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Sieve methods for varieties over finite fields and
arithmetic schemes

par Bjorn POONEN

Résumé. Des méthodes du crible classiques en théorie analytique
des nombres ont été récemment adaptées à un cadre géométrique.
Dans ce nouveau cadre, les nombres premiers sont remplacés par
les points fermés d’une variété algébrique sur un corps fini ou plus
généralement un schéma de type fini sur Z. Nous présentons la
méthode et certains des résultats surprenants qui en découlent.
Par exemple, la probabilité qu’une courbe plane sur F2 soit lisse
est asymptotiquement 21/64 quand son degré tend vers l’infini. La
plus grande partie de cet article est une exposition des résultats
de [Poo04] et [Ngu05].

Abstract. Classical sieve methods of analytic number theory
have recently been adapted to a geometric setting. In the new
setting, the primes are replaced by the closed points of a variety
over a finite field or more generally of a scheme of finite type over
Z. We will present the method and some of the surprising results
that have been proved using it. For instance, the probability that
a plane curve over F2 is smooth is asymptotically 21/64 as its
degree tends to infinity. Much of this paper is an exposition of
results in [Poo04] and [Ngu05].

1. Squarefree integers

Before discussing our geometric sieve, let us recall a simple application
of classical sieve techniques, to the counting of squarefree integers.

Consider the problem of determining the “probability” that a “random”
positive integer is squarefree. To make sense of this problem, we should
clarify what is meant by probability, since the set of positive integers is
countably infinite. For any subset S ⊆ N, define the density of S as the
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limit

µ(S) := lim
B→∞

#(S ∩ [1, B])
B

.

In other words, we compute the fraction of the integers from 1 to B that
belong to S, and then let B tend to ∞.

From now on, we interpret “the probability that a positive integer is
squarefree” as the density of the set S of squarefree positive integers. We
can guess the answer by using the following reasoning. An integer n is
squarefree if and only if for all primes p, the integer p2 does not divide
n. For each prime p, the probability that an integer is divisible by p2 is
1/p2, so the probability that the integer is not divisible by p2 is 1 − 1/p2.
These conditions for different p should be independent, by the Chinese
remainder theorem. Therefore one predicts that the density of squarefree
integers equals ∏

prime p

(1− p−2) = ζ(2)−1 = 6/π2,

where ζ(s) is the Riemann zeta function, defined by

ζ(s) :=
∑
n≥1

n−s =
∏

prime p

(1− p−s)−1

for Re(s) > 1 (which is all we need).
It is not immediate that this heuristic prediction can be made rigorous.

The Chinese remainder theorem does imply that for any finite set S of
primes, the density of positive integers not divisible by p2 for any p ∈ S
equals

∏
p∈S(1−p−2). But the argument breaks down if we try to apply the

Chinese remainder theorem to infinitely many primes. In other words, the
difficulty is that to prove a density result for squarefree integers, we must
let S grow to include all primes before letting B tend to infinity, but the
argument so far shows only that when B is sufficiently large relative to the
primes in S, then the number of such integers in [1, B] is approximately
B
∏

p∈S(1− p−2).
One approach that works is to approximate the condition of being square-

free by the condition of being “squarefree as far as the primes ≤ r are con-
cerned”, and then to estimate the error in this approximation. As B →∞
for fixed r, the fraction of integers not divisible by p2 for any prime p ≤ r
indeed equals

∏
prime p ≤ r(1 − p−2), by the Chinese remainder theorem.

Bounding the error amounts to bounding the fraction of integers in [1, B]
divisible by p2 for a large prime p (that is, a prime p > r). More precisely,
it remains to show that

lim
r→∞

lim
B→∞

(
#{n ≤ B : n is divisible by p2 for some p > r}

B

)
= 0.



Sieve methods 223

This is easy to prove:

#{n ≤ B : n is divisible by p2 for some p > r}

≤
∑

prime p > r

#{n ≤ B : n is divisible by p2}

=
∑

prime p > r

bB/p2c

≤
∑

integers n > r

B/n2

≤ B

∫ ∞
r

1
x2

dx

= B/r,

so if we divide by B, take the limit as B →∞, and then take the limit as
r →∞, we get 0.

Thus the density of squarefree integers equals

lim
r→∞

∏
prime p ≤ r

(1− p−2) =
∏

prime p

(1− p−2) = ζ(2)−1.

2. Squarefree values of polynomials

For more general problems, the hard part is in bounding the error arising
from ignoring the large primes. Consider for instance the following problem:
Given a polynomial f(x) ∈ Z[x], compute the density of integers n such
that f(n) is squarefree. The naïve heuristic above suggests that the answer
should be

∏
prime p(1 − cp/p2) where cp equals the number of integers n ∈

[0, p2 − 1] for which p2 | f(n).
For fixed r, the density of integers n satisfying the conditions for primes

≤ r can be computed as before, by using the Chinese remainder theorem.
Assuming r exceeds the discriminant of f , Hensel’s lemma shows that there
are at most deg f solutions x mod p2 to f(x) ≡ 0 (mod p2), so for any
primes p > r, we can bound the number of integers n ∈ [1, B] for which
p2|f(n) by (deg f)dB/p2e. But f(n) for n ≤ B could be as large as (a
constant times) Bdeg f , so we must consider all p up to about B(deg f)/2,
and unfortunately the sum of (deg f)dB/p2e over these primes will be small
compared to B only if deg f ≤ 2.

Thus controlling the error is easy only if deg f ≤ 2. A more complicated
argument [Hoo67] shows that the error can be controlled and the predicted
density proved correct also in the case deg f = 3, but for irreducible f
of degree ≥ 4, there is no known unconditional proof that the conjectural
density is correct (except in cases where there is an obstruction coming from
a single prime, in which case the density is 0). There is only a theorem of
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A. Granville [Gra98] saying that the expected result follows from the abc
conjecture.

3. A function field analogue

There is an obvious function field analogue of the result about the density
of squarefree integers. Namely, for a fixed finite field Fq, one can ask what
fraction of elements of the polynomial ring Fq[t] are squarefree. In this
context one defines the density of a subset S ⊆ Fq[t] as the limit

µ(S) := lim
d→∞

#(S ∩ Fq[t]≤d)
#Fq[t]≤d

,

if the limit exists, where Fq[t]≤d is the set of polynomials in Fq[t] of degree
≤ d.

The sieve argument works as before. One need only replace integer primes
p by monic irreducible polynomials P of Fq[t]. We find that the density of
squarefree elements of Fq[t] equals∏

P

(
1− q−2 deg P

)
,

which turns out to equal 1−1/q, as we will explain later using zeta functions.

4. Closed points and zeta functions

To generalize, we will need to reinterpret the set of monic irreducible
polynomials in Fq[t] in geometric terms. Namely, the following sets are in
bĳection:

(1) the set of monic irreducible polynomials of Fq[t],
(2) the set of maximal ideals of Fq[t], and
(3) the set of Gal(Fq/Fq)-orbits in A1(Fq).

Namely, given a monic irreducible polynomial, one can take the ideal it
generates in Fq[t], or one can take its set of zeros in A1(Fq).

A closed point on a variety (or scheme of finite type) X over Fq corre-
sponds to a maximal ideal of the affine coordinate ring of an affine open sub-
scheme of X. The closed points of X are in bĳection with the Gal(Fq/Fq)-
orbits in X(Fq). The degree of a closed point is the degree over Fq of the
residue field of the corresponding maximal ideal: it equals the size of the
corresponding Gal(Fq/Fq)-orbit. The zeta function of X can be defined ei-
ther as an Euler product over closed points, or as a generating function for
the sequence of integers #X(Fq), #X(Fq2), #X(Fq3), . . . :

ζX(s) = ZX(q−s) :=
∏

closed P∈X

(
1− q−s deg P

)−1
= exp

( ∞∑
r=1

#X(Fqr)
r

q−rs

)
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for Re(s) > dim X. The power series ZX(T ) ∈ Z[[T ]] is (the Taylor series
of) a rational function [Dwo60], as was conjectured by A. Weil [Wei49]. The
Euler product definition extends also to schemes X of finite type over Z.

The density of squarefree elements of Fq[t] is ζA1(2)−1 as given by the
product definition. The other definition shows that ZA1(T ) = 1/(1 − qT ),
so this density equals

ZA1(q−2)−1 = 1− qq−2 = 1− 1/q.

5. Smooth plane curves

We now consider a more geometric problem. What is the density of
homogeneous polynomials f ∈ Fq[x, y, z] such that the plane curve f = 0
in P2 is smooth (of dimension 1)? (Density is defined as the limit as d →∞
of the fraction of the degree-d homogeneous polynomials which satisfy the
desired condition.)

Smoothness can be tested locally. Therefore we will start with all ho-
mogeneous polynomials f of degree d and sieve out, for each closed point
P ∈ P2, those f for which the curve f = 0 has a singularity at P . The
condition that f = 0 has a singularity at P amounts to 3 linear conditions
on the Taylor coefficients of a dehomogenization f̄ of f at P (namely, the
vanishing of f̄ and its two partial derivatives at P ), and these linear con-
ditions are over the residue field of P . It follows that the density of f such
that f = 0 has a singularity at P equals q−3 deg P . This suggests the guess
that the density of f defining a smooth plane curve equals∏

closed P ∈ P2

(
1− q−3 deg P

)
= ζP2(3)−1

= (1− q−1)(1− q−2)(1− q−3),

where the last equality comes from substituting T = q−3 in

ZP2(T )−1 = (1− T )(1− qT )(1− q2T ).

Taking q = 2 gives 21/64.
The guess turns out to be correct, although the proof is much more

difficult than the proof for squarefree integers or polynomials. To control the
error arising from ignoring the conditions from closed points of high degree,
we exploit the fact that p-th powers in characteristic p have derivative 0 in
order to decouple the partial derivatives; the argument also uses Bézout’s
theorem. See [Poo04] for details.

6. Bertini theorems

A generalization of the argument of the previous section yields a “Bertini
smoothness theorem” over finite fields.



226 Bjorn Poonen

Suppose first that k is an infinite field. The Bertini smoothness theorem
says that if a subvariety X ⊆ Pn over k is smooth, then for a sufficiently
general hyperplane H ⊂ Pn, the variety H ∩X is smooth too. “Sufficiently
general” here means inside a Zariski dense open subset U of the dual pro-
jective space that parametrizes hyperplanes in Pn. Since k is infinite, the
set U(k) is nonempty, so there exists a hyperplane H over k with H ∩ X
smooth. But if k is finite, this last result can fail: for example, if X is the
hypersurface

n+1∑
i=1

(Xq
i Yi −XiY

q
i ) = 0

in P2n+1 over k = Fq, then every hyperplane over k is tangent to X some-
where [Kat99, pp. 621–622].

N. Katz [Kat99, Question 13] asked whether the Bertini theorem over
finite fields could be salvaged by allowing hypersurfaces of unbounded de-
gree in place of hyperplanes. The closed point sieve yields such a result,
and even gives an asymptotically positive fraction of good hypersurfaces
of degree d, as d → ∞. (The existence of a good hypersurface, for d suffi-
ciently large and divisible by the characteristic p, was shown independently
by O. Gabber [Gab01, Corollary 1.6].)

The result is that if X is a smooth quasiprojective subvariety of Pn of
dimension m over Fq, then the density of f such that {f = 0}∩X is smooth
of dimension m− 1 equals ζX(m + 1)−1 [Poo04].

Perhaps surprisingly, the density is an intrinsic property of X, indepen-
dent of how X is embedded in projective space. Taking X = A1 ⊆ P1, we
recover the result that the density of squarefree polynomials in Fq[t] equals
ζA1(2)−1.

Here are a few applications of the Bertini theorem and its variants:

• Space-filling curves (answering questions of N. Katz [Kat99]): Given
a smooth projective geometrically irreducible variety X of positive
dimension over Fq, there exists a smooth projective geometrically
irreducible curve Y ⊆ X passing through all the Fq-points of X.

• Space-avoiding varieties: Given X as above, and an integer y satis-
fying 1 ≤ y < dim X, there exists a smooth projective geometrically
irreducible variety Y ⊆ X of dimension y such that Y (Fq) = ∅.

• Abelian varieties as quotients of Jacobians: For every nontrivial
abelian variety A over Fq, there is a smooth projective geomet-
rically irreducible curve Y in A such that the induced map from
the Jacobian of Y to A is surjective.

• Brauer groups of surfaces: Q. Liu, D. Lorenzini, and M. Raynaud
[LLR05] used the Bertini theorem (and several other ingredients) to
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show that if X is a smooth projective geometrically irreducible sur-
face over Fq, then the order of Br X is a perfect square.

The Bertini theorem also has a conjectural arithmetic analogue: If X is
a quasiprojective subscheme of Pn

Z that is regular of dimension m, then the
density (suitably defined) of f ∈ Z[x0, . . . , xn] such that {f = 0} ∩ X is
regular of dimension m− 1 equals ζX(m + 1)−1. This is proved in [Poo04]
assuming the abc conjecture and one other conjecture, by making use of
a multivariable extension [Poo03] of Granville’s conditional result [Gra98]
on squarefree values of polynomials. This statement implies both the finite
field Bertini theorem and the fact that the squarefree integers have density
ζ(2)−1 (take X = Spec Z in P0

Z = Spec Z).

7. Whitney embedding theorems

If X is a smooth projective curve over an infinite field k, then there is
a closed immersion X ↪→ P3. To prove this, one starts with X in some
large projective space PN , and iteratively performs projections. One shows
that if N > 3, then composing the embedding X ↪→ PN with a sufficiently
generic projection PN 99K PN−1 yields an embedding X ↪→ PN−1.

The analogous statement for a finite field Fq is false. There are some
obvious obstructions to embedding a smooth curve X in P3. Namely, it can
happen that X has more points over Fq than P3 does! Even if #X(Fq) ≤
#P3(Fq), it could happen that X has more closed points of degree 2 than
P3 does.

N. Nguyen [Ngu05] used the closed point sieve to prove that the obvious
obstructions are the only ones. Namely, he proved that given a smooth curve
X over Fq and an integer n ≥ 3, there exists a closed immersion X ↪→ Pn if
and only if for every e ≥ 1 the number of closed points of degree e on X is
less than or equal to the number of closed points of degree e on Pn. In fact,
he also proved the higher-dimensional analogue: given a smooth variety X
of dimension m and an integer n ≥ 2m + 1, there is a closed immersion
X ↪→ Pn if and only if the conditions on the number of closed points are
satisfied. This proof was even more involved than the proof of the Bertini
theorem, because the conditions on homogeneous polynomials f0, . . . , fn for
the rational map (f0 : · · · : fn) : PN 99K Pn to restrict to a closed immersion
X ↪→ Pn are not local, as were the conditions defining smoothness. Nguyen
had to sieve over pairs of closed points to get his result.

These embedding results are algebraic analogues of the Whitney embed-
ding theorem, which states that every m-dimensional real manifold X can
be embedded in R2m+1 (in fact, Whitney proved that R2m suffices, but his
methods for this stronger result are not algebraic, and indeed this result
fails in the algebraic setting, even over infinite fields).
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8. Lefschetz pencils

One fruitful way to study a variety X ⊆ Pn is to choose a dominant
rational map (f : g) : X 99K P1, say defined by a pair of homogeneous poly-
nomials f, g ∈ k[x0, . . . , xn] of the same degree. The fibers (after blowing
up the indeterminacy locus) form a family of hypersurface sections in X,
namely {λ1f − λ0g = 0} ∩X for (λ0 : λ1) ∈ P1. Ideally, questions about X
can then be reduced to questions about these hypersurface sections, which
are of lower dimension.

Unfortunately, even if X is smooth and the rational map is chosen gener-
ically, some of the hypersurfaces sections may fail to be smooth. The best
one can reasonably expect is that there will be at most finitely many sin-
gular fibers, and each such fiber has the simplest kind of singularity. More
precisely, (f : g) : X 99K P1 defines a Lefschetz pencil if all of the following
hold (after base extension to an algebraically closed field):

(1) The axis f = g = 0 intersects X transversely.
(2) All but finitely many hypersurface sections in the family are smooth.
(3) Each non-smooth hypersurface section has only one singularity, and

that singularity is an ordinary double point.

Over an infinite field k, a dimension-counting argument proves the exis-
tence of Lefschetz pencils for any smooth X ⊆ Pn: see [Kat73]. This was
famously used by P. Deligne to prove the Riemann hypothesis for varieties
over finite fields [Del74, Del80]: for his application, he had the freedom to
enlarge the ground field if necessary, so he needed only the existence of
Lefschetz pencils over an algebraic closure of a finite field.

In any case, the question remained as to whether Lefschetz pencils over k
existed for varieties over k in the case where k is finite. N. Nguyen [Ngu05]
proved such an existence result using the closed point sieve. Again, because
the conditions in the definition of Lefschetz pencil are not all local, he had
to sieve over pairs of closed points.

9. Questions

(1) There seems to be a general principle that if an existence result
about polynomials or n-tuples of polynomials over an infinite field
can be proved by dimension counting, then a corresponding result
over finite fields can be proved by the closed point sieve. Can this
principle be formalized and proved?

(2) The closed point sieve we have discussed is the geometric analogue
of the simplest kind of sieve appearing in analytic number theory.
Are there also geometric analogues of more sophisticated sieves like
the large sieve, and do these have applications?
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(3) What other theorems currently require the hypothesis “Assume
that k is an infinite field”? Hopefully the closed point sieve could
be used to eliminate the hypothesis in many of these.
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