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Shannon’s sampling theorem, incongruent residue
classes and Plancherel’s theorem

par MAURICE M. DODSON

Dedicated to Michel Mendis F’rance for his 65th birthday

RÉSUMÉ. On montre que la théorie de l’échantillonnage pour les
signaux multi-canaux a une structure logique qui s’apparente à
celle de l’analyse de Fourier.

ABSTRACT. Sampling theory for multi-band signals is shown to
have a logical structure similar to that of Fourier analysis.

1. Introduction

In the rich and varied landscape of mathematics, Fourier analysis occu-
pies a grand and formal garden (see Figure 1). There is a corner of this

garden, which borders interpolation theory and Paley-Wiener theory, called
sampling theory. This is not concerned with statistics but with informa-
tion theory, more precisely with Shannon’s second or sampling theorem.
Sometimes known as the Whittaker-Kotel’nikov-Shannon theorem, it is a
cornerstone of communication theory, providing a mathematical basis for
an equivalence between analogue (or continuous) signals and discrete sig-
nals.

In applications, the main purpose of Shannon’s sampling theorem is to
reconstruct a signal from discrete samples. The theorem falls naturally into
the theory of square-integrable functions and is closely related to Paley-
Wiener theory. A disjoint translates condition on the Fourier transform
of the signal underlies Shannon’s sampling theorem and leads to a more
general theory sometimes called multiband signal theory (see §3) .

Plancherel’s theorem is one of the fundamental results in Fourier analysis
and implies Parseval’s theorem, which in turn implies the convolution the-
orem. These three results are, however, logically equivalent and each could
be regarded as the starting point of the theory of Fourier analysis. The
multiband theory has a similar logical structure in which hybrid versions
of the above three theorems, together with the null intersection condition
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FIGURE 1. The three fundamental results in Fourier analy-
sis with Plancherel’s theorem at the ’entrance’.

(see (5) below) and a reconstruction or representation formula (see (4) be-
low), are also equivalent. This is proved for trigonometric polynomials
which are a finite dimensional counterpart of continuous signals.

2. Shannon’s sampling theorem

An analogue signal can be modelled by a function f : R - C (when f
is a real signal, f(R) C R). For physical reasons, it is assumed that f is
square-integrable or has finite energy, i.e., =  oo. The

spectrum of f is given by the Fourier transform f ^ : C, where

and where f^ is defined as a limit if f 0 L1(lI2). It is usual to assume that
vibrations in a physical system cannot be infinite and so the frequencies
of analogue signals are taken to be bounded above. Signals with bounded
spectra are called band-limited and have the representation

where W is the maximum frequency (strictly speaking W is the supre-
mum of the frequencies, a technicality which is usually disregarded). The
sampling theorem gives the following formula for the reconstruction of a
band-limited signal f with maximum frequency W in terms of the discrete
values or samples f (k/2W). For each t E 1R,
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The formula (1) corresponds to a sampling rate of 2W (often called the
Nyquist rate, twice the maximum frequency of the signall).

As well as its significance in information theory and engineering [17], the
theorem has a long history and has been proved many times, for example
by E. Borel, E. T. Whittaker, V. A. Kotel’nikov, K. S. Krishnan, H. Raabe,
I. Someya to name a selection (more names can be found in the articles cited
below). However, Shannon was the first to appreciate the significance of
the result in his fundamental and definitive papers [23, 24] on the theory of
communication (more details can be found in the survey articles [6, 8, 10, 14]
and the books [15, 21]). The article [10] establishes the equivalence of the
sampling theorem to Cauchy’s theorem and includes other results from
analysis; see [16] also for further results.

Whittaker proved the result from the point of view of interpolation the-
ory [25] and essentially established formula (1) for a class of analytic func-
tions (which he called the Cardinal function or series). This assumed given
values at regular intervals and was free of ’rapid oscillations’. As well as
the connection with interpolation theory, there are also connections with
Paley-Wiener theory and Fourier analysis (for example (1) is equivalent to
the Poisson summation formula and the result also arises surprisingly often
in other branches of mathematics [8, 19, 22]).

3. A generalisation of Shannon’s sampling theorem

The formula (1) can be proved using the observation that translates
[-W, W] + 2Wk, k E Z, of the support [-W, W] of the Fourier transform
fA of f essentially tessellate III This leads to a multiband generalisation of
the sampling theorem to functions f with Fourier transforms which vanish
outside a measurable set A that satisfies the disjoint translates condition

This condition implies that the Lebesgue measure of A is at most

I /s [11] (see §4). For such functions f a more general version of Shan-
non’s sampling theorem holds.

Theorem 1. Let A be a measurable subset of R and suppose that there
exists an s &#x3E; 0 such that (2) holds. Let f E be continuous and

suppose that the Fourier transform f ^ of f vanishes outside A. Then

1 That a signal can be reconstructed from samples taken at this rate was referred to by Shannon
as ’a fact which is common knowledge in the communication art’[24].
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and for each t e ll§

where the series converges absolutely and uniformly.

A proof of this theorem and further references to earlier results are given
in [11] where the approach is based on square integrable functions cp : R -+ C
which vanish outside A. A more general result for stochastic processes was
obtained by S. P. Lloyd who showed that the disjoint translates condition
was equivalent to a random variable being determined by a linear combina-
tion of the sample values [20]. For a generalisation of Theorem 1 to abstract
harmonic analysis, see [1, 12, 18]. P. L. Butzer and A. Gessinger note in [7]
that the formula (3) with A = (-W, W) implies the Shannon’s sampling
theorem. Equally, one can first prove the formula (1) and then deduce (3)
with s = 1/2W, as in [24] or in the abstract harmonic analysis version [18].
When f is not continuous, convergence in norm can be deduced from an
orthogonality argument [18]. A common approach is to use the fact that
the set k E 7G} is an orthogonal basis for L2(-W,W) and that

for almost all q E (-W,W). The result follows on taking the inverse
Fourier transform and observing that ak = f (k/2W)/2W. The form of (4),
however, suggests convolution. This observation is the basis of the parallel
between the logical structures of sampling theory and Fourier analysis.

4. Spectral translates

The set A considered here need not be an interval but any measurable set
such that distinct translates have null intersection, i. e., for each non-zero

The possibility of A containing unbounded frequencies is not excluded.
For this reason, the Paley-Wiener setting, although closely related, is not
suitable.
The translation -y H y + kls can be regarded as an action by the additive

group Z/ son k Orbits or cosets = Z} are disjoint and the
factor group R/(Z/s) has (0,1/s) as a complete set of coset representatives
or a transversal. Let v: R - (0,1/s) be the projection map given by
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where ka is the unique integer such that a + ka/s E (0,1/s). Then v(y) is
the unique element in the orbit + 7 which falls in (0,1/s). Thus v is
well defined, = and 
The restriction map viA: A - (0,1/s) is one-one almost always by (5)

since v(a) = v(a’) implies that a-a’ E Z /s. The function VIA is translation
by an integer multiple of 1/s and so

5. Plancherel-type theorems and the general sampling theorem

When the set A satisfies (5) for some s &#x3E; 0, the map 1,: ~4 -~ (0,1) given
by

where fxl = x - [x] is the fractional part of x (~~) is the integer part of
x), is an injection which preserves inner products for almost all a E A. If

IAI = 1/s, then t is a bijection for almost all a E A. Thus the set (which
will be denoted L2(A)) of cp E with cp vanishing almost everywhere
outside A is isomorphic to L~([0,1)). In the case of Shannon’s theorem,
the isomorphism is simply a rescaling. When 1/s, one can consider
an auxiliary set A which satisfies (5) with JAI and 6: h - [0, 1)
an isomorphism almost everywhere. The natural embedding of L2(A) (C
L2 (A) ) into L 2([0,1)) is why results in sampling theory are a mixture of
Fourier series and transforms.

Plancherel’s theorem asserts that the Fourier transform is an isometry
on L (R) ; (3) also implies that the map p: L (R) -3 £2(sZ) given by

where is the restriction of f : to is also an isometry. From
the point of view of signals, the norm can be regarded as energy and the
preservation of norm can be interpreted as conservation of energy between
the original signal and its values (samples) on sZ. The factor s is the time
interval between samples and so keeps the dimensions of the two sides of (3)
consistent.
From now on the set A C R will be assumed to have positive Lebesgue

measure. The functions f : 1R --i- C will be restricted to being continuous,
as otherwise nothing can be said about values on sets of measure zero. The
inverse Fourier transform of cp E L2(JR) will be denoted by cpv, i. e.,

where if L1(JR), cp is defined as the usual limit. If IAI  oo, then the
characteristic function XA of A is in L (R) n L2(R) and its inverse Fourier
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transform given by

is continuous. Let

for almost all y / A}.
The equivalence of the null intersection translates condition to the ana-
logues of the three classical results of Fourier analysis is now stated (a
proof is in [2]).
Theorem 2. Let A be a Lebesgue measurable subset and s be a positive
real number. Then the following are equivalent.
(1) For each non-zero anteger k

where the series converges to f * g absolutely and uniformly.

Note that (II) can regarded as a ’hybrid’ version of the classical
Plancherel theorem since by (11),

and similarly (III) and (IV) are versions of the Parseval and convolution
theorems.
The proof that (I) implies (II) relies on going a little deeper and con-

sidering the set A which contains A and has Lebesgue measure 1/5, to
obtain the orthogonality necessary for (11). The proof that (II) implies
(III) is on the same lines as the standard treatment in functional analysis
in which Plancherel’s theorem is regarded as fundamental and the precursor
to Parseval’s theorem and the convolution theorem (they are of course all
equivalent). Recall that f E is assumed to be continuous and that
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fA E vanishes almost everywhere outside A. Condition (I) implies
that 1/s but no explicit use is made of this in Theorem 2.

5.1. The reconstruction formula and the translates condition. The

equivalence of the reconstruction formula and the translates condition fol-
lows from Theorem 2; the estimate 1/s implied by (10) is used

explicitly. Lloyd has proved a similar but more general result for stochas-
tic processes [20, Theorem 1]. The necessity of the translates condition is
related to the phenomenon of ’aliasing’ [5].

Theorem 3. Let A be a measurable subset of R and s E Then the

followirag are equivalent.

(I) For each non-zero integer k

(II) lls and for each f E SA,

(III) X’ E SA and each f E SA is given by

where the series converges to f absolutely and uniformly.

Since 1/s implies that

(III) follows from (II) and so XA E L (R) n L (R), whence x i is continuous
and xi E i.e., XA E SA. The representation (4) now follows from
the hybrid convolution theorem applied to the equation

which holds amost everywhere to give



432

6. Trigonometric polynomials

Trigonometric polynomials are the finite dimensional counterpart of
square integrable functions. The version of Shannon’s sampling theorem
for such functions is given in [13] and is as follows.

Theorem 4. Let f : lE8 ~ ~ be 1-periodic and let

where cn = 0 for Inj &#x3E; 0. Then

The counterpart of parts (I) and (III) of Theorem 3 is a more general form
of Theorem 4, which will be stated and proved to illustrate the arguments
without analytic technicalities.

Theorem 5. Let p, q be positive integers, let J = {jI,... , jp} C Z and let

where cj = 0 for j § J. Then the following are equivalent:
(I) For each non-zero integer n, .

where the inverse Fourier transforms X’ of Xj is given by

Proof. First (I) implies (II). For given m~Z,0~m~~20131, consider

Write
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Then

where 1p X p is the p x p unit matrix. But by (18), when k l ,

and the formula in (II) follows on substituting for c; in (17) and using the
definition of Xvj.

Next (II) implies (I). By definition, fA is given by

Each r E Z can be expressed as r = p + nq, for unique n E Z and p,
0  p  q. Then since f satisfies (19) and since the Fourier transform of
f (t - c) is k E Z, it follows that

Take f = Xv so that for each t E R and k E Z,

Then by (20) and writing k = l + qn,
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Now for k E J, Xj(k) = 1. Suppose ko = lo + qno E J. Then

Of course the coefficients cj could be determined by solving the q linear
equations in p (~ q) unknowns but the equal spacing of the samples m/q
and the incongruence condition allows the use of the simpler Hermitian
conjugate instead of solving a system of linear equations. Theorem 4 follows
by putting J = {-N, ... , N} and p = q = 2N + 1.

To prove the hybrid trigonometric polynomial analogue of Plancherel’s
theorem (corresponding to part (II) in Theorem 3), further consideration
must be given to the set J which has to be extended to a complete set J
of residues mod q, so that (J) = q. Since J C J, the Fourier transform f
of the 1-periodic function f certainly also vanishes outside J. Consider

= 0, ... , q - 1 runs over a complete set of residues modulowhere Jk i 
-

q and M = (e21ri3km/q) is a q x q matrix. The above argument and the
Riesz-Fischer theorem give

The usual argument involving the polarisation identity can be used to prove
that this implies (II).

It is implicit in Theorem 2 and 3 above that if the sampling theorem holds
for all functions f E SA with Fourier transform supported throughout A,
then the null measure translates condition holds and the sampling theorem
holds for each f E SA. However, it is shown in [2] that there exist sets A
with lls such that f E SA satisfies (11) but A does not satisfy (10).
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7. Conclusion

Instead of the usual spectral translates conditions (2) or (5) in frequency
space, the hybrid Plancherel theorem (15) can be regarded as a basis for
the general sampling theorem, allowing sampling theory to be given a log-
ical structure similar to that of Fourier analysis, with the hybrid versions
of Plancherel’s theorem, Parseval’s theorem and the convolution theorem
at the centre (note that the theorems must hold for all functions in S’A).
Thus in sampling theory, each of the theorems in Figure 1 is replaced by
its hybrid version, so that in this approach, the theory begins with the hy-
brid Plancherel theorem which by Theorem 2 leads to and from the hybrid
Parseval theorem and the hybrid convolution theorem. This leads by The-
orem 3 to the translates condition and to the general sampling theorem.
The translates condition and the general sampling theorem lead back to the
hybrid Plancherel theorem (15), completing the equivalence. In addition
Shannon’s theorem together with the finiteness of the measure of A imply
the translates condition, which in turn implies the hybrid Plancherel theo-
rem. The conventional view of sampling theory would place the translates
condition at the entrance of the garden.
As has been pointed out, providing the sampling interval s satisfies (5),

the formula (3) can be interpreted as the energy of the original signal being
conserved in the samples (the information is also conserved, in the sense
that the original signal can be recovered - in principle - from the samples) .
The step function approximation a: R - C to f is given by

It is immediate that its energy

and hence, providing s satisfies (5),

Thus the energy of the original signal and that of a are the same, although
the support of ~^ is R (for non-zero signals) and so contains A. Moreover
the information is preserved as well, again in the sense that the original
signal can be recovered in principle from the values of ~. However, for
a given signal, conservation of energy alone is not sufficient to allow its
complete reconstruction using the sampling formula (4).

Shannon’s theorem can be viewed as the result of passing a train of im-
pulses (Dirac delta functions) weighted by successive sample values through
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an ideal low-pass filter. In practice, however, perfect impulses and ideal
filters do not exist and the theorem cannot be implemented; thus the for-
mula (1) is not often used directly. For example, digital-to-analogue con-
version in signal processing replaces the weighted impulses indicated by
the theorem with a step function in which successive steps have amplitude
of successive sample values. The step function approximation a is used
in passing from a digital signal to an analogue signal aA = 
produced by filtering out all frequencies except those in A (see [4]). This
reduces the energy of the signal but when A is an interval symmetric about
the origin, Shannon’s sampling theorem can be used to show that that the
error is negligible when exceeds the Nyquist rate.

Placing the sampling theorem in the abstract harmonic analysis setting
reveals more clearly the underlying group structure, the reciprocal character
of the discrete sampling subgroup and the discrete group of translates, as
well as the relationship between the support of the Fourier transform and
the sampling interval [1, 3, 12].
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