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Arithmetic of linear forms

involving odd zeta values

par WADIM ZUDILIN

RÉSUMÉ. Une construction hypergéométrique générale de formes
linéaires de valeurs de la fonction zéta aux entiers impairs est
présentée. Cette construction permet de retrouver les records de
Rhin et Violla pour les mesures d’irrationnalité de 03B6(2) et 03B6(3),
ainsi que d’expliquer les résultats récents de Rivoal sur l’infinité
des valeurs irrationnelles de la fonction zéta aux entiers impairs
et de prouver qu’au moins un des quatre nombres 03B6(5), 03B6(7), 03B6(9)
et 03B6(11) est irrationnel.

ABSTRACT. A general hypergeometric construction of linear
forms in (odd) zeta values is presented. The construction allows
to recover the records of Rhin and Viola for the irrationality mea-
sures of 03B6(2) and 03B6(3), as well as to explain Rivoal’s recent result
on infiniteness of irrational numbers in the set of odd zeta values,
and to prove that at least one of the four numbers 03B6(5), 03B6(7), 03B6(9),
and 03B6(11) is irrational.

1. Introduction

The story exposed in this paper starts in 1978, when R. Ap6ry [Ap] gave
a surprising sequence of exercises demonstrating the irrationality of ((2)
and ((3). (For a nice explanation of Apery’s discovery we refer to the re-
view [Po].) Although the irrationality of the even zeta values ((2), ((4),...
for that moment was a classical result (due to L. Euler and F. Lindemann),
Apery’s proof allows one to obtain a quantitative version of his result, that
is, to evaluate irrationality exponents:

As usual, a value it = /-t(a) is said to be the irrationality exponent of an
irrational number a if it is the least possible exponent such that for any
e &#x3E; 0 the inequality
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has only finitely many solutions in integers p and q with q &#x3E; 0. The esti-
mates (1.1) ’immediately’ follow from the asymptotics of Ap6ry’s rational
approximations to ((2) and ((3), and the original method of evaluating the
asymptotics is based on second order difference equations with polynomial
coefficients, with Ap6ry’s approximants as their solutions.
A few months later, F. Beukers [Be] interpretated Ap6ry’s sequence of ra-

tional approximations to ((2) and ((3) in terms of multiple integrals and Le-
gendre polynomials. This approach was continued in later works [DV, Ru],
[Hal]-[Ha5], [HMV], [RV1]-[RV3] and yielded some new evaluations of the
irrationality exponents for ((2), ((3), and other mathematical constants.
Improvements of irrationality measures (i.e., upper bounds for irrational-
ity exponents) for mathematical constants are closely related to another
arithmetic approach, of eliminating extra prime numbers in binomials, in-
troduced after G. V. Chudnovsky [Ch] by E. A. Rukhadze [Ru] and studied
in detail by M. Hata [Hal]. For example, the best known estimate for the
irrationality exponent of log 2 (this constant sometimes is regarded as a
convergent analogue of ~(1) ) stated by Rukhadze [Ru] in 1987 is

see also [Hal] for the explicit value of the constant on the right-hand side
of (1.2). A further generalization of both the multiple integral approach
and the arithmetic approach brings one to the group structures of G. Rhin
and C. Viola [RV2, RV3]; their method yields the best known estimates for
the irrationality exponents of ((2) and ((3):

and gives another interpretation [Vi] of Rukhadze’s estimate (1.2).
On the other hand, Ap6ry’s phenomenon was interpretated by L. A. Gut-

nik [Gu] in terms of complex contour integrals, i.e., Meijer’s G-functions.
This approach allowed the author of [Gu] to prove several partial results
on the irrationality of certain quantities involving ((2) and ((3). By the
way of a study of Gutnik’s approach, Yu. V. Nesterenko [Nel] proposed a
new proof of Ap6ry’s theorem and discovered a new continuous fraction
expansion for ((3). In [FN], p. 126, a problem of finding an ’elementary’
proof of the irrationality of ((3) is stated since evaluating asymptotics of
multiple integrals via the Laplace method in [Be] or complex contour inte-
grals via the saddle-point method in [Nel] is far from being simple. Trying
to solve this problem, K. Ball puts forward a well-poised hypergeometric
series, which produces linear forms in 1 and ((3) only and can be evalu-
ated by elementary means; however, its ’obvious’ arithmetic does not allow
one to prove the irrationality of ((3). T. Rivoal [Ril] has realized how to
generalize Ball’s linear form in the spirit of Nikishin’s work [Ni] and to use
well-poised hypergeometric series in the study of the irrationality of odd
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zeta values ~(3), ~(5), ... ; in particular, he is able to prove [Ril] that there
are infinitely many irrational numbers in the set of the odd zeta values.
A further generalization of the method in the spirit of [Gu, Nel] via the
use of well-poised Meijer’s G-functions allows Rivoal [Ri4] to demonstrate
the irrationality of at least one of the nine numbers ~(5), ((7), ... , ((21).
Finally, this author [Zul]-[Zu4] refines the results of Rivoal [Ril]-[Ri4] by
an application of the arithmetic approach.

Thus, one can recognise (at least) two different languages used for an
explanation why ~(3) is irrational, namely, multiple integrals and complex
contour integrals (or series of hypergeometric type). Both languages lead us
to quantitative and qualitative results on the irrationality of zeta values and
other mathematical constants, and it would be nice to form a dictionary
for translating terms from one language into another. An approach to such
a translation has been recently proposed by Nesterenko [Ne2, Ne3]. He

has proved a general theorem that expresses contour integrals in terms of
multiple integrals, and vice versa. He also suggests a method of constructing
linear forms in values of polylogarithms (and, as a consequence, linear forms
in zeta values) that generalizes the language of [Ni, Gu, Nel] and, on the
other hand, of [Be], (Hal)-~Ha5~, [RVI]-[RV3] and takes into account both
arithmetic and analytic evaluations of the corresponding linear forms.
The aim of this paper is to explain the group structures used for evaluat-

ing the irrationality exponents (1.2), (1.3) via Nesterenko’s method, as well
as to present a new result on the irrationality of the odd zeta values inspired
by Rivoal’s construction and possible generalizations of the Rhin-Viola ap-
proach. This paper is organized as follows. In Sections 2-5 we explain in
details the group structure of Rhin and Viola for ~(3); we do not use Beuk-
ers’ type integrals as in [RV3] for this, but with the use of Nesterenko’s
theorem we explain all stages of our construction in terms of their doubles
from [RV3]. Section 6 gives a brief overview of the group structure for ((2)
from [RV2]. Section 7 is devoted to a study of the arithmetic of rational
functions appearing naturally as ’bricks’ of general Nesterenko’s construc-
tion [Ne3]. In Section 8 we explain the well-poised hypergeometric origin
of Rivoal’s construction and improve the previous result from [Ri4, Zu4] on
the irrationality of ((5), ((7),...; namely, we state that at least one of the
four numbers

is irrational. Although the success of our new result from Section 8 is due to
the arithmetic approach, in Section 9 we present possible group structures
for linear forms in 1 and odd zeta values; these groups may become use-
ful, provided that some arithmetic condition (which we indicate explicitly)
holds.
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2. Analytic construction
of linear forms in 1 and ((3)

Fix a set of integral parameters

satisfying the conditions

and consider the rational function

where

By condition (2.3) we obtain

moreover, the function R(t) has zeros of the second order at the integral
points t in the interval
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Therefore, the numerical series R’(t) with to = 1 - maxf bi, b2) con-
verges absolutely, and the quantity

is well-defined; moreover, we can start the summation on the right-hand
side of (2.7) from any integer to in the interval

The number (2.7) is a linear form in 1 and ((3) (see Lemma 4 below), and
we devote the rest of this section to a study of the arithmetic (i.e., the
denominators of the coefficients) of this linear form.

To the data (2.1) we assign the ordered set (a*, b*); namely,

hence the interval (2.8) for to can be written as follows:

By DN we denote the least common multiple of numbers 1, 2, ... , N.

Lemma 1. For j = 1, 2 there hold the inclusions

Proof. The inclusions (2.10) immediately follow from the well-known prop-
erties of the integral-valued polynomials (see, e.g., [Zu5], Lemma 7), which
are Rl(t) and R2(t). 0

The analogue of Lemma 1 for rational functions R3(t), R4(t) from (2.5)
is based on the following assertion combining the arithmetic schemes of
Nikishin [Ni] and Rivoal [Ril].
Lemma 2 ([Zu3], Lemma 1.2). Assume that for some polynomial P(t) of
degree not greater than n the rational function

(in a not necesarily uncancellable presentation) satisfies the conditions

Then for all non-negative integers 1 there hold the inclusions
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Lemma 3. For j = 3, 4 there hold the inclusions

Proof. The inclusions (2.11) can be verified by direct calculations:

To prove the inclusions (2.12) we apply Lemma 2 with 1 = 1 to the func-
tion multiplying its numerator and denominator if necessary by the
factor (t + a3) ~ ~ ~ (t + aj - 1) if aj &#x3E; aj and by (t + bj) ... (t + b4 - 1) if

bj  b4. D

Lemma 4. The quantity (2.7) is a linear form in 1 and ((3) with rational
coefficients:

in addition,

Proof. The rational function (2.4) has poles at the points t = -J~, where
k = a*, aj + 1, ... , b4 - 1; moreover, the points t = -1~, where k = a*, a* +
1, ... , b3 - 1, are poles of the second order. Hence the expansion of the
rational function (2.4) in a sum of partial fractions has the form

where the coefficients Ak and Bk in (2.15) can be calculated by the formulae

Expressing the function R(t)(t + k)2 as
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for each l~ and applying the Leibniz rule for differentiating ’a product, by
Lemmas 1 and 3 we obtain
I- - -,

(where we use the fact that for at least one j E {3,4}).
By (2.6) there holds

Hence, setting to = 1- ai in (2.7) and using the expansion (2.15) we obtain

The inclusions (2.14) now follow from (2.16) and the definition of the least
common multiple:

The proof is complete.

Taking a1 = a2 = a3 = a4 = 1+n, bl = b2 = 1, and b3 = b4 = 2 + 2n we
obtain the original Ap6ry’s sequence

of rational approximations to ((3) (cf. [Gu, Nel]); Lemma 4 implies that
An E Z and D~ ~ Bn E Z in Ap6ry’s case.
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3. Integral presentations

The aim of this section is to prove two presentations of the linear
form (2.7), (2.13): as a complex contour integral (in the spirit of [Gu, Nel])
and as a real multiple integral (in the spirit of [Be, Ha5, RV3]).

Consider another normalization of the rational function (2.4); namely,

and the corresponding sum

Note that the function (3.1) and the quantity (3.2) do not depend on the
order of numbers in the sets {al, a2, a3, a4}, {~1~2}? and {b3, b4}, i.e.,

Lemma 5. There holds the formula

where £ is a vertical line Re t = ti , 1 - al  ti  1- b2, oriented from the
bottom to the top, and Meijer’s G-function (see [Lu], Section 5.3).

Proof. The standard arguments (see, e.g., [Gu], [Nel], Lemma 2, or [Zu3],
Lemma 2.4) show that the quantity (3.2) presents the sum of the residues
at the poles t = -b2 + 1, -b2 + 2, ... of the function

~ , 0

It remains to observe that

and to identify the integral in (3.3) with Meijer’s G-function. This estab-
lishes formula (3.3). 0

The next assertion allows one to express the complex integral (3.3) as a
real multiple integral.
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Proposition 1 (Nesterenko’s theorem [Ne3]). Suppose that m &#x3E; 1 and
r &#x3E; 0 are integers, r  m, and that complex parameters ao, al, ... , I

b1, ... , br,.t and a real number t1  0 satisfy the conditions

Then for any z E ~ ~ (-oo, 0~ there holds the identity

where both integrals converge. Here zt = etlogz and the logarithm takes real
values for real z E (0, +oo).

We now recall that the family of linear forms in 1 and ((3) considered in
paper [RV3] has the form
3.5

and depends on eight non-negative integral parameters connected by the
additional conditions

where the first condition in (3.6) determines the parameter m (which does
not appear on the right-hand side of (3.5) explicitly), while the second
condition enables one to apply a complicated integral transform #, which
rearranges all eight parameters.

Lemma 6. The quantity (2.7) has the integral presentation

where the multiple integral on the right-hand side of (3.7) is given by for-
mula (3.5) and
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Proof. By the change of variables t in the complex integral (3.3)
and the application of Proposition 1 with m = 3, r = 1, and z = 1 we obtain

which yields the desired presentation (3.7). In addition, we mention that
the second condition in (3.6) for the parameters (3.8) is equivalent to the
condition

for the parameters (2.1). 0

The inverse transformation of Rhin-Viola’s parameters to (2.1) is de-
fined up to addition of the same integer to each of the parameters (2.1).
Normalizing the set (2.1) by the condition bl = 1 we obtain the formulae
(3.10)

Relations (3.8) and (3.10) enable us to describe the action of the generators
cp, x, ~9, Q of the hypergeometric permutation group 0 from [RV3] in terms
of the parameters (2.1):

Thus, cp, permute the parameters aI, a2, a3, a4 and b3, b4 (hence they do
not change the quantity (3.2) ), while the action of the permutation # on the
parameters (2.1) is ’non-trivial’. In the next section we deduce the group
structure of Rhin and Viola using a classical identity that expresses Meijer’s
G4’4-function in terms of a well-poised hypergeometric 7F6-function. This
identity allows us to do without the integral transform corresponding 
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and to produce another set of generators and another realization of the
same hypergeometric group.

4. Bailey’s identity and the group structure for ((3)

Proposition 2 (Bailey’s identity [Bal], formula (3.4), and [Sl], formula
(4.7.1.3)). There holds the identity

provided that the series on the left-hand side converges.

We now set

for the normalized well-poised hypergeometric 7F6-series.
In the case of integral parameters h satisfying 1 + ho &#x3E; 2hj for each

j = l, ... , 5, it can be shown that F(h) is a linear form in 1 and ((3)
(see, e.g., Section 8 for the general situation). Ball’s sequence of rational

approximations to ((3) mentioned in Introduction corresponds to the choice
- - - - - - - - .

(see [Ri3], Section 1.2). Using arguments of Section 2 (see also Section 7
below) one can show that D.~ ~ A~ E Z and D4 - Bn E Z, which is far from
proving the irrationality of ((3) since multiplication of (4.3) by D4 leads us
to linear forms with integral coefficients that do not tend to 0 oo.

Rivoal [Ri3], Section 5.1, has discovered the coincidence of Ball’s (4.3) and
Ap6ry’s (2.17) sequences with the use of Zeilberger’s Ekhad program; the
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same result immediately follows from Bailey’s identity. Therefore, one can
multiply (4.3) by D3 only to obtain linear forms with integral coefficients!
The advantage of the presentation (4.3) of the original Ap6ry’s sequence
consists in the possibility of an ’elementary’ evaluation of the series on the
right-hand side of (4.3) as n -&#x3E; oo (see [Ri3], Section 5.1, and [BR] for
details).
Lemma 7. If condition (3.9) holds, then

where

Proof. Making as before the change of variables t in the contour

integral (3.3), by Lemma 5 we obtain

Therefore, the choice of parameters ho, hl, h2, h3, h4, h5 in accordance with
(4.5) enables us to write down the identity from Proposition 2 in the re-
quired form (4.4). O

The inverse transformation of the hypergeometric parameters to (2.1)
requires a normalization of the parameters (2.1) as in Rhin-Viola’s case.
Setting bl = 1 we obtain

We now mention that the permutations ajk of the parameters aj, ak,
1  j  1~  4, as well as the permutations b34 of the parameters b1, b2
and b3, b4 respectively do not change the quantity on the left-hand side
of (4.4). In a similar way, the permutations of the parameters hj, hk,
1  j  1~  5, do not change the quantity on the right-hand side of (4.4).
On the other hand, the permutations = 2, 3, 4, affect nontrivial trans-
formations of the parameters h and the permutations ~jk with j = 1, 2, 3
and = 4, 5 affect nontrivial transformations of the parameters a, b. Our



263

nearest goal is to describe the group 6 of transformations of the param-
eters (2.1) and (4.5) that is generated by all (second order) permutations
cited above.

Lemma 8. The group 0 can be identified with a subgroup of order 1920
of the group 2116 of even permutations of a 16-elements set; namely, the

group 0 permutes the parameters

and is generated by following permutations:
(a) the permutations aj := aj4, j = 1, 2, 3, of the jth and the fourth lines

of the (4 x 4) -matrix
, x

(b) the permutation b := b34 of the third and the fourth columns of the
matrix (4.8);

(c) the permutation 4 := C35 that has the expression

in terms of the parameters c.
All these generators have order 2.

Proof. The fact that the permutation # = 1j35 acts on the parameters (4.7)
in accordance with (4.9) can be easily verified with the help of formulae (4.5)
and (4.6):

As said before, the permutations 1  j  1~  4, and 1  j 
I~  5, belong to the group (sal, a2, a3, b, 4); in addition,

Therefore, the group 6 is generated by the elements in the list (a)-(c).
Obviuosly, these generators have order 2 and belong to %16-
We have used a C++ computer program to find all elements of the group

These calculations show that 6 contains exactly 1920 permutations. This
completes the proof of the lemma. D
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Rerraark. By Lemma 8 and relations (4.10) it can be easily verified that the
quantity b3 + b4 - bl - b2 is stable under the action of C3.

Further, a set of parameters c, collected in (4 x 4)-matrix, is said to
be admissible if there exist parameters (a, b) such that the elements of
the matrix c can be obtained from them in accordance with (4.7) and,
moreover,

Comparing the action (3.11) of the generators of the hypergeometric
group from [RV3] on the parameters (2.1) with the action of the genera-
tors of the group (4.11), it is easy to see that these two groups are iso-

morphic ; by (4.10) the action of # on (2.1) coincides up to permutations
aI, a2, a3, 6 with the action of ~. The set of parameters (4.7) is exactly the
set (5.1), (4.7) from [RV3], and

by (3.8).
On the other hand the hypergeometric group of Rhin and Viola is em-

bedded into the group 2(10 of even permutations of a 10-element set. We
can explain this (not so natural, from our point of view) embedding by
pointing out that the following 10-element set is stable under C3:

where g = 1 + 2ho - hl - h2 - h3 - h4 - h5. The matrix c in (4.8) in terms
of the parameters h is expressed as 

-

The only generator of 6 in the list (a)-(c) that acts nontrivially on the
parameters h is the permutation al. Its action is

and we have discovered the corresponding hypergeometric 7F6-identity in
[Ba2], formula (2.2).
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The subgroup 0i of Q5 generated by the permutations ajk, 1  j  1~  4,
and b12, b34, has order 4! . 2! 2! = 96. The quantity G(a, b) is stable
under the action of this group, hence we can present the group action on
the parameters by indicating 1920/96 = 20 representatives of left cosets

= = 1~.. ’~ ,20}; namely,

we choose the representatives with the shortest presentation in terms of
the generators from the list (a)-(c). The images of any set of parameters
(a, b) under the action of these representatives can be normalized by the
condition bl = 1 and ordered in accordance with (2.9). We also point out
that the group C31 contains the subgroup e50 = (a12612, a34b34) of order 4,
which does not change the quantity G(a, b). This fact shows us that for
fixed data (a, b) only the 480 elements qja, where j = 1, ... , 20 and a E
64 is an arbitrary permutation of the parameters al, a2, a3, a4, produce
‘perceptable’ actions on the quantity (2.7). Hence we will restrict ourselves
to the consideration of only these 480 permutations from 

In the same way one can consider the subgroup Cii C C3 of order 5! = 120
generated by the permutations 1  j  k  5. This group acts trivially
on the quantity F(h). The corresponding 1920/120 = 16 representatives
of left cosets 0/0’ can be chosen so that for the images of the set of
parameters h we have

of course ho &#x3E; 2h5.
For an admissible set of parameters (4.7) consider the quantity

Since the group 6 does not change (4.4), we arrive at the following state-
ment.

Lemma 9 (cf. [RV3], Section 4). The quantity

is stable under the action of C~3.
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5. Irrationality measure of Rhin and Viola for ((3)

Throught this section the set of parameters (2.1) will depend on a positive
integer n in the following way:

where the new integral parameters (’directions’) (a,,3) satisfy by (2.2),
(3.9), and (4.12) the following conditions:
I- -1 B f /1 /1 l r "B f /1 /1 l

The version of the set (a,,3) ordered as in (2.9) is denoted by (cx*,/3*).
To the parameters (a, (3) we assign the admissible (4 x 4)-matrix c with

entries

hence the set of parameters c ~ n corresponds to (5.1). With any admissible
matrix c we relate the following characteristics:

and write the claim of Lemma 4 for the quantity (4.13) as

Fix now a set of directions (a~, j3) satisfying conditions (5.2), (5.3), and
the corresponding set of parameters (5.4). In view of the results of Sec-
tion 4, we will consider the set Mo = .Mo(a, p) _ Mo(c) of 20 ordered
collections (a’, (3’) corresponding to qj(a,,3), j = 1, ... , 20, and the set
.M = M(a, (3) = M(c) := of 480 such collections, where a E 64 is
an arbitrary permutation of the parameters al, a2, a3, a4 (equivalently, of
the lines of the matrix c). To each prime number p we assign the exponent



267

and consider the quantity

where m3 = m3(c) := 

Lemma 10. For any positive integer n there holds the inclusion

Proof. The inclusions

for P  mon and p &#x3E; m3n follow from (5.5) since ordpbn I = 0.
Using the stability of the quantity (4.14) under the action of any permu-

tation from the group C3, by (5.5) we deduce that

which yields the inclusions (5.7) for the primes p in the interval

Vm-on  p  m3n since

in this case. The proof is complete. D

The asymptotics of the numbers Dmln, Dm2n in (5.7) is determined by
the prime number theorem:

For the study of the asymptotic behaviour of (5.6) as n -&#x3E; oo we introduce
the function

where [’J is the integral part of a number. Then lip = cp(n/p) since
ordp N! = LNIP] for any integer N and any prime p &#x3E; 
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Note that the function p(z) is periodic (with period 1) since

(see Remark to Lemma 8); moreover, the function takes only non-
negative integral values.

Lemma 11. The number (5.6) satisfies the limit relation

where O(x) is the logarithmic derivative of the gamma function.

Proof. This result follows from the arithmetic scheme of Chudnovsky-
Rukhadze-Hata and is based on the above-cited properties of the func-
tion (see [Zu3], Lemma 4.4). Substraction on the right-hand side
of (5.8) ’removes’ the primes p &#x3E; m3n that do not enter the product 4bn
in (5.6). D

The asymptotic behaviour of linear forms

and their coefficients An, Bn can be deduced from Lemma 6 and [RV3], the
arguments before Theorem 5.1; another ’elementary’ way is based on the
presentation
~~5.91

and the arguments of Ball (see [BR] or [Ri3], Section 5.1). But the same
asymptotic problem can be solved directly on the basis of Lemma 5 with the
use of the asymptotics of the gamma function and the saddle-point method.
We refer the reader to [Nel] and [Zu3], Sections 2 and 3, for details of this
approach; here we only state the final result.

Lemma 12. Let To  71 be the (reaQ zeros of the quadratic polynomial

(it can be easily verified  To  ai and Ti &#x3E; a4); the function 
in the cut T-plane C B (201300, U given by the formula
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where the logarithms take real values for real T E (02*, ai). Then

Combining results of Lemmas 11 and 12, as in [RV3], Theorem 5.1, we
deduce the following statement.

Proposition 3. In the above notation let

If Co &#x3E; C2, then

Looking over all integral directions (a, p) satisfying the relation

by means of a program for the calculator GP-PARI we have discovered that
the best estimate for p(((3) ) is given by Rhin and Viola in [RV3].

Theorem 1 ([RV3]). The irrationality exponents of C(3) satisfies the esti-
mate

Proof. The optimal set of directions (a, /.3) (up to the action of C5) is as
follows:

Then,
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The set Mo in this case consists of the following elements:

an easy verification shows that mi = m3 = 16 and m2 = 18. The function

cp(x) for x E (0,1) is defined by the formula

where the sets and ilk are indicated in [RV3], p. 292. Hence

and by Proposition 3 we obtain the required estimate (5.11). D

Note that the choice (5.12) gives us the function p(z) ranging in the
set {O, 1, 2}; any other element of Nt produces the same estimate of the
irrationality exponent (5.11) with ranging in {0,1,2,3}.
The previous record

due to Hata [Ha5] can be achieved by the choice of the parameters
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and the action of the group ð1/ðo of order just 4! = 24 (we can regard
this as a (a, b)-trivial action). For directions (a"C3) satisfying the relation

(instead of (5.10) ) we have verified that the choice (5.14) corresponding
to Hata’s case produces the best estimate of the irrationality exponent
for ((3) in the class of (a, b)-trivial actions. In that case we are able to use
the inequality

instead of (5.3) since we do not use Bailey’s identity. The mysterious thing
is that the action of the full group 6 does not produce a better result than
(5.13) for the parameters (5.14).

6. Overview of the group structure for ((2)
To a set of integral parameters

satisfying the conditions
, I

we assign the rational function

where the functions Rl(t),RZ(t), and R3(t) are defined in (2.5). Condi-
tion (6.2) yields (2.6), hence the (hypergeometric) series

is well-defined. Expanding the rational function R(t) in a sum of partial
fractions and applying Lemmas 1 and 3 we arrive at the following assertion.

Lemma 13 (cf. Lemma 4). The quantity (6.3) is a rational form in 1

and ((2) with rational coefficients:
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in addition,

where (a*, b*) is the ordered version of the set (6.1):

By Proposition 1 the series (6.3) can be written as the double real integral

hence we can identify the quantity (6.3) with the corresponding integral
I(h, i, j, k, l) from [RV2] by setting

the inverse transformation (after the normalization bl = 1) is as follows:

In the further discussion we keep the normalization bl = 1.
The series

and

play the same role as (3.2) and (4.2) played before since one has

where
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and

by Whipple’s identity [Ba3], Section 4.4, formula (2). The permutations
ajk, 1  j  1~ C 3, of the parameters aj, ak, the permutation b23 of b2, b3, i
and the permutations 1  j  1~  4, of the parameters hj, hk do
not change the quantity (6.6) . Hence we can consider the group 6 gener-
ated by these permutations and naturally embed it into the group 610 of
permutations of the 10-element set

The group 6 is generated by the permutations a1 := a13, a2 := a23, b := b23,
which can be regarded as permutations of lines and columns of the ‘(4 x 4)-
matrix’

and the (a, b)-nontrivial permutation # := 

these four generators have order 2. It can be easily verified that the group
Q5 = (al, a2, b, #) has order 120; in fact, we require only the 60 represen-
tatives of Q5/00, where the group C3o - (id, a23 b231 acts trivially on the
quantity

Thus, we can summarize the above as follows.

Lemma 14 (cf. [RV2], Section 3). The quantity

is stable under the action of C3 = (a,, a2, b, C~).
If one shifts indices of cjk by one then the group 6 for ((2) can be natu-

rally regarded as a subgroup of the group C3 for ~(3) (compare the generators
of both groups). The group C3 for ((2) coincides with the group W of Rhin
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and Viola from [RV2] since permutations cp, Q are (a, b)-trivial in our
terms and for T E ~ we have

We now fix an arbitrary positive integer n and integral directions (a, j3)
satisfying the conditions

so that the parameters (6.1) are expressed as follows:

and consider, as in Section 5, the corresponding set of parameters

hence the set c. n corresponds to (6.8). Set

where asterisks mean ordering in accordance with (6.5). To the 60-element
set .M = .M(c) = {q c : q E we assign the function

which is 1-periodic and takes only non-negative integral values. Further,
let To and Tl, To  Tl, be the (real) zeros of the quadratic polynomial

(in particular, To  (31 and T1 &#x3E; a3) and let

be a function in the cut T-plane C B U [ai, +00). Then the final
result is as follows.
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Proposition 4. In the above notation let
i-r - le I B /"t ~

In accordance with [RV2] we now take

and obtain the following result.

Theorem 2 ([RV2]). The irrationality exponents of C(2) satisfies the esti-
mate

Obseruation. In addition to the fact that the group for ((2) can be naturally
embedded into the group for ((3), we can make the following surprising
observation relating the best known estimates of the irrationality exponents
for these constants. The choice of the directions (5.1) with

for ((3) (cf. (5.12) ) and the choice of the directions (6.8) with

for ((2) (which is 6-equivalent to (6.9) ) lead to the following matrices (4.8)
and (6.7):

The first set of the parameters in (6.11) produces the estimate (5.11), while
the second set the estimate (6.10).

Finally, we point out that the known group structure for log 2 (and for
some other values of the Gauss hypergeometric function) is quite simple
since no identity like (4.1) is known; the corresponding group consists of
just two permutations (see [Vi] for an explanation in terms of ’multiple’
integrals).
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7. Arithmetic of special rational functions

In our study of arithmetic properties of linear forms in 1 and ((3) we
have used the information coming mostly from G-presentations (4.13). If

we denote by F(h) the right-hand side of (5.9) and apply Lemma 7, then
one could think that the expansion

where we now set

with

(7.2)

brings with it some extra arithmetic for linear forms H(c) since the func-
tions (7.2) are of the same type as (2.5). Unfortunately, we have discovered
that (quite complicated from the computational point of view) arithmetic
of the presentations (7.1) brings nothing new.

For our future aims we now study the arithmetic properties of elementary
’bricks’-rational functions

which are introduced by Nesterenko [Ne2, Ne3] and appear in (2.5)
and (7.2).
The next claim exploits well-known properties of integral-valued polyno-

mials.
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Lemma 15 (cf. Lemma 1). Suppose that a &#x3E; b. Then for any non-negative
integer j there hold the inclusions

The next claim immediately follows from Lemma 2 in the same way as
Lemma 3.

Lemma 16. Let a, b, ao, bo be integers, ao :~ a  b  bo . Then f or any
non-negative integer j there hold the inclusions

Lemmas 15 and 16 give a particular (but quite important) information
on the p-adic valuation of the values R~~~ (-k) and ~R(t) (t + k)~ ~’~~ I t=-k
respectively, with a help of the formula ordp DN = 1 for any integer N and
any prime p in the interval 4k  p  N. Two next statements are devoted
to the ’most precise’ estimates for the p-adic order of these quantities.

Lemma 17. Let a, b, ao, bo be integers, bo  b  a  ao, and let R(t) =
R(a, b; t) be defined by (7.3). Then for any integer k, bo  k  ao, any

prime p &#x3E; and any non-negative integer j there hold the
estimates

Proof. Fix an arbitrary prime p &#x3E; First, we note that by the
definition of the integral part of a number

I

which yields

Therefore,

for any integer k.
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Direct calculations show that

thus,

which yields the estimates (7.4) for j = 0 with the help of (7.5).
If k  b or k &#x3E; a, consider the function

hence for any integer j &#x3E; 1 there hold the inclusions

Induction on j and the identity

specified at t = -k lead us to the required estimates (7.4).
If b  k  a, consider the functions

obviously, for any integer j &#x3E; 1 there hold the inclusions

Then

since
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and induction on j in combination with identity (7.6) (where we substitute
Rk (t), rk(t) for R(t), r(t), respectively) show that

for integer j &#x3E; 1. Thus, applying (7.5) we obtain the required esti-
mates (7.4) again. The proof is complete. 0

Lemma 18. Let a, b, ao, bo be integers, ao  a  b  bo, and let R(t) =
R(a, b; t) be defined by (7.3). Then for any integer k, ao  k  bo, any
prime p &#x3E; and any non-negative integer j there hold the
estimates

Proof. Fix an arbitrary prime p &#x3E; bo - ao - 1. We have

which yields the estimates (7.7) for j = 0.
Considering in the case a  k  b the functions

and carrying out induction on j &#x3E; 0, with the help of identity (7.6) (where
we take Rk (t), rk (t) for R(t),r(t) again) we deduce the estimates (7.7).

If k  a or k &#x3E; b note that

Since

induction on j and equalities (7.5) yield the required estimates (7.7) again.
The proof is complete. 0
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8. Linear forms in 1 and odd zeta values

Since generalizations of G-presentations (2.13), (6.4) lead us to forms
involving both odd and even zeta values, it is natural to follow Rivoal

dealing with F-presentations.
Consider positive odd integers q and r, where q &#x3E; r + 4. To a set of

integral positive parameters

satisfying the condition

we assign the rational function

By (8.1) we obtain

hence the quantity

is well-defined. If r = 1, the quantity (8.4) can be written as a well-poised
hypergeometric series with a special form of the second parameter; namely,

(cf. (4.2) ), while in the case r &#x3E; 1 we obtain a linear combination of well-

poised Meijer’s G-functions taken at the points e7rik, where k = ±3,...,
Jb(r-2).

Applying the symmetry of the rational function (8.2) under the substi-
tution t H -t - ho :

where we use the identity (3.4), and following the arguments of the proof of
Lemma 4 we are now able to state that the quantity (8.4) is a linear form
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in 1 and odd zeta values with rational coefficients. To present this result
explicitly we require the ordering

and the following arithmetic normalization of (8.4):

where the rational function

is the product of elementary bricks (7.3). Set mo = ho - 
and mj = max~mo, ho - hi - for j - 1, ... , q - r, and define the
integral quantity

where

(8.9)

and

In this notation the result reads as follows.

Lemma 19. The quantity (8.6) is a linear form in 1,«(r+2),«(r+4),...,
C(q - 4), ((q - 2) with rational coef,jicients; moreover,



282

Proof. Applying the Leibniz rule for differentiating a product, Lemmas 15,
16 and Lemmas 17, 18 to the rational function (8.7) we see that the numbers

satisfy the relations

and

respectively, for any k = hr+1, ... , ho - hr+1 and any prime
Furthermore, the expansion

leads us to the series

where

By (8.10) and the inclusions

for any k = h~, ... , ho - hj, j = r + 1, ... , q, we obtain the ’fairly rough’
inclusions
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which are (in a sense) refined by the estimates (8.11):

with exponents 1/p defined in (8.9). To complete the proof we must show
that

The first equality follows from (8.3); by (8.5) we obtain

which yields Aj-1 = 0 for odd j according to (8.12). The proof is complete.
D

To evaluate the growth of the linear forms (8.6) so constructed we define
the set of integral directions q = (170; 171, ... , qq) and the increasing integral
parameter n related by the parameters h by the formulae

Consider the auxiliary function

defined in the cut T-plane C B U [,qo, +oo) . The next assertion
is deduced by an application of the saddle-point method and the use of
the asymtotics of the gamma factors in (8.7) (see, e.g., [Zu3], Section 2,
or [Ri4]). We underline that no approach in terms of real multiple integrals
is known in the case r &#x3E; 3.

Lemma 20. Let r = 3 and let To be a zero of the polynomial

with Im To &#x3E; 0 and the maximum possible value of Re To. Suppose that
ReTO  170 and Then

We now take
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(hence we scale down with factor n the old parameters). The asymptotics
of the quantity (8.8) as n ~ oo can be calculated with the use of the
integral-valued function

-n i

which is 1-periodic with respect to each variable x and y. Then by (8.9)
and (8.13) we obtain

where

Therefore, the final result is as follows.

Proposition 5. In the above notation let r = 3 and

If Co &#x3E; C2, then at least one of the numbers

is irrational.

We are now ready to state the following new result.

Theorem 3. At least one of the four numbers

is irrational.

Proo f . Taking r = 3, q = 13,
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since in this case
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and 010 = 0.
The application of Proposition 5 completes the proof. D

Remarks. In [Zu4] we consider a particular case of the above construction
and arrive at the irrationality of at least one of the eight odd zeta values
starting from ~(5); namely, we take r = 3, q = 21, qo = 20, and "11 = ... =
q21 = 7 to achieve this result.

Looking over all integral directions q = (r~o; r~l, ... , r~q) with q = 7, 9,
and 11 satisfying the conditions

I.,

we have discovered that no set q yields the irrationality of at least one of the
numbers ((5), ((7), and ((9) via Proposition 5. Thus, we can think about
natural bounds of the ’pure’ arithmetic approach achieved in Theorem 3.

In a similar way our previous results [Zu4] on the irrationality of at least
one of the numbers in each of the two sets

can be improved. We are not able to demonstrate the general case of
Lemma 20, although this lemma (after removing the hypothesis Re To  qo)
remains true for odd r &#x3E; 3 and for any suitable choice of directions ’IJ
(cf. [Zu3], Section 2).

9. One arithmetic conjecture and
group structures for odd zeta values

To expose the arithmetic of linear forms produced by the quantities (8.4)
in the general case we require a certain normalization by factorials similar
to (7.1), (7.2), or (8.6). To this end we introduce a contiguous set of
parameters e:
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which plays the same role as the set c in Sections 4-6, and fix a normaliza-
tion

where IIl(e) is a product of some q - r factorials of e~k and II2(e) is a

product of 2r factorials of eokl with indices satisfying the condition

For simplicity we can present a concrete normalization; denoting

we define the rational function

(where the bricks R(aj, bj; t) are defined in (7.3) ) and the corresponding
quantity

Nesterenko’s theorem in [Ne3] (which is not the same as Proposition 1
in Section 3) and our results in Section 7 yield the inclusion

where ml, m2, ... , mq-r are the successive maxima of the set e, and Lem-
mas 17, 18 allow us to exclude extra primes appearing in coefficients of
linear forms (9.3).

In spite of the natural arithmetic (9.3) of the linear forms (9.2), Ball’s
example (4.3) supplemented with direct calculations for small values of ho,

... , hq and Rivoal’s conjecture (Ri3~ , Section 5 .1, enables us to suggest
the following.

Conjecture. There holds the inclusion

where ml, m2, ... , are the successive maxima of the set (9.1) .
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We underline that a similar conjecture does not hold for the quantities
 00

producing linear forms in polylogarithms; the case z = ~ 1 is exceptional.
If this conjecture is true, cancellation of extra primes with the help of

Lemmas 17, 18 becomes almost useless, while the action of the h-trivial
group (i. e., the group of all permutations of the parameters hl , ... , hq )
comes into play. Indeed, the quantity

is stable under any permutation of hl, ... , hq, hence we can apply argu-
ments similar to the ones considered in Section 5 to cancell extra primes.

Finally, we mention that an analytic evaluation of linear forms F(h) and
their coefficients after a choice of directions and an increasing parameter n
can be carried out by the saddle-point method, as in [Zu3], Sections 2 and 3
(see also [He, Ri4, Ne3]).
The particular case r = 1 of the above construction can be regarded

as a natural generalization of both the Rhin-Viola approach for ((3) and
Rivoal’s construction [Ril]. In this case we deal with usual well-poised
hypergeometric series, and the group structure considered above, provided
that Conjecture holds, as well as the approach of Section 8 will bring new es-
timates for the dimensions of the spaces spanned over Q by 1 and ~(3), ~(5),
~(7), .... If we set r = 1, q = k+2, ho = 3n+2, and hl = ... = hq 
in formula (9.2), where n, k are positive integers and k &#x3E; 3 is odd, and
consider the corresponding sequence

(cf. (4.3) ), then it is easy to verify that

The mysterious thing here is the coincidence of the asymptotics (9.5) of the
linear forms F5,n with the asymptotics of Vasilyev’s multiple integrals

for which the inclusions
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are proved in [Va]. Moreover, we have checked that, numerically,

hence these linear forms are the same forms as listed in [Va], Section 5.
Therefore, it is natural to conjecture’ the coincidence of Vasilyev’s integrals

for odd k with the corresponding hypergeometric series (9.4); we recall
that in the case k = 3 this coincidence follows from Propositions 1 and 2.
A similar conjecture can be put forward in the case of even 1~ in view of

Whipple’s identity (6.6).
We hope that the methods of this work will find a continuation in the

form of new qualitative and quantitative results on the linear independence
of values of the Riemann zeta function at positive integers.
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