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Weber’s class invariants revisited

par REINHARD SCHERTZ

RÉSUMÉ. Soit K un corps quadratique imaginaire de discriminant
d et Dt l’ordre à conducteur t ~ N dans K. L’invariant modu-

laire j(Dt) est un nombre algébrique qui génère sur K le corps de
classes d’anneau modulo t. Les coefficients du polynôme minimal
de j(Dt) étant assez large, Weber considère dans [We] les fonc-
tions définies plus bas, par lesquelles il construit

des générateurs plus simples pour les corps de classes d’anneau.
Plus tard les valeurs singulières de ces fonctions ont joué un rôle

central dans la solution de Heegner [He] du célèbre problème de
déterminer tous les corps quadratiques imaginaires dont le nombre
de classes est égal à 1 [He,Me2,St]. Actuellement on s’en sert en
cryptographie pour trouver des courbes elliptiques sur des corps
finis avec certaines jolies propriétés.

Le but de cet article est i) d’énoncer certains résultats déjà con-
nus de [We,Bi,Me2,Schl] cf. Théorèmes 1,2 et 3, concernant les
valeurs singulières des fonctions f,f1, f2,03B32,03B33, et ii) de développer
une preuve courte de ces résultats.

Cette méthode s’applique aussi à d’autres fonctions cf. Théo-
rème 4 et le tableau précédent celui-ci. Les preuves des théorèmes
1 à 4 sont données en fin d’article.

Ces démonstrations résultent de la loi de réciprocité de Shimura
(cf. théorème 5, ainsi que théorèmes 6 et 7), du calcul de la
racine 24-ième de l’unité de ~ = lors des transformations
unimodulaires (cf. proposition 2, tirée de [Me1] formules (4.21) à
(4.23) p.162), et donnent aussi via la proposition 3 des formules
explicites pour les conjugués des valeurs singulières, qui sont très
utiles pour des calculs numériques.

Certains de ceux-ci sont donnés comme exemples juste avant la
Bibliograpie.

ABSTRACT. Let K be a quadratic imaginary number field of dis-
criminant d. For t ~ N let Dt denote the order of conductor t
in K and j (Dt) its modular invariant which is known to generate
the ring class field modulo t over K. The coefficients of the mini-
mal equation of j(Dt) being quite large Weber considered in [We]
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the functions f, f1, f2, 03B32, 03B33 defined below and thereby obtained
simpler generators of the ring class fields.

Later on the singular values of these functions played a crucial
role in Heegner’s solution [He] of the class number one problem
for quadratic imaginary number fields [He,Me2,St]. Actually these
numbers are used in cryptography to find elliptic curves over finite
fields with nice properties.

It is the aim of this paper i) to enunciate some known results
of [We,Bi,Me2,Sch1] cf. Theorem 1, 2 and 3, concerning singular
values of the functions f, f1, f2, 03B32, 03B33, and ii) to give a short and
easy proof of these results.

That method also applies to other functions, such as those in
the table preceding Theorem 4. The proofs of Theorems 1 to 4
are given at the end of our article.

Our proofs rely on the reciprocity law of Shimura (cf. Theorem
5, and also Theorem 6 and 7), and on the knowledge of the 24-th
root of unity that acquires ~ = by unimodular substitution
(cf. Proposition 2, and [Mel] p.162); they also give via Proposition
3 explicit formulas for the conjugates of the singular values (of the
above functions), that are quite useful for numerical calculations.

Examples of such calculations are to be found immediately be-
fore the References.

Weber’s Class Invariants

The Schllifli functions Weber used in [We] are defined by

where

denotes the Dedekind q-function. They are related by the identity

Further Weber considers the functions
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Herein j is the modular invariant and g2, g3 are the Eisenstein series

They have the q-expansions

with

The Schlafli functions f , f 2 and the modular invaxiant j are related by the
formulas

Some basic results (cf. [De] or [La]). In what follows let K be a quadratic
imaginary number field of discriminant d and for some integer t we let
Dt denote the order of conductor t in K. Using the notation :=

7Gw1 + ZW2 the order Dt is explicitly given by

A Z-module a of rank 2 in K is called a proper ideal of Dt, if

The set t of proper idt-ideals is a group under multiplication and the
quotient

is called the ideal class group of For

we set

which is well defined, because j is invariant under all unimodular transfor-
mations of E j (t) is called the modular invariant or the modular
invariant of a. For any class t E 9tt the value j (t) is an algebraic number
that generates the ring class field modulo t over K
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Qt is the abelian extension of K belonging to the subgroup lit of the ideal
group of K that is generated by all ideals of the form (a), A integral, prime
to t and A z r mod t for some r E Z. For t, t’ E we have

and the E 91t, form a complete system of conjugate numbers
over K. It is even a complete system of conjugates over Q. In particular
this implies

We have the explicit formula

where the product is over all primes p dividing t, and d is the Legendrep

symbol (with d the discriminant of K). Here hK := is the class
number of K, and e the index of the group of all roots of unity in K, that
are congruent to 1 mod t, in the group of all roots of unity in K.
More precisely there is an isomorphism

where G(f2t/K) denotes the Galois group of Qt /K such that the action on
the j-invariants is

This isomorphism is in close connection to the description of G(Ot/ K) given
by class field theory. Let c be an integral ideal of .01, prime to t. Then
ct := c n ,~t is a proper Dt-ideal and

where in abuse of notation a(c) = a(cut) denotes the Frobenius map asso-
ciated to cUt by class field theory and on the right side a(ct) = 

In what follows H will denote the upper half plane. A quadratic imagi-
nary number a E Hn K is the root of a quadratic equation AX 2 +BX +C =
0 which is uniquely determined by a if normalized by

We call such an equation primitive. The discriminant

is related to the discriminant d of K by
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for some This implies ~a, l~ E Jt, and, conversely, if [al, a2l is

in 3‘t then the quotient a = 2 is the root of some primitive equation of
discriminant t2d. So for a E 1HI with this property the field Q(j(a» is

conjugate to the maximal real subfield of f2t.
If g is one of the functions f , f l, f 2,’Y2,1’3 the above formulas tell us that

And following Weber we call g(a) a class invariant if

To describe the conjugates of g(a) we make the following definition.
Definition. Let N be a natural number and al, ... , aht E ~I such that

is a system of representatives for 91t and that further the primitive equations
AiX 2 + BiX + C, = 0 of the ai satisfy

gcd(Ai, N) =1 and Bi = Bj mod 2N, 1  i, j  ht.
Then we call al, ... , aht a N-system mod t.

As we shall prove later in Proposition 3, there always exists a N-system
mod t for every natural number N.
The following Theorem contains Weber’s results on f and fi and also

includes the assertions conjectured by Weber, and proved in the meantime
in [Bi,Me2,Schl].
Theorem 1. Let a E 1Hf be the root of the primitzve equation

of discriminant D(a) = B2 - 4AC = -4m = t2d.
Then the following numbers g(a) are class invariants:
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Herein the factor (j) denotes the Legendre symbol which is necessary for
the following to hold.
If a = al, ... , aht is a 16-system mod t the above singular values g(ai)
form a complete set of conjugates over Q. Thus the minimal equation over
Q is given by

and has coefficients in Z, because from [De] we know that g(a) is integral.

For discriminants not divisible by 3 the result of Theorem 1 can be
improved using the above relation between f and y2 together with the
following Theorem. It then turns out that the assertions of Theorem 1
even hold without the outer exponent 3 if the primitive equation of a also
satisfies the conditions 3f A and The conjugates are then described by
a 3 - 16-system modulo t. Indeed, we have for q2 :

Theorem 2. Let a E H be the root of the primitive equation

of discriminant. D(a) = B2 - 4AC = t2d. 
Then 

I

Herein Q(j(3a)) is conjugate to the maximal real subfield of Q3t which is
of degree 3 over Q(j(a)) when 31D(a) and D(a) =1= -3.
Moreover, in the case 3f t2 d , if a = a1,... , aht is a 3-system mod t, then
the singular values ’Y2(ai) form a completes set of conjugates over Q. Thus
the minimal equation over Q is given by

and has coefficients in Z.

A similar result holds for y3:

Theorem 3. Let a E H be the root of the primitive equation

of discriminant D(a) = 4AC = t2d and we assume
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Then

Herein Q(j (2a)) is conjugate to the maxilnal real subfield of S12t which is
of degree 2 over Q(j(a)) when 21D(a), D(a) =,4 -4.
Moreover, in the case 2 f t2d, if a = a1,..., aht is a 2-system mod t,
the above singular values 1’3(ai) form a corraPlete set of conjugates over K.
Thus the minimal equation over K is given by

and has coefficients in .1.

The method of proof described in the next section also applies to other
functions as for example

Table 1

From [Sch4], Theorem 5, we know that the last function without the q2-
and 13-factors is very useful for the numerical construction of ring class
fields. They lead to generating equations for all ring class fields, whereas
the Schliifli functions only apply to the cases when t2d is even. Other useful
functions for the construction of ring class fields have been defined in [Mo].

In fact, by Proposition 2 below, it is easy to show that the functions (of
the above Table 1) all do satisfy the hypothesis of the following Theorem.
It refers to the field FN of modular functions of level N, N E N, whose
q-expansion at every cusp has coefficients in the N-th cyclotomic field.

Theorem 4. Let g E FN. We assume g(z) and to have a rational

q-expansion and to be invariant under all unimodular transf ormations M -
( * ° ) mod N. Let a e H be the root o f a primitive equation AX 2+BX +C =
0 of discriminants B2 - 4AC = t2d with gcd(A, N) = 1 and 
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Then, if oo, we have

Moreover, if a = al, ... , 7 aht is a N-system mod t, then the numbers g(ai)
run through the images of g(a) under the different automorphisrrcs of Ot/ K.

Proofs

First we state Shimura’s Theorem (see [Sh,La] ) . The extension 
is Galois and there is a natural isomorphism between

via the following action of integral 2 x 2 matrices B over Z having deter-
minant prime to N on functions g E FN:

with b prime to N is obtained from g by applying the isomorphism ((N e
the N-th cyclotomic field to the coefficients of the q-expansion of g.

An arbitrary integral matrix B of determinant prime to N has a decompo-
sition of the form

with b prime to N and unimodular matrices Ml, M2. The action of B on
g is then given according to the above rules by

We recall that for an integral ideal b of Ù1 prime to t the intersection
bt := b n .ot is a proper Dt-ideal. We can now state the

Theorem 5 (Reciprocity law of Shimura). Let g be in FN and a E Jt with
Z-basis al, a2 and a = 2 E oo. Let b be an integral ideal of
~71 of norm b prime to tN and let B be an integral matrix of determinant
b such that 

I -- ..

Then

1) g(a) is in KtN, the ray class field modulo tN over K,
2) the action of the Frobenius map Q(6) belonging to b is given by

For many functions occurring in complex multiplication the singular
value in Theorem 5 in fact is contained in a much smaller field. We observe
that by class field theory KtN contains Qt and prove
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Theorem 6. Let 9 E FN have a q-expansion with rational coefficients and
we assume that 9 o M = g for all unimodular matrices ~o ~~ mod N
and let a be as in Theorem 5 with 00.

Then g(a) E ONt.

Proof. The Galois group of the extension (i-e ray class/ring class
field modulo tN) is the set of Frobenius maps Q(r) belonging to integral
ideals b = (r) generated by natural numbers r prime to tN. The matrix B
in Theorem 5 is then B = ( § § ) and one can find a unimodular matrix M
satisfying

with a natural number r’, rr’ - 1 mod N. Theorem 5 now implies
g(a). Hence g(a) E QtN. 0

For the computation of the conjugates of the numbers g(a) in Theorem
6 we derive from the reciprocity law

Theorem 7. Let 01, ... , aht E H be a N-system modulo t with primitive
equation AiX 2 + + Ci = 0.
For g E FN we set 

- -

and we assume oo.

Then

and there exist automorphisms ~1, ... , Qht of KtN/K with

such that the restrictions of the a i on f2t are

which constitute the different automorphisms of S2t/K. In particular, if
91 (a1) E Qt, then 

-

Proof. By Proposition 3 which will be proved later, there exist unimodu-
lar transformations Mi E r(N), so that the ai := Mi(ai) have primitive
equations

. i __  __ .....
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satisfying

As g(ai) = and ~(~ai,1)) = it suffices to consider the case
when the Ai are prime to tN. (Note that = oo because

Aiai - A1a mod Then the proper 17t-ideals

are contained in Ot and prime to tN and so for

we have

Now let Q2 := o,(ci) be the corresponding Frobenius maps of Then
their restrictions to f2t are

which constitute the different automorphisms of f2t/ K. We set

This is a quotient of a basis of Dt, and as by assumption g(ao) =,4 00, the
reciprocity law implies

, I --

Using B1 = Bi mod 2N we can write
/ 2013B

so by the reciprocity law we obtain

This implies the assertion of the Theorem. 
~ 

0

We now consider a more special situation.

Proposition 1. Let g be as in Theorem 6 and Dt = with Q prime to
Nt and &#x3E; 0. Let A E N be prime to Nt with the property that A is
the norm of a primitive ideal a and that at = A~.

Then, oo, we have
.. ’B 1-1 -
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Proof. Keeping in mind that g has rational q-expansion coefficients the
first and third assertion follow directly from Theorem 5 and 6. To prove
the second assertion we first observe that i7t = [/~1] = whence

00t = [0, b] with b =,8p. Theorem 5 now implies g(P)u(P) = = 9~ ~ ~
which completes the proof. D

To apply Proposition 1 to the Schläfli functions we quote from [Mel], p.
162 formulas (4.21), (4.22) and (4.23):

Proposition 2. Let be a unimodular matrix which we assume

to be normalized by

We de fi ne ci and A in Z by

Then we have the transformation formula

and

"1

Herein ( a ) is the Legendre symbol and (24 = 

Proo f . The formula is easily derived from ~Mel~ . In fact there are two
formulas in [Mel], one in the case 2 ~ c and another in the case 2 f a. The
above formula is obtained by applying the quadratic reciprocity law to the
Legendre symbol ( ~ ) in front of the second formula in [Me1] which then in
the case 2 f c coincides with the first formula. L7

Remark. A multiplicative interpretation of the above values e(M), with
M unimodular, can be found in the paper of Farshid Hajir [Ha].

Proposition 3. Let N be a natural number, ao E H the quotient o f a basis
o f an ideal ao f rom Jt and AoX2 + BoX + Co = 0 its primitive equation.
We assume that gcd(Ao, N) = 1. (this last exigency puts no restriction
on the above ideal ao). Then in any class o f 9~ there exists an ideal a
and a of a such that its quotient a E 1HI has a primitive equation
AX 2 + BX + C = 0 satisfying
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For any such a there exists a unimodular transformation M - 
mod N such that the coefficients of the primitive equation + B’ X +
C’ = 0 of M(a) sdtisfy

Proo, f. Let a E H be the quotient of a basis of an ideal a E 3’t. Then
a’ E H is the quotient of a basis of an ideal from the same class as a if and
only if a’ = M(a) with a unimodular transformation M. So we must show
that there exists a unimodular transformation M such that the primitive
equation of M(a) has the desired properties. We do this by induction on
the number of primes dividing N. For N = 1 there is nothing to be shown.
Note that B2 - t2d mod 4 which implies the desired congruence for B in
the case N = 1. So we assume the assertion to be shown for some N E N
and we contend that it is also true for N’ = Nps, s E N, with a prime p
not dividing N. To construct the unimodular transformation needed, we
define

If w E H is a root of the primitive equation

then Mp(w) resp. Np.(w) are roots of the equations

where the gcd of the coefficients is again equal to 1. Now we assume that
a is a root of the primitive quadratic equation

AX 2 + BX + C = 0 with gcd(A, N) =1, A &#x3E; 0 and B - Bo mod N.

If a is transformed by some M~ or N, with p divisible by N, these condi-
tions are conserved for p sufficiently large. Note that B2 - 4AC  0 and
A &#x3E; 0 implies C &#x3E; 0. Further by applying a product of M~’s and N,’s we
can achieve that A becomes prime to p. For 2 or (p = 2 and 2~B) this
becomes clear by writing I-iC). If (p = 2 and
2 f B) we must first achieve that 2 ~ C by applying some M~ and then we
get gcd(A, 2) = 1 by applying some Np.. In this way we end up with an

equation where A is prime to N’. In order to get an equation in which B is
congruent to Bo mod N’ we apply again some M~. Then B is transformed
to B’ = B + Writing
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and keeping in mind that B - Bo mod 2, we then see that by a suitable
choice of a number it = 0 mod N the congruence B - Bo mod 2N’ can be
satisfied.
To prove the second assertion of Proposition 3 we continue applying this

construction to the primes p dividing t and not dividing N. Then the

parameters p are divisible by N. So the unimodular transformation M
satisfies M - ~ ( o ° ) mod N because it is a product of M~’s and Np.’s with
It = 0 mod N. D

Proof of Theorem 1. Using Proposition 2 and the relation f = fl f2 , we find
that f 3 is invariant under unimodular Transformations M = (~~) mod 16.
Further we can see from the definition that f 3 has rational q-expansion
coefficients and by Proposition 2 it follows that f 3 is in F16. Let m be
the natural number from Theorem 1 and t be the conductor of the order

[.B/--m, 1]. For p E Z we set

Then by Theorem 6 we have

Here [Q16t : = 16 for -4 and [Q16t : Qt] = 8 for t2d = -4.
Choosing the numbers p mod 8 with the property that the /3J1. are prime to
t we find that

By Proposition 1 we obtain the Galois action

keeping in mind that by class field theory (8 is in S2lst (or by concluding
(8 = f (,30)3f (pl)-3 E 016t). Herein we have ~’8 «’‘~ _ ~’8’‘ with the complex
norm n IA of (3p.. Further from Proposition 2 we get the identity =

f (z). Whence our Galois action becomes

Using the relation ~16 f 3(z + 1) we further obtain

From the Frobenius congruence we deduce


