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On the distribution of Hawkins’ random “primes”

par Tanguy RIVOAL

Dedicated to Henri Cohen on the occasion of his 60th birthday

Résumé. Hawkins a défini une version probabiliste du crible
d’Ératosthène et étudié la suite des nombres “premiers” aléatoi-
res (pk)k≥1 ainsi créés. Au moyen de diverses techniques pro-
babilistes, de nombreux auteurs ont ensuite obtenu des résultats
très fins sur ces “premiers”, souvent en accord avec des théo-
rèmes ou conjectures classiques sur les nombres premiers usuels.
Dans ce papier, on prouve que le nombre d’entiers k ≤ n tel que
pk+α−pk = α est presque sûrement équivalent à n/ log(n)α, pour
tout entier α ≥ 1 fixé. C’est un cas particulier d’un travail récent
de Bui and Keating (exprimé autrement) mais notre méthode est
différente et fournit un terme d’erreur. On montre également que
le nombre d’entiers k ≤ n tel que pk ∈ aN+b est presque sûrement
équivalent à n/a, pour tous entiers a ≥ 1 et 0 ≤ b ≤ a − 1 fixés,
ce qui peut être vu comme un analogue du théorème de Dirichlet.

Abstract. Hawkins introduced a probabilistic version of Era-
thosthenes’ sieve and studied the associated sequence of random
“primes” (pk)k≥1. Using various probabilistic techniques, many
authors have obtained sharp results concerning these random “pri-
mes”, which are often in agreement with certain classical theorems
or conjectures for prime numbers. In this paper, we prove that the
number of integers k ≤ n such that pk+α−pk = α is almost surely
equivalent to n/ log(n)α, for a given fixed integer α ≥ 1. This is a
particular case of a recent result of Bui and Keating (differently
formulated) but our method is different and enables us to provide
an error term. We also prove that the number of integers k ≤ n
such that pk ∈ aN+ b is almost surely equivalent to n/a, for given
fixed integers a ≥ 1 and 0 ≤ b ≤ a − 1, which is an analogue of
Dirichlet’s theorem.

1. Introduction

The simplest method for determining a not too large list of prime num-
bers is Erathosthenes’ sieve. Legendre found an analytical formula for this
sieve which can theoretically be used to compute any desired value of

Manuscrit reçu le 5 novembre 2007.



800 Tanguy Rivoal

π(x) := #{1 ≤ k ≤ x : k is prime}. Furthermore, a variation of Legendre’s
formula can be used to prove that π(x) ≤ (e−γ + o(1))x/ log log(x) as
x → +∞ (see [13, p. 57]), which is a non-trivial bound but far from the
prime number theorem π(x) ∼ x/ log(x). Here, γ is Euler’s constant which
appears because of Mertens’ theorem∏

p≤x

(
1− 1

p

)−1
∼ eγ log(x) (x→ +∞),

where the product is over all prime numbers p ≤ x. Modern sieve methods
have partially fixed the flaws in Erathosthenes’ sieve and enabled us to
obtain results for π(x) which are closer to the truth, as well as many other
important results in analytical number theory.

Hawkins [5, 6] wondered what would be the behavior of the following
random version of Erathosthenes’ sieve. Let A1 be the set of integers ≥
2, set p1 = 2 and delete independently the elements of A1 \ {p1} with
probability 1/p1. Denote A2 the set of the remaining integers and by p2

the smallest element of A2 which is > p1 and delete independently the
elements of A2 \ {p1, p2} with probability 1/p2 and so on. This generates
an increasing sequence (pn)n≥1 of random integers which mimics the usual
prime numbers 1). A natural problem is to estimate the asymptotic behavior
of these random primes pn and of the Mertens-like product

mn :=
∏

1≤k≤n

(
1− 1

pk

)−1
.

There exist two methods for formalizing Hawkins’ random sieve. The
first method (which is combinatorial) was developped by Hawkins [5, 6]
then Wunderlich [14, 15] and the second one was developped by Neudecker
and Williams [12]. The latter noticed that (pn,mn;Fn)n≥1 is a markovian
process for the natural filtration Fn = σ(pk, k = 1, . . . , n) defined by p1 =
2, m1 = 2 and

P
(
pn+1 − pn = j

∣∣Fn
)

=
1
mn

(
1− 1

mn

)j−1

for all integers j ≥ 1 and n ≥ 1. The behaviour of pn and mn has been
extensively studied and is now much better known than the behaviour of
the prime numbers, for which many of the results quoted below and in the
final section are still conjectures:

– Hawkins [6] proved a “prime number theorem” in L1 and in probability:
with Π(n) =

∑
pk≤n 1, we have E(Π(n)) ∼ n/ log(n) and for all functions

1Those will not be used anywhere in the sequel and there is no problem in denoting Hawkins’
“primes” by pn. Of course, Hawkins’ (or random) “primes” have no reason to be prime numbers
but most of the time we will drop the quotation marks since there will not be any ambiguity.
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ψ such that ψ(n) = o(log(n)), P
(
|Π(n) − E(Π(n))| ≥ nψ(n)/ log(n)2

)
�

1/ψ(n)2.
– Wunderlich [14, 15] obtained almost sure (a.s.) analogues of Mer-

tens’ theorem and of the prime number theorem: almost surely, mn ∼
log(n), Π(n) ∼ n/ log(n) and pn ∼ n log(n) as n → +∞. He also proved a
random analogue of the twin prime conjecture:

#
{
1 ≤ k ≤ n : pk+1 − pk = 1

}
∼ n/ log(n) a.s.,

– More recently, Bui and Keating [1] addressed the question of the num-
ber of Hawkins’ primes pn such that for example pn+k − pn is bounded (for
a given fixed k ≥ 1). Lorch [10] also deviced a generalised random sieve to
deal with such questions.

As a corollary of their results, which we do not quote, Bui and Keating
proved in particular that, for any integers β ≥ 1 and d ≥ 1, we have that

(1.1) #{j ≤ x : j, j + d, j + 2d, . . . , j + (β − 1)d are Hawkins’ primes}

∼ x

log(x)β
a.s.

as x→ +∞. Of course, for the prime numbers, the exact analogue of (1.1)
is meaningless most of the time. However, Dickson [3] gave necessary con-
ditions on positive integers d1 < d2 < · · · < dβ−1 such that j, j+d1, . . . , j+
dβ−1 are simultaneously primes for infinitely many j and he conjectured
that these conditions are sufficient. Furthermore, Hardy and Littlewood [4]
conjectured that, in this case, there exists a constant C(d) > 0 such that

#{j ≤ x : j, j + d1, j + d2, . . . , j + dβ−1 are primes} ∼ C(d)
x

log(x)β

as x→ +∞. Both conjectures are still open.

In the first part of this paper, we give a proof of (a different formulation
of) the case where d = 1 in (1.1), with an explicit error term which was not
given in [1].

Theorem 1. For any fixed integer α ≥ 1, we have

(1.2) #
{
1 ≤ k ≤ n : pk+α = pk + α

}
=

n

log(n)α
+O

(n log log(n)
log(n)α+1

)
a.s.

as n→ +∞, where the implicit constant depends on α.

The result is also trivially true for α = 0. When, α = 1, we get one of
Wunderlich’s results mentioned before, plus an error term. Note that

(1.3) #
{
1 ≤ k ≤ n : pk+α = pk + α

}
=

#{2 ≤ j ≤ pn : j, j + 1, . . . , j + α are Hawkins’ primes}.
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By (1.2), the left hand side of (1.3) is equivalent to n/ log(n)α a.s. while
the right hand side (1.3) is equivalent to pn/ log(pn)α+1 a.s. by (1.1) with
β = α + 1 and d = 1: the almost sure random prime number theorem
proved by Wunderlich provides the bridge between both estimates. Bui
and Keating essentially use Wunderlich’s combinatorial approach while we
use here the markovian approach mentioned above.

In a second part, we consider the distribution of Hawkins’ primes in the
subsequences of the form ak+b (a, b fixed integers) and prove the following
result.

Theorem 2. For any fixed integers a ≥ 1, b with 0 ≤ b ≤ a−1, as n→ +∞,
we have

(1.4) #{1 ≤ k ≤ n : pk ∈ aN + b} =
1
a
n+O

( n

log(n)

)
a.s.

as n→ +∞, where the implicit constant depends on a.

This can be viewed as the analogue of Dirichlet-de la Vallée Poussin’s
theorem for the prime numbers in arithmetic progressions, where a similar
estimate holds with 1/ϕ(a) (ϕ is Euler’s totient) instead of 1/a and with the
further assumption that a and b are coprime. Of course, it is not surprising
that Hawkins’ sieve cannot detect arithmetical facts such as coprimality or
Dickson’s conditions.

The proofs of both theorems will use the following result, which gives the
speed of convergence in a generalisation of the strong law of large numbers.
We will find that the right hand side of (1.5) is easier to control than the
left hand side, the latter corresponding to the quantity we want to estimate.

Proposition 1. Consider a process (Xn;Fn)n≥1 and an increasing se-
quence (bn)n≥1 of real numbers such that

∑∞
n=1 b

−2
n Var(Xn) < +∞ and

bn → +∞. Then, as k → +∞,

(1.5)
∑
n≤k

Xn =
∑
n≤k

E
(
Xn|Fn−1

)
+ o(bk) a.s..

A proof can be found in Loeve’s book [9, p. 387, E].

Acknowledgement. I warmly thank the referee for his/her very careful
reading of the paper.

2. Proof of Theorem 1

As already implicit in the Introduction, P and E denote respectively the
probability and (conditional) expectation on the probability space on which
the Markov process (pn,mn;Fn)n≥1 and all the other processes considered
below are defined.

We need two lemmas to prove Theorem 1.
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Lemma 1. For all α ≥ 1 and n ≥ 1, we have

(2.1) P
(
pn+α − pn = α

∣∣Fn
)

=
1
mα

n

α−1∏
j=1

(
1− 1

pn + j

)α−j
,

where, by convention, the empty product is 1 for α = 1.

Proof. For simplicity, we note In+1 = 1{1}(pn+1 − pn) where 1A(x) is the
indicator function of a given set A.

We prove (2.1) by induction on α ≥ 1. When α = 1, the identity (2.1)
reduces to the equality E(In+1|Fn) = m−1

n , which is true for all n ≥ 1 by
definition. Let us suppose that (2.1) holds for α− 1 and for all n ≥ 1. Note
that since (pn)n≥1 is strictly increasing, we have

{
pn+α − pn = α

}
=

α⋂
j=1

{
pn+j − pn+j−1 = 1

}
.

Therefore, the basic properties of conditional expectations justify that the
following chain of equalities holds for any integer n ≥ 1:

P
(
pn+α − pn = α

∣∣Fn
)

= E
(
P

(
pn+α − pn = α

∣∣Fn+1
)∣∣∣Fn

)
= E

(
E

(
In+1In+2 · · · In+α

∣∣Fn+1
)∣∣∣Fn

)
= E

(
In+1 E

(
In+2 · · · In+α

∣∣Fn+1
)∣∣∣Fn

)
= E

(
In+1 P

(
pn+1+α−1 − pn+1 = α− 1

∣∣Fn+1
)∣∣∣Fn

)
.(2.2)

We can apply the induction hypothesis to the probability P
(
· · · |Fn+1

)
occuring inside (2.2) and we get

P
(
pn+α − pn = α

∣∣Fn
)

= E
( In+1

mα−1
n+1

α−2∏
j=1

(
1− 1

pn+1 + j

)α−j−1∣∣∣Fn

)

= E
( In+1

mα−1
n

(
1− 1

pn+1

)α−1 α−2∏
j=1

(
1− 1

pn+1 + j

)α−j−1∣∣∣Fn

)

= E
( In+1

mα−1
n

(
1− 1

pn + 1

)α−1 α−2∏
j=1

(
1− 1

pn + j + 1

)α−j−1∣∣∣Fn

)

=
E(In+1|Fn)

mα−1
n

α−1∏
j=1

(
1− 1

pn + j

)α−j
=

1
mα

n

α−1∏
j=1

(
1− 1

pn + j

)α−j
,
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where we used the definition of mn+1 in the second equality. This finishes
the induction. �

Lemma 2. For all α ≥ 1, we have

(2.3)
k∑

n=1

1
mα

n

=
k

log(k)α
+O

(k log log(k)
log(k)α+1

)
a.s.

as k → +∞. The implicit constant depends on α.

Proof. All the implicit constants in the O and � symbols below depend
(at most) on α.

Heyde proved in [8] that mn − log(n) ∼ log log(n) a.s. as n → +∞.
Hence, we have

1
mα

n

− 1
log(n)α

=
log(n)α −mα

n

mα
n log(n)α

� log log(n)
log(n)α+1

a.s.

and thus
k∑

n=3

1
mα

n

=
k∑

n=3

1
log(n)α

+O
( k∑

n=3

log log(n)
log(n)α+1

)
a.s..

Since
k∑

n=3

1
log(n)α

=
k

log(k)α
+O

( k

log(k)α+1

)
and

k∑
n=3

log log(n)
log(n)α+1

� log log(k)
k∑

n=3

1
log(n)α+1

� k log log(k)
log(k)α+1

,

the result follows. �

We are now ready to prove Theorem 1. We have to estimate the asymp-
totic behavior of

Πα(k) := #
{
1 ≤ n ≤ k : pn+α = pn + α

}
=

k∑
n=1

Xn+1,

where Xn+1 = 1{α}(pn+α − pn). Using Lemma 1, we have

E(Xn+1|Fn) = P(pn+α − pn = α|Fn) = xnm
−α
n ,

where

xn =
α−1∏
j=1

(
1− 1

pn + j

)α−j
.

Furthermore, since Xn+1 = 0 or 1, we have

Var(Xn+1) = E
(
X2

n+1

)
−E

(
Xn+1

)2 ≤ 1.
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Despite what is suggested by the notation, the random variable Xn+1

is not Fn+1-measurable if α ≥ 2 but only Fn+α-measurable. Therefore, if
α ≥ 2, we cannot apply Proposition 1 directly to estimate

∑k
n=1Xn+1 in

terms of
∑k

n=1 E
(
Xn+1|Fn

)
, as we would like to do. To solve this problem,

let us define recursively the random variables X(j)
n+1, j = 0, . . . , α, n ≥ 1,

by X(0)
n+1 = Xn+1 and

X
(j)
n+1 = E

(
X

(j−1)
n+1 |Fn+α−j

)
.

For any given j, n, the random variable X(j)
n+1 is Fn+α−j-measurable and we

also have X(j)
n+1 = E

(
Xn+1|Fn+α−j

)
. In particular, X(α)

n+1 = E
(
Xn+1|Fn

)
.

Furthermore, the inequality E(Z|G )2 ≤ E(Z2|G ), which is a special case of
Jensen’s inequality, implies that

(2.4) Var
(
X

(α)
n+1

)
≤ Var

(
X

(α−1)
n+1

)
≤ · · · ≤ Var

(
Xn+1

)
≤ 1.

Using (2.4), for a given j ∈ {0, . . . , α − 1}, we can apply Proposition 1
to the process (X(j)

n+1;Fn+α−j)n≥1 with, for example, bn = n1/2+ε for any
fixed ε > 0 to be specified later. We obtain that

k∑
n=1

X
(j)
n+1 =

k∑
n=1

E
(
X

(j)
n+1|Fn+α−j−1

)
+ o(bk)

=
k∑

n=1

X
(j+1)
n+1 + o(bk) a.s.,

where the constant in the o depends on α and j. Hence,

α−1∑
j=0

k∑
n=1

(X(j)
n+1 −X

(j+1)
n+1 ) =

α−1∑
j=0

o(bk) = o(bk) a.s..

On the left hand side, we have a telescoping sum (on j) and after simplifi-
cations, we get

k∑
n=1

Xn+1 =
k∑

n=1

E
(
Xn+1|Fn

)
+ o(bk) a.s..

The last equality can be rewritten as

Πα(k) =
k∑

n=1

xn

mα
n

+O(k1/2+ε) a.s.
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as k → +∞. Since pn → +∞, we have xn = 1+O(p−1
n ), where the implicit

constant only depends on α, and thus

Πα(k) =
k∑

n=1

1
mα

n

+O
( k∑

n=1

1
mα

npn

)
+O

(
k1/2+ε) a.s..

To finish the proof of the theorem, we note that the series of term
1/(mα

npn) is almost surely convergent by the results of Wunderlich quoted
in the introduction (remember that α ≥ 1). Therefore, using Lemma 2 we
get that, almost surely,

Πα(k) =
k

log(k)α
+O

(k log log(k)
log(k)α+1

)
+O(1) +O(k1/2+ε)

=
k

log(k)α
+O

(k log log(k)
log(k)α+1

)
,

provided that ε < 1/2. This finishes the proof of Theorem 1.

3. Proof of Theorem 2

Given a real number x, the smallest integer ≥ x will be denoted as usual
by dxe and we set Rn = 1−m−1

n . Consider the random variable Yn which
takes the value 1 if pn ∈ aN + b and 0 otherwise. The process (Yn)n≥1 is
Fn-adapted. We want to estimate ΠD(k) :=

∑k
n=1 Yn as k → +∞ and

for this we follow the same approach as previously: we seek an increasing
sequence bk, as small as possible, such that

k∑
n=1

Yn+1 =
k∑

n=1

E(Yn+1|Fn) + o(bk).

We have

E
(
Yn+1|Fn

)
= P(pn+1 ∈ aN + b|Fn)

= P(pn+1 − pn ∈ aN− pn + b|Fn)

=
1
mn

∑
k≥d(pn−b+1)/ae

Rak−pn+b−1
n

=
1

mn(1−Ra
n)
Rad(pn−b+1)/ae−(pn−b+1)

n ,

where we summed the geometric series to get the last equality.
Since Yn = 0 or 1, we have Var(Yn) ≤ 1. Therefore, we can apply Propo-

sition 1 to the process (Yn;Fn)n≥1 with (bk)k any increasing sequence of
real numbers such that

∑
k 1/b2k < +∞, for example bk = k1/2+ε for any
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ε > 0 to be further specified later. Then, ΠD(k) = Sk + o(k1/2+ε), where

Sk =
k∑

n=1

1
mn(1−Ra

n)
Rad(pn−b+1)/ae−(pn−b+1)

n .

It is not clear why it is simpler to estimate Sk rather than ΠD(k) but this
turns out to be the case, as we will now show.

Since
0 ≤ ad(pn − b+ 1)/ae − (pn − b+ 1) ≤ a,

we have
k∑

n=1

Ra
n

mn(1−Ra
n)
≤ Sk ≤

k∑
n=1

1
mn(1−Ra

n)
.

Furthermore, since 0 < Rn < 1, we trivially have that
1
a
≤ 1−Rn

1−Ra
n

≤ 1
aRa−1

n
.

Hence, together with the fact that 1−Rn = m−1
n , we obtain that

(3.1)
1
a

k∑
n=1

Ra
n ≤ Sk ≤

1
a

k∑
n=1

1
Ra−1

n
.

For any real number d, we have Rd
n = 1 + O(m−1

n ) as n → +∞, where
the implicit constant depends on d. Thus, we deduce from (3.1) that

Sk =
1
a

k∑
n=1

(
1 +O

( 1
mn

))
=
k

a
+O

( k∑
n=1

1
mn

)
=
k

a
+O

( k

log(k)

)
a.s.,

where we used (a weak form of) Lemma 2 with α = 1 to estimate
∑k

n=1m
−1
n .

Hence, we have

ΠD(k) =
k

a
+O

( k

log(k)

)
+O

(
k1/2+ε) a.s.

and the result follows provided we choose ε < 1/2.

4. Further readings and some problems

We conclude by mentioning other results in the literature, which were
not necessarily used in this paper but which might interest the reader. We
set li(x) =

∫∞
2

dt
log(t) , which is equivalent to x/ log(x) when x→ +∞.

– Neudecker and Williams [12] proved the following analogue of the Rie-
mann hypothesis: there exists a finite non zero random variable L such that
L = limn pn exp(−mn) a.s. and L li(pn/L) = n + O(n1/2+ε) a.s.. Remem-
ber that one of the many formulations of the Riemann’s hypothesis is that
li(pn) = n+O(n1/2+ε).
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– Heyde [7] improved the previous result and showed that

lim sup
n→+∞

|L li(pn/L)− n|√
2n log log(n)

≤ 3 a.s.,

In [8], he also proved that pn − n log(n) ∼ n log log(n) and mn − log(n) ∼
log log(n) a.s. as n→ +∞.

– Neudecker [11] showed that

(4.1) lim sup
n→+∞

pn+1 − pn

log(pn)2
= 1 a.s.,

which is an analogue of Cramér’s conjecture [2] (i.e., that (4.1) holds if the
pn are replaced by the prime numbers). Cramér made his conjecture in the
setting of his famous probabilistic model for the primes, which has nothing
to do with Hawkins’ model.

It would be interesting to continue the study of Hawkins’ sieve. For
example, is it possible to obtain non trivial bounds for the repartition of
random primes which are values of a given polynomial of degree d ≥ 2?
What about random primes which are of the form an + b, for fixed a ≥
2, b ∈ Z? What can be said about the integers which can be written as the
sum of two random primes?
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