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Arithmetic of linear forms
involving odd zeta values

par WADIM ZUDILIN

RESUME. Une construction hypergéométrique générale de formes
linéaires de valeurs de la fonction zéta aux entiers impairs est
présentée. Cette construction permet de retrouver les records de
Rhin et Violla pour les mesures d’irrationnalité de ¢(2) et ¢(3),
ainsi que d’expliquer les résultats récents de Rivoal sur I'infinité
des valeurs irrationnelles de la fonction zéta aux entiers impairs
et de prouver qu’au moins un des quatre nombres ¢(5), ¢(7), ¢(9)
et ¢(11) est irrationnel.

ABSTRACT. A general hypergeometric construction of linear
forms in (odd) zeta values is presented. The construction allows
to recover the records of Rhin and Viola for the irrationality mea-
sures of ¢(2) and {(3), as well as to explain Rivoal’s recent result
on infiniteness of irrational numbers in the set of odd zeta values,
and to prove that at least one of the four numbers {(5), ¢(7), ¢(9),
and ¢(11) is irrational.

1. Introduction

The story exposed in this paper starts in 1978, when R. Apéry [Ap] gave
a surprising sequence of exercises demonstrating the irrationality of ((2)
and ¢(3). (For a nice explanation of Apéry’s discovery we refer to the re-
view [Po].) Although the irrationality of the even zeta values ((2),¢(4),. ..
for that moment was a classical result (due to L. Euler and F. Lindemann),
Apéry’s proof allows one to obtain a quantitative version of his result, that
is, to evaluate irrationality exponents:

(1.1) n(¢(2)) <11.85078...,  u(¢(3)) <13.41782....

As usual, a value p = p(a) is said to be the irrationality exponent of an
irrational number « if u is the least possible exponent such that for any
€ > 0 the inequality
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has only finitely many solutions in integers p and ¢ with g > 0. The esti-
mates (1.1) ‘immediately’ follow from the asymptotics of Apéry’s rational
approximations to ¢(2) and ¢(3), and the original method of evaluating the
asymptotics is based on second order difference equations with polynomial
coefficients, with Apéry’s approximants as their solutions.

A few months later, F. Beukers [Be] interpretated Apéry’s sequence of ra-
tional approximations to {(2) and ¢(3) in terms of multiple integrals and Le-
gendre polynomials. This approach was continued in later works [DV, Ru],
[Hal]-[Ha5], [HMV], [RV1]-[RV3] and yielded some new evaluations of the
irrationality exponents for ((2), ¢(3), and other mathematical constants.
Improvements of irrationality measures (i.e., upper bounds for irrational-
ity exponents) for mathematical constants are closely related to another
arithmetic approach, of eliminating extra prime numbers in binomials, in-
troduced after G. V. Chudnovsky [Ch] by E. A. Rukhadze [Ru] and studied
in detail by M. Hata [Hal]. For example, the best known estimate for the
irrationality exponent of log2 (this constant sometimes is regarded as a
convergent analogue of ((1) ) stated by Rukhadze [Ru] in 1987 is

(1.2) p(log2) < 3.891399...;

see also [Hal] for the explicit value of the constant on the right-hand side
of (1.2). A further generalization of both the multiple integral approach
and the arithmetic approach brings one to the group structures of G. Rhin
and C. Viola [RV2, RV3]; their method yields the best known estimates for
the irrationality exponents of {(2) and ((3):

(1.3) u(C(2) < 5.441242...,  u(¢(3)) < 5.513890...,

and gives another interpretation [Vi] of Rukhadze’s estimate (1.2).

On the other hand, Apéry’s phenomenon was interpretated by L. A. Gut-
nik [Gu] in terms of complex contour integrals, i.e., Meijer’s G-functions.
This approach allowed the author of [Gu] to prove several partial results
on the irrationality of certain quantities involving ¢(2) and ((3). By the
way of a study of Gutnik’s approach, Yu. V. Nesterenko [Nel] proposed a
new proof of Apéry’s theorem and discovered a new continuous fraction
expansion for ¢(3). In [FN], p. 126, a problem of finding an ‘elementary’
proof of the irrationality of (3) is stated since evaluating asymptotics of
multiple integrals via the Laplace method in [Be] or complex contour inte-
grals via the saddle-point method in [Nel] is far from being simple. Trying
to solve this problem, K. Ball puts forward a well-poised hypergeometric
series, which produces linear forms in 1 and ¢(3) only and can be evalu-
ated by elementary means; however, its ‘obvious’ arithmetic does not allow
one to prove the irrationality of ((3). T. Rivoal [Ril] has realized how to
generalize Ball’s linear form in the spirit of Nikishin’s work [Ni] and to use
well-poised hypergeometric series in the study of the irrationality of odd
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zeta, values ((3),((5),...; in particular, he is able to prove [Ril] that there
are infinitely many irrational numbers in the set of the odd zeta values.
A further generalization of the method in the spirit of [Gu, Nel] via the
use of well-poised Meijer’s G-functions allows Rivoal [Ri4] to demonstrate
the irrationality of at least one of the nine numbers {(5),¢(7),...,¢(21).
Finally, this author [Zul]-[Zu4] refines the results of Rivoal [Ril]-[Ri4] by
an application of the arithmetic approach.

Thus, one can recognise (at least) two different languages used for an
explanation why ((3) is irrational, namely, multiple integrals and complex
contour integrals (or series of hypergeometric type). Both languages lead us
to quantitative and qualitative results on the irrationality of zeta values and
other mathematical constants, and it would be nice to form a dictionary
for translating terms from one language into another. An approach to such
a translation has been recently proposed by Nesterenko [Ne2, Ne3]. He
has proved a general theorem that expresses contour integrals in terms of
multiple integrals, and vice versa. He also suggests a method of constructing
linear forms in values of polylogarithms (and, as a consequence, linear forms
in zeta values) that generalizes the language of [Ni, Gu, Nel] and, on the
other hand, of [Be], [Hal]-[Ha5], [RV1]-[RV3] and takes into account both
arithmetic and analytic evaluations of the corresponding linear forms.

The aim of this paper is to explain the group structures used for evaluat-
ing the irrationality exponents (1.2), (1.3) via Nesterenko’s method, as well
as to present a new result on the irrationality of the odd zeta values inspired
by Rivoal’s construction and possible generalizations of the Rhin—Viola ap-
proach. This paper is organized as follows. In Sections 2-5 we explain in
details the group structure of Rhin and Viola for ¢(3); we do not use Beuk-
ers’ type integrals as in [RV3] for this, but with the use of Nesterenko’s
theorem we explain all stages of our construction in terms of their doubles
from [RV3]. Section 6 gives a brief overview of the group structure for {(2)
from [RV2]. Section 7 is devoted to a study of the arithmetic of rational
functions appearing naturally as ‘bricks’ of general Nesterenko’s construc-
tion [Ne3]. In Section 8 we explain the well-poised hypergeometric origin
of Rivoal’s construction and improve the previous result from [Ri4, Zu4] on
the irrationality of ((5),((7),...; namely, we state that at least one of the
four numbers

¢(5), ¢(7), €(9), and ¢(11)

is irrational. Although the success of our new result from Section 8 is due to
the arithmetic approach, in Section 9 we present possible group structures
for linear forms in 1 and odd zeta values; these groups may become use-
ful, provided that some arithmetic condition (which we indicate explicitly)
holds.
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2. Analytic construction
of linear forms in 1 and ((3)

Fix a set of integral parameters

_ a, az, az, a4
(21) (a,b) - (bla b27 b37 b4)
satisfying the conditions
(2°2) {bla b2} S {0:1, as, as, (14} < {b37 b4}1
(2.3) a1 +ag+az+ag <by+ba+b3+by—2

and consider the rational function
b3 —az —1)! (bg —aq — 1)!
(a1 — bl)‘ (a2 - bg)'
L(t+a1)T(t + a2) T(t + a3) T(t + a4)

R(t) = R(a,byt) = .

(2.4) * T(t+by) T(+ ba) T(¢ + b3) T(t + ba)
4
=[] R;(®),
j=1
where
(2.5)

(t+b))(t+bj+1)---(t+a;—1)

R;(t) = (b](.ai ;jbi)!l)g

(t+aj)t+a;j+1)---(t+bj—1)

if a; > bj (ie., j =1,2),

if a; < b; (i, j =3,4).

By condition (2.3) we obtain
(2.6) Rt =0(t"% as t— oo;

moreover, the function R(t) has zeros of the second order at the integral
points ¢ in the interval

- min{al,aQ,ag, a4} <t < —max{b,be}.
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Therefore, the numerical series Y ;°, R/(t) with to = 1 — max{b1, by} con-
verges absolutely, and the quantity

oo

(2.7) G(a,b) := —(=1)""*%2 Y " R/(¢)

t=to

is well-defined; moreover, we can start the summation on the right-hand
side of (2.7) from any integer %o in the interval

(2.8) 1 — min{ai, a2, a3,a4} < to <1 — max{by, bo}.

The number (2.7) is a linear form in 1 and {(3) (see Lemma 4 below), and
we devote the rest of this section to a study of the arithmetic (i.e., the
denominators of the coefficients) of this linear form.

To the data (2.1) we assign the ordered set (a*, b*); namely,

(2.9) {b1,03} = {b1,b2}, {al,a,a3,a3} = {a1, 02,03, a4},
{b3,b1} = {bs, ba}, b <by<aj<al<aj<aj;<b;<by
hence the interval (2.8) for ¢y can be written as follows:
l—a] <tp<1-05.
By Dy we denote the least common multiple of numbers 1,2,...,N.
Lemma 1. For j = 1,2 there hold the inclusions
(2.10) Rj(t)|,._x €Z, Da;, Rj(t)|,__,€2Z, kel

Proof. The inclusions (2.10) immediately follow from the well-known prop-
erties of the integral-valued polynomials (see, e.g., [Zu5], Lemma 7), which
are Ri(t) and Ra(t). O

The analogue of Lemma 1 for rational functions R3(t), R4(t) from (2.5)
is based on the following assertion combining the arithmetic schemes of
Nikishin [Ni] and Rivoal [Ril].

Lemma 2 ([Zu3], Lemma 1.2). Assume that for some polynomial P(t) of

degree not greater than n the rational function

Q) = (t+s)(t+sfg).--(t+s+n)

(in a not necesarily uncancellable presentation) satisfies the conditions
Q(t)(t+k)|t=_k€Z, k=ss+1,...,s+n.

Then for all non-negative integers | there hold the inclusions

D}, )
T(Q(t)(t“‘k)) Itz_kEZ, k=s,s+1,...,5s+n.
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Lemma 3. For j = 3,4 there hold the inclusions
(2.11) (Ri®)(t+FK)|,__, €2, k€L,

Dy;_minfaja5)-1 - (Ri()(t +k))'|,__, € Z,

(2.12)
keZ, k=a3a3+1,...,b5—1

Proof. The inclusions (2.11) can be verified by direct calculations:

(—1)k% (b —a; = 1)
(k —a;)! (bj — k —1)!
(Rj(t)(t"'k))lt:—k: ifk=aj,a; +1,...,b; — 1,

0 otherwise.

To prove the inclusions (2.12) we apply Lemma 2 with { = 1 to the func-
tion R;(t) multiplying its numerator and denominator if necessary by the
factor (t+a3)---(t +a; — 1) if a; > a3} and by (¢t +b;)--- (¢t + b; — 1) if
bj < bj. O

Lemma 4. The quantity (2.7) is a linear form in 1 and {(3) with rational
coefficients:

(2.13) G(a,b) = 24¢(3) —
in addition,
(2.14)
A€z, DgZ—a’l‘—l * Dinax{a,—b1,a2—bz, by —az—1,b;—as—1,b3—a3 ~1} - B € Z.

Proof. The rational function (2.4) has poles at the points ¢ = —k, where
k= a3,a3+1,...,b; — 1; moreover, the points t = —k, where k = a},a} +
1,...,b3 — 1, are poles of the second order. Hence the expansion of the
rational function (2.4) in a sum of partial fractions has the form

b3—1 by—1

(2.15) R(t) = Z (t+ k)2 }: = k

where the coeflicients Ay and By, in (2.15) can be calculated by the formulae

A = (RA)(t+k)?)|,__, k=a}a)+1,...,b5—1,

Bi=(ROt+k?)|__,, k=a5ai+1,...,05-1

Expressing the function R(t)(t + k)? as
Ri(t) - Ra(t) - R3(t)(t + k) - Ra(t)(t + k)
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for each k and applying the Leibniz rule for differentiating a product, by
Lemmas 1 and 3 we obtain
(2.16)

A € Z, k=a}jay+1,...,b5—1,

* * *
Dmax{al—bl,az—bz,bz—as—l,bz—w—l} "By € Z, k=a3a3+1,..., by —1

(where we use the fact that min{a;,a3} < a; for at least one j € {3,4}).
By (2.6) there holds

by—1 b1
Z By = Z Resi—_i R(t) = — Resi=c0 R(t) = 0.
k=a3 k=a3

Hence, setting to = 1—aj in (2.7) and using the expansion (2.15) we obtain

o ,b3-1 by—1
coraten = 3 (3 Gkt X )
b5—1 k—a} b4 1 a}
= a(S-T )i S a(E- 1)
by—1 b3—1  k—a} b;-1 a}
_zZAk ¢(3) - (EAkzl3+k§B Z%)
=2A<<3)— 3

The inclusions (2.14) now follow from (2.16) and the definition of the least
common multiple:

1
Dgz_a;_l-l—?ez for 1=1,2,...,b5 —a}—1,

1
Dﬁz_a;_l-Dbg_a;_1~l—36Z for 1=1,2,...,b5—a} —1.

The proof is complete. O

Taking a1 =as =ag=a4=1+n,b; =by =1, and b3 = by =2+ 2n we
obtain the original Apéry’s sequence
(2.17)

_ t=1E=2)-(t—n)\? _
24nC(3) — _Zdt( t(t+1) -(t+n) ) nEb

of rational approximations to {(3) (cf. [Gu, Nel]); Lemma 4 implies that
Ap,€Zand D3 - B, € Z in Aperyscase
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3. Integral presentations

The aim of this section is to prove two presentations of the linear
form (2.7), (2.13): as a complex contour integral (in the spirit of [Gu, Nel])
and as a real multiple integral (in the spirit of [Be, Hab, RV3]).

Consider another normalization of the rational function (2.4); namely,
F(t + al) F(t + 0,2) P(t + a3) F(t + (14)

T(t + b)) T(t + bo) T'(t + b3) T'(t + ba)

(3.1) R(t) = R(a, b;t) :=

and the corresponding sum

(3.2)
~ ' 1+b2 = _ (a —b )!(ag—bz)!
G(a,b) = —(—1)01t? Z R'(t = T ;3 E i)! s —os = 1)!G(a, b).

t=to
Note that the function (3.1) and the quantity (3.2) do not depend on the
order of numbers in the sets {a1, az,as,as}, {b1,b2}, and {b3, ba}, i.e.,
R(a,b;t) = R(a*,b%t),  G(a,b) = G(a*,b*).
Lemma 5. There holds the formula

Tt+a)T(t+a2)T(t+a3)[(t + aq)
xF(l el e bl) F(]. —t— b2) dt

G
(a,b) = B . T(t+b3)T(t+ bs)
.24 l—ay,1-a31—as1-a4
(3.3) =: Gy (1 1—b1,1—bg, 1 —b3, 1 — b4>

where L is a vertical line Ret =t1, 1 —a] <t <1 — b3, oriented from the
bottom to the top, and Giﬁ is Meijer’s G-function (see [Lu], Section 5.3).

Proof. The standard arguments (see, e.g., [Gu], [Nel], Lemma 2, or [Zu3],
Lemma 2.4) show that the quantity (3.2) presents the sum of the residues
at the poles t = —b5 + 1, —b3 + 2, ... of the function

-y () R

— (T )2I‘(t+a1)1"(t + ag) (t + a) T(t + a4)
) (sin nt) T(E+b)T(t+b)T(t+ b3) ['(t + ba) )

It remains to observe that

(3.4) T(t+bj)T(1 —t —bj) = (—=1)% j=12

sin7t’
and to identify the integral in (3.3) with Meijer’s G-function. This estab-
lishes formula (3.3). a

The next assertion allows one to express the complex integral (3.3) as a
real multiple integral.



Arithmetic of linear forms involving odd zeta values 259

Proposition 1 (Nesterenko’s theorem [Ne3]). Suppose that m > 1 and
r > 0 are integers, v < m, and that complex parameters ag,ai,...,am,
bi,...,bm and a real number t; < 0 satisfy the conditions

Rebr > Reay > 0, k=1,...,m,

— min Reag < t1 < min Re(by — ar — ag).
0<k<m k=M 1<k<r (B k 0)

Then for any z € C\ (—o0,0] there holds the identity
m ak -1 1-— bk—ak—l

)(1 —.’L‘g) -(1 —CL‘r)-i—Z:IIl.’IZg'-':L‘m)
[0,2]™

l_[in:m I(b — ak)
I'(ao) - [Te=1 '(bx — ao)
oL e Iiso ek + 1) Tt Dbk — ax — a0 — 2)
t1—i00 H;cn=r+1 P(bk + t)

271
where both integrals converge. Here 2t = €t1°8% and the logarithm takes real
values for real z € (0, +00).

I'(—t) 2t dt,

We now recall that the family of linear forms in 1 and ¢(3) considered in
paper [RV3] has the form
(3. 5)

1_331 k( 1—y)szf(1—z)q dzdydz

0,13

and depends on eight non-negative integral parameters connected by the
additional conditions

(3.6) h+m=k+r, jtq=1l+s,

where the first condition in (3.6) determines the parameter m (which does
not appear on the right-hand side of (3.5) explicitly), while the second
condition enables one to apply a complicated integral transform ¢}, which
rearranges all eight parameters.

Lemma 6. The quantity (2.7) has the integral presentation
(3'7) G(a7 b) = I(h7 j’ k’ l’ m’ q’ r’ S)’

where the multiple integral on the right-hand side of (3.7) is given by for-
mula (3.5) and

3.8 h=a3—b1, j=a2—b1, k:=a4—b1, l=b3—a3—1,
(3.8) m=aq—by, g=a;—by, r=a3—by, s=bg—aqg—1.
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Proof. By the change of variables t — t—b; +1 in the complex integral (3.3)
and the application of Proposition 1 with m = 3, r = 1, and z = 1 we obtain

(a1 - bl)' (0,2 - bg)'
(b3 —agz — 1)' (b4 — a4 — 1)‘
xa3—b1 (1 _ x)bg—aa—lya4—b1 (1 _ y)b4—a4——-1

xzaz‘bl(l — z)‘“_b2
x /// A= (= zy)o)aorl dody dz,

[0,1]3

G(a,b) =

which yields the desired presentation (3.7). In addition, we mention that
the second condition in (3.6) for the parameters (3.8) is equivalent to the
condition

(3.9) ay+az+as+as=by+by+bs+by—2
for the parameters (2.1). O

The inverse transformation of Rhin—-Viola’s parameters to (2.1) is de-
fined up to addition of the same integer to each of the parameters (2.1).
Normalizing the set (2.1) by the condition b; = 1 we obtain the formulae

(3.10)
a1=14+h+q—7r, a2=1+}, a3 =1+h, ag =14k,
b1=1, b2=1+h—7', b3=2+h+l, by =2+k+s.

Relations (3.8) and (3.10) enable us to describe the action of the generators
¥, X, ¥, o of the hypergeometric permutation group @ from [RV3] in terms
of the parameters (2.1):

(3.11)
. [ 01, a2, a3, a4 as, a2, ai, a4
PPN 1, by, b, b 1, by, ba, by
a, a2, ag, a4 az, ai, ag, a4
: —
X (1, ba, bs, b4) (1 ba, b, b4)
9. (8192 a3, a1 b3 — a1, ay, a, b3 — a3
"\ 1, by, b3, by 1, b2+ b3 —a1 —a3, b3+ by — a1 —as, bs
ai, az, ag, a4 ai, az, a4, a3
o: — .
( ]-7 b27 b3; b4) ( 1) b29 b4, b3)
Thus, ¢, X, 0 permute the parameters a1, ag, a3, a4 and bs, by (hence they do
not change the quantity (3.2) ), while the action of the permutation ¥ on the
parameters (2.1) is ‘non-trivial’. In the next section we deduce the group
structure of Rhin and Viola using a classical identity that expresses Meijer’s

Giﬁ—function in terms of a well-poised hypergeometric 7Fg-function. This
identity allows us to do without the integral transform corresponding to ¥
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and to produce another set of generators and another realization of the
same hypergeometric group.

4. Bailey’s identity and the group structure for ((3)

Proposition 2 (Bailey’s identity [Bal], formula (3.4), and [Sl], formula
(4.7.1.3)). There holds the identity

(4.1)
P (a, 1+ 3a, b, c, d, e, f ‘ 1)
w6 %a,1+a—b,1+a—c,1+a—d,1+a—e,1+a—f
_Tl4+a-bTl+a—-c)T(1+a-d)T(1+a—e)T(1+a~—f)
T I14+a) T ()T (1 +a—-b—c)T'(1+a—b—d)
xI'l+a—c—d)I'(1+a—e—f)

g R U S |
provided that the series on the left-hand side converges.
We now set
(4.2)

T(1+ ho) - TI5=; T()
H?=1 T(1+ ho — hj)

% hOa 1+%h07 hl, h2a ceey hs
e %ho,l-{-ho—hl,l-l-ho—hz,...,1+h0-—h5

)
for the normalized well-poised hypergeometric 7Fg-series.
In the case of integral parameters h satisfying 1 + ho > 2h; for each

~

j =1,...,5, it can be shown that F(h) is a linear form in 1 and {(3)
(see, e.g., Section 8 for the general situation). Ball’s sequence of rational
approximations to ¢(3) mentioned in Introduction corresponds to the choice
hp=3n+2, hi=ho=hg3=hg=hs=n+1:

(4.3)
ArC(3 +B:l=2n!2 t_'_ﬁ (t_l)“'(t—n)~(t+n+1)...(t+2n),
@ ;::( 2) A+ 14 (t+n)

n=12,...

F(h) = F(ho; hy, hg, h3, ha, hs) :=

(see [Ri3], Section 1.2). Using arguments of Section 2 (see also Section 7
below) one can show that Dy, - A" € Z and Dj - B,, € Z, which is far from
proving the irrationality of {(3) since multiplication of (4.3) by D4 leads us
to linear forms with integral coefficients that do not tend to 0 as n — 0.
Rivoal [Ri3], Section 5.1, has discovered the coincidence of Ball’s (4.3) and
Apéry’s (2.17) sequences with the use of Zeilberger’s Ekhad program; the
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same result immediately follows from Bailey’s identity. Therefore, one can
multiply (4.3) by D3 only to obtain linear forms with integral coefficients!
The advantage of the presentation (4.3) of the original Apéry’s sequence
consists in the possibility of an ‘elementary’ evaluation of the series on the
right-hand side of (4.3) as n — oo (see [Ri3], Section 5.1, and [BR] for
details).

Lemma 7. If condition (3.9) holds, then
G(a,b)
H?:l(aj - bl)! . H?:l(a’j - b2)'
F(h)
o _y(hj = 1) (14 2ho — hy — hg — hg — hy — hs)V’

(4.4) =

where
ho=0b3+bs—by—a; =2—2b; — by +as+ ag + ay,
(4.5) hi=1-b1+as, ho=1-bi+as, hg=1-b1+ay,
h4:b4—a1, h5=b3—a1.

Proof. Making as before the change of variables ¢ — t—b;+1 in the contour
integral (3.3), by Lemma 5 we obtain

G(a,b) = G24 (1

b1 — a1, by —az, by — a3, by —ay
0, by — ba, by — b3, by — by J°

Therefore, the choice of parameters hg, h1, ho, h3, h4, hs in accordance with
(4.5) enables us to write down the identity from Proposition 2 in the re-
quired form (4.4). O

The inverse transformation of the hypergeometric parameters to (2.1)
requires a normalization of the parameters (2.1) as in Rhin—Viola’s case.
Setting b; = 1 we obtain
(4.6)

a1=1+ho—hs—hs, az=h1, az=hg, as=hs,

bi=1, bo=hy+ho+hs—hg, bs=1+4+ho—hg, by=1+ hg— hs.

We now mention that the permutations aj; of the parameters a;,ax,
1< j <k <4, as well as the permutations b, b34 of the parameters by, bo
and bs, by respectively do not change the quantity on the left-hand side
of (4.4). In a similar way, the permutations h;; of the parameters hj, hy,
1 < j <k <5, do not change the quantity on the right-hand side of (4.4).
On the other hand, the permutations a;x, k = 2, 3, 4, affect nontrivial trans-
formations of the parameters h and the permutations b;; with j = 1,2,3
and k = 4,5 affect nontrivial transformations of the parameters a,b. Our
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nearest goal is to describe the group & of transformations of the param-
eters (2.1) and (4.5) that is generated by all (second order) permutations
cited above.

Lemma 8. The group & can be identified with a subgroup of order 1920
of the group Ais of even permutations of a 16-element set; namely, the
group & permutes the parameters

(47) Cjk = {

and is generated by following permutations:
(a) the permutations a; := a4, j = 1,2,3, of the jth and the fourth lines
of the (4 x 4)-matriz

aj — by if a; > by,

k=1,2,3,4,
by —aj—1 ifa; <bg, J

C11 C12 C13 Ci4
(4.8) C21 C22 C23 C24
C31 C32 €33 C34
C41 C42 C43 C44
(b) the permutation b := b3y of the third and the fourth columns of the
matriz (4.8);
(c) the permutation b := 35 that has the expression
(4.9) b = (c11 €33)(c13 €31)(C22 caa)(c24 Ca2)
in terms of the parameters c.
All these generators have order 2.

Proof. The fact that the permutation h = h35 acts on the parameters (4.7)
in accordance with (4.9) can be easily verified with the help of formulae (4.5)
and (4.6):

(4.10)
h: (01929304 bz — a3, as, b3 — ai, a4
"\ 1, be, b3, by 1,bo+b3—a1—as, b3, b3 +bs—a1—az )’
As said before, the permutations a3, 1 < j < k < 4, and b, 1 < j <
k < 5, belong to the group (a3, ag, a3, b, h); in addition,

bi2=bhajaza;azhbhazajazarh.

Therefore, the group & is generated by the elements in the list (a)—(c).
Obviuosly, these generators have order 2 and belong to ;6.
We have used a C++ computer program to find all elements of the group

(4.11) & = (a1, a2,03,b,h).

These calculations show that & contains exactly 1920 permutations. This
completes the proof of the lemma. O
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Remark. By Lemma 8 and relations (4.10) it can be easily verified that the
quantity b3 + by — b1 — be is stable under the action of &.

Further, a set of parameters c, collected in (4 x 4)-matrix, is said to
be admissible if there exist parameters (a,b) such that the elements of
the matrix ¢ can be obtained from them in accordance with (4.7) and,
INOreover,

(4.12) cjk >0 forall j,k=1,2,3,4.

Comparing the action (3.11) of the generators of the hypergeometric
group from [RV3] on the parameters (2.1) with the action of the genera-
tors of the group (4.11), it is easy to see that these two groups are iso-
morphic; by (4.10) the action of ¢ on (2.1) coincides up to permutations
ai, ag, a3, b with the action of h. The set of parameters (4.7) is exactly the
set (5.1), (4.7) from [RV3], and

h=c31, j=cua, k=c4y, l=cs3,
m=C42, gq=2C12, T =0C32, S=Cy4
by (3.8).

On the other hand the hypergeometric group of Rhin and Viola is em-
bedded into the group 2A;¢ of even permutations of a 10-element set. We
can explain this (not so natural, from our point of view) embedding by
pointing out that the following 10-element set is stable under &:

ho—hi=b3+bs—1—a1—a3, g+hi=bg+bs—1—a3—ay,
ho —hy=b3+bs—1—a1—a3, g+hea=bz+bs—1—az—ay,
ho—hs =bs+ by —1—a; — ay, g+hy3=b3+bs—1—as—as,
ho — hq = b3 — by, g+ hg = by — by,
ho — hs = by — by, g+ hs = bg — by,
where g = 14 2hg — hy — hg — hg — hqy — hs. The matrix c in (4.8) in terms
of the parameters h is expressed as
ho — hg — hs g hs — 1 hy—1
h1—1 ho—has—hs ho—hy—hs ho—hy—hs
he —1 ho—hi1—hg ho—ha—hgy hog—ha—hs
hs —1 ho—hi—hs ho—h3s—hg ho—h3z—hs
The only generator of & in the list (a)—(c) that acts nontrivially on the
parameters h is the permutation a;. Its action is
(ho; ha, ha, h3, ha, hs) — (1 + 2ho — h3 — hg — hs;
hl,h2,1+h0—h4-—h5,1+h0—h3—h5,1+h0—h3—h4),
and we have discovered the corresponding hypergeometric 7Fg-identity in
[Ba2], formula (2.2).



Arithmetic of linear forms involving odd zeta values 265

The subgroup &; of & generated by the permutations a;i, 1 < j < k <4,
and byg,bss, has order 4! - 2! - 2! = 96. The quantity é(a,b) is stable
under the action of this group, hence we can present the group action on
the parameters by indicating 1920/96 = 20 representatives of left cosets
6/61 = {qquh .7 =1,.. ',20}; namely’

q1 = id, g2 = ajazagh, g3 = a1 b, q4 = azap b,
95 = b, g6 =hajazazh, qr = azagh, gs = az b,
qgo =hazbh, qo=ajazhajazbh, g1 =axhazazbh, g2 =bbh,
qi3 =azazbh, quia=azbh, qi5 =ai1azazbh, qis=a1bh,

qi7 =agarbh, qis=azharasbh, qe=azharbh, quo="harbbh;

we choose the representatives with the shortest presentation in terms of
the generators from the list (a)—(c). The images of any set of parameters
(a,b) under the action of these representatives can be normalized by the
condition b; = 1 and ordered in accordance with (2.9). We also point out
that the group &; contains the subgroup &g = (a12b12, as4b34) of order 4,
which does not change the quantity G(a,b). This fact shows us that for
fixed data (a,b) only the 480 elements q;a, where j = 1,...,20 and a €
G4 is an arbitrary permutation of the parameters ai,as,as, a4, produce
‘perceptable’ actions on the quantity (2.7). Hence we will restrict ourselves
to the consideration of only these 480 permutations from &/®&,.

In the same way one can consider the subgroup &} C & of order 5! = 120
generated by the permutations h;i, 1 < j < k < 5. This group acts trivially
on the quantity f’(h) The corresponding 1920/120 = 16 representatives
of left cosets &/&] can be chosen so that for the images of the set of
parameters h we have

1< h1 < hy < hg < hy < hs;

of course hg > 2hs.
For an admissible set of parameters (4.7) consider the quantity

| | ~
(4.13) H(c) := G(a, b) = 2% G(a,b).
c11! coa!

Since the group & does not change (4.4), we arrive at the following state-
ment.

Lemma 9 (cf. [RV3], Section 4). The quantity

H(c)
(c)’

is stable under the action of &.

(4.14) where H(c) = 021! C31!C41! 012! C32! 042! 633! C44!,
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5. Irrationality measure of Rhin and Viola for ((3)
Throught this section the set of parameters (2.1) will depend on a positive
integer n in the following way:
ai=amn+1, ag=am+1, az=asn+1, as=asn+1,

5.1
(5:1) bi=pin+1, bp=pPn+1, b3=pfn+2, by=pn+2,

where the new integral parameters (‘directions’) (e, 3) satisfy by (2.2),
(3.9), and (4.12) the following conditions:

(5.2) {B1, 82} < {en, s, 03,04} < {3, B4},
(5.3) ataztoztog=P1+ P+ B+ fa
The version of the set (o, 3) ordered as in (2.9) is denoted by (a*, 8*).

To the parameters (a, 3) we assign the admissible (4 x 4)-matrix ¢ with
entries

(5.4) CJk — {a] - /Bk lf a] > /Bk" j, k — 172’ 3, 4,

ﬂk — Oy if Q; < ,Bk,

hence the set of parameters ¢-n corresponds to (5.1). With any admissible
matrix ¢ we relate the following characteristics:

mo = my(c) := 12111324{%;;} > 0,

m; =m (C) ﬁ4 - al - IIEa‘X {CJ37CJ4}a

mg = my(c) := max{a — B, a2 — B2, 01 — a3, B; — o, B3 — i}
= max{c11, Cik, C22, C2k, C34, C44, C33, C43},

3 if By =] (ie., c13 < c1a),

4 if B3 = ,BZ (i.e., ci13 > 014),

and write the claim of Lemma 4 for the quantity (4.13) as
(5.5) D? Diny(eyn - H(en) € 2Z¢(3) + Z.

mi(c)n ’

where k= {

Fix now a set of directions (a, 3) satisfying conditions (5.2), (5.3), and
the corresponding set of parameters (5.4). In view of the results of Sec-
tion 4, we will consider the set Mg = Mo(a, B) = Mo(c) of 20 ordered
collections (a/,3') corresponding to q;(a,B), j = 1,...,20, and the set
M = M(a, B) = M(c) := {aMp} of 480 such collections, where a € G4 is
an arbitrary permutation of the parameters ai, ag, a3, as (equivalently, of
the lines of the matrix ¢). To each prime number p we assign the exponent

II(cn)
II(cn)

vp = énax ord,
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and consider the quantity

(5.6) o, =n(c):= [] 7,
Vmon<p<msn

where m3 = m3(c) := min{m(c), ma(c)}.

Lemma 10. For any positive integer n there holds the inclusion
D2, .- Dmyn - @51 - H(cn) € 2Z¢(3) + Z.

Proof. The inclusions

(5.7) D2, .- Dy - @51 - H(cn) € 2Z,((3) + Z,

for p < \/mon and p > man follow from (5.5) since ord, @, = 0.
Using the stability of the quantity (4.14) under the action of any permu-
tation from the group &, by (5.5) we deduce that

II(c'n)
2
Dins(en  Dmatern * Ty~ Hlem)

= Dfm(d)n + Diny(eyn - H(c'n) € 22¢(3) + Z, ceM,

which yields the inclusions (5.7) for the primes p in the interval
vmon < p < mgn since

ordy (D72n1 ()n’ sz(d)n) <3= Ordp(D3 )

ma(c)n
= ordy (D%, (o - Dmay(on)s € € M(c)
in this case. The proof is complete. O

The asymptotics of the numbers Dy, n, Dmyp in (5.7) is determined by

the prime number theorem:
log Dy,
lim —2—™" i j=1,2.
n—00 n

For the study of the asymptotic behaviour of (5.6) as n — oo we introduce
the function

p(z) = cr,neaﬁg(LcmmJ + |eaiz] + [earz] + [e122]
+ |32z + |caoz| + |33z + |caax]
~ lenz] = egz] = |cpa] — [choz]
— lchoz] — |cppz] — |3z — lcimwl),

where | -] is the integral part of a number. Then v, = ¢(n/p) since
ord, N! = | N/p| for any integer N and any prime p > v/ N.
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Note that the function ¢(z) is periodic (with period 1) since
co1+c31+ ca1 +cra+ a2+ caz 433+ caa = 2(B3 + By — B — P2)
= ch1 + 31 + €y + €l + Cap + Cp + O3 + Cly

(see Remark to Lemma 8); moreover, the function ¢(z) takes only non-
negative integral values.

Lemma 11. The number (5.6) satisfies the limit relation

log ®, 1 1/ms3 d
(58) im <20 = o) ape) - [T o),

n—oo
where Y(z) is the logarithmic derivative of the gamma function.

Proof. This result follows from the arithmetic scheme of Chudnovsky-
Rukhadze-Hata and is based on the above-cited properties of the func-
tion ¢(z) (see [Zu3], Lemma 4.4). Substraction on the right-hand side
of (5.8) ‘removes’ the primes p > mgn that do not enter the product &,
in (5.6). O

The asymptotic behaviour of linear forms
H, := H(cn) = 24,¢(3) — B,

and their coefficients A,, B, can be deduced from Lemma 6 and [RV3], the
arguments before Theorem 5.1; another ‘elementary’ way is based on the
presentation

(5.9)

(ho — h1 — hg)! (ho — hy — h3)! (ho — hg — ha)! (ho — h3 — hs)! ~
H(e) = (ha = 1) (hs = 1) F(h)
and the arguments of Ball (see [BR] or [Ri3], Section 5.1). But the same
asymptotic problem can be solved directly on the basis of Lemma 5 with the
use of the asymptotics of the gamma function and the saddle-point method.
We refer the reader to [Nel] and [Zu3], Sections 2 and 3, for details of this
approach; here we only state the final result.

Lemma 12. Let 79 < 71 be the (real) zeros of the quadratic polynomial
(7 — a1)(r — a2)(7 — a3)(7 — a4) — (7 — 1) (7 — B2)(7 — B3)(7 — fa)
(it can be easily verified that 85 < 19 < o} and 11 > o); the function fo(T)

in the cut T-plane C\ (—o0, B3] U [a], +00) is given by the formula

fo(r) = arlog(a; — 7) + g log(ae — 7) + az log(as — 7) + aslog(as — 7)
— Bilog(T — B1) — P2 log(t — B2) — B3 log(Bs — 7) — Palog(Bs — 7)
— (o1 = B1) log(ar — B1) — (a2 — B2) log(az — B2)
+ (B3 — a3) log(B3 — a3) + (B4 — as) log(Bs — as),



Arithmetic of linear forms involving odd zeta values 269

where the logarithms take real values for real T € (83, a5). Then

1 B
lim longTLI — fO(TO), limsup Ogmax{!::lnlal nl}

n—00 n n—00

< Re fo(m1).

Combining results of Lemmas 11 and 12, as in [RV3], Theorem 5.1, we
deduce the following statement.

Proposition 3. In the above notation let
Co = —fo(m),  Ci=Re fo(r1),
1 1/ms dz
Cy =2m; +mg — (/ o(z)dy(z) — / w(w)?)
0 0

If Cy > Cs, then

Co+Ch1
u(¢(3)) < Co= Gy

Looking over all integral directions (c, 3) satisfying the relation
(5.10) artazt+azt+as=p1+ B2+ 03+ 61 < 200

by means of a program for the calculator GP-PARI we have discovered that
the best estimate for (¢(3)) is given by Rhin and Viola in [RV3].

Theorem 1 ([RV3]). The irrationality exponent of ((3) satisfies the esti-
mate

(5.11) u(¢(3)) < 5.51389062. .. .

Proof. The optimal set of directions (a,3) (up to the action of &) is as
follows:

01 =18, as=17, a3=16, as= 19,

5.12
( ) /31 = 07 :32 = 77 ﬂS = 31, ﬂ4 = 32.
Then,

70 =8.44961969...,  Co = —fo(mo) = 47.15472079.. ..,
71 =27.38620119...,  C; = Re fo(ro) = 48.46940964 . . . .
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The set My in this case consists of the following elements:

16,17,18,19\ (12,14, 16, 18 12, 15,17, 18
0, 7,31,32 0, 2,27,31 0, 3,28,31
14,15,18,19\ [ 13,15,17, 19 13, 14, 15, 16
0, 5,30, 31 0, 4,29, 31 0, 1,25,32
13,14,16,19\ (12,13, 16, 17 11,14, 15, 18
0, 3,28,31 0, 1,26, 31 0, 1,27,30
11,15, 16,18\ (12,13, 14, 19 14, 16, 17, 19
0, 2,28,30 0, 1,28,29 0, 5,29, 32
14,15,16,19\ (13,14, 16, 17 13, 15, 16, 18
0, 4,28,32 0, 226,32 0, 3,27, 32
13,16, 17,18\ (15,16, 18, 19 12, 15, 16, 19
0, 4,28,32 0, 6,30, 32 0, 3,29,30
12,14,15,19\ /10, 15,16, 17

0, 2,28,30 0, 1,28,29 /°

an easy verification shows that m; = mz = 16 and my = 18. The function
() for z € [0,1) is defined by the formula

0 if(l:E[O,l)\\QE,
o) =<1 ifze g\ 2,
2 ifze 2,

where the sets 2g and 2}, are indicated in [RV3], p. 292. Hence

1 1/ms3 dz
Ca =2m; +mg — (/ o(z)dy(z) — / (p(x);z-)
0 0
=2-16+18 — (24.18768530. .. — 4) = 29.81231469.. .,

and by Proposition 3 we obtain the required estimate (5.11). O

Note that the choice (5.12) gives us the function ¢(z) ranging in the
set {0,1,2}; any other element of M produces the same estimate of the
irrationality exponent (5.11) with ¢(z) ranging in {0, 1,2, 3}.

The previous record

(5.13) w(¢(3)) £ 7.37795637. ..
due to Hata [Ha5] can be achieved by the choice of the parameters

a1=8, as=7 oa3=8, ay=9,

(5.14) 131 =0, ,32 =1, :33 =15, ,84 = 16,
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and the action of the group &;/®¢ of order just 4! = 24 (we can regard
this as a (a, b)-trivial action). For directions (a, 3) satisfying the relation
ar+az+az+ag <P+ P2+ B3+ s <200

(instead of (5.10)) we have verified that the choice (5.14) corresponding
to Hata’s case produces the best estimate of the irrationality exponent
for ¢(3) in the class of (a, b)-trivial actions. In that case we are able to use
the inequality

artaztaztas <Pi+Pe+ 03+ 0

instead of (5.3) since we do not use Bailey’s identity. The mysterious thing
is that the action of the full group & does not produce a better result than
(5.13) for the parameters (5.14).

6. Overview of the group structure for ((2)

To a set of integral parameters

_ ( a1, a2, a3
(6'1) (a’ b) - (bl, b27 b3)

satisfying the conditions

{61} < {a1,a2,a3} < {b2, b3},
(6.2) a1+a2+a3§bl+b2+b3—2,
we assign the rational function
(bg —ag — 1) (b3 — az — 1)!
(a1 - bl)'
L(t+a1)T(t+ a2) I'(t + a3)
T'(t + b1) [(t + bg) T(t + b3)

3
= H R; (t),
j=1

where the functions R;(t), R2(t), and R3(t) are defined in (2.5). Condi-
tion (6.2) yields (2.6), hence the (hypergeometric) series

R(t) = R(a, b;t) :==

o0
(6.3) G(a,b):=> R(t) with 1-min{as,az,a3} <to<1-b
t=to
is well-defined. Expanding the rational function R(¢) in a sum of partial
fractions and applying Lemmas 1 and 3 we arrive at the following assertion.
Lemma 13 (cf. Lemma 4). The quantity (6.3) is a rational form in 1
and ((2) with rational coefficients:

(6.4) G(a,b) = AC(2) - B;
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in addition,
A € Z? Db*—a r—1- Dma.x{al bl,b —ag— lb —az— lb*-—a ——1} -B € Z
where (a*,b*) is the ordered version of the set (6.1):

{bI} = {b1}7 {ai‘?a’;‘)a;} = {alaa2va3}7 {b;» ;} = {b27b3}a

6.5
(6.5) bt <ol <ab <al<b< bl

By Proposition 1 the series (6.3) can be written as the double real integral

az—bl(l _ :L‘ bz—az lya3 b1(1 )b3—a3—1
G(a,b) = // A= zg)e—oiFl dz dy,

[0,1)2

hence we can identify the quantity (6.3) with the corresponding integral
I(h,1,j, k,1) from [RV2] by setting

h=as—by, i=by—as—1, j=bz—az—1,
k=a3z—b;, 1= (by+ba+b3—2)— (a1+az+a3);
the inverse transformation (after the normalization b; = 1) is as follows:
ag=14+i+j-1l, as=1+h, a3 =1+k,
by =1, bp=2+h+1i, b=2+j+k.

In the further discussion we keep the normalization b; = 1.
The series
)

o T(@)T(@)les) (o, ana

Gla,b) := I‘(bi)l“(bj)l‘(bj) of! 2( " b b
T'(1+ ho) - [Tj—, T'(hy)
[1j=1 T(1 + ho — hy)

h(),1+-§-h0, hy, ..., hyg
X6F5< 2ho,1+ho—hi, ..., 1+ho—hs

play the same role as (3.2) and (4.2) played before since one has

and

F(h) (hOa h‘17 h27 h37 h4) =

)

G(a,b)
[(a1)(a2) T'(as) T'((b2 + b3) — (a1 + a2 + a3))
_ F(h)
(©6) = T Ta) L () T ()
where

ho =by+b3—1—a1, hi=as hy=as3,
h3 =bz — a1, hs=0by—ay,
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and
ay =1+ ho—hz—hg, az=h, a3z = ho,
by =1, bp=1+ho—h3, b3=1+ho— hy,

by Whipple’s identity [Ba3], Section 4.4, formula (2). The permutations
ajx, 1 < j < k < 3, of the parameters aj, ax, the permutation bog of by, b3,
and the permutations bhjx, 1 < j < k < 4, of the parameters hj, hy do
not change the quantity (6.6). Hence we can consider the group & gener-
ated by these permutations and naturally embed it into the group G;¢ of
permutations of the 10-element set

coo = (b2 +b3) — (a1 + a2 +a3z) — 1,
aj — by if aj > by, .
T T— ,k=1,2,3.
ik {bk—aj -1 ifa; <b, J

The group & is generated by the permutations a; := a;3, ag := a3, b := bag,
which can be regarded as permutations of lines and columns of the ‘(4 x 4)-
matrix’
€00

(6.7) c= C11 C12 €13 ,

Co1 C22 C23

€31 €32 €33
and the (a, b)-nontrivial permutation b := fa3,

h = (coo c22)(c11 €33)(c13 €31);

these four generators have order 2. It can be easily verified that the group
& = (aj,az2,b,h) has order 120; in fact, we require only the 60 represen-
tatives of &/®g, where the group Bg = {id, agsba3} acts trivially on the
quantity

! | ~
H(c) := G(a,b) = %G(a, b).
11
Thus, we can summarize the above as follows.

Lemma 14 (cf. [RV2], Section 3). The quantity

H(e)
I(c)’

is stable under the action of ® = (a1, as, b, h).

where II(c) = coo!ca1! c31! c22! cs3!,

If one shifts indices of ;i by one then the group & for ((2) can be natu-
rally regarded as a subgroup of the group & for {(3) (compare the generators
of both groups). The group & for {(2) coincides with the group ® of Rhin
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and Viola from [RV2] since permutations ¢, o € ® are (a, b)-trivial in our
terms and for 7 € ® we have

T=aga;bhaza; bh.

We now fix an arbitrary positive integer n and integral directions (o, 3)
satisfying the conditions

{61 = 0} < {a1, 02,3} < {B2, B3},
o1 t+az+a3 < B+ B2+ s,
so that the parameters (6.1) are expressed as follows:
ap=ain+1, aa=an+1, a3=azn+1,
bi=pn+1, ba=pon+2, b3=[3n+2,
and consider, as in Section 5, the corresponding set of parameters

coo = (B + B2 + B3) — (01 + a2 + a3),
_ {aj =B if o > B,
Cjk: =

(6.8)

. 5 k=123;
Br — o if aj < B,

hence the set ¢ - n corresponds to (6.8). Set

my = ma() = 5 — o,

my = ma(c) := max{e1 — B, B3 — a2, 83 — a3, B3 — o},

m3 = mg(c) := min{m;(c), ma(c)},
where asterisks mean ordering in accordance with (6.5). To the 60-element
set M = M(c) ={qc:q€ &/Bg} we assign the function

o(z) = max (Leooz) + lea1z] + |ea1z] + |ezez] + |c332]
— |cboz] — Lz — Lchiz] — |choz] — |chsz]),

which is 1-periodic and takes only non-negative integral values. Further,
let 79 and 71, 79 < 71, be the (real) zeros of the quadratic polynomial

(T — a1) (T — ag)(7 — a3) — (7 — B1)(7 — B2)(7 — B3)
(in particular, 79 < f; and 71 > a3) and let
fo(r) = a1 log(ag — 7) + azlog(az — 7) + azlog(asz — 7)
— Prlog(T — 1) — P2 log(B2 — T) — B3 log(B3 — T)
— (a1 = B1) log(ar — B1) + (B2 — az) log(B2 — a2)
+ (B3 — a3) log(f3 — a3)

be a function in the cut 7-plane C\ (—o0, 1] U [a],+00). Then the final
result is as follows.
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Proposition 4. In the above notation let
Co = —Re fo(To), Cl = Ref0(7'1),

Cy=mq1+mg— (/01 o(z) dy(z) — /01/m3 (p(x)d—w)

If Cy > Csy, then
Co + C1

@) < 2
In accordance with [RV2] we now take

a; =13, ax =12, a3 =14,
Pr=0, [2=24, [3=28
and obtain the following result.

Theorem 2 ([RV2]). The irrationality exponent of ((2) satisfies the esti-
mate

(6.10) 1(¢(2)) < 5.44124250. .. .

(6.9)

Observation. In addition to the fact that the group for ((2) can be naturally
embedded into the group for {(3), we can make the following surprising
observation relating the best known estimates of the irrationality exponents
for these constants. The choice of the directions (5.1) with

o] = 16, Qg = 17, a3 = 18, Q4 = 19,
P1=0, Ba=17 [3=31, [4=32
for ¢(3) (cf. (5.12)) and the choice of the directions (6.8) with
a; =10, az =11, a3 =12,
B1=0, P2=24, PB3=25

for ((2) (which is &-equivalent to (6.9) ) lead to the following matrices (4.8)
and (6.7):

16 9 15 16 16

17 10 14 15 10 14 15
(6.11) 18 11 13 14 and 11 13 14

19 12 12 13 12 12 13

The first set of the parameters in (6.11) produces the estimate (5.11), while
the second set the estimate (6.10).

Finally, we point out that the known group structure for log2 (and for
some other values of the Gauss hypergeometric function) is quite simple
since no identity like (4.1) is known; the corresponding group consists of
just two permutations (see [Vi] for an explanation in terms of ‘multiple’
integrals).
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7. Arithmetic of special rational functions

In our study of arithmetic properties of linear forms in 1 and ((3) we
have used the information coming mostly from G-presentations (4.13). If
we denote by F'(h) the right-hand side of (5.9) and apply Lemma 7, then
one could think that the expansion

o0
(7.1) F(h)=)_R(),
t=0
where we now set

6
R(t) = R(ho; h1, ha, h3, ha, hs; t) = (ho +2t) [ | R;(t)

j=1
with
(7.2) )
B I'(h1+t
Ri(t) = (hog— h1 — ho)! - T(L+ho—ho+1)
) T(hy +t)
Ry(t) = (ho — ha — ha)! - T+ ho—hs+t)
B L(hs +t)
R3(t) = (ho — h1 — h3)! - T(l+ho—hi+1)
B L(hs +t)
Ry4(t) = (ho — hs — hs)! - T'(14ho—h3+1t)’
Rs(t) = ——— DhatD) = py 1 e

(hs —1)! T(1+ho—hs+t)’

brings with it some extra arithmetic for linear forms H(c) since the func-
tions (7.2) are of the same type as (2.5). Unfortunately, we have discovered
that (quite complicated from the computational point of view) arithmetic
of the presentations (7.1) brings nothing new.

For our future aims we now study the arithmetic properties of elementary
‘bricks’—rational functions

(ha—1)! T(1+¢)’

E+b)E+b+1)---(t+a—1)

(73)  R(t) = Rlo,bit) i= LT

tt+ta)itatl) - (t+b—1)

ifa > b,

ifa < b,

which are introduced by Nesterenko [Ne2, Ne3] and appear in (2.5)
and (7.2).

The next claim exploits well-known properties of integral-valued polyno-
mials.
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Lemma 15 (cf. Lemma 1). Suppose that a > b. Then for any non-negative
integer j there hold the inclusions

. 1 .
D, - ﬁR(’)(—k) €Z, kel
The next claim immediately follows from Lemma 2 in the same way as
Lemma 3.

Lemma 16. Let a,b,ag, by be integers, ag < a < b < byg. Then for any
non-negative integer j there hold the inclusions

j 1 G)
‘D{)o—-ao—l : ﬁ(R(t)(t +k)) 7 |t=—k € Z, k=ag,a0+1,...,b0— 1.

Lemmas 15 and 16 give a particular (but quite important) information
on the p-adic valuation of the values RY)(—k) and (R(t)(t + ls:))(J )I =k
respectively, with a help of the formula ord, Dy = 1 for any integer N and

any prime p in the interval VN < p < N. Two next statements are devoted
to the ‘most precise’ estimates for the p-adic order of these quantities.

Lemma 17. Let a,b,ao,by be integers, by < b < a < ag, and let R(t) =
R(a,b;t) be defined by (7.3). Then for any integer k, by < k < ag, any
prime p > +/ap— by — 1, and any non-negative integer j there hold the
estimates

ordy RY (—k) > —j + V_;—kJ - [b—;_kJ B la;bJ

k—-b k—a a—b
74 i+ |22 - |22 - =2
(7.4) J ’ " "
Proof. Fix an arbitrary prime p > v/ap — bg — 1. First, we note that by the
definition of the integral part of a number

0 ifzxeZ,
1 ifz¢Z,

[—fJ =—{3—1J —1  for s€Z
p p
Therefore,

o [t [t [i5e]

for any integer k.

|—z] = —|z]| — &, where 0 = {

which yields
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Direct calculations show that

® —((11 - ;1@?('2)’_ i LR<b
R(=k)={0 ifb<k<a,
D7 —(Z)!_(Z)!— DI
thus,
SPSSTN SR
el o e i s L

which yields the estimates (7.4) for j = 0 with the help of (7.5).
If K < bor k > a, consider the function
R() & 1
gy =20 g~ 1
R(t) & t+l

hence for any integer j > 1 there hold the inclusions
j—1 j—1
7”(‘7 )(_k) ’ D]ma.x{a—bo—l,ao—b—-l} €Z.

Induction on j and the identity

j—1

16 R0 = (Rer©) =3 (7 ) Rm@rem

m=0

specified at t = —k lead us to the required estimates (7.4).
If b < k < a, consider the functions

_ R() A=Y
Ri(t) = t+ k' Ti(t) = Rp(®) S t+1
1£k

obviously, for any integer j > 1 there hold the inclusions
r (k). D71 ez

Then
RO (—k) = jR{ ™ (—k)

since Ham1- b
(a —b)! ’

Ri(—k) = (-1t E=?
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and induction on j in combination with identity (7.6) (where we substitute
Ry(t), rk(t) for R(t),r(t), respectively) show that

ord, RU)(—k) > ord, Rg—l)(—k)
k—b a—-1—-k a—b
>—(G-1)+ + -
2-0-1 { p J { p J [ p J

for integer 7 > 1. Thus, applying (7.5) we obtain the required esti-
mates (7.4) again. The proof is complete. O

Lemma 18. Let a,b,ao,bp be integers, ap < a < b < by, and let R(t) =
R(a,b;t) be defined by (7.3). Then for any integer k, a9 < k < bp, any
prime p > /by —ap — 1, and any non-negative integer j there hold the
estimates

(7.7)
() ., |[b—a-1 k—a b—1—-k
ordp (R +E) e 2 =+ [ P J - { P } - [ p I
Proof. Fix an arbitrary prime p > +/bg — ag — 1. We have
—a—1)
(b—a—- 1) ifa<k<b,

(=1)k
(RE)(E+k))|,—_, = {0 (k—a)l(b—1—-k)!

ifk<aork>hb,

which yields the estimates (7.7) for j = 0.
Considering in the case a < k < b the functions

b—1

RO = RO+, ()= B =302
l=a
Ik

and carrying out induction on j > 0, with the help of identity (7.6) (where
we take Ry(t),rr(t) for R(t),r(t) again) we deduce the estimates (7.7).
If K < a or k > b note that

(R@)(E+k)D),__, = jRID(=k).

Since
(b—a-1D(a—-1-k)!

A=Y Cema -y

(-1) (k—a)!

induction on j and equalities (7.5) yield the required estimates (7.7) again.
The proof is complete. a

if k <a,

if k > b,
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8. Linear forms in 1 and odd zeta values

Since generalizations of G-presentations (2.13), (6.4) lead us to forms
involving both odd and even zeta values, it is natural to follow Rivoal
dealing with F'-presentations.

Consider positive odd integers ¢ and r, where ¢ > r + 4. To a set of
integral positive parameters

h= (ho;hl,...,hq)
satisfying the condition

(8.1) hy+hg+ -+ hg < ho T=T

we assign the rational function
R(t) = R(h;t)

L(ho+¢t)"T(h1+1t)---T(hg+1)
14+t TQ+ho—h1+t)---T(1+ho—hg+t)

(8.2) = (ho + 2t) T
By (8.1) we obtain
(83) R =0(3).

hence the quantity

(8.4) F(h) := G _1 o] > R
T t=0

is well-defined. If r = 1, the quantity (8.4) can be written as a well-poised
hypergeometric series with a special form of the second parameter; namely,

ho! (hy = 1)L -« (hg — 1)!

F(h) =
(h) (ho — h)!- - (ho — hy)!
ho,l-’r%ho, his .., iy
xq+2Fq+1( %h0,1+ho—h1,---’1+ho_hq :

(cf. (4.2)), while in the case r > 1 we obtain a linear combination of well-
poised Meijer’s G-functions taken at the points e™**, where k = +1,+3, ...,
+(r — 2).

Applying the symmetry of the rational function (8.2) under the substi-
tution ¢t — —t — hg:

(8.5) R(~t — ho) = —(~1)"@R(t) = —R(t),

where we use the identity (3.4), and following the arguments of the proof of
Lemma 4 we are now able to state that the quantity (8.4) is a linear form
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in 1 and odd zeta values with rational coefficients. To present this result
explicitly we require the ordering

1
hlSh2S"'Shq<'2'h0

and the following arithmetic normalization of (8.4):

[1j—ri1(ho = 2h)!
86) F(h):= =L . F(h) RV (¢)
e A TR =] t_;,l
where the rational function
(8.7)
1 T(hj+1t) T(ho +t)
ho + 2t
R(®) := (ho +2¢)- H (hj — 1) T(1+¢) H (h;j —1)' T(1+ho—hj +1)
T(h; +t)
X H (ho — 2h;)! J
o1 F(14+ho—hj+1)
is the product of elementary bricks (7.3). Set mo = max{h, —1,ho—2h,41}
and m; = max{mo, ho — h1 — hy4;} for j = 1,...,q — r, and define the
integral quantity
(8.8) e=9h)= [[ »p
\/’E<Pqu-r
where
(8.9) vp 1= min {vkp}

hr41<k<ho—hri1

=2 (5[5
e e )
-2 (=515 - =)

In this notation the result reads as follows.

and

Lemma 19. The quantity (8.6) is a linear form in 1,{(r+2),{(r+4),...,
¢(q —4),¢(q — 2) with rational coefficients; moreover,

Dy Dy« D, -®7' - F(h) € Z{(q—2) + Z((q—4) + - - -+ Z{(r +2) + Z.
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Proof. Applying the Leibniz rule for differentiating a product, Lemmas 15,
16 and Lemmas 17, 18 to the rational function (8.7) we see that the numbers

1 —r\(a=J
= ROEERT)

j:’r‘—}-l,...,q, k:hr+1,...,h0_hr+11

B =

satisfy the relations

(8.10) D% .Bjy € Z
and
(811) ordp Bjk > —-(q — j) “+ Vk,ps

respectively, for any k = hrt1,...,ho — hr41 and any prime p > v ho.
Furthermore, the expansion

q ho—h; B.
RO =Y. > o=
j=r+1 k=h; (t+ k)T
leads us to the series
q ji—2 ho—h; oo  k—hy 1
rm=3% (P21 T B (- > )
j=r+41 k=h; =1 I=1
q
= ) A - 1) - Ao,
j=r+1
where
o ho—h;
(8.12) Aj—1=<r_1> > Bi, j=r+l...,q
k=h;
q o ho—h; k—h1 1
w=3 (7)) T a3y g
j=r+1 k=h; I=1
By (8.10) and the inclusions
k=hi 4

D:nlez "-ij_r . Z F €z
=1

for any k = hj,...,ho —hj, j=r+1,...,q, we obtain the ‘fairly rough’
inclusions
D,‘?,;)j'1~AjEZ for j=r,r+1,...,q—1,
D}, Dm, -+ Dm,_, - Ao € Z,
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which are (in a sense) refined by the estimates (8.11):
ordpA; > —(g—j—-1)+1p forj=0and j=nrr+1,...,q—1

with exponents v, defined in (8.9). To complete the proof we must show
that

A,r=0 a,nd Ar+1:Ar+3="‘=Aq—3=Aq—1=0-
The first equality follows from (8.3); by (8.5) we obtain
Bjk = (=1) B; po—k forj=r+1,...,q,

which yields A;_; = 0 for odd j according to (8.12). The proof is complete.
O

To evaluate the growth of the linear forms (8.6) so constructed we define
the set of integral directions 1 = (10;71, - . .,7,) and the increasing integral
parameter n related by the parameters h by the formulae

(8.13 ho = non + 2 and hi=nn+1 forj=1,...,q.
j = T

Consider the auxiliary function

fo(r) = rnolog(no — ) + Y _ (n; log(T — ;) — (0 — m;) log(T — mo + 115))
=1

T q
~2) njlogn;+ ) (1m0 —2n;) log(no — 2n;)

defined in the cut 7-plane C\ (—o0, 70 —71] U [no, +00). The next assertion
is deduced by an application of the saddle-point method and the use of
the asymtotics of the gamma factors in (8.7) (see, e.g., [Zu3], Section 2,
or [Ri4]). We underline that no approach in terms of real multiple integrals
is known in the case r > 3.

Lemma 20. Let r = 3 and let 79 be a zero of the polynomial

(r=m0) (r—m)---(T=mg) =7"(r =m0 +m) - (T — 1m0+ ng)
with Im 79 > 0 and the mazimum possible value of Rety. Suppose that
Re o < mo and Im fo(70) ¢ nZ. Then

g |B)| 'i(h)l = Re fo(70).

lim sup
n—oo

We now take

mj = max{ny, Mo — 2Mr41,M0 — M — Nr4;}  for j=1,...,q—r
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(hence we scale down with factor n the old parameters). The asymptotics
of the quantity (8.8) as n — oo can be calculated with the use of the
integral-valued function
T
vo(,y) :== Y _(ly) + lmoz — y) — ly — mjz] — |(m0 — m)= — y) — 2(nm;z])
j=1

q
+ 3 (Lo — 20p)z] — Ly — mz] — (o — mi)z — y)),

j=r+1

which is 1-periodic with respect to each variable z and y. Then by (8.9)
and (8.13) we obtain

(45 20
P pn<k-1<to-mon "\’ p ) =F\p)’

p(z) = min go(e,y) = min o(z,y).

where

Therefore, the final result is as follows.

Proposition 5. In the above notation let r = 3 and
C() = —Re f()(To),

1 1/mg—r dz
C2=7"m1+m2+"'+mq—r—(/ W(m)d¢($)—/ 90(3’);2‘>
0 0
If Cy > (o, then at least one of the numbers
¢(5), ¢(7), .-, ¢(g—4), and ((g—2)

is trrational.
We are now ready to state the following new result.

Theorem 3. At least one of the four numbers

¢(5), <(7), €(9), and ¢(11)

is trrational.
Proof. Taking r = 3, ¢ = 13,
o = 91, m=mne =mn3 =217, n; =25+j forj=4,5,...,13,
we obtain 79 = 87.47900541 ... + ¢ 3.32820690.. .,
Co = — Re fo(m0) = 227.58019641... .,

1 1/33 dz
Co=3-35434+8-33— (/ o(z) dy(x) —/ ¢(x);5>
0 0
= 226.24944266 . . .
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since in this case
pz)=v ifzeW\Qy, v=0,1,...,9,

for z € [0, 1), where Qy = [0,1),

=2 =[g,5)U[51)

% =[snw) Vs DVEDUE R UEE) VR E) U,

U=[mn)Vimw U H)uEH)ulE o ulE B L)
Visns) Vs m) VR %) UlEH R ulH ) v S Ui )
VDB VB R ERVEDVE VR
U (55, %),

U = [37,27) U [35,90) U 5o 1) U [ ) U [ ) U [, )

U a) Vi s) Vg #) VE ) Uik &) U $)uE))
U3 27) Ul 3) VB &) U5 ) U [ 3) U (8 5) U (R, %)
Vs ) VIS5 U G &) VB #) U (B &) U S B V[ &)
Vo 8) Y [ 50) V5 &) VIS #) U [ ) VL ) U (5, 8)
Uls8) Vs %) VI #) VIR B) U ) v B2 U E8)
Vs ulg ) Vs R uE U@ HuB LB
Vi) Vs n) VELDUBH VR D VBB UGB
ulsh %) V(5 3,

% =[zm) V7))V #) V) U[E H) VL E) V[ 2)
Uz sVl s VEL#) U3 %) VR BV U 9)
Uz U ae) et s) ulE #) ulEh #) u & B) v R3)
Ul ) Vs R) VL VR VIR B VB H U B)
Ul ) Vs B) VISH ) U5 U8 B) V[ B) U 15, B)
ViE s VERH VBB UE B V),

Y =[ma)VmH) VL) VR VR HUEE UK )
Ve ) VI VIR 7 V[EF) VRS UIE S UL Y)
Ve ) VI H) VL VR VI DU B UL 1)
Ul m) VL) VE B v &R VL) U[R 3 us B)
Ul ) VIR VLB VD UIR B VB U[H B
Ulshs) VIEH ) VB B) VI 5),
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N
0
(=

B=[rHUEmHV o ENuERVER)
Ul z) Ul ) VlE») Va3 Vs s) Vi) Vs )
Ui ) VL) v B u(G R vB DU H Vs %)
VE BV G RuERvB DB VEGR)
ulm P vl s viEhn) v R VB %)

=%mVEDVUEHRUERRUER UGS
U [Zé 25

25126/
and QIO = 0
The application of Proposition 5 completes the proof. 4

Remark. In [Zu4] we consider a particular case of the above construction
and arrive at the irrationality of at least one of the eight odd zeta values
starting from ¢(5); namely, we take r =3, ¢=21, 79 =20,and m1 = --- =
191 = 7 to achieve this result.

Looking over all integral directions n = (no;m1,...,7¢) With ¢ = 7, 9,
and 11 satisfying the conditions

1
77137725"'_<_ﬂq<§’l70 and no < 120

we have discovered that no set 7 yields the irrationality of at least one of the
numbers ((5), ¢(7), and ¢(9) via Proposition 5. Thus, we can think about
natural bounds of the ‘pure’ arithmetic approach achieved in Theorem 3.

In a similar way our previous results [Zu4] on the irrationality of at least
one of the numbers in each of the two sets

¢(7), €(9), <(11), ..., ¢(33), ¢(35),
¢(9), €(11), ¢(13), ..., ¢(49), ¢(51)

can be improved. We are not able to demonstrate the general case of
Lemma 20, although this lemma (after removing the hypothesis Re 79 < 1)
remains true for odd r > 3 and for any suitable choice of directions 7
(cf. [Zu3], Section 2).

9. One arithmetic conjecture and
group structures for odd zeta values

To expose the arithmetic of linear forms produced by the quantit