(λ)-schemes as in [La].

In the non-proper case Milne observed that one can still formulate an
extension property by using the whole tower: Namely we can require that
the tower ShKp(G,X) satisfy the valuative criterion with respect to any
discrete valuation ring R of mixed characteristic (0, p). That is, any R[1/p]-
valued point of the tower extends to an R-valued point.

We can see why this might be a reasonable definition if we look at the
example of elliptic curves, and take for R the strict henselisation of Z(p) in
a fixed algebraic closure Q̄ of Q (to check the valuative criterion one may
always replace R by a strict henselisation). The moduli theoretic description
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of a modular curve gives rise to a natural integral model of it which is
smooth at primes where K is maximal. An R[1/p]-valued point of the tower
gives rise to an elliptic curve E over R[1/p] together with a basis of the `-
adic Tate module T`E where ` 6= p. The action of Gal(Q̄/R[1/p]) on T`E is
trivial, and so in particular the action of an inertia subgroup at p is trivial.
This implies that E has good reduction, so the point extends to an R-valued
point of the tower.

We have already explained most of the features of the precise conjecture.
The only difference is that Milne’s version of the extension property is
formulated for a more general class of schemes than discrete valuation rings
(see also [Mo, §3.5]). This has the effect that one is able to show that if the
integral canonical model exists then it is unique.

We remark that a proof of the conjecture for Shimura varieties of abelian
type is claimed in Vasiu’s papers [Va 1], [Va 2], as well as the more recent
[Va 4], [Va 5]. See also Moonen’s article [Mo].

2.3. Examples. (1) Take (G,X) = (GSp, S±), the Siegel Shimura datum
defined by the symplectic space (V, ψ) as above. If we fix the Z-lattice
VZ ⊂ V, then we may consider the tower ShKp(G,X) where Kp is the
maximal compact open subgroup which leaves VZp = VZ ⊗Z Zp ⊂ V ⊗ Qp

stable.
Kp is hyperspecial if and only if ψ induces a perfect, Zp-valued pairing

on VZp , in which case it may be identified with the Zp-points of the group of
symplectic similitudes defined by (VZp , ψ), which is a reductive group over
Zp.

Any choice of VZ gives rise to an interpretation of ShK(G,X) as a moduli
space for polarized abelian varieties, and hence to a model SK(G,X) for
ShK(G,X) over the ring of integers of E. The G(Ap

f )-action extends to this
model, and it will satisfy the extension property for discrete valuation rings
explained above, the argument being essentially the same as for the case of
elliptic curves. 1

However the varieties ShK(G,X) will be smooth over O(λ) if and only if
the degree of the polarization in the moduli problem is prime to p. This
corresponds to the condition that ψ induces a perfect pairing on VZp .

(2) Another example is given by Hilbert modular varieties, for which
G = ResF/QGL2 for F a totally real field. If Kp is maximal compact,
then it is conjugate to

∏
λ|p GL2(OF,λ). This is hyperspecial if and only if

F is unramified at p. The corresponding integral canonical models were
constructed by Deligne-Pappas [DP], and are indeed smooth if and only if
F is unramified at p.

1On the other hand Milne’s stronger form of the extension property requires more work, even
in the smooth case. See [Mo, 3.6] and the references therein.
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2.4. Results.

Theorem 2.4.1. Suppose that p > 2 and that (G,X) is of Hodge type.
That is, there exists an embedding (G,X) ↪→ (GSp, S±). Then for any hy-
perspecial subgroup Kp ⊂ G(Qp), the tower ShKp(G,X) admits a canonical
integral model. The corresponding extension of SKp(G,X) is given by tak-
ing the normalization of the closure 2 of ShKp(G,X) in SK′

p
(GSp, S±) for

a suitable choice of lattice VZ ⊂ V and K ′
p ⊂ GSp(Qp) the stabilizer of VZp .

Using the theorem one can deduce the existence of integral canonical
models in many more cases (cf. [De 1, 2.7.21]). To explain this write Xad

for the Gad(R) conjugacy class in Hom(S, Gad
R ) which contains the image of

X. Then (Gad, Xad) is a Shimura datum.

Corollary 2.4.2. Suppose that Kp is hyperspecial, and that there exists a
Shimura datum (G2, X2) of Hodge type and a central isogeny Gder

2 → Gder

inducing an isomorphism (Gad
2 , X

ad
2 ) ∼−→ (Gad, Xad). Then ShKp(G,X) has

an integral canonical model.

2.5. Remarks. (1) Deligne has given an explicit description of the Q-
simple Shimura data which satisfy the condition of the corollary. They
include the cases when G is of type A,B,C and certain cases of type D
[De 1, 2.3.10].

(2) We do not know whether one can always take K ′ in the theorem so
that K ′

p is hyperspecial. Thus, the theorem asserts that the normalization
of the closure of ShK(G,X) in a not necessarily smooth scheme is smooth.

(3) The condition p > 2 does not seem essential to the method. It is
needed at two technical points, which we will try to indicate below. The
first of these requires this condition only if G has a factor of type B, while
for the second point one can allow p = 2 when one can choose the em-
bedding (G,X) ↪→ (GSp, S±) such that all abelian varieties in the image
of ShK(G,X) → ShK′(GSp, S±) have connected p-divisible groups. There
seems to be some hope of removing both these restrictions and allowing
p = 2 in general.

3. Proof of the results

3.1. The set up. We put ourselves in the situation of the theorem. Let G
be a reductive group over Zp, which extends G and such that Kp = G(Zp).

If VZp ⊂ VQp is a Zp-lattice, denote by GL(VZp) the Zp-group scheme of
automorphisms of VZp . If VZp is stable by Kp, then we obviously have

Kp ⊂ GL(VZp)(Zp) = AutZpVZp .

2In a previous version of these notes we claimed that it was unnecessary to take the normal-
ization. We are grateful to Ofer Gabber for explaining why this is indeed necessary.
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Unfortunately this does not quite imply that G ↪→ GSp(V, ψ) ⊂ GL(V )
extends to an embedding G ⊂ GL(VZp). However one can choose VZp so
that we do in fact have such embedding. If G has a factor of type B, then
we use here that p > 2, (cf. [PY, Cor. 1.3], [Va 2, 3.1.2.1]).

Choose a Z-lattice VZ ⊂ VQ such that VZ ⊗Z Zp = VZp . We will consider
K ′ =

∏
K ′

` ⊂ GSp(Af ) compact open, so that K ⊂ K ′, K ′ leaves VZ⊗
∏

` Z`

stable, and K ′
p is the stabilizer of VZp in GSp(Qp). The moduli theoretic

interpretation of ShK′(GSp, S±) then gives rise to a natural extension of
this scheme to a Z(p)-scheme SK′(GSp, S±).

The compact open subgroups K and K ′ can be so arranged that i :
ShK(G,X) → ShK′(GSp, S±) is a closed embedding (cf. [De 1, 1.15]). We
assume this and write SK(G,X) for the normalization of the closure of
ShK(G,X) in SK′(GSp, S±).

Since the tower lim←−L′SK′(GSp, S±) with L′p = K ′
p fixed, is an integral

canonical model for ShK′
p
(GSp, S±), one sees that the tower lim←−LShK(G,X)

with Lp = Kp has an action of G(Ap
f ) and satisfies the extension property.

(At least as far as it was explained in §2). We have to show that SK(G,X)
is smooth over primes λ|p. We will describe it in a formal neighbourhood
of a closed point x̄ of its mod λ fibre.

3.2. The key lemma. Let x ∈ ShK(G,X) be a closed point with residue
field κ(x), specializing to x̄ in the mod λ fibre of SK(G,X), and Ax the
corresponding abelian variety over κ(x). We will again denote by λ an
extension of our chosen place of E to κ(x). The p-adic Tate module TpAx

may be canonically identified with VZp up to the action of Kp on VZp .
Fix such an identification. Deligne’s theorem that a Hodge cycle on Ax is
absolutely Hodge [De 2] implies that the restriction of the representation

ρx : Gx := Gal(κ̄(x)/κ(x))→ AutZpTpAx

to some open subgroup G′
x ⊂ Gx factors through G(Qp) (this also fol-

lows from the earlier results of Piatetski-Shapiro and Borovoi), and hence
through G(Qp)∩AutZpVZp = Kp. After extending the base field E we may
assume that G′

x = Gx. More precisely, one can show that this extension
can be chosen to be independent of x, and unramified at all primes v|p of
E. Note that we will construct our integral canonical model as the nor-
malization of a closure, so it suffices to prove the smoothness after such an
unramified base extension.

It will be convenient to make the following convention. If R is a ring
and M is a free R-module we write M⊗ for the direct sum of all the R-
modules formed from M by taking tensor products, symmetric powers,
exterior powers and duals in all possible combinations. A collection of ten-
sors (sα) ⊂ M⊗ defines a closed subgroup of GL(M), namely the closed
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subgroup which fixes each sα. Note that M⊗ ∼−→ M∗⊗ so that a tensor in
the left hand side may be regarded in the right hand side.

Note that the closure of G in GL(VZ(p)
) (here VZ(p)

= VZ ⊗Z Z(p)) is a
group whose base change to Zp is G. In particular, this group is reductive,
and one can show that it is defined by a family of tensors (sα) ⊂ V ⊗

Z(p)
.

Since the action of Gx on TpAx
∼−→ VZp factors through Kp = G(Zp), the

sα are all Galois invariant.
Let Dx be the Dieudonne module of Ax. If κ(x̄) denotes the residue field

of x̄, then Dx is a finite free W (κ(x̄))-module. Let Gx,λ ⊂ Gx denote a
decomposition group at λ.

The p-adic comparison isomorphism is a canonical isomorphism

V ∗
Zp
⊗Zp Bcris

∼−→ Dx ⊗Bcris

which is compatible with the action of Gx,λ and ϕ on the two sides, as
well as with filtrations after tensoring by κ(x)λ. Since the sα are Gx,λ

invariant, they are in D⊗
x ⊗Zp Qp. when regarded as elements of the right

hand side of this isomorphism. They are of course invariant by ϕ and lie in
Fil0(D⊗

x ⊗W (κ(x̄)) κ(x)λ).

Lemma 3.2.1 (Key Lemma). (sα) ⊂ D⊗
x (not just after inverting p) and

this collection of tensors defines a reductive subgroup of GL(Dx).

3.3. From the key lemma to integral canonical models. It was
known to experts that a statement like the key lemma should allow the
construction of integral canonical models for Shimura varieties of Hodge
type. The point is that using the collection of tensors in the lemma, one
can define a deformation problem, which describes the complete local ring
of ShK(G,X) at x̄. On the other hand, the fact that the group defined by
the (sα) is reductive implies that this deformation problem is smooth. We
sketch the argument here (cf. [Va 2, §5] and [Mo, 5.8]).

Let H be the p-divisible group of the mod p reduction Ax̄ of Ax. This is
the p-divisible group over κ(x̄) attached to Dx. Let Û = SpfR be the versal
deformation space of H, and Ĥ a versal p-divisible group over Û . Then Û
is formally smooth, and we fix a lift of Frobenius on R.

The Lie algebra of the universal vector extension of Ĥ gives rise to a
vector bundle D(Ĥ) over Û , which is equipped with a a connection, an
action of Frobenius and a filtration. There is a closed, formally smooth,
formal subscheme ÛG ⊂ U over which the tensors (sα) extend to parallel,
Frobenius invariant sections of Fil0(D(Ĥ)⊗). This is where we use the fact
that G is reductive (cf. [Mo, §4]).

On the other hand, the composite of the inclusions G ⊂ GSp(VQ, ψ) ⊂
GL(VQ) of reductive groups over Q is defined by the tensors sα ∈ V ⊗

Z(p)
⊂

V ⊗
Q . Let V denote the de Rham cohomology of the universal polarized
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abelian variety over ShK(G,X) ⊂ ShK′(GSp, S±). Then the sα define ten-
sors in the de Rham cohomology of the universal abelian variety over S±,
and since they are invariant by G(Q), their restrictions to X descend to
sα,dR ∈ Fil0(V⊗).

Let M̂ be the formal neighbourhood of x̄ ∈ SK(G,X), and let N̂ ⊂ M̂,
be the irreducible component which contains the point x.One can show that
the restrictions of sα,dR to N̂ define parallel, Frobenius invariant sections
in Fil0(D(Ĥ)⊗), which extend sα ∈ Dx. The fact that these sections are
Frobenius invariant follows from a result of Blasius and Wintenberger [Mo,
5.6.3].

It follows that a map N̂ → Û which induces the p-divisible group of
the abelian variety over N̂ factors through ÛG , so we obtain a map ε :
N̂ → ÛG . This map is a closed embedding, because a deformation of H
determines a deformation of Ax̄, and if the given polarization of Ax̄ lifts to
this deformation, then it does so uniquely. On the other hand one can check
that N̂ and ÛG have the same dimension. Since ÛG is formally smooth, we
find that ε is an isomorphism.

4. Proof of the key lemma

4.1. Classification of crystalline representations. We recall some of
the results of [Ki 1] regarding the classification of crystalline representations
and p-divisible groups.

Let k be a perfect field of characteristic p, W = W (k) its ring of Witt
vectors and K0 = W (k)[1/p]. Let K be a finite totally ramified extension
of K0, and OK its ring of integers. Fix an algebraic closure K̄ of K, and
set GK = Gal(K̄/K).

We denote by Repcris
GK

the category of crystalline GK-representations, and
by Repcris◦

GK
the category of GK-stable lattices which span a representation

in Repcris
GK
. For V a crystalline representation recall Fontaine’s functors

Dcris(V ) = (Bcris ⊗Qp V )GK and DdR(V ) = (BdR ⊗Qp V )GK .

Fix a uniformiser π ∈ K, and let E(u) ∈ W (k)[u] be the Eisenstein
polynomial for π. We set S = W [[u]] equipped with a Frobenius ϕ which
acts as the usual Frobenius on W and sends u to up.

Let Modϕ
/S denote the category of finite free S-modules M equipped

with a Frobenius semi-linear isomorphism

ϕ∗(M)[1/E(u)] ∼−→M[1/E(u)].

Note that this definition differs slightly from that of [Ki 1], where we insisted
that the above map be induced by a map ϕ∗(M) →M. This is related to



Integral canonical models of Shimura varieties 309

the fact that in loc. cit we considered crystalline representations with non-
negative Hodge-Tate weights, whereas here we will allow arbitrary Hodge-
Tate weights.

Let OE denote the p-adic completion of S(p). If M is in Modϕ
/S then

M = OE ⊗S M is a finite free OE -module equipped with an isomorphism
ϕ∗(M) ∼−→M.

Using [Ki 1] one easily deduces the following

Theorem 4.1.1. There exists a fully faithful tensor functor

M : Repcris◦
GK
→ Modϕ

/S.

If L is in Repcris◦
GK

, V = L⊗Zp Qp, and M = M(L), then
• There are canonical isomorphisms

Dcris(V ) ∼−→ ϕ∗(M/uM)[1/p] and DdR(V ) ∼−→M⊗S K.

Here the first isomorphism is compatible with Frobenius and in the
second the map S→ K is given by sending u 7→ π.
• There is a canonical isomorphism

OÊur ⊗Zp L
∼−→ OÊur ⊗S M,

where OÊur is a certain faithfully flat, and formally étale OE -algebra.
• If G is a p-divisible group over OK and L = (TpG)∗ is the dual of its
p-adic Tate module, then M is stable by ϕ, and there is a canonical
ϕ-equivariant isomorphism

D(G) ∼−→ ϕ∗(M/uM),

provided either p > 2, or G is connected.

We remark that the condition when p = 2 in the final statement in the
theorem is one of the two points which force us to assume that p > 2. When
p = 2 and G is connected the final statement follows from [Ki 2].

4.2. Reductive groups. We now prove the key lemma. We will apply
the above theory with K = κ(x)λ and L = V ∗

Zp
. Recall that G ⊂ GL(V ∗

Zp
)

denotes the reductive group defined by (sα). We may view the tensors sα

as morphisms sα : 1 → L⊗ in Repcris◦
GK

. Applying the functor M of the
theorem, we obtain morphisms s̃α : 1→M⊗ in Modϕ

/S.

Note that the theorem immediately implies the first part of the key
lemma, since specializing the (s̃α) at u = 0 produces the tensors sα ∈
Dx[1/p]⊗, which lie in D⊗

x
∼−→ ϕ∗(M/uM)⊗ by construction.

We will show that the (s̃α), define a reductive subgroup of GL(M). This
will complete the proof of the theorem. Denote this closed subgroup by
GS ⊂ GL(M). It suffices to prove the statement after making the faithfully



310 Mark Kisin

flat, formally étale base extension S→ W (ksep)[[u]]. Hence we will assume
from now on that the residue field k is separably closed.

In fact we will prove the following stronger statement.

Proposition 4.2.1. Let L be in Repcris◦
GK

and M = M(L). Let (sα) ⊂ L⊗ be
a finite collection of GK-invariant tensors defining a reductive Zp-subgroup
G of GL(L), and let (s̃α) be the corresponding tensors in M⊗.

Let M′ = L ⊗W S. If k is separably closed, there is an isomorphism
M

∼−→ M′ which takes each tensor s̃α to sα. In particular, the subgroup
GS ⊂ GL(M) defined by (s̃α) is isomorphic to G ×Spec Zp Spec S.

Proof. Let P ⊂ HomS(M,M′) be the subscheme of isomorphisms between
M and M′ which take s̃α to sα. The fibres of P are either empty or a torsor
under G. We claim that P is a G-torsor. That is, P is flat over S with
non-empty fibres. The claim implies the proposition since a torsor under a
reductive group is étale locally trivial, while the ring S is strictly henselian,
so any G torsor over S is trivial.

To prove the claim we proceed in several steps. For R a S-algebra, we
set PR = P ×Spec S SpecR.
Step 1: PS(p)

is a G-torsor. Since OÊur is faithfully flat over OE and OE is
faithfully flat over S(p), it suffices to show that PO

Êur
is a G-torsor. However

the isomorphism in (2) of the theorem in 4.1 shows that PO
Êur

is a trivial
G-torsor.
Step 2: PK0 is a G-torsor, where we regard K0 as a S-algebra via u 7→ 0.
This follows from (1) of the theorem in 4.1, which implies the existence of
a canonical isomorphism

BdR ⊗ L
∼−→ BdR ⊗M/uM.

Step 3: PS[1/pu] is a G-torsor. Let U ⊂ Spec S[1/up] denote the maximal
open subset over which P is flat with non-empty fibres. By Step 1, we know
this subset is non-empty, since it contains the generic point. In particular,
the complement of U in Spec S[1/up] contains finitely many closed points.

Let x ∈ Spec S[1/up] be a closed point. If x /∈ U, we consider two
cases. If |u(x)| < |π|, then since the sα are Frobenius invariant, we have
PS[1/p]

∼−→ ϕ∗(PS[1/p]) in a formal neighbourhood of x. Hence PS[1/p]
cannot be a G-torsor at ϕ(x), since ϕ is a faithfully flat map on S. Repeating
the argument we find ϕ(x), ϕ2(x), . . . . /∈ U, which gives a contradiction.

Similarly, if |u(x)| ≥ |π| consider a sequence of points x0, x1, . . . with
x0 = x, and ϕ(xi+1) = xi. For i ≥ 1, we have PS[1/p]

∼−→ ϕ∗(PS[1/p]) in a
formal neighbourhood of xi, so we find that xi /∈ U for i ≥ 1.
Step 4: PS[1/p] is a G-torsor. By Step 3, it suffices to show that the restric-
tion of P to K0[[u]] is a G-torsor. For any N in Modϕ

/S there is a unique,
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ϕ-equivariant isomorphism

N⊗S K0[[u]]
∼−→ K0[[u]]⊗K0 N/uN[1/p]

lifting the identity map on N/uN ⊗OK0
K0, which is functorial in N (see,

for example, [Ki 1, 1.2.6]). Applying this to M and the morphisms s̃α shows
that the restriction of P to K0[[u]] is isomorphic to PK0 ⊗K0 K0[[u]], which
is a G-torsor by Step 2.
Step 5: P is a G-torsor. Let U be the complement of the closed point in
Spec S. By Steps 1 and 4 we know that P |U is a G-torsor. By a result of
Colliot-Thélène and Sansuc [CS, Thm. 6.13] P extends to a G-torsor over S
and, as we remarked above, any such torsor is trivial. Hence P |U is trivial,
and there is an isomorphism M|U

∼−→ M′|U taking s̃α to sα. Since any
vector bundle over U has a canonical extension to S, obtained by taking
its global sections, this isomorphism extends to S. This implies that P is
the trivial G-torsor, and completes the proof of the proposition and of the
key lemma. �

Note that the proof of the proposition implies the following result.

Corollary 4.2.2. Suppose that k is separably closed or finite. Then for
any i ≥ 0 there is an isomorphism L ⊗Zp W

∼−→ ϕi∗(M/uM) which takes
sα ∈ L to the corresponding tensor in ϕi∗(M/uM) ⊂ Dcris(L⊗Qp).

Proof. Define P as in the proof of the proposition (without assuming k
separably closed). Then we saw that P is a G-torsor. If k is separably
closed or finite a torsor under a reductive W -group is necessarily trivial
[Sp, 4.4]. Hence P is trivial, as is ϕi∗(P ) for i ≥ 0. �

When L is dual to the Tate module of a p-divisible group and ϕ∗(M/uM)
is replaced by the Dieudonne module of the p-divisible group, then the
corollary is a conjecture of Milne [Mi 3]. When p > 2 or the p-divisible
group is connected the conjecture follows from the corollary and theorem
of 4.1. Vasiu [Va 3] has also claimed a proof of the conjecture.

Acknowledgment. It is a pleasure to thank B. Conrad, O. Gabber,
B. Moonen and A. Vasiu for helpful comments regarding various versions
of these notes.
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