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On some subgroup chains related to Kneser’s
theorem

par Yahya Ould HAMIDOUNE, Oriol SERRA et Gilles ZÉMOR

Résumé. Un résultat récent de Balandraud démontre que pour
toute partie S d’un groupe abélien G, il existe un sous-groupe
H non-trivial tel que l’inégalité |TS| ≤ |T | + |S| − 2 n’a lieu
que si H ⊂ Stab(TS). On remarque que le théorème de Kneser
n’implique que l’inégalité {1} 6= Stab(TS).

Ce renforcement du théorème de Kneser se déduit des proprié-
tés plaisantes d’un certain ensemble partiellement ordonné étudié
par Balandraud. Nous considérons un ensemble partiellement or-
donné analogue pour les groupes non forcément abéliens et à l’aide
d’outils classiques de théorie additive des nombres, généralisons
certains des résultats suscités. En particulier nous obtenons des
démonstrations courtes des résultats de Balandraud dans le cas
abélien.

Abstract. A recent result of Balandraud shows that for every
subset S of an abelian group G there exists a non trivial subgroup
H such that |TS| ≤ |T | + |S| − 2 holds only if H ⊂ Stab(TS).
Notice that Kneser’s Theorem only gives {1} 6= Stab(TS).

This strong form of Kneser’s theorem follows from some nice
properties of a certain poset investigated by Balandraud. We con-
sider an analogous poset for nonabelian groups and, by using
classical tools from Additive Number Theory, extend some of the
above results. In particular we obtain short proofs of Balandraud’s
results in the abelian case.

1. Introduction

In order to avoid switching from multiplicative to additive notation, all
groups will be written multiplicatively.

Kneser’s addition theorem [5] states that if S, T are finite subsets of an
abelian group G then |ST | ≤ |S|+ |T | − 2 holds only if ST is periodic (i.e,
there is a non trivial subgroup H such that HST = ST .) Kneser’s Theorem
is a fundamental tool in Additive number Theory. Proofs of this result may
be found in [4, 5, 6, 7, 8, 9, 11].
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In all previously known proofs of Kneser’s Theorem, the subgroup H
depends crucially on both sets S and T . With the goal of breaking this
double dependence in S and T , Balandraud investigated in recent work
[1, 2] the properties of a combinatorial poset that we now present.

Let S be a finite subset containing 1 of a group G and let X ⊂ G.
Following Lee [7], we introduce the following notion (where the reference
to S is implicit): let

X̃ = {x ∈ G : xS = XS}.

A subset X such that X̃ = X is called a full subset. Equivalently, a subset
X is a full subset if for all z 6∈ X we have zS 6⊂ XS.

This notion is rediscovered by Balandraud in [1, 2] where full subsets are
named “cells”, and also by Grynkiewicz [3] where the term “nonextendible
subset” is used. The following lemma is straightforward:

Lemma 1.1 ([1, 2, 7]). Let G be a group and 1 ∈ S ⊂ G be a finite subset.
Then X ⊂ X̃ and X̃S = XS.

We shall use a slightly modified version of Balandraud’s terminology:
A cell (or a full subset) X is called a u-cell if |XS| − |X| = u. A u-cell

with minimal cardinality is called a u-kernel (of S).
Throughout the paper, by a cell we always mean a cell of S.
Balandraud showed that, for a finite set S in an abelian group G, in the

poset of j–cells containing the unity ordered by inclusion with 1 ≤ j ≤
|S| − 2, the set of kernels forms a chain of subgroups. Moreover, if there
exists a u–cell, then there is a unique u–kernel containing the unit element
which is contained in all u–cells containing the unit element.

One of the consequences of this work is a new proof and the following
strengthening of Kneser’s Theorem:

Theorem 1.1 (Balandraud). For any non-empty finite subset S of an
abelian group G, there exists a finite subgroup H of G such that for any
finite subset T of G one of the following conditions hold :

• |TS| ≥ |T |+ |S| − 1
• HTS = TS and |TS| ≤ |HS|+ |HT | − |H|

As far as the authors are aware this is a surprising and strong formulation
that was not observed before and does not follow straightforwardly from
the classical forms of Kneser’s Theorem.

The purpose of the present note is to give a short proof that, in the poset
of j–cells that are subgroups ordered by inclusion with 0 ≤ j ≤ |S| − 1, the
set of kernels forms a chain of subgroups. Moreover, each u-kernel of this
poset is unique and contained in all u–cells of this poset. The proof works
for general, not necessarily abelian groups.
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From this statement Kneser’s theorem allows one to deduce Balandraud’s
results for the abelian case, and in particular Theorem 1.1. Kneser’s The-
orem [5, 6] has several equivalent forms. We use the following one; see e.g
[4, 9]:

Theorem 1.2 (Kneser). Let G be an abelian group and X, Y ⊂ G be finite
subsets such that |XY | ≤ |X|+ |Y | − 2. Then

|XY | = |HX|+ |HY | − |H|,

where H = stab(XY ) = {x : xXY = XY }.

Our main tool is the following Theorem of Olson [10, Theorem 2]. We
give an equivalent formulation here where we use left–cosets instead of
right–cosets.

Theorem 1.3 (Olson [10]). Let X, Y be finite subsets of a group G, and
let H and K be subgroups such that HX = X, KY = Y and KX 6= X,
HY 6= Y . Then

|X \ Y |+ |Y \X| ≥ |H|+ |K| − 2|H ∩K|.

In particular either |X \ Y | ≥ |H| − |H ∩K| or |Y \X| ≥ |K| − |H ∩K|.

We shall use the following lemma.

Lemma 1.2 ([1, 2]). Let G be a group and 1 ∈ S ⊂ G be a finite subset.
Then the intersection of two cells M1,M2 of S is a cell of S.

Proof. Let x /∈ M1 ∩ M2. There is i with x /∈ Mi. Then xS 6⊂ MiS. Hence
xS 6⊂ (M1 ∩M2)S. �

We can now state our main result, namely Theorem 2.1 below.

2. An application of Olson’s Theorem

Balandraud [1, 2] proved that, in the abelian case, the set of kernels
containing the unit element and ordered by inclusion is a chain of subgroups.
In the non abelian case we can prove only that the set of kernels that are
subgroups forms a chain. The abelian case can then be easily recovered, since
Kneser’s Theorem implies (as we shall see below) that a kernel containing
the unit element is a subgroup.

Theorem 2.1. Let S be a finite subset containing 1 of a group G. Let M
be a u–kernel of S which is a subgroup. Let N be a subgroup which is a
v–cell and suppose u, v ≤ |S| − 1.

(i) If either N is a v–kernel or u = v then M ⊂ N or N ⊂ M .
(ii) If N is a v–kernel and v ≤ u then M ⊂ N .
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Proof. Suppose that M 6⊂ N and N 6⊂ M . Note that, since M is a cell, if
NMS = MS then NM = M , thus N ⊂ M against our assumption. Hence
we may assume NMS 6= MS and similarly MNS 6= NS. By Theorem 1.3
we have one of the two following cases.

Case 1: |MS| − |(MS) ∩ (NS)| = |(MS) \ (NS)| ≥ |M | − |M ∩ N |. It
follows that |(M∩N)S|−|M∩N | ≤ |(MS)∩(NS)|−|M∩N | ≤ |MS|−|M |.
On the other hand we have u = |MS| − |M | < |S| ≤ |(M ∩ N)S|. Since
|MS| − |M | is a multiple of |M ∩N | we have

u = |MS| − |M | = |(M ∩N)S| − |M ∩N |.
By Lemma 1.2, M∩N is a cell. Since M is a u–kernel, we have M∩N = M,
a contradiction.

Case 2: |NS| − |(NS) ∩ (MS)| = |(NS) \ (MS)| ≥ |N | − |N ∩ M |. It
follows that |(N∩M)S|−|N∩M | ≤ |(NS)∩(MS)|−|N∩M | ≤ |NS|−|N |.
On the other hand we have |NS|−|N | < |S| ≤ |(N∩M)S|. Since |NS|−|N |
is a multiple of |N ∩M | we have

(1) |NS| − |N | = |(N ∩M)S| − |N ∩M |.
Assume first u = v. Then u = |MS|− |M | = |NS|− |N | = |(N ∩M)S|−

|N ∩M |. Since M is a u–kernel, we have M ∩N = M, a contradiction.
Assume that N is a v–kernel. Then (1) implies N ∩ M = N, a contra-

diction. This proves (i).
Assume now that v ≤ u. Suppose M 6⊂ N . By (i) we have N ⊂ M , which

implies in particular that |MS| − |M | is a multiple of N . Therefore, from
u = |MS| − |M | < |S| ≤ |NS| we have u = |MS| − |M | ≤ |NS| − |N | = v
which gives u = v. But then M 6⊂ N and N ⊂ M imply |N | < |M |, and
since N is now a u–cell, this contradicts M being a u–kernel. �

We can now deduce Balandraud’s description for kernels and cells :

Corollary 2.1 (Balandraud [1, 2]). Let G be an abelian group and S ⊂ G
be a finite subset with 1 ∈ S. Let M be a u–kernel of S containing 1 with
1 ≤ u ≤ |S| − 2. Then,

(i) M is a subgroup.
(ii) Each u-cell is M–periodic.
(iii) Each v–kernel containing 1 with u < v ≤ |S|−2 is a proper subgroup

of M .

Proof. Let X be a u-cell with u ≤ |S| − 2. By Kneser’s Theorem, the
inequality |XS| − |X| = u ≤ |S| − 2 implies

(2) u = |XS| − |HX| = |HS| − |H|,
where H is the stabilizer of XS. Since X is a cell and HXS = XS, we
have X = HX. Note that, since G is abelian, ({y} ∪ H)S = HS implies
y ∈ Stab(HS) ⊂ Stab(XS), so that y ∈ H. This observation and (2) imply
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that H is an u–cell. In particular, by taking X = M , the period K of MS
is a u–cell. Since KMS = MS and M is a u–cell, we have K ⊂ KM ⊂ M .
Since M is a u–kernel we have M = K. This proves (i).

Now let H be the stabilizer of XS, where X is a u–cell. As shown in the
preceding paragraph H is also a u–cell. By Theorem 2.1 we have M ⊂ H
and thus MH = H. Since X is a cell and HXS = XS, we have X = HX =
MHX. Hence X ⊂ MX ⊂ MHX = X implies X = MX. This proves (ii).

Finally, by (i), a v–kernel N is a subgroup. By Theorem 2.1 we have
N ⊂ M . �

From Corollary 2.1, one can deduce Theorem 1.1.

Proof of Theorem 1.1. We may assume without loss of generality that
1 ∈ S.

Case 1: There is no m–cell for any 1 ≤ m ≤ |S| − 2.

• either we have |TS| ≥ |S| + |T | − 1 for any non-empty finite T , in
which case the theorem clearly holds with H = {1}.

• or there exists some non-empty finite T such that |TS| ≤ |S| +
|T | − 2. Without loss of generality, we may also suppose 1 ∈ T . Put
X = T̃ . By Lemma 1.1 we have XS = TS. Now X is an m–cell
with m = |XS| − |X| ≤ |TS| − |T | ≤ |T | − 2. But since no such
cell exists for 1 ≤ m ≤ |S| − 2, we have that X = T . Then T
itself must be a cell (a 0-cell) i.e. |TS| = |T |. We therefore have
HT = TH = T = TS = HTS where H is the (necessarily finite)
subgroup generated by S. We have just proved that the theorem
holds in this case with H = 〈S〉.

Case 2: There exists an m–cell with 1 ≤ m ≤ |S| − 2. We may therefore
consider the largest integer u ≤ |S| − 2 for which S admits a u–cell. Let
H be the u–kernel containing 1. Note that u ≤ |S| − 2 implies that H is
different from {1}. Now let T be any finite non-empty subset such that
|TS| − |T | ≤ |S| − 2. We shall prove that HTS = TS.

Put X = T̃ . By Lemma 1.1, XS = TS. Note that we then have |XS| −
|X| ≤ |TS| − |T | ≤ |S| − 2, so that X is a v–cell for some v ≤ u. By
Corollary 2.1 (ii) we have TS = XS = MXS = MTS where M is the
v-kernel containing 1. By part (i) of Corollary 2.1, H is a subgroup of M
so that TS = XS = HTS as well.

Finally, |ST | ≤ |HS|+ |HT | − |H| follows from |ST | being a multiple of
|H|. �
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