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Thomas’ conjecture over function fields

par Volker ZIEGLER

Résumé. La conjecture de Thomas affirme que, pour des polynô-
mes unitaires p1, . . . , pd ∈ Z[a] tels que 0 < deg p1 < · · · < deg pd,
l’équation de Thue

(X − p1(a)Y ) · · · (X − pd(a)Y ) + Y d = 1

n’admet pas de solution non triviale (dans les entiers relatifs)
pourvu que a ≥ a0, avec une borne effective a0. Nous nous in-
téressons à un analogue de la conjecture de Thomas sur les corps
de fonctions pour le degré d = 3 et en donnons un contrexemple.

Abstract. Thomas’ conjecture is, given monic polynomials p1,
. . . , pd ∈ Z[a] with 0 < deg p1 < · · · < deg pd, then the Thue
equation (over the rational integers)

(X − p1(a)Y ) · · · (X − pd(a)Y ) + Y d = 1

has only trivial solutions, provided a ≥ a0 with effective com-
putable a0. We consider a function field analogue of Thomas’ con-
jecture in case of degree d = 3. Moreover we find a counterexample
to Thomas’ conjecture for d = 3.

1. Introduction

In 1909 Thue [20] proved his famous theorem on the approximation of
algebraic numbers by rational numbers. As a corollary he proved that the
Diophantine equation

F (X, Y ) = m,

where F ∈ Z[X, Y ] is a binary irreducible form of degree at least 3 and
m some non-zero integer, has only finitely many solutions. Since then such
Diophantine equations are called Thue equations. There were several ex-
tensions of Thue’s approximation theorem, e.g. to number fields by Wirsing
[21] and also to function fields by Gill [7]. However Thue’s theorem is not
effective and so it is not possible to solve Thue equations effectively with
this theorem. However, Baker [2] showed how to solve Thue equations ef-
fectively using his theorem on linear forms of logarithms [1, 3]. Since then
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several Thue equations and families of Thue equations were solved. In 1993
Thomas [19] proved that the family

X(X − p1(a)Y )(X − p2(a)Y ) + Y 3 = 1,

where p1, p2 ∈ Z[a] are monic polynomials, such that 0 < deg p1 < deg p2

and p1, p2 fulfill some growth conditions, has only trivial solutions, i.e.
(X, Y ) = (1, 0), (0, 1), (p1(a), 1) and (p2(a), 1), provided a is larger than
some effective computable constant a0. This led Thomas to his conjecture
that

X(X − p1(a)Y ) · · · (X − pd−1(a)Y ) + Y d = 1,

where p1, . . . , pd−1 ∈ Z[a] are monic polynomials and deg p1 < · · · <
deg pd−1, has only the trivial solutions (X, Y ) = (±1, 0), (0,±1),
(±p1(a),±1), . . . , (±pd−1(a),±1), provided a is sufficiently large and the
minus sign only appears if d is even. This conjecture has been proved by
Heuberger [8] under the assumption of some complicated degree conditions.
However, if we allow deg p1 = 0, then some counterexamples are known,
e.g. if d = 3 and p1 = ±1. In this case there exist the non-trivial solutions
(1,−(1 + p2(a))) respectively (3 + p2(a),−2− p2(a)) found by Lee [10] re-
spectively Mignotte and Tzanakis [15]. To the authors knowledge these are
the only exceptions known yet in the case of rational integers and d = 3. In
this paper we find a counterexample with deg p1 > 0 and disprove Thomas
conjecture for degree 3.

Halter-Koch, Lettl, Pethő and Tichy considered the following equation

(1) X(X − a1Y ) · · · (X − ad−2Y )(X − aY )± Y d = ±1,

where a1, . . . , ad−2 ∈ Z are fixed integers and a is some parameter. This
equation has been solved under the assumption of the Lang-Waldschmidt
conjecture [9]. In this paper we want to solve the function field analogue of
equation (1).

Gill’s result [7] applied to Thue equations, yields that the height of the
solutions are bounded. About 50 years later Schmidt [18] and Mason (cf.
[12], resp. [14]) considered the problem to determine effectively all solu-
tions of a given Thue equation over some function field. In contrast to the
number field case Thue equations over function fields may have infinitely
many solutions. Recently, Lettl [11] proved criteria for which a given Thue
equation has only finitely many solutions. Also families of Thue equations
over the function field C(T ) have been solved (cf. [5, 6]). We propose to
prove following variant of Thomas’ conjecture.
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Theorem 1. Let κ, λ ∈ C[T ] be polynomials such that 0 < deg κ < deg λ.
Let κ be fixed and let (X, Y ) ∈ C[T ]×C[T ] be a solution to the Diophantine
equation

(2) X(X − κY )(X − λY ) + Y 3 = ξ

with ξ ∈ C∗. Then either the triple (λ, X, Y ) is trivial, i.e.

(X, Y ) ∈ {(ζ, 0), (0, ζ), (ζκ, ζ), (ζλ, ζ) : ζ3 = ξ}

or (λ, X, Y ) ∈ L with |L| ≤ 16452. In particular, if 34 deg κ < deg λ, then
there exist only trivial solutions.

If κ ∈ C∗ then a non-trivial solution (X, Y ) ∈ C[T ]×C[T ] to (2) exists,
if and only if κ6 = 1. All non-trivial solutions are listed in table 1.

Table 1. The non-trivial solutions to (2) in the case of
κ ∈ C∗ (ω3 is a primitive third root of unity).

κ X Y κ X Y

1 ζ −ζ(1 + λ) −1 ζ(3 + λ) −ζ(2 + λ)
ω3 ζω2

3 −ζ(ω3 + λ) −ω3 ζ(3ω2
3 + ω3λ) −ζ(2ω3 + λ)

ω2
3 ζω3 −ζ(ω2

3 − λ) −ω2
3 ζ(3ω3 + ω2

3λ) −ζ(2ω2
3 − λ)

We see that in the case of κ ∈ C∗ there are essentially no further solu-
tions than those known before (except the cases κ = −ω3,−ω2

3 were not
stated explicitly). These non-trivial solutions have been found by Lee [10],
Mignotte and Tzanakis [15] in the rational case and by Ziegler [22] in the
imaginary quadratic case (κ = ω3, ω

2
3).

One might conjecture, as Thomas [19] did, that there are only trivial
solutions, if deg κ > 0 but this is not true. Indeed if λ = κ4 + 3κ or
λ = κ4 − 2κ, then there exist non-trivial solutions. The author conjectures
that these are the only non-trivial solutions.

Conjecture 1. The Diophantine equation (2) has only trivial solutions,
except the solutions

ζ(−λκ5 − 4κ3 − 1, λκ− 6κ2 − λκ4 − κ5) if λ = κ4 + 3κ,

ζ(κ3 − 1, λκ− λκ4 − κ2) if λ = κ4 − 2κ,

with ζ3 = −ξ.

To the authors knowledge the non-trivial solutions stated in Conjecture 1
have not be known before. Therefore we have disproved Thomas’ conjecture
in the case of d = 3.

The restriction κ 6= 0 is essential, because in this case we can find fun-
damental units. If κ = 0 and the valuation at infinity is ramified we are
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still able to determine the unit group. Theorem 2 characterizes for which
λ’s ramification at infinity occurs.

Theorem 2. The function field C(T, α), where α is a root of

X2(X − λ) + 1,

is unramified over the prime corresponding to O∞ := {f(T )/g(T ) : f, g ∈
C[T ],deg(f) ≤ deg(g)} of C[T ], if and only if 2|deg λ. In the case of ram-
ification the ramification index of the ramified prime is 2.

The methods used in the proof of Theorem 1 together with Theorem 2
yield:

Theorem 3. The only solutions (X, Y ) ∈ C[T ]×C[T ] to the Diophantine
equation

(3) X2(X − λY ) + Y 3 = ξ,

where λ ∈ C[T ] \ C and deg λ ≡ 1 (mod 2), are trivial, i.e. (X, Y ) =
(ζ, 0), (0, ζ) or (ζλ, ζ), with ζ3 = ξ.

It is dissatisfactory to know nothing about the case of κ = 0 and 2|deg λ
except the finiteness of solutions, which we know from a result of Lettl [11,
Corollary 2]. Although we do not know the structure of the unit group we
are able to estimate the number of solutions to (3):

Theorem 4. The Diophantine equation (3) has at most 17691 non-trivial
solutions (X, Y ) ∈ C[T ]× C[T ] for fixed λ.

For the rest of the paper we will use following notation:

(4) F (κ, λ) = X(X − κ)(X − λ) + 1.

We remark that all theorems hold if we replace C by any algebraic closed
field k of characteristic 0. In particular, the theorems are valid in Q̄, the
algebraic closure of Q.

The paper is organized as follows. In section 2 we remind some well
known facts on function fields and fix notations for the rest of the paper.
After this we will prove Theorem 2 by using Puiseux’s theorem in section
3. By a careful analysis of the valuations at infinity we are able to find
fundamental units of the fields related to (2) and to (3) in the case of
2 - deg λ. In the case of (3) and 2|deg λ we can estimate by methods
originating from the geometry of numbers the number of possible solutions.
All these results give a lower bound for the height of solutions to (2) and
(3) and are subject of section 4. The upper bound for the height of the
solutions is computed in section 5. Knowing upper and lower bounds we
can effectively determine the number of solutions. In the cases for which we
know fundamental solutions we can determine all solutions. This is done
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in section 6. In section 7 we use a theorem of Minkowski in order to prove
Theorem 4.

2. Auxiliary results

Let us remind first the ABC-Theorem for function fields (see e.g. [17,
Theorem 7.17]).

Proposition 1 (ABC-Theorem). Let K be a function field of characteristic
0, genus gK and with constant field k. Let α, β ∈ K∗ satisfying α + β = 1
and put A = (α)0, B = (β)0 and C = (α)∞ = (β)∞, where (·)0 denotes the
zero divisor and (·)∞ denotes the polar divisor. Then

deg A = deg B = deg C ≤ max

0, 2gK − 2 +
∑

P∈Supp(A+B+C)

degK P

 .

If the constant field k is algebraically closed and of characteristic 0,
Mason [14, chapter 1, Lemma 2] proved following special case.

Corollary 1. Let H(α) := −
∑

ν∈MK
min(0, ν(α)) denote the height of

α ∈ K and let γ1, γ2, γ3 ∈ K with γ1 + γ2 + γ3 = 0. Let V be a finite set of
valuations such that for all ν 6∈ V we have ν(γ1) = ν(γ2) = ν(γ3), then

H(γ1/γ2) ≤ max(0, 2gK − 2 + |V|).

Here we denote the set of all valuations in K by MK . It is rather easy
to deduce Corollary 1 from Proposition 1 (cf. [5]). Use the fact that the
residue class degree is 1, provided the constant field is algebraic closed and
of characteristic 0.

Another well known fact is the following: Let A be a Dedekind ring, K
its quotient field and let B be the integral closure of some finite algebraic
extension L/K. Further, let d be the exact power of a prime P dividing
the different DB/A. Then d = eP − 1 provided the characteristic of B/P
does not divide the ramification index eP. Our main interest is in function
fields with constant field of characteristic 0. In this case B/P has always
characteristic 0 and we have DB/A =

∏
PeP−1. We will use this fact in the

case of A = Oa := {f(T )/g(T ) : f, g ∈ C[T ], g(a) 6= 0} with a ∈ C. Assume
L/K is a Galois extension, A a discrete valuation ring and B its integral
closure in L. Let p be the maximal prime of A, then pB = (P1 · · ·Pg)e. We
have DB/A = (P1 · · ·Pg)e−1 and

(5) NL/K(DB/A) = pf(e−1)g = p(e−1)g = δB/A,

where δB/A denotes the discriminant. This will allow us to determine, where
ramification occurs and compute the ramification index.

We have already introduced for every a ∈ C the discrete valuation ring
Oa, the corresponding valuations νa to these rings are called finite. There
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is also another valuation ring O∞ := {f(T )/g(T ) : f, g ∈ C[T ],deg(f) ≤
deg(g)}, which has already been introduced in Theorem 2. The correspond-
ing valuation ν∞ will be called the infinite valuation. It is well known (see
e.g. [4, chapter 1, Proposition 4.4]) that the finite and infinite valuations
are in fact all C-valuations of C(T ).

The following result is useful to determine ramifications and valuations:

Proposition 2 (Puiseux). Let k be an algebraic closed field of character-
istic 0. And let K be a function field defined by the polynomial

P (X, T ) = Xd + Pd−1(T )Xd−1 + · · ·+ P0(T )

with coefficients P0, . . . , Pd−1 ∈ k(T ), then for each a ∈ k there exist formal
Puiseux series

yi,j =
∞∑

h=mi

ch,iζ
hj
i (T − a)h/ea,i (1 ≤ j ≤ ea,i, 1 ≤ i ≤ ra),

where ch,i ∈ k and ζi ∈ k is an ea,i-th root of unity such that

P (X, T ) =
ra∏

i=1

ea,i∏
j=1

(X − yi,j).

Moreover let P1, . . . ,Pra be the primes of K lying above the prime (T − a)
then ea,i = e(Pi|(T − a)) for i = 1, . . . , ra for some appropriate order of
the indices.

Note that a similar statement is true for infinite valuations. Furthermore
the mi are the valuations of α with respect to the primes above (T − a),
where α is a root of P (X, T ).

Let F (X, Y ) = m be a Thue equation over the integral closure OL of
k[T ] in some finite extension L/k(T ). Mason [12] proved an effective bound
for the height of solutions (X, Y ) to F (X, Y ) = m by using his fundamental
inequality presented in Corollary 1. For an application of Mason’s funda-
mental lemma (Corollary 1), we need a tool to compute the genus of a
function field. The Riemann-Hurwitz formula (see e.g. [17, Theorem 7.16])
yields such a tool.

Proposition 3 (Riemann-Hurwitz). Let L/K be a geometric extension of
function fields of characteristic 0, with constant field k and let gK and gL

be the genera of K and L, respectively, then

(6) 2gL − 2 = [L : K](2gK − 2) +
∑

w∈ML

(ew − 1),

where ML is the set of valuations of L and ew denotes the ramification
index of w in the extension L/K.
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By a geometric extension L/K we denote a finite algebraic extension of
function fields such that L∩ k̄ = k holds for the constant field k. Note that
if k is algebraic closed, every finite algebraic extension is geometric.

We end this section by investigating some properties of the polynomials
of interest. First we prove that they are irreducible.

Lemma 1. The polynomials

X2(X − λ) + 1 and X(X − κ)(X − λ) + 1

are irreducible under the same restrictions as made in Theorems 1 and 2.
We also allow κ to be a constant.

Proof. Suppose one of the polynomials is reducible, then this polynomial
splits into a linear factor X − a and a quadratic factor X2 + bX + c with
a, b, c ∈ C(T ). Since the coefficients of the polynomial are elements of C[T ]
also a, b, c ∈ C[T ], hence a is a constant. Moreover, a is a root of the
polynomial and therefore a2(a−λ)+1 = 0 respectively a(a−κ)(a−λ)+1 =
0. If a 6= 0, a 6= λ respectively a 6= 0 a 6= κ and a 6= λ the left hand side has
degree at least deg λ > 0 therefore a = 0, a = λ respectively a = 0, a = κ
or a = λ. In any case this would yield 1 = 0. Therefore the polynomial is
irreducible. �

For the rest of the paper we will denote by α a root of F (κ, λ) respectively
F (0, λ) and by α1 := α, α2 and α3 its conjugates over C(T ).

Let us denote by δ := (α1 − α2)2(α2 − α3)2(α3 − α1)2 the discriminant
of the polynomial F = F (κ, λ) resp. F = F (0, λ). If δ is a square in C(T )
we know that the field K = C(T, α) is Galois over C(T ). We compute

(7) δ =


4(λ + κ)3 + λ2κ2(λ + κ)2

−18λκ(λ + κ)− 4λ3κ3 − 27, if F = F (κ, λ),
4λ3 − 27, if F = F (0, λ).

Lemma 2. Let α be a root of F = F (0, λ), then K = C(T, α) is not Galois
over C(T ).

Proof. The lemma is equivalent to the statement that the equation 4X3 −
27 = Y 2 has only constant solutions. We apply a theorem of Mason (see
[14, Theorem 6] or [13]) to this equation:

Lemma 3 (Mason). For a fixed function field L/C let α1, . . . , αn ∈ L and
OL the integral closure of C[T ] in L. Assume (X, Y ) ∈ OL×OL is a solution
of the equation

(X − α1) · · · (X − αn) = Y 2,

then HL(X) ≤ 26H+8gL+4(r−1), where H is the height of the polynomial
on the left side of the equation, gL is the genus of L and r is the number
of valuations of L above ∞.
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We apply Lemma 3 for L = C(T ). Then we have r = 1, gL = 0 and
H = 0. Therefore H(X) ≤ 0, which means X is a constant, hence both X
and Y are constants. �

Note that instead of Mason’s theorem (Lemma 3) we could also use a
theorem of Ribenboim [16] on Diophantine equations in polynomials.

The author conjectures that the Galois group of the polynomial F (κ, λ),
with −∞ < deg κ < deg λ is always the symmetric group S3. Unfortunately
the author could only prove Lemma 2.

3. Proof of Theorem 2

The proof will essentially depend on Puiseux’s theorem (Proposition 2).
In particular, we use the fact that the mi (in the notation of Puiseux’s
theorem) are the different valuations of the root α of P (X, T ) in K. In
view of Theorem 2 we denote by α a root of X2(X − λ) + 1. The Puiseux
series at infinity can be interpreted as the “asymptotic” expansion of α. We
compute the Puiseux series of X2(X − T ) + 1 and obtain

α1 = T − 1
T 2

− 2
T 5

+ · · · ,

α2 =
1

T 1/2
+

1
2T 2

+
5

8T 7/2
+ · · · ,

α3 = − 1
T 1/2

+
1

2T 2
− 5

8T 7/2
+ · · · .

(8)

Therefore we have proved Theorem 2 in the special case λ = T . Since
Puiseux series are formal power series we may replace T by λ(T ) and replace√

λ(T ) by one of the Puiseux series of X2 − λ(T ) at ∞. Let l = deg λ > 0
and al the leading coefficient of λ. We obtain after replacing and rearranging
the power series (8) the series

α1 = alT
l + · · ·

α2 =
1
√

al
T−l/2 + · · ·

α3 = − 1
√

al
T−l/2 + · · ·

Obviously K is ramified at infinity if l is odd. So it remains to show that
K is unramified at infinity if l is even. A close look on Puiseux’s theorem
shows that if the series of α2 and α3 correspond to the same ramified valu-
ation then, the coefficients coincide for every integral exponent. Therefore
ramification at infinity can only occur if

√
al = −√al, hence al = 0, but

this is a contradiction to the assumption that alT
l is the leading term of λ.

Therefore the valuation at infinity is unramified in this case, which proves
Theorem 2.
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4. Fundamental Units

In order to solve Diophantine equations (2) and (3) we have to investigate
the structure of C[T, α]∗. In particular we prove:

Proposition 4. Let α be a root of F (κ, λ) with κ 6= 0 then, C[T, α]∗ =
〈α, α − κ〉 × C∗. If α is a root of F (0, λ;X) and deg λ = l is odd, then
C[T, α]∗ = 〈α〉 × C∗.

Let ε ∈ C[T, α]∗ and ε1 := ε, ε2 and ε3 its conjugates, then we have

(9) εi = h0 + h1αi + h2α
2
i (1 ≤ i ≤ 3),

with h0, h1, h2 ∈ C[T ]. Solving this linear system by Cramer’s rule one
obtains

h0 =
ε1α2α3(α3 − α2) + ε2α3α1(α1 − α3) + ε3α1α2(α2 − α1)

δ
,

h1 =
ε1(α2 + α3)(α2 − α3) + ε2(α3 + α1)(α3 − α1) + ε3(α1 + α2)(α1 − α2)

δ
,

h2 =
ε1(α3 − α2) + ε2(α1 − α3) + ε3(α2 − α1)

δ
,

(10)

where

δ = det(αi−1
j )1≤i,j≤3 = (α1 − α2)(α2 − α3)(α3 − α1)

is the square root of the discriminant of F (κ, λ) resp. F (0, λ).
We know that h0, h1 and h2 ∈ C[T ], that is their valuations at infinity

are ≤ 0 or = +∞. The following lemma is essential for proving Proposition
4.

Lemma 4. Let ε ∈ C[T, α]∗ \C∗ then H(ε) ≥ deg λ+deg κ if α is a root of
F (κ, λ) with κ 6= 0, and H(ε) ≥ deg λ if α is a root of F (0, λ) and 2 - deg λ.

Proof. We have to distinguish two cases: κ 6= 0, κ = 0 and 2 - l. For the
rest of the proof and also for the rest of the paper we define l := deg λ and
k := deg κ.

In a first step we compute the infinite valuations of α. To obtain the
valuations of α we have to factor F (κ, λ) over C((1/T )). Let

F (κ, λ) =X3 − (λ + κ)X2 + λκX + 1

=
(
X − (a(1)

v1
T v1 + · · ·)

)(
X − (a(2)

v2
T v2 + · · ·)

)(
X − (a(3)

v3
T v3 + · · ·)

)
,



298 Volker Ziegler

then −vi are the infinite valuations of α. Let us assume v1 ≥ v2 ≥ v3. By
comparing coefficients we obtain for κ 6= 0

λ + κ =(a(1)
v1

T v1 + · · · ) + (a(2)
v2

T v2 + · · · ) + (a(3)
v3

T v3 + · · · ),

λκ =(a(1)
v1

T v1 + · · · )(a(2)
v2

T v2 + · · · ) + (a(2)
v2

T v2 + · · · )(a(3)
v3

T v3 + · · · )

+ (a(3)
v3

T v3 + · · · )(a(1)
v1

T v1 + · · · ),

−1 =(a(1)
v1

T v1 + · · · )(a(2)
v2

T v2 + · · · )(a(3)
v3

T v3 + · · · ),

hence

max{v1, v2, v3} ≥ l, max{v1 + v2, v2 + v3, v3 + v1} ≥ l +k, v1 + v2 + v3 = 0.

In the case of v1 = v2 = v3 we have v1 = v2 = v3 = 0, hence l ≤ 0 which
is a contradiction. If v1 = v2 > v3, then 2v1 = l + k, but max(v1, v2, v3) =
l/2 + k/2 < l, again a contradiction. Let v1 > v2 = v3. Then v1 = l, hence
v2 ≥ k and v1 + v2 + v3 ≥ l + 2k > 0. Now assume v1 > v2 > v3, then we
have v1 = l, v1 + v2 = l + k and v1 + v2 + v3 = 0, hence v1 = l, v2 = k and
v3 = −l − k.

In the case of κ = 0 we similarly obtain v1 = l and v2 = v3 = −l/2.
Moreover it is easy to compute the a’s. We find that a

(1)
l = al and a

(2)
l/2 =

−a
(3)
l/2 = 1√

al
where al is the leading coefficient of λ. Note that we have

already proved this in section 3.
First we study the case κ 6= 0. Let ∞1,∞2 and ∞3 be the infinite valua-

tions of K = C(T, α) such that (α) = −l∞1−k∞2+(l+k)∞3 is the princi-
pal divisor of α. Moreover, let ε ∈ C[T, α]∗ with (ε) = e1∞1 +e2∞2 +e3∞3

and ε = h0 + h1α + h2α
2. We denote by di the degree of hi with i = 0, 1, 2.

In the case of hi = 0 we set di = −∞. We note that if two of the h’s are
zero it is easy to see that Lemma 4 holds.

Let m = min{−d0,−d1 − l,−d2 − 2l}. First we suppose −d0 = m. Since
l > k we get −d0 < min{−d1 − k,−d2 − 2k} and −d0 < min{−d1 + l +
k,−d2 + 2l + 2k} and therefore e2 = e3 = −d0 ≤ −d2 − 2l ≤ 2l if h2 6= 0
and e2 = e3 = −d0 ≤ −d1 − l ≤ −l if h1 6= 0, hence |e1| = |e2 + e3| ≥ 2l
and HK(ε) ≥ 2l ≥ l + k. Now we assume −d1 − l = m < −d2 − 2l or
−d2−2l = m is the sole minimum. Then e1 = m ≤ −2l and again HK(ε) ≥
2l ≥ l + k. At last we assume −d1 − l = −d2 − 2l = m 6= −d0 note that in
this case d1 or d2 cannot be −∞. Then d1 = d2 + l and the minimum of
{−d0,−d1−k,−d2−2k} is either −d0 or −d1−k = −d2−l−k. If d0 6= d1+k
then e2 is equal to the minimum which is ≤ −d2 − l− k. If d0 = d1 + k we
have (−d0,−d1 + l+k,−d2 +2l+2k) = (−d1−k,−d1 + l+k,−d1 + l+2k).
The sole minimum of this set is e3 = −d1 − k = −d2 − l − k ≤ −l − k.

Now let us consider the case κ = 0 and 2 - l. In this case (α) = −l∞1 +
l∞2, where ∞2 denotes the ramified valuation. Moreover we let (ε) =
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e1∞1 + e2∞2. Note that e1 = −e2, because ε is a unit of C[T, α]. This
time we put m = min{−d0,−d1 − l,−d2 − 2l}.

Suppose m = −d0 then −2d0 < min{−2d1 + l,−2d2 + 2l}, i.e. e2 =
−2d0 = 2m ≤ −2d2 − 4l ≤ −4l if h2 6= 0 and e2 ≤ −2d1 − 2l ≤ −2l
if h1 6= 0. If m = −d1 − l or m = −d2 − 2l is the sole minimum, then
e1 = −d1 − l or e1 = −d2 − 2l. In any case HK(ε) = |e1| ≥ l. Now let
us assume −d1 − l = −d2 − 2l = m respectively d1 = d2 + l. We find
(−2d0,−2d1 + l,−2d2 + 2l) = (−2d0,−2d1 + l,−2d1 + 4l). Either −2d0 or
−2d1+l = −2d2−l is the sole minimum or 2d0 = 2d1+l. The first two cases
yield that e2 is equal to the sole minimum which is at most −2d2− l ≤ −l,
hence HK(ε) ≥ l. The last case is impossible since l is odd. �

Now we prove C[T, α]∗ = 〈α, α − κ〉 × C∗. Let us write η1 = α and
η2 = α− κ. Moreover, we define the map

log : C[T, α]∗ → R2 log(ε) 7→ (e1, e2),

where (ε) = e1∞1+e2∞2+e3∞3. Obviously log(C[T, α]∗) is a lattice Λ ⊂ Z2

and we have ker log = C∗. Therefore we have to prove log(η1) and log(η2)
generate Λ or equivalently log(η1) = (−l,−k) = ω1 and log(η1/η2) = (0, l+
2k) = ω2 generate Λ. Now let ε be any unit with log(ε) = (e1, e2). It is
clear that subtracting from (e1, e2) suitable (integral) multiples of ω1 and
ω2 we obtain a new vector (e′1, e

′
2) with −l/2 ≤ e′1 < l/2 and −(l +2k)/2 ≤

e′2 < (l + 2k)/2. By Lemma 4 we know max{|e1|, |e2|, |e1 + e2|} ≥ l + k or
ε ∈ C∗. Therefore (e′1, e

′
2) = (0, 0), i.e. ω1 and ω2 generate Λ.

In the case of F (0, λ) and 2 - l the proof is easier. This time we define
our log-map as follows:

log : C[T, α]∗ → R log(ε) 7→ e1,

where (ε) = e1∞1 + e2∞2. Again log(C[T, α]∗) is a lattice Λ ⊂ Z and we
have ker log = C∗. Therefore we have to prove that log(α) = −l generates
Λ. Because of Lemma 4 we know that for any ε ∈ C[T, α]∗ \ C∗ we have
| log(ε)| ≥ l and therefore log(ε) must be a multiple of log(α). Otherwise
there would exist an integer k such that

−l/2 ≤ log(ε′) = log(εα−k) = log(ε)− k log(α) < l/2

and log(ε′) 6= 0, a contradiction.
The next lemma tells us something about the valuations of units in the

case of κ = 0 and 2|l.
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Lemma 5. Let ε ∈ C[T, α]∗ \ C∗. Then H(ε) ≥ deg λ/2, if α is a root
of F (0, λ) and 2|deg λ. Let (ε) = e1∞1 + e2∞2 + e3∞3, where we choose
∞1,∞2,∞3 such that (α) = −l∞1 + l/2∞2 + l/2∞3. We have

|e1| ≥ l, if |e1| = max
i
|ei|,

|e2| ≥ l/2, if |e2| = max
i
|ei|,(11)

|e3| ≥ l/2, if |e3| = max
i
|ei|.

Proof. In order to prove this lemma we have to consider the normal closure
L = C(T, α1 − α2) of K = C(T, α). We have to compute the valuations in
the closure, since we want to compute the degree of h2 in terms of e1, e2

and e3 using (10). For the valuations of the relevant quantities see table 2.

Table 2. Valuations of the relevant quantities.

σ1 :
α1 − α2

7→
α1 − α2

σ2 :
α1 − α2

7→
α1 − α3

σ3 :
α1 − α2

7→
α2 − α3

σ4 :
α1 − α2

7→
α2 − α1

σ5 :
α1 − α2

7→
α3 − α1

σ6 :
α1 − α2

7→
α3 − α2

α1 − α2 −l −l l/2 −l −l l/2
α2 − α3 l/2 l/2 −l −l −l −l
α3 − α1 −l −l −l l/2 l/2 −l

α1 −l −l l/2 l/2 l/2 l/2
α2 l/2 l/2 l/2 −l −l l/2
α3 l/2 l/2 −l l/2 l/2 −l

At first, note that L is unramified above ∞, since with K1 = C(T, α1)
and K2 = C(T, α2) also L = K1K2 is unramified. We obtain(

ε1(α3 − α2)
δ

)
∞

=(e1 + 2l)∞1 + (e1 + 2l)∞2 + (e2 + l/2)∞3

+ (e2 + l/2)∞4 + (e3 + l/2)∞5 + (e3 + l/2)∞6,(
ε2(α1 − α3)

δ

)
∞

=(e2 + l/2)∞1 + (e3 + l/2)∞2 + (e3 + l/2)∞3

+ (e1 + 2l)∞4 + (e1 + 2l)∞5 + (e2 + l/2)∞6,(
ε3(α2 − α1)

δ

)
∞

=(e3 + l/2)∞1 + (e2 + l/2)∞2 + (e1 + 2l)∞3

+ (e3 + l/2)∞4 + (e2 + l/2)∞5 + (e1 + 2l)∞6,

where (·)∞ denotes the polar divisor, ∞i is the valuation corresponding to
σi and

(ε)∞ = e1∞1 + e1∞2 + e2∞3 + e2∞4 + e3∞5 + e3∞6.
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Now let m = min{e1 + 2l, e2 + l/2, e3 + l/2}. We know 0 ≥ −deg h2 ≥ m if
h2 6= 0. This can only happen if either e1 ≤ −2l or e2 ≤ −l/2 or e3 ≤ −l/2.
Therefore (11) is satisfied in this case.

Now we want to prove that HK(ε) ≥ l if h2 = 0. We use the same method
as used in the proof of Lemma 4. Remind that di = deg hi for i = 0, 1. Let
m = min{−d0,−d1 − l}. Assume m = −d0, then −d0 < −d1 + l/2 and
e2 = −d0 ≤ −d1− l ≤ −l. On the other hand if −d1− l is the sole minimum
of {−d0,−d1 − l} then e1 = −d1 − l ≤ −l. �

5. Bounding the height of the solutions

The aim of this section is to prove an upper bound for the solutions to (2)
resp. (3). We start with some notations usually used in the case of number
fields. Let (X, Y ) be a solution to (2) resp. (3) and let αi, with i = 1, 2, 3
be the roots of F (κ, λ) resp. F (0, λ). Then we define

αi,j := αi − αj , βi := X − αiY, γi,j,k := βiαj,k,

and we write β := β1 = X−αY . Equation (2) resp. (3) may be expressed as
NK/C(T )(X−αY ) = ξ, where NK/C(T ) denotes the norm from K = C(T, α)
to C(T ). From this norm notation we deduce βi ∈ C[T, α]∗. We denote
by L := K(α2, α3) = C(T, α1 − α2) the splitting field of F (κ, λ). If K is
Galois then K = L. By δK respectively δL we denote the discriminant of
the Dedekind ring extension OK/C[T ] respectively OL/C[T ]. By δ̂K respec-
tively δ̂L we denote the discriminant of the element α1 respectively α1−α2.

In order to get sharp estimates for the height of β we investigate Mason’s
approach to Thue equations (see [12, 14]). In particular we use Siegel’s
identity

γ1,2,3 + γ2,3,1 + γ3,1,2 = 0

and combine it with the ABC-Theorem (Proposition 1), respectively with
Mason’s fundamental lemma (Corollary 1).

In the following we distinguish whether K = C(T, α) is Galois or not.
We start by factoring the discriminant. Let OL denote the algebraic closure
of C[T ] in L = C(T, α1, α2, α3) = C(T, α1 − α2). Since C[T, α1 − α2] ⊂ OL

we compute the discriminant δ̃ = δ(α1 − α2). If K is Galois, then

δ̂K = δ̃ = (α1 − α2)2(α2 − α3)2(α3 − α1)2.

If K is not Galois, we find

δ̂L = δ̃ =64(α1 − α2)6(α2 − α3)6(α3 − α1)6

× (2α1 − α2 − α3)4(2α2 − α1 − α3)4(2α3 − α1 − α2)4.

Note that δ̃ is a symmetric polynomial in α1, α2 and α3. Therefore we can
write δ̃ as a polynomial in s1 = α1+α2+α3 = λκ, s2 = α1α2+α2α3+α3α1 =
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λ+κ and s3 = α1α2α3 = −1. A symbolic computation e.g. in Mathematica
shows

δ̂L = 64(27− 2κ3 + 3κ2λ + 3κλ2 − 2λ3)4

× (−27− 6κλ2 + κ4λ2 + 4λ3 + κ2λ(−6 + λ3)− 2κ3(−2 + λ3))3,

respectively

δ̂K = −27− 4κ3λ3 − 18κλ(κ + λ) + κ2λ2(κ + λ)2 + 4(κ + λ)3.

Now it is easy to deduce deg δ̂K = 4l + 2k, if K is Galois and deg δ̂L =
24l + 6k if K is not Galois and κ 6= 0, respectively deg δ̂L = 21l if κ = 0.

First, let us consider the non-Galois case. Since the discriminant (cf.
section 2)

δL = (p1,2 · · · pr2,2)3(p1,3 · · · pr3,3)4(p1,6 · · · pr6,6)5 = (dL),

we have

dL =
r2∏

g=1

(T − ag,2)3
r3∏

g=1

(T − ag,3)4
r6∏

g=1

(T − ag,6)5

and δ̂L = dLR2 with dL, R ∈ C[T ]: Note that the pi,j are the primes gener-
ated by T − ai,j .Therefore we have

(12) deg δ̂L = 3r2 + 4r3 + 5r6 + 2r,

where ri is the number of finite primes ramified with ramification index
e = i and where r = deg R. In the Galois case we obtain similarly

(13) deg δ̂L = 2r3 + 2r.

Note that in the case of κ = 0 and l ≡ 1 (mod 2) also the infinite prime is
ramified with ramification index 2.

We have to consider four different cases: the case of K is Galois (case I),
this implies κ 6= 0 (see Lemma 2), the case of K is not Galois and κ 6= 0
(case II), the case of κ = 0 and l is odd (case III) and at last the case of
κ = 0 and l is even (case IV).

First we compute the genus gL of L. By the Hurwitz-formula (Proposition
3) we obtain

2gL − 2 = −6 + 2r3 (case I),
2gL − 2 = −12 + 5r6 + 4r3 + 3r2 (case II),
2gL − 2 = −9 + 5r6 + 4r3 + 3r2 (case III),
2gL − 2 = −12 + 5r6 + 4r3 + 3r2 (case IV).

In view of Corollary 1 we have to compute the quantity |V|, where V is
the set of valuations such that γ1,2,3, γ2,3,1 and γ3,1,2 do not have the same
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valuation. Obviously

V ⊂ V ′ := {ν : ν(γ1,2,3γ2,3,1γ3,1,2) 6= 0} ∪ {ν : ν|∞}

= {ν : ν(δ̂) 6= 0} ∪ {ν : ν|∞}.

Let us consider case I. Since the finite part of V ′ are those primes (valua-
tions) that divide δ̂K = dKR2 we have |V ′| = r3 + 2r + 3, where

dK = (α1 − α2)2(α2 − α3)2(α3 − α1)2 =
r3∏

g=1

(T − ag,3)2.

Now we investigate the other three cases. The finite parts of the V ′’s
are the same, so we have essentially only one case. We obtain in any case
|V ′0| ≤ r6 + 2r3 + 3r2 + 6r, where V ′0 denotes the finite part of V ′. In order
to obtain |V ′|, we have to add 6 or 3 or 6 according to the different cases.

Now we apply Mason’s fundamental lemma (Corollary 1) and obtain:

HL

(
γ1,2,3

γ2,3,1

)
≤3(r3 + r − 1) (case I),

HL

(
γ1,2,3

γ2,3,1

)
≤6(r6 + r3 + r2 + r − 1) (case II, III, IV),

where HL denotes the height of elements in L.
Next we want to obtain an upper bound for HL

(
β1

β2

)
. Let us denote by

Ha(α) := −
∑
ω|νa

min(0, ω(α)), a ∈ C ∪ {∞}

the local height. Obviously, we have

(14) HL(α) =
∑

a∈C∪{∞}
Ha(α).

Using notation (14) we obtain

HL

(
γ1,2,3

γ2,3,1

)
=
∑

νa∈V0

Ha

(
α2,3

α3,1

)
+ H∞

(
γ1,2,3

γ2,3,1

)

≥H∞

(
β1

β2
· α2,3

α3,1

)

≥H∞

(
β1

β2

)
−H∞

(
α2,3

α3,1

)
.

(15)

Now we have to estimate the quantity HL(α2,3/α3,1). In order to get
good estimates we have to consider the normal closure and compute some
valuations. Since we know the valuation of α, it is easy to compute table 3.
Note that if K is Galois σ2, σ4 and σ6 are not elements of the Galois group
of K and should not be considered in that case.
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Table 3. Valuations of the relevant quantities.

σ1 :
α1 − α2

7→
α1 − α2

σ2 :
α1 − α2

7→
α1 − α3

σ3 :
α1 − α2

7→
α2 − α3

σ4 :
α1 − α2

7→
α2 − α1

σ5 :
α1 − α2

7→
α3 − α1

σ6 :
α1 − α2

7→
α3 − α2

α1 −l −l −k −k l + k l + k
α2 −k l + k l + k −l −l −k
α3 l + k −k −l l + k −k −l

α1 − α2 −l −l −k −l −l −k
α2 − α3 −k −k −l −l −l −l
α3 − α1 −l −l −l −k −k −l

Now we find from tables 2 and 3

HL

(
α2,3

α3,1

)
≤l − k (case I),

HL

(
α2,3

α3,1

)
≤2l − 2k (case II),

HL

(
α2,3

α3,1

)
≤3l (case III, IV).

Next we are going to prove that 2
3HL

(
β1

β2

)
≥ HL(β1). We consider only

the cases II, III and IV, for which the proofs are the same. The proof of
case I is similar. Since β1 ∈ K we may assume

(β1) = b1∞1 + b1∞2 + b2∞3 + b2∞4 + b3∞5 + b3∞6,

where the valuations ∞i are indicated by the σi given by table 3. Then

(β2) = b2∞1 + b3∞2 + b3∞3 + b1∞4 + b1∞5 + b2∞6,

and furthermore

(β1/β2) =(b1 − b2)∞1 + (b1 − b3)∞2 + (b2 − b3)∞3 + (b2 − b1)∞4

+ (b3 − b1)∞5 + (b3 − b2)∞6.

Let us assume b1 > 0 ≥ b2 ≥ b3 (all other cases run the same way, since
we have HL(β1) = 2maxi |bi|). We have b1 = −b2 − b3 and −b3 ≥ 1

2b1,
since β1 is a unit in OK . We also know that HL(β1) = 2b1 and HL

(
β1

β2

)
=

2b1 − 2b3 ≥ 3b1 = 3
2HL(β1).

The cases II, III and IV yield HL(β1) = 2HK(β1). Therefore we obtain

(16)
HK(β1) ≤2(r3 + r − 1) + 2

3 l − 2
3k (case I),

HK(β1) ≤2(r6 + r3 + r2 + r − 1) + 2
3 l − 2

3k (case II),
HK(β1) ≤2(r6 + r3 + r2 + r − 1) + l (case III, IV).

From (12), (13) and (16) we find:
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Lemma 6. If K is Galois we have HK(β1) < 7l and HK(β1) < 31l if K
is not Galois. In the case of κ = 0 we have HK(β1) < 22l. If we assume
34 deg κ < deg λ, then we obtain the following improvements: If K is Galois,
then HK(β1) < 5l. In the non-Galois case we obtain HK(β1) < 25l.

Proof. The lemma follows from the following inequalities:

HK(β1) ≤2(r3 + r − 1) +
2
3
l − 2

3
k = 2r3 + 2r − 2 +

2
3
l − 2

3
k

=deg δ̃L − 2 +
2
3
l − 2

3
k = 4l + 2k +

2
3
l − 2

3
k (case I),

HK(β1) ≤2(r6 + r3 + r2 + r − 1) +
2
3
l − 2

3
k

≤deg δ̃L − 2 +
2
3
l − 2

3
k = 24l + 6k +

2
3
l − 2

3
k (case II),

HK(β1) ≤2(r6 + r3 + r2 + r − 1) + l

≤deg δ̃L − 2 + l = 22l − 2 < 22l (case III, IV).

�

6. Proof of theorem 1 and theorem 3

We start with the proof of Theorem 1. First let us assume that κ is not
a constant. From Lemma 6 we know HK(β1) < 31l. We also know that
β1 = εηa1

1 ηa2
2 , with a1, a2 ∈ Z, η1 = α1, η2 = α1−κ and ε ∈ C∗. This yields

(β1) = −(a1 + a2)l∞1 + ((a2 − a1)k + a2l)∞2 + ((a1 − a2)k + a1l)∞3.

Therefore 31l > HK(β1) ≥ l max{|a1+a2|, |a1|, |a2|}, hence 30 ≥ max{|a1+
a2|, |a1|, |a2|}. This yields 2791 possibilities for (a1, a2). We compute for
every possibility the quantity β1 in the form of X0 + X1α1 + X2α

2
1. It is

clear that β1 yields a solution, namely (X0,−X1), to (2), if and only if
X2 = 0.

Unconditionally X2 = 0, if and only if (a1, a2) ∈ E , with

E := {(−1,−1), (0, 0), (1, 0), (0, 1)}.

From these β’s we obtain the trivial solutions. The strategy to prove
that there are essentially only trivial solutions is to prove for every pos-
sible β that X2 does not vanish (with only some possible exceptions).
Let us consider X2 as a polynomial in λ and κ. We use following sim-
ple criterion to exclude some X2’s. Let us consider the following degree
function d̂egP := degλ P + degκ P , where degκ P resp. degλ P denotes
the degree of P considered as a polynomial in κ and λ. Let M1 and
M2 be two monomials of P we write M1

∗
> M2 if d̂egM1 > d̂egM2 or
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d̂egM1 = d̂egM2 and degλ M1 > degλ M2. If the largest monomial M with
respect to

∗
> has maximal λ-exponent, then P cannot be zero. Indeed M

is the unique monomial which has maximal degree in T , since we assume
deg λ > deg κ > 0. Using this criterion for P = X2 there remain only 392
exponents (a1, a2). Let us pick out the exponents (4,−1) and (−1, 4), for
which we find X2 = λ+2κ−κ4 respectively X2 = λ−3κ−κ4. These values
yield the “sporadic” solutions stated in Conjecture 1. Furthermore, we pick
out the exponents (5,−1) and (−1, 5), for which X2 = λ2 + 2λκ + 3κ2− κ5

respectively X2 = λ2− 4λκ + 6κ2 + κ5. We want to prove that in these two
cases X2 = 0 is not possible.

Lemma 7. The equations

X2 + 2XY + 3Y 2 − Y 5 = 0

and
X2 − 4XY + 6Y 2 + Y 5 = 0

do not have a solution (X, Y ) ∈ C[T ]2, such that X is not a constant.

Proof. Put X +Y = Z respectively X−2Y = Z, then we have to show that
Z2 = Y 5 − Y 2 respectively Z2 = −Y 5 − 2Y 2 has only constant solutions.
Because of a theorem of Mason [13] (see Lemma 3) we can easily show
that H(Z) ≤ 0 in both cases. Therefore Z is a constant, hence also Y is a
constant. Since X = Z − Y resp. X = Z + 2Y also X is a constant, which
yields the lemma. Not that instead of Mason’s theorem we could also apply
a theorem of Ribenboim [16]. �

In order to proof Conjecture 1 we have to show that the 388 remaining
equations arising from X2 = 0 have only constant solutions. The author
could only solve the 4 cases stated above.

Let us prove the second statement of Theorem 1. Note that each exponent
(a1, a2) yields for fixed κ and λ at most three solutions. Indeed one receives
from one solution all other solutions by multiplying this solution by the
third roots of ξ. So we are reduced to determine how many λ’s exist that
yield solutions, if κ is fixed. We want to count the number of solutions
of the 388 remaining equations. Since one equation has at most degλ X2

solutions, provided κ is fixed we add the degrees of all 388 possibilities and
obtain that there are at most 5482 different λ’s. Adding the two possibilities
that we gain from the exponents (4,−1) and (−1, 4) we have at most 5484
different λ’s and therefore at most 16452 non-trivial solutions.

Now let us prove that there are only trivial solutions if deg λ > 34 deg κ.
Lemma 6 and a similar argument as above yields that only exponents
(a1, a2) with max{|a1|, |a2|, |a1 + a2|} ≤ 24 yield solutions to (2). Let us
modify the degree argument given above, by using the weighted degree
function d̂egP := 34 degλ P + degκ P instead. Now the criterion that the
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largest monomial has maximal λ exponent together with the assumption
deg λ > 34 deg κ yields that this monomial has unique maximal degree,
with respect to T and therefore X2 cannot be zero. A short computation
on a computer shows that this criterion is always fulfilled for all 1801 pos-
sibilities and therefore we have proved the first part of Theorem 1.

Now we consider the case of κ ∈ C∗. The quantity X2 considered as
polynomial in κ and λ may only vanish if there is either no monomial or at
least two monomials for each power of λ. Checking all possibilities we are
left to 48 cases. Next we check whether the constant term, the coefficients
of λ and λ2 can vanish simultaneously. This yields that (a1, a2) ∈ E , where

E := {(−1,−1), (−1, 3), (0, 0), (0, 1), (1, 0), (3,−1)}.
These exponents only yield the trivial solutions and the 6 exceptions listed
in table 1.

Now we prove Theorem 3. The argument is the same but easier, because
we have only one exponent to keep track of. We know β1 is a unit and
therefore β1 = εαa1

1 (see Proposition 4), with ε ∈ C∗. If we combine this
result with Lemma 6 we obtain

22l > HK(β1) = |a1|l,
and therefore |a1| ≤ 21. We compute each possible β1 = X0+X1α1+X2α

2
1.

Of course β1 yields a solution if and only if X2 = 0. Unconditionally X2 = 0
if a1 ∈ {−2, 0, 1}. These values for a1 yield the trivial solutions. We have to
prove that there are no further possibilities for X2 to vanish. A close look
on the other X2 shows that they are polynomials only in λ and so X2 = 0
is impossible, since λ is not a constant.

7. Proof of theorem 4

Since there is no analog of Dirichlet’s unit theorem for function fields we
only know that the unit group of OK has rank at most 2. Since we have
found one non-constant unit we know that the rank is at least 1. In the case
of rank 1 the proof of Theorem 4 is the same as the proof of Theorem 3,
and we obtain only 9 different solutions. Indeed α generates the unit group
since the log-function defined in section maps C[T, α]∗ on a line through
log(α) = (−l, l/2) and (0, 0). But log(α) would be the smallest element on
that line that lies inside (11).

Now let us assume the rank of the unit group is 2. As stated in the
paragraph above α1 6= ηk for any unit η ∈ C[T, α1]∗ and |k| > 1. There-
fore we can write β1 = εαa1

1 ηa2 , where ε ∈ C∗, α1 and η are a system of
fundamental units and a1, a2 ∈ Z. We reduce this counting problem to a
problem of counting lattice points in a domain. Since β1 is a unit we map
β1 to the plane R2 using the log function, defined in section 4. We know
that the units form a lattice Λ ⊂ Z2. Furthermore we know that no lattice
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point lies in the open domain A given by (11). Since A is not convex we
consider the convex domain D := {(e1, e2) : max{|e1|, |e2|} < l/2} ⊂ A. By
Minkowski’s famous theorem we know that the lattice constant of Λ is at
least l2/4, since |D| = l2, where |D| denotes the area of D. In order to proof
Theorem 4 we have to estimate the number of lattice points of Λ lying in
the domain

S :=
{
|e1 + e2| < 22l if sign e1 = sign e2,
max{|e1|, |e2|} < 22l if sign e1 6= sign e2.

Let us consider the domain

S ′ :=
{
|e1 + e2| < (22 + 1/4)l if sign e1 = sign e2,
max{|e1|, |e2|} < (22 + 1/4)l if sign e1 6= sign e2.

Then every domain 1
2D + ω such that ω ∈ Λ ∩ S is contained in S ′. Since

all 1
2D + ω are disjoint, we have

]{ω : ω ∈ Λ ∩ S}
∣∣∣∣12D

∣∣∣∣ ≤ |S ′|,

hence

]{ω : ω ∈ Λ ∩ S} ≤ 3(22 + 1/4)2l2

(l/2)2
= 5940.75.

Therefore we have only 5940 possibilities for the exponents (a1, a2) of β1.
Obviously exponents of the form (a1, 0) yield only solutions that appear in
the case of l ≡ 1 (mod 2). Since in this case we only have trivial solutions,
we may exclude the 43 possibilities given by (a1, 0). So we are left to 5897
possibilities. Since every pair of exponents yields at most three solutions
we have proved Theorem 4.
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