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RESUME. Soit @ = (Qk)ger Qo = 1, Qr+1 = @%@k, a2 2,
k > 0, une échelle de Cantor, Zg le groupe compact nog A
et u sa mesure de Haar normalisée. A un élement z of Zg écrit
z = {ag,01,02,...},0 < ar < gk+1 — 1,k > 0, on associe la suite
Tk = Do<j<k @jQ@j- On montre que si g est une fonction Q-
multiplicative unimodulaire, alors

dm (5 3 sm- I & % s(e@))=0 wps

n<z,—1 0<j<k Jo<a<q,—1

ABSTRACT Let Q = (Qi)i>0) Qo = 1, Qi+1 = aQk, o > 2,
be a Cantor scale, Zg the compact projective limit group of the
groups Z/QrZ, identified to H0<j<k_1 Z/q;Z, and let p be its
normalized Haar measure. To an element ¢ = {ao,a1,as,...},
0 < ax < gk+1 — 1, of Zg we associate the sequence of integral
valued random variables zx = } ;<4 @;Q;. The main result of
this article is that, given a complex Q-multiplicative function g of
modulus 1, we have

,13‘_’,‘:(;1; > gln) - H > 9(aQ;) =0 p-ae.

n<z,—1 0<j<k ‘70<a<q

1. INTRODUCTION

Let N be the set of non-negative integers, and let Q = (Qk)>q, Qo = 1,
be an increasing sequence of positive integers. Using the greedy algorithm,
to every element n of N, one can associate a representation

+o00
n=> er(n)Qk
k=0

which is unique if for every K,

Manuscrit regu le 14 septembre 1998.
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K-1

Z ex(n)Qx < Qk.

k=0
The simplest examples are the g-adic scale, ¢ integer, ¢ > 2, and its gen-
eralization, the Cantor scale Qx+1 = ¢xQk, Qo = 1, g > 2, £ > 0. In this
article, we are concerned with the Cantor scale. For a given integer n > 1,
we denote by k(n) the maximal index k for which ex(n) is different from
zero. The integers ex(n) are the digits from n in the basis Q. We recall
that if G is an abelian group, a G-valued arithmetical function f such that

k(n)

f(n) = Z f(ex(n)Qx) for n>1 and f(0)=0g,
k=0

is called a @Q-additive function, an extension of the notion of g-additive
function introduced by A. O. Gelfond in the g-adic case [4]. We recall that
a real-valued sequence f(n) has an asymptotic distribution if there exists
a distribution function F such that for all continuity points =z of F', the
probability measures defined by uy(z) = N~ 'card{n < N; f(n) < z} tends
to F(z) as N tends to infinity. In the case of the g-adic scale, necessary
and sufficient conditions for the existence of an asymptotic distribution for
a real-valued g-additive function have been given by H. Delange in 1972
[3]. J. Coquet [2] considered in 1975 the same kind of problem in cases of
Cantor scales and obtained mainly sufficient conditions. In both cases, it
appears essential to have information on the difference

1
CXom- I = 3 saay),
0<n<z 0<j<k(z) 7 0<a<q;

where g(-) is any Q-multiplicative function of modulus 1, and more pre-
cisely, to get a characterization of

W im0 Y em- I o Y ee@)=0
0<n<z 0<j<k(z) 0<a<gj

In fact, if the sequence {g;};>o is bounded, the relation 1 is always true.
But if {g;};>0 is unbounded, the situation is quite different. In [1], G. Barat
constructs a Q-multiplicative function h with values 1 or —1 such that

h(a

z—H—oo H q; Z QJ
0<j<k(z) 7 0<a<g;

exists and is a positive number while

imiat ;3 h(n)

n<z
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is less than or equal to zero. This difference is due to the existence of a
first digit phenomenon, unavoidable for unbounded sequence {g;}o<;, as
remarked by E. Manstavicius in a recent article [6].

Let Zg denote the group of Q-adic integers, considered as the compact
projective limit group of Z/QxZ and identified to []y<, Z/qxZ (see (5], p.

109). The products
I ;¥ sae)
o<i<k(n) ¥ 0<a<q;

are clearly related to this group in the following way: an element a of
Zq can be written a = (ag,a1,...),0 < ar < gx — 1,0 < k, and we may
identify an element of N with an element of Zg which has only a finite
number of digits different from zero. For all a = (ag,a;,...) belonging
to Zg, we define on Zg the sequence of N-valued random variables ()

given by zk(a) = E?:o a;Q;, the compact group Zg being endowed with
its normalized Haar measure u, and clearly

1
0= % se)= s
0<j<k U 0<a<g; Zq
In this article, we show roughly speaking that although the relation 1 is not
always true according to the example of G. Barat (for unbounded sequence
{g;}j>0), it is almost surely true for a path chosen at random.
2. REsuLTS
2.1. Main theorem.
Theorem 1. Let g be a unimodular Q-multiplicative function and set
mi(g) = — > g(aQ;).
9% 0<a<g;
Then, the relation

fim (= 3 )= J] mi@) =0

n<zi(-) 0<j<k

holds p-a.e.

2.2. Consequence of Theorem 1.

Theorem 2. Let G be a metrizable locally compact abelian group with
group law denoted by +. T' denotes the dual group of G endowed with its
Haar measure m, and let f(n) be a G-valued Q-additive function. Given
a sequence A(k) in G, we denote by F{ the distribution of the G-valued
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function defined on Zq by t — (f(zx(t)) — A(k)), and by §(,) the measure
consisting in a unit mass at the point a.
The following assertions are equivalent:

i) there exists a sequence A(k) in G and a probability measure v on G
such that the sequence of distributions F,;“ converges vaguely to v (i.e.,
limy, [, pdF{ = J¢ wdv for all continuous maps ¢ : G — C with compact
support);

ii) there exists a sequence A(k) in G and a probability measure v on G
such that p-a.e., the sequence of random measures ;kl(—) Yon <z () o f(n)—-A(k))
converges vaguely to v as k tends to infinity;

iii) the set X of characters g of T for which there exists an integer N(g)
such that [];5 n(,) m;(g) # 0 is not m-negligible.

Remarks. 1) Assertion iii) is always satisfied if G is a compact metrizable
group, for X is not empty (it contains the trivial character), and conse-
quently is not m-negligible.

2) Necessary and sufficient conditions for the continuity of v can be easily
found, since v appears as a convolution of measures on Zg: in fact, the same
method as in [7] (p. 84-87), gives that X is a closed and open subgroup.
Denoting by H the orthogonal of X and by Ty the canonical projection
G — G/H, the measure v is not continuous if and only if H is finite and

1
Ii — 1 .
myY Loy i
0<j<k 0<a<q,
Ty (£(aQ;))#0

2.3. Proof of Theorem 2. A straightforward adaptation of the argument
given in [7] (p 84-87) leads to, primo if one of the assumptions i), ii), iii),
holds, then, X is a closed and open subgroup of I'; and secundo, there exists
a probability measure v on G and a G-valued sequence {A(k)}; such that
for all g in T", the sequence

{5(Ak) [[ mi(go N}
0<j<k
tends to ©(g) where © is the Fourier transform of v. This is due to the fact
that for g in X there exists an N(g) for which the relation [] m;(g) # 0,

i2N(g)
holds. Hence we get by Theorem 1 that for all g, the sequence

o5 X otrm -0},
n<zi(-)

converges to ©(g) p-a.e. Next, we use the Fubini theorem on the measured
space (I'x Zg, m®u) in an essential way, by saying that since I is countable
at infinity and Zq is compact, both of the measures m and p are o-finite
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and so, p-a.e., the sequence {% Yon<a() 9(f(n) — A(k))} converges to
U(g) m-a.e.. In order to prove that p-a.e., the sequence

1
Tr(-)

{ D S(s(m)-agk) I

n<z(-)

converges vaguely to v, it suffices to show that for any real-valued contin-
uous function F' defined on G whose support is compact, the sequence

1
{m Y F(f(n) - A(R) 1k

n<ze(-)

converges to v(F'). This can be done as follows. Take any € > 0; by
assumption on F, there exists V, a symmetric neighborhood of the origin
in G, such that for all t in G and all u in V, one has |F(t +u) — F(t)| <e.
Denoting by M the Haar measure on G normalized with respect to m, we
have

P (t) - ‘M_(l‘ﬂ /V F(t +u)dM (u)|
- IM% /V (F(t +u) — F(£))dM ()|
1
< 3T /V |(F(t +u) - F(£))|dM(u)

1

< M(V)/VedM(u) <e.

The function Fy (t) defined by

1

Frlt) = 3773 /V F(t + u)dM(u)

is the convolution product of F' with the characteristic function of V nor-

malized by the constant M(V)~!. Therefore, the Fourier transform Fy is
integrable and we get

= Y Fin) - A) = > /r Fr(9)3(f(n) - A(k))dm(g)

n<lTy n<Tk

_ /r (;1; > Fu(9)g(f(n) - A(K)))dmig).

n<Tg
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By the Lebesgue dominated convergence theorem,

hm—ZF A(k))

k—+o00 Tk

n<zcp—1

= Jim ], ( X Frl0a(s(n) - 46 o
~ . 1 _

= [Fo( o ,,;%_lg(f(” - A(K)) ) dm(g)

=v(Fy) p—ae.

Now, since v is a probability measure and |F — Fy| < ¢, the sequence
1
{= X F(f(n) - A(K) - v(F)}e
n<lzcr—1
is bounded in modulus by 2¢; this implies

Mmk( Z F(f(n) - A(K) = (F) p-ac.

n<zk

Therefore, the sequence {5:1(—) >on <zi() O(f(n)—A(K)) }k converges vaguely u-
a.e. to v.

3. PROOF oF THEOREM 1

Notation and conventions
Given an arbitrary arithmetical function f, we set

Sn(f)= Y f(n), Mya(f)= Y f(n), Mn(f)=Q 'Mn(f).
0<n<N 0<n<Qn

Notice that we have the identity My_1(f) = Sqy-1(f) and for any Q-
multiplicative function f,

Mya(f)= [ m(s).

0<k<N
By convention, the result of a summation (resp. a product) on an empty
set will be 0 (resp.1).
A - Toolbox.

Proposition 1. Let g be a Q-multiplicative function of modulus 1 and as-
sume that the sequence {Mj(g)}x does not tend to 0. Then, there ezists a
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sequence {ak}kzo of complex numbers of modulus 1 such that

+o00 1 qr—1

3= 11— g(aQi)al* < +oo.

k=0 Ik a=0

Proof. By our assumption, all the complex numbers m;(g) are different
from zero. Put a;j = m;j(g(-))|m;(g(-))|~! where g(-) is the complex con-
jugate of g(-). The product a;m;(g) is equal to |m;(g)| and the sequence

{|Mk+1|}k is convergent. Therefore,

+o00
Z (1 — agmi(g)) < +oo.
k=0
From
+o0 400 1
Z (1 — armu(g)) = Z — Z (1 - g(aQp)ax)
k=0 k=0 I 0<a<q,

we get a fortiori that the series Y .20 EIZ Y 0<a<qs Re(1 — g(aQk)-ax) con-
verges and since lg(an).ak| = 1, we deduce

+o00o
Yo Y 1 gaQ)af’ < +oo.

k=0 ¥ 0<acq,
O

According to Proposition 1, we introduce the sequence of arithmetical func-
tions gz (n) defined by

gi(n) = [] 9(ajQ)-c

0<i<k

where n is written in base Q as n = E?:o a;jQ. This means that if k(n) is
the index of the last digit of n which is different from zero, gj(n) is equal

to
( II 9@@es)-( [[ «)-

0<j<k(n) k(n)<j<k

We extend gj by gi(z) = g o zx which we also denote g;. Moreover, for
simplification, we shall use the notation g*(aQ;) = g(aQj)a;.

Proposition 2. If the sequence {Mk+1(f)}k20 does mot converge to 0,
there ezists a subset E, of Zg such that p(Ex) = 1 and for every a =
(ao,a1,...) in Ey, the sequence k — gj(a) converges.
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Proof. The sequence of finite groups Z/QxZ, k > 0, induces a filtration
on the y-measured space Zg, and the complex-valued sequence of adapted
functions for this filtration defined by

" 1 -1
aO(II = X 9@
0<i<k ¥ 0<a<q;
is a martingale. Since we have

M- F ce=|I] ; ¥ o)

0<i<k T 0<a<q; 0<j<k U 0<a<q;

I - ¥ s@e)|”

0<i<k U 0<a<q;

and

is bounded, this martingale is bounded and so, it converges p-a.e. But the

sequence
(1] - ¥ s},

0<i<k U 0<a<q;

is convergent. Hence we obtain that the sequence {g;()} converges p -
a.e.

Proposition 3. If the sequence {Hk.’_l (F)}x does not tend to 0, there exists
a subset Fo, of Zg such that u(F) = 1 and for every ¢ = (ag(z), a1(z),...)
in Foo, one has

Jm s Y [1-g'@Quf =o.

a (z)#0 k 0<a<ag(z)

Proof. Assume that the sequence {Mk.’_l( f)}x does not tend to 0. Using
the same notations as in Proposition 2, we have by Proposition 1

+oo ; qr—1

1
> =Y 11— g(aQk)a|? < +oo.
k=0 Ik a=0

a—1
Let o, be defined by of = 51; Zo |1 — g(aQx)ax|?. For z in Zg, we write
=

z = (ao(z),a1(x),...), 0 < ak(ws < gx — 1,0 < k and we remark that, on
the sequence of the ax(z) different from 0, one has

1
ak(z) 2 - ¢'(a@n)]" < aktz) 2. - 9" (@Qu)[)
0§a<ak(z) 0<a<gqg
g 1 . 2
< ax(z) ((‘1; Z ll -9 (an)| )

0<a<qk
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%
ax(z)

Since Ek or < 400, it is known that there exists an increasing posi-
tive function h tending to infinity when k tends to infinity such that

Y rokh(k) < +oo and H (1 — oxh(k)) > 0. We consider the set F'(h)
of points z in Zg such that for all k, the inequality
[grorh(k)] < ak(z) < ge —1

holds, where [ -] denotes the integral part function. This set F'(h) is closed,
and its measure p(F(h)) is equal to

+00 1
T =(a - [arorh(®))),
k=0 Ik
and we have
+o00 1
pF(R) > [[ =(ak — qeorh(k)).
E—0 dx

Now, we remark that this last product can be written H (1 - oxh(k)) and

so, pF(h) # 0. For an z in F(h), we consider the condltlon [grorh(k)] <
ar(z) < gk — 1, when ag(z) # 0. If [grorh(k)] is not 0, then we have

9k 9k aeokh(k)
@ S loh ()] S lacouh(B] Gk 7k
< aoeh(k) 1

Qko'kh(k ) h(k) = EZ'F
and in this case, we get hm 7—5015 = 0. The case where [grorh(k)] =0

ar(z

remains. We have 0 < qkakh(k) <1,ie. qkak < 1/h(k). Hence

dk o < ak

a(z) 1 h(k)

To obtain our result, we remark that the sequence of functions h, indexed
by positive integers = and defined by h,(n) = h(n) if n > r and h(n)r!
otherwise, satisfies the same requirements as h. Now, the sequence of closed
sets F'(h,) is increasing with r and rl)ixlloo p(F(hy)) = 1. This gives imme-

=0 < qeor < — < =o0(1), k — +oo.

diately that Fiy,, the union of the F(h,), is a measurable set of measure 1.
Now, if z belongs to F, it belongs to some F'(h,) and as a consequence,
along the sequence k such that ax(z) # 0, we have

1
a@, 2 [1-oEf

0<a<ag(z)

IN

o < qrog
ax(x)

IN
I

(R o(1), k— +oo.
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a
Proposition 4. If the sequence {MHI( f)}x>0 converges to zero, then
lim — g(n) =0
N—+oo N 0<n<N
Proof. This Proposition is due to J.Coquet [2]. O

B- End of the proof

1- First case: the sequence {Mk.{,.]_( f)}x tends to zero.
From Proposition 4, lim Y. f(n) =0, and (zx)x tends to infinity
N—+009<n<N-1
p-a.e. due to the fact that zx(a) is bounded if and only if a has only a
finite number of nonzero digits. This means exactly that a is an integer;
but x(N) = 0.

2- Second case: the sequence {ﬁk+1( f)}x does not tend to zero.

We consider the intersection of the sets F, and F, given in Proposition 2
and Proposition 3 respectively. Notice that u(Ex N Fs) = 1. Our aim is
to prove that for every £ in Eo, N Fip

. 1 v
(G, X, o) =0

The sequence of functions k — g;(n) and the constants a; are defined as
in Proposition 2. Let £ be an element of E,, N F, and denote zx(§) by zx
for short. We have:

Saulgt) = (Y. 9(aQr)ox)Mi_1(gt_y) + (9(arQi)ok) Sz, _, (gk_1)

0<a<ag

= (Y 9(aQr)ak) Mi-1(gk_1) + (95(€)) @k-1(€))Sar_y (g5-1);

0<a<ag

and by iteration

k -1¢,—1
Sa(gt) = Y an(@®g@)( D 9(aQy)aj) Hzg, 1(aQr))
j=0 0<a<a;(é) r=0 a=0
k
= Y a©g®( Y 9@))(Mj1(gi-1)
=0 0<a<a;(&)

If aj(€) # 0, the choice of € in Fo, implies
D 9"(aQ)) = a;(&)(1 +¢5),

0<a<a;(€)
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with €; = o(1) when j tends to infinity. Since g is of modulus 1 and
Q;le—l(g;_l) is bounded by 1,

k

San(97) — D (62 (6)55 @ (05(8) (M; 1(5-0))|

=0

k

Sau(9t) = D (6 ()53 @) (5(6))- (@5 Mj-1(55-1)) Q)|

=0

k
<) €5ai(€)Q;-

j=0

<

Consequently

k
Sz (9k) — ZQ;(&)WW(&)MFI(Q}_H =o(zx), (k— +00).

Since ¢ belongs to Ew,, {g5(£)}x converges, and as a consequence, the se-
quence 7;; = |g,‘:(§).g;(§) — 1| tends to 0 when k and j, j < k, tend to
infinity independently.

This implies

lzgk )5 ©€)a;(6) Mj-1(j 1)~ Zaj(s j1(g5-1)| < an,ka, Qs

and so, when k — +o00,

k

‘ng(ﬁ).% )a;(§)M;-1(gj_1) ZGJ M;_1(g;- 1)‘ = o(zk).

j=0

Moreover, Q:*M;_1(g*_,) tends to a limit, say Moo gs.). Hence
J J j—1 0o

k k
0 Ttt o
3=0 7=0

k
Z Q5 Mj_1(g]_1) — Moo(g%)|-ai (€)Q; = olax), (k = +o0).
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Finally

k
Seu(08) = Moo(g) 3 a5(6)Q|
j=0

<

k
8au(91) — 3 916055 (€)0(6))-M;-1(g}-0)|
j=0

k k
+ | > 9:(€)g; (8)-a5(8)-Mj—1(g}-1) - D aj(&)-Mj—x(g,*-_l)l
Jj=0 j=0

k k
| 20 a5(6) Mj1(05-1) — Moolgle) Y as(6)Q;].
j=0 j=0

It then follows that
Sa, (%) = Moo(gl )2k + (), (k — +00).

To obtain the result, it is enough to notice that from Q;il Mi(g}) —
Mw(g;o) = o(1) we obtain Sz, (g;) = Q;11Mk(g;:)‘$k+0(xk), and replacing
gy, by its value, we get

k

k
Sa,(97) = Sz (9) [[ o5»  Mi(t) = Mi(9) [] s
=0 =0

and this leads to Sz, (g) — (Mk(g)Q,:il)-a:k = o(zg)-
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