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Fast computation of class fields given
their norm group

par Loïc GRENIÉ

Résumé. Soit K un corps de nombres contenant, pour un nombre
premier `, les racines `-ièmes de l’unité. Soit L une extension de
Kummer de degré ` de K, caractérisée par son module m et son
groupe de normes. Soit Km le compositum des extensions de degré
` de K de module divisant m. En utilisant la structure d’espace
vectoriel de Gal(Km/K), nous proposons une amélioration pour
la fonction rnfkummer de PARI/GP qui permet de ramener la
complexité du calcul d’une équation de L sur K d’exponentielle à
linéaire.

Abstract. Let K be a number field containing, for some prime
`, the `-th roots of unity. Let L be a Kummer extension of degree
` of K characterized by its modulus m and its norm group. Let
Km be the compositum of degree ` extensions of K of conductor
dividing m. Using the vector-space structure of Gal(Km/K), we
suggest a modification of the rnfkummer function of PARI/GP
which brings the complexity of the computation of an equation of
L over K from exponential to linear.

1. Introduction

Let K be a number field and let ` be a prime such that K contains the
`-th roots of unity. The algorithm [Coh, Algorithm 5.2.14, p239] gives the
list of extensions of K with degree ` and conductor m. Let Clm(K) be the
ray class group of conductor m. Among the extensions with conductor m,
one might be interested in finding the specific one with norm group equal to
a specific subgroup N of Clm(K). Computing this extension can be easily
done by testing the norm group of each of the extensions computed by the
preceding algorithm, and is indeed implemented that way in PARI/GP.
However, it can be faster to use the vector space structure of the quotient
G = Clm(K)/̀ Clm(K): we know, by Galois and Kummer theory, that the
set of degree ` extensions of K of conductor dividing m are in bĳection with
the set of hyperplanes of G. An hyperplane of G is the kernel of a linear form
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over G so that finding L is equivalent to finding a linear form with kernel
the hyperplane HL corresponding to L. Finding a linear form is equivalent
to finding its coordinates in the dual of G and while the hyperplanes of G

are `dim G−1
`−1 , there are only dim G vectors in the base of a dual of G. We

can thus bring the complexity of the problem from exponential to linear.
We recall that the exponent of a group G is the minimum positive k such

that ∀g ∈ G, gk is the unity of G.

2. The ray class group and the Kummer compositum

2.1. The situation. We fix an algebraic closure Q of Q, a prime number
` and a primitive `-th root of unity ζ` ∈ Q. Let K ⊂ Q be a number field
containing ζ`. We fix a conductor m = (m0,m∞) with m0 an ideal of OK and
m∞ a subset of the set of real embeddings of K in C. We are interested
in the compositum Km of the Kummer extensions of K contained in Q
which have degree ` and conductor dividing m. Then G = Gal(Km/K) is an
abelian group of exponent ` which means that it is an F`-vector space. By
class field theory, we can identify G with Clm(K)/̀ Clm(K).

Any extension L ⊂ Km of degree ` over K is characterized by the sub-
group HL = Gal(Km/L) which has index ` in G. Such a subgroup is an
hyperplane of G, when G is seen as a vector space over F`. This means
that it is the kernel of a linear form, i.e. that it is the orthogonal of a line
of the F`-dual of G.

Let (K×)` =
{
x`/x ∈ K×

}
. Then there is a perfect F`-pairing between

G and the subgroup G∗ of K×/(K×)` of classes of elements of

OK,m =
{
x ∈ K×/(x) ⊆ m0 and ∀σ 6∈ m∞, σ(x) 6∈ R−}

.

Such a pairing can easily be made explicit by

G×G∗ −→ µ`

(σ , x) 7−→ σ(
√̀

x)√̀
x

with µ` = {ζ i
` , i ∈ Z} the group of `-th root of unity in K and for any

choice of an `-th root of x in Km.
A degree ` extension L of K inside Km is K(

√̀
x) for some x ∈ G∗ and

x is dual to HL. Obviously all the powers xi for 1 6 i < ` lead to the
same extension, i.e. to the same subgroup HL; from the point of view of
F`-vector spaces, they are linear forms over G which are proportional and
thus have the same kernel.

2.2. Identifying vectors in the dual. We can compute the norm group
NL for the extension L given by an equation of the form X`−x. Such norm
group is in Clm(K), but its image HL in G also has index `. The perfect
pairing above provides an isomorphism between G and G∗. Suppose that
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we know how to compute the equation of the norm group in a basis of G.
If we do not explicit the pairing above, computing the norm group allows
us to identify the line [x] directed by the image f(x) of x in a vector space
V = Fn

` isomorphic to G∗ but the equation of the norm group alone cannot
identify f(x) itself (except if ` = 2). If x and y are elements of OK,m (such
that ∀0 6 i, j < `, xi 6= yj), the three elements

√̀
x, √̀y and √̀xy generate

three extensions of K of degree `. The norm groups of those extensions
allows us to identify the three lines [x], [y] and [xy] directed by f(x), f(y)
and f(xy); now if we know the value x0 of f(x) inside [x], we can identify
y0 = f(y) ∈ [y] because all the lines [x0t], t ∈ [y] are distinct and exactly
one of them is [xy]. Let λ ∈ F ×

` . If we take λx0 instead of x0, then we will
get λy0 instead of y0. It follows that the choice of x0 is irrelevant, up to
multiplication by a scalar in V .

It follows that, once we fix a value f(x) for an x ∈ OK,m\(K×)` in V ,
by computing two norm groups, we can compute the value of f(y) for any
y ∈ OK,m which is not a power of x times an `-th power.

3. Algorithm

We provide the following modification of [Coh, Algorithm 5.2.14, p239].
The nine first steps are unchanged, so we do not rewrite them. Instead of
looking for all cyclic extensions of given conductor, we look for a specific
one with given relative norm group N . All matrices and vectors in the
following algorithms are taken in F`. If M is a matrix, Mi will denote its
i-th column.

Algorithm 3.1. Compute the extension of K of degree ` with given norm
group N given in SNF form.

Recall that c = dK is the dimension of the kernel K of the matrix M .
10. [Equation of norm group] Set EN to be the column vector obtained from

N by applying only step 2 of subalgorithm 3.2.
11. [Initialize backtracking] (In what follows, c ≤ 1 and y will be a row

vector with c− 1 components, and Y (y) will be a column vector with rw

components, the rw − c first ones equal to (0, ..., 0)t, then a single 1 and
the components of yt.) Set y ← (0, ..., 0) (vector with c−1 components).
Set D and G to be matrices with 0 columns and rw rows.

12. [Check linear independence] If Y (y) is in the image of D, then go to step
19

13. [Compute trial vector] Let X ← Kc +
∑

1≤j<c yjKj . Apply subalgo-
rithm [Coh, 5.2.15, p240] to see if X corresponds to a suitable Abelian
extension. If it does, set α =

∏
1≤j≤rw

v
xj

j (where X = (x1, ..., xrw)t).
Set T ← X` − α. Let L = K[

√̀
α]. Compute the matrix M of the



710 Loïc Grenié

norm group for the extension L/K using [Coh, Algorithm 4.4.3, p215]. If
M = N output the polynomial T and terminate the algorithm.

14. [Update dependency matrix] Set D ← (D|Y (y)), concatenation of Y (y)
at the right of D.

15. [Norm group equation] If either G is empty or ` = 2, compute accord-
ing to subalgorithm 3.2 an equation E for the norm group of extension
L/K and set α1 ← α and E1 ← E, otherwise compute the equation E
according to subalgorithm 3.3. Set G← (G|E).

16. [Test computability] If EN is in the image of G, let (xi) be the vector of
coordinates: EN =

∑
i xiGi. Set Y0 ←

∑
i xiLi. Set y to be the last c− 1

elements of Y0 and go to step 13.
17. [Backtracking I] Set i← c.
18. [Backtracking II] Set i← i− 1. If i = 0 set c← c− 1 and go to step 11.
19. [Backtracking III] Set yi ← yi +1, and if i < c−1, set yi+1 ← 0. If yi ≥ `,

go to step 18; otherwise go to step 13.

Subalgorithm 3.2. Compute an equation for the norm group of a Kummer
extension L/K.

1. Compute SNF matrix M of the norm group of the extension L/K ac-
cording to [Coh, Algorithm 4.4.3, p215].

2. Let i be the index such that Mii 6= 1. Set E to be the transpose of the
i-th row of M . Change the i-th element of E in −1.

3. Output E and terminate the subalgorithm.

Subalgorithm 3.3. Compute an equation for the norm group of a Kum-
mer extension K(

√̀
α)/K, coherent with a given equation E1 for a given

extension K(
√̀

α1)/K. We suppose the images of α and α1 generate two
distinct cyclic groups of order ` in K×/(K×)`.

1. Compute equation E2 of extension K(
√̀

α)/K according to subalgorithm
3.2.

2. Compute equation E3 of extension K(
√̀

αα1)/K according to subalgo-
rithm 3.2.

3. Find non-zero coefficients λ1, λ2 and λ3 such that λ1E1 +λ2E2 +λ3E3 =
0.

4. Output −λ2
λ1

E2 and terminate the subalgorithm.

Remark 1. This algorithm is very similar to [Coh, Algorithm 5.2.14, p239],
and is very easy to implement in a single function. The relevant differences
are: the algorithm stops as soon as the correct equation is found and we
do not test for equations which are linearly dependant in G∗; using linear
algebra, we deduce an equation for the searched field using equations for a
basis of G∗.
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Remark 2. In step 4 of subalgorithm 3.3, all three coefficients λi are
non-zero because the elements α and α1 generate different cyclic groups in
F×/(F×)`. Otherwise, one would have to compute k such that α and α k

1

have same class in that group and output kE1.

Remark 3. If y is computed at step 4, one can omit the check of norm
group group at step 13 of algorithm 3.1 : it has to be N .

Theorem 4. Algorithm 3.1 computes the extension with at most 2dK (resp.
dK + 1 if ` = 2) computations of norm groups.

Proof: The proof is now obvious. We compute the norm group once for
each α at step 13. Thanks to D we take care to study only linearly in-
dependent vectors in G∗. This makes dK computations of norm groups. If
` 6= 2, for each α starting at the second we need an additional computation
of the norm group for x` − αα1 in subalgorithm 3.3, which brings us to
2dK − 1 norm groups. For the final element we compute the norm group
in step 13 (but as observed in remark 3, this computation is not neces-
sary). �

4. Further improving efficiency

As written above, the algorithm enumerates the non-zero lines of K,
checking at each step whether they correspond to a suitable abelian exten-
sion. The non-zero elements are the elements of a family of subspaces of
G∗. As observed in [Coh, top of p241], this is not linear algebra.

However we can try to improve the situation by computing as good a
basis of K as possible. Let Bi be the family of subspaces of K which provides
unsuitable extensions, ordered by increasing codimension. Let Ei be an
equation of Bi, i.e. a morphism from K to Fcodim Bi

` such that Bi = kerEi.
Let n be the maximum i such that codim Bi = 1. Let (vj)16i6dK be a
basis of K. Using Gauss elimination technique, we can try to find a basis
(wj)16j6dK such that Ei(wj) = δij for 1 6 i 6 n. This is indeed possible if
all Ei are linearly independent. Assume such a basis (wj) has been found.
Create a basis (Ki) for K using the following algorithm,
1. Set i← 1, d← min(n, dK), and Km ← wm (for all d < m ≤ dK).
2. Set Kd ←

∑
1≤j≤d wj .

3. Set Ki ← Kd + wi

4. Set i← i + 1. If i < d go to step 3 otherwise stop the algorithm.
If n 6 dK and ` > 2, this algorithm provides a basis of K which is such that
∀i, j ≤ n, Bi(Kj) 6= 0.

If all Bi are of codimension 1 and all Ei are linearly independent, it is
possible to reduce the number of tests at step 13 of algorithm 3.1 to dK.
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To do that, insert after 16 a step

16.5. Set c← c− 1 and go to step 11.

If the above conditions are not met, the improvement is not correct: it
can fail to compute a basis of G∗. This improvement can be done anyway,
but as a first try, i.e. by repeating twice the step from step 11 to step 19,
once with this test enabled and, if needed, once with it disabled.

5. Speed gains

We show on an example of the speed gain that can be obtained from those
methods. The author implemented algorithm 3.1 and the technique outlined
in section 4. As a base field we took K = Q[

√
5, ζ12], ` = 3 and we selected

modulus m = (23.33.52.112). We then have G ' F 14
3 and we chose as L the

extension whose norm group is the kernel of the projection of G on its ninth
factor group. Note that the generators are not canonical but there is a way
to choose them unambiguously in PARI. The classical algorithm of PARI
has computed an equation for L in two minutes; the algorithm suggested
here has computed it in two seconds. Note that a part of those two seconds
is spent by both algorithms on common computations, in particular to
compute the modulus of the extension L/K, which is smaller than m. The
commands used to compute this extension are shown in appendix.

6. Other uses of linear independence of fields

This technique can be used to compute extensions that satisfy linear
conditions in the subspace G∗.

6.1. Extensions with limited residual extensions. In [Gre], we need
to compute a Galois extension L of K ramified over a given set of primes
and such that Gal(L/K) is an `-group of exponent dividing `k for a given
k.

The condition on the exponent is easy to test at the residual level. Indeed
let P be a prime of L over a prime p of K, non ramified in L/K. If the
residual field of LP has Q elements while the residual field of Kp has q
elements, then Gal(L/K) will have a cyclic subgroup of order Q/q because
extensions of finite fields are cyclic.

Since Gal(L/K) is an `-group, To compute L it is sufficient to compute
a tower of extensions Ki such that Ki+1/Ki is a compositum of Kummer
extensions. If, for a prime pi of Ki over the prime p of K, the residual ex-
tension has already degree `k, we cannot have additional residual extension
over pi; on the other hand, if the degree of the residual extension is lower
that `k, having residual extension over pi is irrelevant. This construction
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can be done with the function rnfkummer of PARI/GP, by checking the
residual extensions for a predetermined set of primes.

It is possible to improve the speed of the algorithm. We limit ourselves
to identifying the maximal compositum of Kummer extensions that has
trivial residual extensions over a finite set of primes {p1, ..., pn}. If L/K is
a Kummer extension, we have L = K(

√̀
α) for some α ∈ OK . If we reduce

modulo pi, there will be residual extension if and only if the reduction of α
is not an `-th power. Denote kpi the residual field of K modulo pi. Consider
the quotient k(`) of k×pi

by its `-th power. We have that L/K has no residual
extension over pi if and only if the image of α in k(`) is trivial. But the
application fi from G∗ to k(`) which associates to the class of α (in G∗)
the class of the image of α (in k(`)) is F`-linear. This means that we are
looking for the kernel of the morphism (f1, ..., fn). Finding a kernel can be
done using a basis of G∗ and standard algorithms.

For this reason, we provided rnfkummer a mean to output a list of linearly
independent (in G∗) equations of fields. This is a minor modification of the
algorithm above.

6.2. General cyclic extensions of prime degree. Suppose we want to
compute the Galois extension of degree ` with given conductor and norm
group even when ζ` 6∈ K. The method is to compute Kummer extensions
Lz of the compositum Kz = K(ζ`) and choose those which are of the form
L(ζ`) for some cyclic extension L of K of degree `. Those extensions are
those of the form Lz = Kz(

√̀
α) for α in an eigenspace W1 of G∗ for an

endomorphism τ of G∗. To find the extension we look for, we can proceed
with the same method, by computing a basis (wi) of the eigenspace W1 and
computing the extension by using linear algebra and the norm groups of
the extensions corresponding to each wi.

Appendix: timing in PARI

Here are the exact commands used to compute the equation of the field
L alluded to in section 5.
gp > setrand(1);
gp > P=polredabs(polcompositum(polcyclo(12, ’y), ’y∧2-5)[1],
16)
%1 = y∧8 - 3*y∧6 + 8*y∧4 - 3*y∧2 + 1
gp > bnf=bnfinit(P);
gp > bnr=bnrinit(bnf, 8*27*25*121, 1);
gp > default(timer, 1);
gp > rnfkummer(bnr, matdiagonal(vector(#bnr.cyc, i,
1+2*(i==9))))
time = 1mn, 58,814 ms.
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%4 = x∧3 + Mod(1737/4*y∧7 - 450*y∧6 - 1062*y∧5 + 1008*y∧4 +
3213*y∧3 - 3177*y∧2 + 225/4*y + 423, y∧8 - 3*y∧6 + 8*y∧4 -
3*y∧2 + 1)
gp > rnfkummer(bnr, matdiagonal(vector(#bnr.cyc, i,
1+2*(i==9))), -1)
time = 1,952 ms.
%5 = x∧3 + Mod(1737/4*y∧7 - 450*y∧6 - 1062*y∧5 + 1008*y∧4 +
3213*y∧3 - 3177*y∧2 + 225/4*y + 423, y∧8 - 3*y∧6 + 8*y∧4 -
3*y∧2 + 1)

The −1 as last argument of rnfkummer chooses algorithm 3.1 instead of
the standard one (without argument).
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