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An explicit algebraic family of genus-one curves
violating the Hasse principle

par BJORN POONEN

RÉSUMÉ. Nous montrons que pour tout t ~ Q, la courbe

3 (x + y + z)3 = 0
de P2 est une courbe de genre 1 qui ne satisfait pas au principe
de Hasse. On donne un modèle de Weierstrass explicite pour sa
jacobienne. Le groupe de Shafarevich-Tate de chacune des ces

jacobiennes contient un sous-groupe isomorphe à Z/3 x Z/3.

ABSTRACT. We prove that for any t ~ Q, the curve

+ 9y3 + 10z3 + 12 (t2 + 82 t2 + 22)3 (x + y + z)3 = 0
in P2 is a genus 1 curve violating the Hasse principle. An explicit
Weierstrass model for its Jacobian Et is given. The Shafarevich-
Tate group of each Et contains a subgroup isomorphic to Z/3 x
Z/3.

1. Introduction

One says that a variety X over Q violates the Hasse principle if

X(Qv) =I 0 for all completions (av of Q (i.e., R and Qp for all primes
p) but X(Q) = 0. Hasse proved that degree 2 hypersurfaces in Pn satisfy
the Hasse principle. In particular, if X is a genus 0 curve, then X satisfies
the Hasse principle, since the anticanonical embedding of X is a conic in
p2.
Around 1940, Lind [Lin] and (independently, but shortly later) Re-

ichardt [Re] discovered examples of genus 1 curves over Q that violate
the Hasse principle, such as the nonsingular projective model of the affine
curve
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Later, Selmer [Se] gave examples of diagonal plane cubic curves (also of
genus 1) violating the Hasse principle, including

in p2.
O’Neil [O’N, §6.5] constructs an interesting example of an algebraic fam-

ily of genus 1 curves each having Qp-points for all p  oo. Some fibers in
her family violate the Hasse principle, by failing to have a Q-point. In

other words, these fibers represent nonzero elements of the Shafarevich-
Tate groups of their Jacobians.

In [CP], Colliot-Thélène and the present author prove, among other
things, the existence of nonisotrivial families of genus 1 curves over the
base P 1, smooth over a dense open subset, such that the fiber over each
rational point of Pl is a smooth plane cubic violating the Hasse principle.
In more concrete terms, this implies that there exists a family of plane cu-
bics depending on a parameter t, such that the j-invariant is a nonconstant
function of t, and such that substituting any rational number for t results
in a smooth plane cubic over Q violating the Hasse principle.
The purpose of this paper is to produce an explicit example of such a

family. Our example, presented as a family of cubic curves in p2 with
homogeneous coordinates x, ~, z, is

Remark. Noam Elkies pointed out to me that the existence of nontrivial
families with constant j-invariant could be easily deduced from previously
known results. In Case I of the proof of Theorem X.6.5 in [Si], one finds a
proof (based on ideas of Lind and Mordell) that 2y2 = 1- Nx4 represents a
nontrivial element of III [2] of its Jacobian, when N - 1 (mod 8) is a prime
for which 2 is not a quartic residue. The same argument works if N = c4N’
where c E Q* and N’ is a product of primes p - 1 (mod 8), provided that
2 is not a quartic residue for at least one p appearing with odd exponent
in N’. One can check that if N = a4 + 16b4 for some a, b E Q n z*, then
N has this form. One can now substitute rational functions for a and b

mapping into Z2, with a/b not constant. For instance, the choices
a = 1 + 2/(t2 + t + 1) and b = 1 lead to the family

of genus 1 curves of j-invariant 1728 violating the Hasse principle.

2. The cubic surface construction

Let us review briefly the construction in [CP]. Swinnerton-Dyer [SD]
proved that there exist smooth cubic surfaces V in p3 over Q violating
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the Hasse principle; choose one. If L is a line in p3 meeting V in exactly
3 geometric points, and W denotes the blowup of V along V n L, then
projection from L induces a fibration W -&#x3E; Pl whose fibers are hyperplane
sections of V. Moreover, if L is sufficiently general, then W -&#x3E; Pl will be
a Lefschetz pencil, meaning that the only singularities of fibers are nodes.
In fact, for most L, all fibers will be either smooth plane cubic curves, or
cubic curves with a single node.

For some N &#x3E; 1, the above construction can be done with models over
Spec so that for each prime ptN, reduction mod p yields a family of
plane cubic curves each smooth or with a single node. One then proves that
if p$’N, each fiber above an Fp-point has a smooth Fp-point, so Hensel’s
Lemma constructs a Qp-point on the fiber Wt of W ~ Pl above any
t E P’(Q)-

There is no reason that such Wt should have Qp-points for piN, but
the existence of Qp-points on V implies that at least for t in a nonempty
p-adically open subset Up of Pl(Qp), Wt(Qp) will be nonempty. We obtain
the desired family by base-extending W --&#x3E; Pl by a rational function f :
P1 ~ pl such that for each piN.
More details of this construction can be found in ~CP~.

3. Lemmas

Lemma 1. Let V be a smooth cubic surface in p3 over an algebraically
closed field k. Let L be a line in p3 intersecting V in exactly 3 points. Let
W be the blowup of V at these points. Let W - Pl be the fibration of W
by plane cubics induced by the projection P3 ~ L ~ Pl from L. Assume that
some fiber of 7r : W --&#x3E; Pl is smooth. Then at most 12 fibers are singular,
and if there are exactly 12, each is a nodal plane cubic.

We give two approaches towards this result, one via explicit calculations
with the discriminant of a ternary cubic form, and the other via Euler char-
acteristics. The first has the advantage of requiring much less machinery,
but we complete this proof only under the assumption that L does not meet
any of the 27 lines on V. (With more work, one could probably prove the
general case too, but we have not tried too seriously, since the special case
proved is all we need for our application, and also since the second proof
works generally.) The second proof can be interpreted as explaining the
order of vanishing of the discriminant of the family in terms of the Euler
characteristic of a bad fiber.

First proof of Lemma 1, assuming that L does not meet the 27 lines. Let
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be the generic ternary cubic form, with indeterminates ao, ... , ag as coeffi-
cients. Let H(x, y, z) be the Hessian of F, i. e., the determinant of the 3 x 3
matrix of second partial derivatives of F. Let A be 2-93-3 times the de-
terminant of the 6 x 6 obtained by writing each of âF/ây, aF/az,
âH/âx, in terms of the basis x2, xy, y2, xz, yz, z2. (This is
a special case of a classical formula for the resultant of three quadratic forms
in three variables, which is reproduced in [St], for instance.) One computes
that A is a homogeneous polynomial of degree 12 in Z [ao, ... , ag].

FIGURE 1. Plane cubic curves with their Euler characteristics.
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If we specialize F to the homogenization of y2 - (x3 + Ax + B), we find
that A becomes the usual discriminant -16(4A3 + 27B2) of the elliptic
curve [Si, p. 50].

Because A is an invariant for the action of GL3(k), it follows that F gives
the usual discriminant for any elliptic curve in general Weierstrass form

at least in characteristic zero, and hence in any characteristic. Every
smooth plane cubic is projectively equivalent to such an elliptic curve, so
A is nonvanishing whenever the curve F = 0 is smooth.
On the other hand, if F = 0 is singular at (0 : 0 : 1), so that a7 = a8 =

ag = 0, we compute that A becomes 0. Again using the invariance of A,
we deduce that A = 0 if and only if F = 0 is singular.1

Since a cubic surface is isomorphic to p2 blown up at 6 points ([Ma,
Theorem IV.24.4], for example), and W is the blowup of V at 3 points,
we obtain a birational morphism W -~ P2. Taking the product of this
with the fibration map W --~ Pl yields a morphism W : W -~ p2 x pl
birational onto its image. The morphism T separates points, since W ~
p2 separates points except for 9 lines which contract to points, and these
project isomorphically to the second factor P’, because by assumption
L does not meet the 6 lines contracted by the morphism V -~ P2. To

verify that T separates tangent vectors, we need only observe that at a
point P E W on one of the 9 lines, a tangent vector transverse to the line
through P maps to a nonzero tangent vector at the image point in p2,
while a tangent vector at P along the line maps to the zero tangent vector
at the image point in p2 but to a nonzero tangent vector at the image
point in P 1. Hence T is a closed immersion, so we may view the given
family W -~ Pl as a family of curves in P2. By assumption, there exists a
fiber of W -~ Pl that is a smooth cubic curve. It follows that the divisor
W in P 2 x P 1 is of type ( 3,1 ) , and hence W is given by a bihomogeneous
equation q(xo, xl, x2, x3; to, tl) = 0 of degree 3 in xo, xl, x2, X3 and of degree
1 in to, tl. In other words, we may view the fibration W - Pl as a family of
cubic plane curves where the coefhcients ao, ... , ag are linear polynomials in
the homogeneous coordinates to, tl on the base Pl - Hence A for this family
is a homogeneous polynomial of degree 12 in to, tl, and it is nonvanishing
because of the assumption that at least one fiber is smooth. Thus at most
12 fibers are singular.
To finish the proof, we need only show that if a fiber is singular and not

with just a single node, then bl ) vanishes to order at least 2 at the
corresponding point on P 1. To prove this, we enumerate the combinatorial

1 Facts such as this are undoubtedly classical, at least over C, but it seems easier to reprove
them than to find a suitable reference.
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possibilities for a plane cubic, corresponding to the degrees of the factors
of the cubic polynomial: see Figure 1.

In the "three lines" case, after a linear change of variables with constant
coefficients we may assume that the three intersection points on the bad
fiber are (1 : 0 : 0), (0 : 1 : 0), and (0 : 0 : 1), so that the fiber is xyz = 0.
We compute that if G is a general ternary cubic and t is an indeterminate,
representing the uniformizer at a point on the base P , then A for 
is divisible by t3. In the "conic + line" case, we assume that the two
intersection points are the points (1 : 0 : 0), (0 : 1 : 0) so that the conic
is a rectangular hyperbola and the line is the line z = 0 "at infinity." We
can then translate the center of the hyperbola to (0 : 0 : 1) and scale to
assume that the fiber is (xy - z2)z = 0. This time, A for (xy - z2)z + tG
is divisible by t2.

In the "cuspidal cubic" and "conic + tangent" cases, we may change
coordinates so that the singularity is at (0 : 0 : 1) and the line x = 0 is
tangent to the branches of the curve there, so that a5 = a6 = a7 = a8 =
ag = 0. In the remaining cases, "line + double line," "concurrent lines,"
and "triple line," we may move a point of multiplicity 3 to (0 : 0 : 1), and
again we will have at least a5 = a6 = a7 = a8 = a9 = 0. We check that
A vanishes to order 2 in all five of these cases, by substituting aZ - tb2
for i = 5, fi, ?, 8, 9 in the generic formula for A, and verifying that the
specialized A is divisible by t2. D

Second proof of Lemma 1. Let p be the characteristic of k, and choose a
p. Let

denote the Euler characteristic. Since V is isomorphic to the blowup of p2
at 6 points, and W is the blowup of V at 3 points,

On the other hand, combining the Leray spectral sequence

with the Grothendieck-Ogg-Shafarevich formula ([Ra, Th6or6me 1] or [Mi,
Theorem 2.12]) yields
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where W’T1 is the generic fiber, Wt is the fiber above t, and

is the alternating sum of the Swan conductors of Ft) considered
as a representation of the inertia group at t of the base Since W17 is a
smooth curve of genus g = 1, = 2 - 2g = 0. If t E is such that

Wt is smooth, then all terms within the brackets on the right side of (1)
are 0, so the sum is finite. The Swan conductor of

is trivial. Hence (1) becomes

Since sWt(Hlt(W17,Ft)) is a dimension, it is nonnegative, so the lemma will
follow from the following claim: if Wt is singular, &#x3E; 1 with equality
if and only if Wt is a nodal cubic. To prove this, we again check the cases
listed in Figure l.The Euler characteristic for each, which is unchanged if
we pass to the associated reduced scheme C, is computed using the formula

where a : C - C is the normalization of C, gCZ i is the genus of the i-th

component of C, and Csing is the set of singular points of C. For example,
for the "conic + tangent," formula (2) gives

Lemma 2. If F(x, y, z) E Fp[x, y, z] is a nonzero homogeneous cubic poly-
nomial such that F does not factor completely into linear factors over FP,
then the subscheme X of p2 defined by F = 0 has a smooth Fp-point.

Proof. The polynomial F must be squarefree, since otherwise F would fac-
tor completely. Hence X is reduced. If X is a smooth cubic curve, then it
is of genus 1, and 0 by the Hasse bound.

Otherwise, enumerating possibilities as in Figure lshows that X is a
nodal or cuspidal cubic, or a union of a line and a conic. The Galois
action on components is trivial, because when there is more than one, the
components have different degrees. There is an open subset of X isomorphic
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over Fp to Pl with at most two geometric points deleted. But #P1(Fp) &#x3E; 3,
so there remains a smooth Fp-point on X. D

4. The example

We will carry out the program in Section 2 with the cubic surface

in P3. Cassels and Guy [CG] proved that V violates the Hasse principle.
Let L be the line x + ~ ~- z = w = 0. The intersection V fl L as a subscheme
of L Pl with homogeneous coordinates x, y is defined by

which has discriminant 242325 = 33.52.359 = ,A 0, so the intersection consists
of three distinct geometric points. This remains true in characteristic p,
provided that p 0 ~3, 5, 359}.
The projection V --+ Pl from L is given by the rational function u :=

+ y + z) on V. Also, W is the surface in p3 x pl given by the
((x, y, z, w); (uo, ul))-bihomogeneous equations

The morphism W - Pl is simply the projection to the second factor, and
the fiber Wu above u E Q = A (Q) C P (Q) can also be written as the
plane cubic

- n n n n

The dehomogenization

defines an affine open subset in A2 of Wu. Eliminating x and y from the
equations

shows that this affine variety is singular when u E Q satisfies

The fiber above u = 0 is smooth, so by Lemma 1, the 12 values of u
satisfying (5) give the only points in above which the fiber Wu
is singular, and moreover each of these singular fibers is a nodal cubic.
(Alternatively, one could calculate that A of the first proof of Lemma 1
for (4) equals - 2431354 times the polynomial (5). One can easily verify
that in any characteristic p ~ {2,3,5}, L does not meet any of the 27 lines



271

on V.) The polynomial (5) is irreducible over Q, so W~ is smooth for all
u
The discriminant of (5) is 2~.3~.5~.359~. Fix a prime p ~ {2, 3, 5, 359},

and a place Q --+ Fp. The 12 singular u-values in P (Q) reduce to 12
distinct singular u-values in P1(Fp) for the family W -&#x3E; Pl defined by the
two equations (3) over Fp. Moreover, the fiber above u = 0 is smooth in
characteristic p. By Lemma 1, all the fibers of W -~ Pl in characteristic p
are smooth plane cubics or nodal plane cubics. By Lemma 2 and Hensel’s
Lemma, Wu has a Qp-point for all u E P~(Qp).
Proposition 3. If u E (a satisfies u - 1 (mod pZp) for p E {2, 3, 51 and
~u E Z359, then the fiber Wu has a Qp -point for all completions Qp, p  oo.

Proof. Existence of real points is automatic, since W~, is a plane curve of
odd degree. Existence of Qp-points for p g {2,3,5,359} was proved just
above the statement of Proposition 3.

Consider p = 359. A Grbbner basis calculation shows that there do not
exist al, a2, bl, b2, cl, C2, U E F359 such that

and

are identical. Hence Lemma 2 applies to show that for any U E F359, the
plane cubic defined by (6) over F359 has a smooth F35g-point, and Hensel’s
Lemma implies that Wu has a Qssg-point at least when u E Z359 ·

When t6 = 1 (mod 5Z5), the curve reduced modulo 5,

consists of three lines through P := (1 : 0 : -1) E P2(F5), so it does
not satisfy the conditions of Lemma 2, but one of the lines, namely ,y =

-2(x + y + z), is defined over F5, and every F5-point on this line except P
is smooth on W-. Hence Wu has a Q5-point.
The same argument shows that Wu has a Q2-point whenever u - 1

(mod 2Z2), since the curve reduced modulo 2 is x3+y3 = 0, which contains
x + y = 0.

Finally, when u - 1 (mod 3Z3), the point (1 : 2 : 1) satisfies the equa-
tion (4) modulo 32, and Hensel’s Lemma gives a point (xo : 2 : 1) E Wu (Q3)
with (mod 3Z3). This completes the proof. D

We now seek a nonconstant rational function Pl -~ Pl that maps P  ( Qp )
into 1 +pZp for p E {2,3,5} and into Z359 for p = 359. Since
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for p E {3,5,359}, the function

has the desired property. Substituting into (4), we see that

has Qp-points for all p  oo. On the other hand, Xt(Q) = 0, because
V(Q) = 0. Finally, the existence of nodal fibers in the family implies as
in [CP] that the j-invariant of the family has poles, and hence is noncon-
stant.

5. The Jacobians

For t E Q, let Et denote the Jacobian of Xt. The papers [AP] and [RVT]
each contain a proof that the classical formulas of Salmon for invariants of
a plane cubic yield coefficients of a Weierstrass model of the Jacobian. We
used a GP-PARI implementation of these by Fernando Rodriguez-Villegas,
available electronically at

ftp://www.ma.utexas.edu/pub/villegas/gp/inv-cubic.gp
to show that our Et has a Weierstrass model y2 = x3 + Ax + B where

Because the nonexistence of rational points on V is explained by a Brauer-
Manin obstruction, Section 3.5 and in particular Proposition 3.5 of [CP]
show that there exists a second family of genus 1 curves Y with the same
Jacobians such that the Cassels-Tate pairing satisfies (Xt, Yt) = 1/3 for all
t E Q. In particular, for all t E Q, the Shafarevich-Tate group 
contains a subgroup isomorphic to Z/3 x Z/3.

Although we will not find explicit equations for the second family here,
we can at least outline how this might be done, following [CP], except using
Galois cohomology over number fields and Q(t) wherever possible in place
of 6tale cohomology over open subsets of P1:

1. Let k = Q( 3) and = V xQ k. On pages 66-67 of [CKS] an
element Ak of Br(Vk) giving a Brauer-Manin obstruction over k is
described by parameters E,17 for a 2-cocycle ~ representing the image
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of Ak in H2(Gal(K/k), K(V)*) for a certain finite abelian extension
K of k. We may map ~ to an element of H 2(k, Q (V) *).

2. Apply the corestriction coreSk/Q to Ak to obtain an element A E
Br(V) giving a Brauer-Manin obstruction for V over Q. (See the
proof of Lemme 4(ii) in ~CKS~.) In practice, all elements of Brauer
groups are to be represented by 2-cocycles analogous to ~, and all
operations are actually performed on these cocycles.

3. Pull back A under the morphisms X ~ V, where X.~ over Q (t)
is the generic fiber of our final family X ~ Pl of genus 1 curves, to
obtain an element of Br(X~).

4. Let X,., denote Find the image of in Pic 

by writing the divisor of the 2-cocycle representing the image of Aq in
Q (t) (Xq ) * ) as the coboundary of a 1-cochain, which becomes

a 1-cocycle representing an element of H’ (Q (t), Pic X,7).
5. Observe that the newly discovered 1-cocycle actually takes values in

Pico = E,7 (Q (t)), where E,7 is the Jacobian of over Q(t).
6. Reconstruct the principal homogeneous space Y,7 of Eq over Q(t) from

this 1-cocycle, by computing the function field of Y,7 as in Section X.2
of [Si].

7. Find the minimal model of over PQ, if desired, to obtain a model
smooth over the same open subset of Pl as X.
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