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Well-poised hypergeometric service
for diophantine problems of zeta values

par WADIM ZUDILIN

RESUME. On montre comment les concepts classiques de séries
et intégrales hypergéométriques bien équilibrées devient crucial
dans l’étude des propriétés arithmétiques des valeurs de la fonction
zêta de Riemann. Par ces arguments, on obtient (1) un groupe
de permutations pour les formes linéaires en 1 et 03B6(4) = 03C04/90
donnant une majoration conditionnelle de la mesure d’irrationalité
de 03B6(4) ; (2) une récurrence d’ordre deux pour 03B6(4) semblable
à celles introduites par Apéry pour 03B6(2) et 03B6(3), ainsi que des
récurrences d’ordre réduit pour les formes linéaires en des valeurs
de la fonction zêta aux entiers impairs ; (3) un gros groupe de
permutations pour une famille d’intégrales multiples généralisant
les intégrales dites de Beukers pour 03B6(2) et 03B6(3).

ABSTRACT. It is explained how the classical concept of well-poised
hypergeometric series and integrals becomes crucial in studying
arithmetic properties of the values of Riemann’s zeta function. By
these well-poised means we obtain: (1) a permutation group for
linear forms in 1 and 03B6(4) = 03C04/90 yielding a conditional upper
bound for the irrationality measure of 03B6(4); (2) a second-order
Apéry-like recursion for 03B6(4) and some low-order recursions for
linear forms in odd zeta values; (3) a rich permutation group for
a family of certain Euler-type multiple integrals that generalize
so-called Beukers’ integrals for 03B6(2) and 03B6(3).

1. Introduction

In this work, we deal with the values of Riemann’s zeta function (zeta
values)

at integral points s = 2, 3, 4, .... Lindemann’s proof of the transcendence
of ~r as well as Euler’s formula for even zeta values, summarized by the

Manuscrit reçu le 5 juin 2002.
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inclusions ~ (2n) E Q7r2n for n = 1, 2, ... , yield the irrationality (and tran-
scendence) of ~’(2), ~’(4), ~(6), .... The story for odd zeta values is not so
complete, we know only that:

~ ~’ (3) is irrational (R. Apery [Ap], 1978);
~ infinitely many of the numbers ((3), ~’ (5), ~ (7), ... are irrational (T. Ri-

voal ~Ril], [BR], 2000);
. at least one of the four numbers ((5), ((7), ((9), ((11) is irrational1 -

(this author [Zu3], [Zu4], 2001).
The last two results are due to a certain well-poised hypergeometric’ con-
struction, and a similar approach can be put forward for proving Ap6ry’s
theorem (see [Ri3] and [Zu5] for details).

After remarkable Apery’s proof [Ap] of the irrationality of both ((2) and
~ (3), there have appeared several other explanations of why it is so; we are
not able to indicate here the complete list of such publications and mention
the most known approaches:

~ orthogonal polynomials [Bel], [Hat] and Pade-type approximations
[Be2], [Sol], [So3];

~ multiple Euler-type integrals [Bel], [Hat], [RV2];
~ hypergeometric-type series [Gu], [Nel];
~ modular interpretation [Be3].

G. Rhin and C. Viola have developed a new group-structure arithmetic
method to obtain nice estimates for irrationality measures of ~’(2) and ((3)
(see [RV1], [RV2], [Vi]). The permutation groups in [RV1], [RV2] for multi-
ple integrals can be translated into certain hypergeometric series and inte-
grals, and this translation [Zu4] leads one to classical permutation groups
(due to F. J. W. Whipple and W. N. Bailey) for very-well-poised hypergeo-
metric series.
The aim of this paper is to demonstrate potentials of the well-poised

hypergeometric service (series and integrals) in solving quite different prob-
lems concerning zeta values. Here we concentrate on the following features:

~ hypergeometric permutation groups for ((4) (Sections 3-5) and for
linear forms in odd/even zeta values (Section 8);

~ a conditional estimate for the irrationality measure of ~ (4) via the
group-structure arithmetic method (Section 6);

. an Ap6ry-like difference equation and a continued fraction for ((4)
(Section 2) and similar difference equations for linear forms in odd
zeta values (Section 7);

’The first record of this type, at least one of the nine numbers ((5), C(7), C(21) is irrational,
is due to T. Rivoal [Ri2].

2We refer the reader to [Ba], Section 2.5, or to formula (69) for a formal definition, to [An]
for a nice historical exposition, and to Sections 2-8 below for number-theoretic applications.
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. Euler-type multiple integrals represented very-well-poised hypergeo-
metric series and, as a consequence, linear forms in odd/even zeta
values (Section 8).

All these features can be considered as a part of the general hypergeometric
construction proposed recently by Yu. Nesterenko [Ne2], [Ne3].

Hypergeometric sums and integrals of Sections 3-6 are prompted by
Bailey’s integral transform (Proposition 2 below), and it is a pity that the
permutation group for ~(4) (containing 51840 elements!) leads to an esti-
mate for the irrationality measure of ~(4) under a certain (denominator)
conjecture only. We indicate this conjecture (supported by our numerical
calculations) in Section 6. The particular case of the construction is pre-
sented in Section 2; this case can be regarded as a toy-model of that follows,
and its main advantage is a certain nice recursion satisfied by linear forms
in 1 and ~(4).

Section 7 is devoted to difference equations for higher zeta values; such
recursions make possible to predict a true arithmetic (i.e., denominators)
of linear forms in zeta values.
The subject of Section 8 is motivated by multiple integrals

that were conjecturally Q-linear forms in odd/even zeta values depending
on parity of k (see [VaD]). D. Vasilyev [VaD] required several clever but
cumbersome tricks to prove the conjecture for k = 4 and k = 5. However,
one can see. no obvious generalization of Vasilyev’s scheme and, in [Zu4], we
have made another conjecture, yielding the old one, about the coincidence
of the multiple integrals with some very-well-poised hypergeometric series.
We now prove the conjecture of [Zu4] in more general settings and explain
how this result leads to a permutation group for a family of multiple inte-
grals.

Acknowledgements. I am grateful to F. Amoroso and F. Pellarin for
their kind invitation to contribute to this volume of Actes des 12èmes ren-
contres arithmétiques de Caen (June 29-30, 2001). I am kindly thankful’
to T. Rivoal for his comments and useful discussions on the subject and to
G. Rhin for pointing out the reference [Co], where the recurrence for ((4)
was first discovered by means of Apery’s original method. Special gratitude
is due to E. Mamchits for his valuable help in computing the group 6 of
Section 5 for linear forms in 1, C(4).
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2. Difference equation for ((4)
In his proof of the irrationality of ((3), Ap6ry consider the sequences un

and vn of rationals satisfying the difference equation

A prior£, the recursion (1) implies the obvious inclusions n!3vn E Z,
but a miracle happens and one can check (at least experimentally) the
inclusions

for each n = 1, 2, ... ; here and later, by Dn we denote the least common
multiple of the numbers 1, 2, ... , n (and Do = 1 for completeness), thanks
to the prime number theorem

The sequence

is also a solution of the difference equation (1), and it exponentially tends
to 0 as n -3 00 (even after multiplying it by Dn). A similar approach has
been used for proving the irrationality of ((2) (see [Ap], [Po]), and several
other Ap6ry-like difference equations have been discovered later (see, e.g.,
[Be4]). Surprisingly, a second-order recursion exists for C(4) and we are
now able to present and prove it by hypergeometric means.

Remark. During preparation of this article, we have known that the differ-
ence equation for C(4), in slightly different normalization, had been stated
independently by V. Sorokin [So4] by means of certain explicit Pade-type
approximations. Later we have learned that the same but again differ-
ently normalized recursion had been already known [Co] in 1981 thanks
to H. Cohen and G. Rhin (and Ap6ry’s original ’acc6l6ration de la conver-
gence’ method). We underline that our approach presented below differs
from that of [Co] and [So4]. We also mention that no second-order recursion
for C(5) and/or higher zeta values is known.

Consider the difference equation

where
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with the initial data

for its two independent solutions Un and vn.
Theorem 1. For each n = 0,1, 2, ... , the numbers Un and vn are positive
rationals satisfying the inclusions

and there holds the limit relation

Application of Poincar6’s theorem then yields the asymptotic relations

and (see [Zul], Proposition 2)

since the characteristic polynomial a2 - 270A - 27 of the equation (3) has
zeros 135±78B/3 = (3f2~)3. Thus, we can consider vn/Un as convergents
of a continued fraction for ((4) and making the equivalent transform of the
fraction ([JT], Theorems 2.2 and 2.6) we obtain
Theorem 2. There holds the following continued-fraction expansion:

where the polynomial b(n) is defined in (4).
Unfortunately, the linear forms

do not tend to 0 as n -~ 00.3
A motivation of a hypergeometric construction considered below leans

on the two series
- - - "I2

(Gutnik’s form of Apery’s sequence [Gu], [Nel]), and

3For a simple explanation why ~(4) is irrational, see [Han].
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(Ball’s sequence), and on the coincidence of these series proved by T. Rivoal
[Ri2], [Ri3] with a help of the difference equation (1). These arguments
make possible to give a new ’elementary’ proof of the irrationality of ((3)
(see [Zu5] for details).

Consider the rational function

and the corresponding series

In some sense, the series (11) is a mixed generalization of both (8) and (9).

Lemma 1. There holds the equality

Proof. The polynomials

are integral-valued and, as it is well known,

where P"(t) is any of the polynomials (13).
The rational function

has also ’nice’ arithmetic properties. Namely,

that allow to write the following partial-fraction expansion:
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Hence, for j = 1, 2, ... we obtain -

Therefore the inclusions (14), (16), (17) and the Leibniz rule for differenti-
ating a product imply that the numbers

satisfy the inclusions

Now, writing down the partial-fraction expansion of the rational func-
tion (10),

we obtain that the quantity

has the desired form (12) with

Finally, using the inclusions (19) and
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we deduce that Un, Dn U;~’, E Z as required. 0

Now, with a help of Zeilberger’s algorithm of creative telescoping 
Chapter 6) we get the rational function (certificate) ~S’n(t) := sn(t)Rn(t),
where

satisfying the following property.

Lemma 2. For each n = 1, 2, ... , there holds the identity

where the polynomial b(n) is given in (4).

Proof. Divide both sides of (24) by and verify the identity
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where is given in (23). 0

Lemma 3. The quantity (11) satisfies the difference equation (3) for n =
1,2,....

Proof. Since Rn(t) = O(t-3) and Sn(t) = O(t-2) as t -3 oo for n &#x3E; 1,
differentiating identity (24) and summing the result over t = 1, 2, .. we
arrive at the equality

(n + b(n)Fn - 3n 3(3n - 1) (3n + = Sn (1) -
It remains to note that, 1, both functions and Sn(t) _
sn(t)Rn(t) have second-order zero at t = 1. Thus Sn(1) = 0 for ~c = 1, 2, ...
and we obtain the desired recurrence (3) for the quantity (11). 0

Lemma 4. The coefficients Un, Un, Un, Un", Vn in the representation (12)
satisfy the difference equation (3) for n = 1, 2, ....
Proof. Write the partial-fraction expansion (20) in the form

where the formulae (18) remain valid for all J~ E Z a,nd j = 1, 2, 3, 4. Mul-
tiply both sides of (24) by (t + k)4, take (4 - j)th derivative of the result,
substitute t = -k and sum over all k E Z; this procedure yields that, for
each j = 1, 2, 3, 4, the numbers (21) written as

satisfy the difference equation (3). Finally, the sequence

also satisfies the recursion (3). 0

Since 
’

- .. - - - - - - , -

in accordance with (21), (22) we obtain

hence as a consequence of Lemma 4 we arrive at the following result.

Lemma 5. There holds the equality
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The sequences ~c" := Un/6 and vn := Vn/6 satisfy the difference equa-
tion (3) and initial conditions (5); the fact IFni 2013~ 0 as n - oo, which yields
the limit relation (7), will be proved in Section 4. This completes our proof
of Theorem 1.

The conclusion (6) of Theorem 1 is far from being precise; in fact, (ex-
perimentally) there hold the inclusions

and, moreover, there exists the sequence of positive integers 
0,1, 2, ... , such that

This sequence can be determined as follows: if vp is the order of prime p in
(3n)!/n!3, then

here and below and {x} := x - LxJ denote respectively the integral and
fractional parts of a real number x. For primes p &#x3E; we obtain the

explicit (simple) formula

hence

where := r’(x)/r(x). Thus, we obtain that the linear forms

do not tend to 0 as n ~ oo.

3. Well-poised hypergeometric construction

Consider the set of eight positive integral parameters

satisfying the conditions
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and assign to h the rational function

In the last representation we pick out the rational functions

of the form (15), (13), having some nice arithmetic properties ([Zu4], Sec-
tion 7). ’

It is easy to verify that, due to (26), for the rational function (28) the
difference of numerator and denominator degrees is equal to 3, hence

The series

produces a linear form in 1 and ~(4).
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Lemma 6. The quantity F(h) is a linear form in 1 and ((4) with rational
coefficients.

Proof. Order the parameters hl, ... , h6 as hi  . ~ ~  hs and consider the
partial-fraction expansion of the rational function (28):

where

Then we obtain

with

and the well-poised origin of the series (30) (namely, the property R(-t -
ho) = -R(t), hence Ajk = by (32), cf. [Zu4], Section 8,
with r = 2 and q = 6) yields A2 = A4 = 0, while the residue sum theorem
accompanied with (29) implies Al = 0 (cf. [Nel], Lemma 1). 0

Remark. The question of denominators of the rational numbers A3 and Ao
that appear as the coefficients in F(h) can be solved by application of
Nesterenko’s denominator theorem [Ne3] (announced by Yu. Nesterenko in
his Caen’s talk). Namely, consider the set

then,
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where mi &#x3E; " - &#x3E; m5 are the five successive maxima of the set N.
Unfortunately, we have not succeeded in using the inclusion (33) for

arithmetic applications; actually, our experimental calculations show that
the stronger inclusion for the linear forms F(h), indicated at the beginning
of Section 6, holds.

Using standard arguments, the property (29) and the fact that R(t)
has second-order zeros at integers t = 1 - h_i}, I
one deduces the following hypergeometric-integral representation of the se-
ries (30).
Lemma 7 (cf. [Nel], Lemma 2). There holds the equality

with any tl 1 - hi  tl 

The series (30) as well as the corresponding hypergeometric integral (34)
are known in the theory of hypergeometric functions and integrals as very-
well-poised objects, i.e., one can split their top and bottom parameters in
pairs such that

and the second parameter has the special form 1 

Remark.. As it is easily seen, the sequence Fn of Section 2 corresponds (after
a suitable shift of the summation parameter t) to the choice

of the parameters h. Hence the equalities Un - U~’ = 0 in the
representation (12) can be deduced from Lemma 6.

4. Asymptotics
We take the new set of positive parameters

satisfying the conditions
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and for each n = 0,1, 2, ... relate them to the old parameters by the for-
mulae

Then Lemma 6 yields that the quantities Fn = := F(h) are linear
forms in 1 and ((4) with rational coefficients, say

and the goal of this section is to determine the asymptotic behaviour of
these linear forms as well as their coefficients un and vn as n - oo.
To the set (36) assign the polynomial

and the function

defined in the cut T-plane C B ’1-I}] U where

"1i ~ ’12 ~ ... ~ "16 denotes the ordered version of the set 771, ’TJ2, ... , ’16.
The first condition in (37) implies that (39) is a fifth-degree polynomial;

moreover, the symmetry under substitution "10 - T and the second
condition in (37) yield that this polynomial has zeros

The last four zeros can be easily determined by solving a certain biquadratic
(in terms of r~o/2 - T) equation. Set

and


