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Cyclotomic quadratic forms

par FRANÇOIS SIGRIST

RÉSUMÉ. L’algorithme de Voronoï est un procédé permettant
d’obtenir la liste complète des formes quadratiques positives par-
faites à n variables. Sa généralisation aux G-formes permet de
classer les formes G-parfaites, avec l’avantage de se dérouler dans
un espace de dimension plus petite (G est un sous-groupe fini de
GL (n, Z)) . On étudie ici la représentation standard du groupe cy-
clique G = Cm en dimension ~(m), de polynôme caractéristique
03A6m (x) (polynôme cyclotomique). Une forme G-invariante est dite
forme cyclotomique. Toute les formes G-parfaites sont données
pour ~(m)  16, de même que pour m = 17, où la forme cyclo-
tomique la plus dense est entièrement nouvelle. On obtient ainsi
une constante d’Hermite cyclotomique, qui s’avère être souvent
meilleure que la constante d’Hermite habituelle. C’est le cas pour
m = 5,7,11,13,16,17,36, et vraisemblablement 32 (les calculs
pour m = 32 sont en cours, et ont déjà fourni 4600 formes C32-
parfaites). Les résultats complets sont disponibles à
http://www.unine.ch/math.

ABSTRACT. Voronoï ’s algorithm is a method for obtaining the
complete list of perfect n-dimensional quadratic forms. Its gen-
eralization to G-forms has the advantage of running in a lower-
dimensional space, and furnishes a finite, and complete, classifica-
tion of G-perfect forms (G is a finite subgroup of GL (n, Z)). We
study the standard, ~(m)-dimensioiaal irreducible representation
of the cyclic group Cm of order m, and give the, often new, dens-
est G-forms. Perfect cyclotomic forms are completely classified for
~(m)  16 and for m = 17. As a consequence, we obtain precise
upper bounds for the Hermite invariant of cyclotomic forms in this
range. These bounds are often better than the known or conjec-
tural values of the Hermite constant for the corresponding dimen-
sions ; this is indeed the case for m = 5,7,11,13,16,17,36. The
complete results can be taken from http : //www . unine . ch/math.
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1. Introduction

Denote by ~y",(x) = 1 + CIX + ... + c.,t-lx" 1 + xn the m-th cyclotomic
polynomial, of degree n = 0(m). Let G E GL(n, Z) be the matrix

generating the standard n-dimensional representation of the cyclic group
Cm. A cyclotomic form is a real quadratic form in n

variables, invariant under this action of Cm: the symmetric matrix A =

(aij) satisfies GtAG = A.
An easy computation shows that the matrix A has then constant diag-

onals = ai,j), and is completely known from the first half of its
first row: the space of cyclotomic forms is a linear subspace of 
of dimension n/2. Nevertheless, for convenience, we always shall give a
cyclotomic matrix by its full first row.
A positive definite real quadratic form has
- a minimum m = min(xtAxlx E Zn - {0}).
- a set S = I±Vl, ::I:v2, ... +vs )of pairs of minimal vectors in sat-

isfying = m. 2s is called the kissing number of the form.
- a Hermite invariant 1’n(A) = m - (det 

There is a familiar dictionary linking positive definite forms and Euclidean
lattices, via the Gram matrix. A Euclidean lattice has an associated sphere
packing, and the packing density 6 is related to the Hermite invariant by
the relation 6 = Const(n) -yn(A)n/2 : a dense form means a high Hermite
invariant.
A quadratic form is perfect if it is the unique quadratic form having

minimum m and set S of minimal vectors. Similarly, a cyclotomic form is
said to be Cm-perfect if it is the unique cyclotomic form with m and S as
before. A quadratic form is extreme if its density is locally maximal in the
space of quadratic forms. A cyclotomic form is if its density is
locally maximal in the space of cyclotomic forms.
An extreme form is always perfect. For the converse, a theorem of

Voron6i requires a condition called eutaxy (cf [Mar]). These properties
carry over verbatim to the case of Cm-forms [B-M]. A Cm-perfect form is
proportional to an integral form, as are the usual perfect forms.

There is a second useful dictionary linking rational cyclotomic forms to
the cyclotomic field Q((m). If A is (the matrix of) a cyclotomic form,
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there is a unique real element a E ~(~m) such that xtAx = Trace(axx).
The practical computation runs as follows: write d for the first column

of the matrix A, and associate to a = ao + + ... + the

column a = (ao, cxl, ... , an-1)’. Then ii = Da with matrix D = (dij) =
The determinant of D is the discriminant of the field Q((m),

and is therefore nonzero: A and a determine each other. If a cyclotomic
form is positive definite, the element a is totally positive (a » 0): all

its conjugates are positive. Further, if u is a unit, the cyclotomic form
corresponding to u . ii - a is clearly Cm-equivalent to the original form. This
method is extremely useful for finding, or checking, G-equivalences.

Taking determinants in xtAx = Trace(axx), one gets (using the fact that
a is real):

, 

... , ... - ",. " a

It follows that the determinant of an integral cyclotomic form is equal to
where k(m) is the square-free part of the discriminant of the cy-

clotomic field ~(~m). Further, using the detailed study of decomposition
of primes in cyclotomic fields, E. Bayer-Fluckiger and J. Martinet obtained
the following useful

Proposition ( Bay-M ). If q is a prime power dividing d, and prime to m,
then q’ ==:f:1 (mod m).
Up to equivalence, there are only finitely many perfect quadratic forms.

Voron6f ’s algorithm, deviced in 1908 ~Vor~, constitutes a method of explicit
complete classification. The densest quadratic form(s) in each dimension
can be found with an entirely mechanical computation, the only problem
being the gigantic computational complexity.

For cyclotomic forms, it was shown in [B-M-S] that the orthogonal projec-
tion of Voron6f ’s algorithm onto the (dual) space of cyclotomic forms pro-
vides an exhaustive classification. Later, it was proved [JCb] that the num-
ber of Cm-inequivalent Cm-perfect forms is finite. The practical advantage
lies in the dimension of the space of forms (n~2 instead of n(n+1)~2), bring-
ing the computing time to almost nothing for n  12, and to "tolerable"
values for the groups C17 and C32 (n = 16). There are 1344 C17-perfect
forms, and at least 4600 C32-perfect forms. Both densest forms are com-
pletely new.
As is customary in algebraic number theory, we take m to be either odd

or divisible by 4.
For many values of m, the conjectured (or proved) densest form (D4,

E6, E8, K12, ~16) appears as a Cm-form. This gives new matrix represen-
tations of these well-known forms, and is particularly suitable for further
computation of their algebraic invariants.
Even with a long reference list, I cannot do justice to those who helped

me during the preparation of this article. However, I wish to thank my
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Bordeaux colleagues Anne-Marie Berge and Jacques Martinet, for their
help with many crucial points.

For general results on quadratic forms and lattices, we refer to the books
by Conway-Sloane (C-S~, and Martinet [Mar].

2. The Vorondf algorithm

Start with a quadratic form q(x) = xtAx, with minimum m, and minimal
vectors f ±vi 1, (1  i  s). Endow the space of symmetric ma-
trices with the Euclidean structure given by A. .B = Trace(AB). Consider
the s matrices Y = viv2 as elements of the dual space 
The simple observation: m = = = A ~ Y exhibits

the matrix coefficients aij as a solution of the system of linear equations
=m.

The Voronoi domain of the matrix A, denoted by D(A), is the convex
hull, in 8ymn(JR)*, of the rays aY, ~ &#x3E; 0; it is a convex polyhedral cone. Its
dimension in is called the perf ection rank of A, its codimension
the de f ault of perf ection of A. A perfect form has default zero by definition:
the system of equations X - Vi = m has X = A as its unique solution. The
dual of the Voron6i domain is, by construction, the subset =

vi X vi &#x3E; 0) of 8ymn(JR).
Suppose first that A is not perfect. Then there is a matrix F # 0

vanishing on all vi. If 101 is small enough, all forms A (0 ) = have same
minimum m and same set of minimal vectors. There are two values pl, p2 &#x3E;

0 (possibly infinite, but not both) such that A(-pl) and A(p2) still have
minimum m, but a strictly larger set of minimal vectors. Consequently,
after a finite number of steps, one reaches a perfect form.

If A is perfect, the domain D(A) is of maximal dimension, and is bounded
by faces which are hyperplanes in Given such a face ,~, we
denote by F the (uniquely defined, up to a positive scalar factor) matrix
which is the inner normal to .~.

It is convenient, at this stage, to give the practical method for finding all
faces of D(A). A face matrix F has the following algorithmic description: If
S = is the set of minimal vectors of A, there is a non-trivial partition
S = Sl U S2 satisfying:

- F is unique, up to a positive scalar factor.
The important fact here is that this computation runs entirely in 8ymn(JR),
though, clearly, the geometric description in Symn (R)* is more convenient
for understanding the process.

Take now a perfect form A, F one of its face matrices, and consider the
form A(9) - A + OF, with 8 &#x3E; 0. If 9 &#x3E; 0 is small enough, still
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has minimum m, but has default of perfection 1, because, by construction
above, its set of minimal vectors is Sl. Define p = sup (0 1 A (0) has
minimum m). If p is infinite, the matrix F is semi-positive definite, and
the face T is said to be a "cul-de-sac". As was observed in [JCa] , and
implicitely used in [Vor], this does not happen in the case, but

should be kept in mind in generalizing this process. If p is finite, A(p) is
again a perfect form: the neighbouring form of A alone ~’.
The neighbouring relation gives the set of perfect forms the structure

of a graph, and Voronors fundamental result [Vor] asserts that this graph
is corcnected. Moreover, the GL(n, Z)-equivalence of forms preserves the
neighbouring relation, so a quotient graph can be defined. By standard
arguments (e.g. Hermite reduction), the quotient graph is fcnite: this is
Voron6f ’s algorithm.

Besides the finding of all faces of a domain, a time-consuming task, there
are three other practical steps needed. We list them for completeness (More
on this in [Vor], [JCa], [Mar]):

- Find all minimal vectors.
- Given a face, find the neighbouring form (i.e. find p).
- Decide GL(n, Z)-equivalence between two perfect forms.

If G is a finite subgroup of GL(n, Z)), it is possible to run Voron6f ’s

algorithm in the linear subspace T of G-invariant forms in If
A is a G-form, its relative Voron6f domain DG (A) is then the orthogonal
projection of D(A) onto the dual subspace T* of 5ymn(JR)*. It is proved in
[B-M-S] that the resulting neighbourhood graph is connected. The finiteness
of the quotient graph is more delicate to obtain (G-equivalences have to be
taken in the subgroup of GL(n, Z) preserving T), and has been proved
for G-forms in [JCb]. "Culs-de-sac" can appear (see [B-M-S]), and it also
happens that the complete graph is already finite. However, for cyclotomic
forms, one has the

Proposition. If G is a Q-irreducible subgroup of GL(n, Z)), there are no
"culs-de-sac" in running G- Voronoï ’s algorithm.

Proo f . Irreducibility implies that the orbit of any minimal vector spans the
whole space. A positive semi-definite form vanishing on a minimal vector
must consequently be the zero form. D

3. Raw data

We shall separate the lists of cyclotomic forms into three families. In

family A, the critical form (D4, E6, Eg, K12, A16) is cyclotomic. Family B
describes Cp-perfect forms, with p a prime. The remaining cases are listed
in family C.
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For each family, the first table gives successively m, 0(m), GP = number
of Cm-perfect forms, P = number of Cm-perfect forms which are also perfect
in the ordinary sense, H=Hermite invariant of the densest form, with its
Name, if known. The second table gives first m, First row, then min,
det = minimum, resp. determinant of the densest form, in its smallest
integral representative, E, F = number of edges, resp. faces, of its Voron6i
domain.

Theorem A. The data for family A are

Comment. In the cases with A16, the number of edges of the domain
makes the finding of the faces practically impossible.

Before giving the data on family B, let’s briefly discuss the Craig lattices
~4~. These famous lattices are thoroughly investigated in [C-S] and [Mar].
Their direct construction as difference lattices gives them matrices (cf.(C-S~
p. 433) which are invariant under the n-dimensional representation of Cn+1
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having characteristic polynomial 1-I- x -f- ... + x’- 1 + xn. The diagonals are
constant, and the first row is filled from left and from right with binomial
coefhcients:

This description is very convenient, but does not show the value of the
minimum, whose determination is a difhcult combinatorial problem (cf.
[Mar] p. 139).
When n + 1 is a prime p, the Craig lattices are cyclotomic. InP-1

our range of investigation, their minimum is 2r, by [Ba-Ba], and their
density is pretty high. We shall evidently meet these forms below. In high
dimensions, Craig lattices are sometimes the densest known (e.g. p=151, cf
[C-S] p. 43), although it is generally accepted that the Cp-Hermite constant
is lower than the absolute constant. Theorem B below shows that, up to
a single, and surprising exception, the densest cyclotomic form is a Craig
form.

Theorem B. The data for family B are

/oB

Comment. The Craig form A13 is the densest Craig form, with minimum16

6 and determinant 175. Our new form is denser, because 24  17. The
proportion of perfect forms is high, and will be explained below.

For the last family of forms, with the exceptions of D8 (for Cls ) and
D16 (for C32), there are no otherwise known Cm-perfect forms. The com-
putation for C32 is still under way, but the available data suggest that the
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densest form has already been found (dense forms tend to have high kissing
numbers, and consequently to appear early in the search).

Theorem C. The data for family C are

We close this chapter with a few general facts, gathered from our present
sample of ca. 6000 Cm-perfect cyclotomic forms. First, in all cases, there
is a spanning orbit of minimal vectors, bringing the minimum of the form
on the diagonal of the matrix. This seems to be a general fact, but the low
dimension, and the triviality of the ideal class group, could contribute to
this. Nevertheless, let’s formulate this for perfect cyclotomic lattices:

Conjecture 1. Ang perfect cyclotomic lattice has a spanning orbit of min-
imal vectors.

Being more pessimistic leads to:

Conjecture 2. Any perfect cyclotomic lattice is generated by its minimal
vectors.

Another intriguing fact in our sample is

Observation 1. All perfect cyclotomic forms are even.

Comment. In the case the prime 2 is unramified in the cyclotomic field,
then any cyclotomic form, perfect or not, is even . In the ramified case,
one has to assume C~-perfection, but the fact is unexplained.

1 This result is due to J. Martinet. The representative element a, being real, has an even
trace. When 2 is unramified, this property implies that the corresponding lattice is even.
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4. Two detailed samples

We begin with a case appearing in Theorem A. Notations "H" ,
"E" , "F" , "min" , "det" are as above. "No" is the numbering used by the
Voron6f algorithm, and is simply used here to locate neighbours. "s" is the
half kissing number, and "i" the default of perfection. Nbr gives the list
of neighbours. These 13 forms are listed by decreasing H, beginning with
.K12 .

Theorem A28. The C28 -perfect forms are

The next example is C13, contained in Theorem B. The Craig forms
appear, and one can observe, contrary to the preceeding case, the high
proportion of perfect forms.

Theorem B 13. The C13 -perf ect f orms are
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Comment. There are two non-perfect forms in this list, both with a default
of perfection of 12, and both with a minimum divisible by 13. Similarly, in
the list of 1344 C17-perfect forms, one finds 11 non-perfect forms, all with
a default of perfection of 16, and a minimum divisible by 17. This suggests

Observation 2. The default of perfection of a Cp-perfect form is divisible
by (~ - 1).
Observation 3. The minimum of an integral Cp-perfect, non-perfect Cp-
form is divisible by p.

Observation 2 was first proved by J. Martinet (unpublished). Here is a
more general result (proof of my own) settling the claim:

Lemma. Let A be the matrix of a positive cyclotomic form. Call 6(A),
resp. 6p(A) its default of perfection, resp. default of Cp-perfection. Then

6(A) - 6p(A) is divisible by (p - 1).

Proof. The group Cp acts on D(A), fixing Dp(A). As any fixpoint-free ratio-
nal representation of Cp has dimension divisible by (p-1), the codimension
of in D(A) is divisible by (p - 1). Hence
(p(p- 1)/2 - 6 (A)) - ((p-1)/2 - 6p (A)) is divisible by (p - 1). The lemma
follows. D

Observation 3 remains, at present, at the botanical stage. An argument
in favour is the fact that the orthogonal projection of D(A) on Dp(A) is
the average on orbits, i.e. division by p.
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5. Final remarks

Our definition of cyclotomic forms is not as general as is used in alge-
braic number theory, where it means Trace(az3f) on an ideal I of rank
one in Q((m). This general description is very convenient, as is illustrated
with the Craig forms which are obtained with c~ = 1 and I = per
(7~ _ ( 1- ~p ) ) . Further, our densest C17-form was identified by J. Martinet:
c = 1 and I = p-7Q, where Q is an ideal such that 66 = (2). It is denserp

than A3 because 28  172: this ultimately boils down to the fact that 1716

is a Fermat prime ! i Voronoi’s algorithm does not fit well in this context,
because it runs under a fixed representation of the group In presence of

exotic cyclotomic representations, one has to rerun the algorithm entirely,
only changing the matrix G generating the representation at the beginning
of the program. There is therefore a cyclotomic Hermite constant for each
pair of conjugate ideals in the ideal class group of Q((m). Twisting forms
with an ideal can only increase the Hermite constant, and looking at the
results of [Ba-Ba] on C23, one deduces for example: for the standard cyclo-
tomic representation, the presumably densest form is A22~ with a Hermite
invariant of 2.94..; twisting with one of the exotic representations has the
effect of doubling the minimum 2 of A22 to 4, giving it an invariant of
3.46... As the presumed q22 is 3.57.., this shows that Cp-cyclotomic forms
can become very dense. However, all cases treated in this paper have a

trivial ideal class group, and the Hermite invariant of the densest 

can safely be called the cyclotomic Hermite constant.
We did not include results on eutaxy in this paper. One reason is that

eutaxy is an absolute notion (a cyclotomic form is Cm-eutactic iff it is eutac-
tic). But in view of the very interesting recent results on the classification
of eutactic forms (cf [Mar], chap. IX,4), there is no doubt that the study
of cyclotomic eutactic forms will prove fruitful.
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