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On Gauss Sum Characters of Finite Groups

and Generalized Bernoulli Numbers

par Shoichi NAKAJIMA

1. Introduction

In this paper we give a generalization of a result of Hecke which gives a
relation between modular forms and class numbers of imaginary quadratic
fields. To begin with, we briefly summarize Hecke’s result: Let p be an odd
prime and r(p) the principal congruence subgroup of level p of the modular
group SL2(Z). Then the finite group G = PSL2(Fp) = acts

on the vector space V = 62 (r(p)) of the cusp forms of weight 2 with respect
to r (p) (Fp is the finite field with p elements) . Denote by q the character
of G determined from the above action. Hecke called it a "fundamental

problem" to decompose 77 into irreducible characters of G . In treating
the problem, the following was the most difficult: When p = 3 (mod 4),
G has a pair X and x of irreducible characters that are complex conjugate
to each other (their values generate the imaginary quadratic field (~ ( ~)
). First Hecke could not determine m(x) and separately, though he
computed the sum + rn(x) rather easily ([6,No.28] ; and m(x)
are the multiplicities of X and x inq respectively). Later, Hecke determined
them ( [fi,No.29~ ) by proving the equality

where h ( t~ ( ~) ) is the class number of the field Q( A). This mysterious
relation between and the class number gives the motivation of this paper.

The result above obtained by Hecke was generalized to modular forms of
higher weights (Feldmann[2]) or higher levels(Spies[14] , McQuillan[8]), and
further to modular forms of several variables(see Saito[ll], Hashimoto[4]
and the references there). Besides the above it has another direction of

generalization, which concerns us here. The space V can be considered as
the space of holomorphic differentials on the Riemann surface X (p), the
modular curve of level p (i.e. X (p) is the compactification of r (p) % 1-l,
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where H is the upper half plane.) Putting Y (= P 1 ) = the compactification
of SL2(Z) % 1í, we have a Galois covering f : X - Y with Galois group
PSL2(Fp). Thus we can enlarge the situation as follows: Let f : X 2013~ Y be
a Galois covering of compact Riemann surfaces (not necessarily modular
curves) with G = Gal (X/Y) and V = H° (X, the space of holo-

morphic differentials on X. The problem is the decomposition of V into
irreducible characters of G. When G = PSL2(Fp), Hecke’s result was gen-
eralized to this setting (Shih [13], Weintraub [17]). Further we obtained a
generalization when the group G has a pair of characters whose values gen-
erate an imaginary quadratic field (Nakajima[10]). In this paper we treat
the general case (i.e. no assumption on G) and generalize Hecke’s result.
Namely, we show (Theorem in §4) that a certain linear combination of mul-
tiplicities (in V) of algebraically conjugate characters of G is an (explicitly
given) multiple of the generalized Bernoulli number for a Dirichlet
character A (the "linear combination" above is determined by a). When A
is the Dirichlet character corresponding to the extension Q(~/2013p)/Q (p - 3
(mod 4),p &#x3E; 3), B1,À = by virtue of the Dirichlet class num-
ber formula. Hence our Theorem reduces to Hecke’s one if X = X ( p) and
G = 

The content of the paper is as follows: In §2 we introduce notation and
explain Hasse’s formula concerning general (i.e. not necessarily primitive)
Gauss sums. In the next §3 we define "Gauss sum character" of a finite
group G, which is a linear combination of algebraically conjugate characters
of G. The final §4 contains our Theorem mentioned above. It is formulated
by using the Gauss sum characters defined in §3.

2. General Gauss Sums

In this section we give Hasse’s formula for general Gauss sums after
introducing notation used throughout the paper. First we give standard
notation: Let N = {I, 2,3, ...} be the set of natural numbers, and let Z,
Q and C be the rational integer ring, the rational number field and the
complex number field, respectively. For m and n in N, means that m
divides n. Further, (m, n) denotes the greatest common divisor of m and
n. When A is a finite set, IAI denotes the number of elements of A.

For n E N, we put (n = a fixed primitive n-th root of
unity in C. Next we explain notation necessary to define a Gauss sum.
For m E N we put J(m) = (Z/mZ)~, the unit group of the ring Z/mZ,
and J(M)A = Hom(J(m), When m I n, there is a natural surjection
J(n) --&#x3E; J(m) and hence an injection J(n)A. For a Dirichlet
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character A, we denote its conductor by fa. Hence we can regard A E J(M)A
if and only if fx m.
Now we define a general Gauss sum r(À, m, a) as follows, when a Dirichlet

character A, m E N satisfying m and a E N are given:

Note that if m = 1 (in this case A must be the trivial character), we put
= 1. Further we put

the usual primitive Gauss sum. Here we quote a formula for r( À, m, a)
which was proved by Hasse[5] (see also Joris[7]).

PROPOSITION 1. Put mo = m/ (m, a) and ao = a/ (m, a) (i. e. (mo , ao) = 1
an d = Sm ).

(1) If mo is not divisible by fx, then T(a, m, a) = 0 .
(2) When fx 

’

where it dnd cp mean the Mobius function and the Euler totient
fonction, respectively.

3. Gauss Sum Characters

In this section we define Gauss sum characters of a finite group and give
their properties. Hereafter let G be a finite group with exponent N. We
denote by R(G) the ring of virtual (ordinary) characters of G. (For the
character theory of finite groups, we refer to Serre[12] .) When a character
X of G is given, we put = Q(X(g) I g E G) C C, the value field of
x, and rX = Gal(Q(X)/Q). Then Q(X) is a subfield of Q((N), N being
the exponent of G. We have a natural isomorphism Gal(Q(~N)~Q) =’
J(N) (a(t) ~ t) which is defined by (J3~~~ - (Jj (note that ~(-1) is nothing
but the complex conjugation). Hence we can regard rx as a quotient of
J(N) and at the same time regard an element of (rX)^ = Hom(rx, C~) as
a Dirichlet character (i.e. an element of J(N)^ ). Thus we have À(a(t)) =



146

A(t) with this identification. For 1 E F , we have an algebraically conjugate
character X’Y E R(G) defined by = 

Now we define Gauss sum characters of G. For a character X of G and
A E (F )  , we put

and call it a Gauss sum character. Here a(X, A) is an element of 
where Ra is the integer ring of the field Ka = (a(~(~y) ~ ~y E F ) . Note that
when is an imaginary quadratic field (as in the case G = PSL2(F p)
and p - 3 (mod 4) ), a(x, A) equals X + X or X - X according as A is the
trivial or the non-trivial character of rx 2).
We call a(x, a) "Gauss sum character" because its values are expressed

in terms of Gauss sums (Proposition 4 below). Before showing it, we give
elementary properties of a(X, ~). The module R(G) has the inner product

&#x3E;G given by

~Xl, X2 E R(G) ; cf. Serre[12]). We note here that an equality  &#x3E;G
=  Xl, X2 &#x3E;G holds for any q E Gal(Q((N)/Q). The inner product is
extended to by  XIØal, x2~a2 &#x3E;G = Xl, X2 &#x3E;G, where
-denotes the complex conjugation.

PROPOSITION 2. With the notation above, the following hold.

(1) For 1 E r., me have

In particular, when ~y = Q(-1) we obtain

(2) When A varies we can recover X from a(X, a). Namely, we have for
any T E rx,

(3) If X is an irreducible character,
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Proof. (1) follows easily from A(-y-1) = a(-y). We obtain (2) from the
relation

In (3) , we note that

holds because X is assumed to be irreducible. Then we obtain (3) by the
orthogonality relation of the characters of rx.

Let a = be as above and take an element 9 E G. We now
describe the restriction a ~H of a to H = g &#x3E;, the cyclic group generated
by g. We put n = tHI and define 99 E Hom(H, C x) by B9(g) _ (n. Then
Og generates the character group Hom(H, C~) of H. For a divisor r of n,
put 

’

where  , &#x3E;H is the inner product of the character ring of H. The number
Mr belongs to the integer ring Ra.

PROPOSITION 3. Let the notation be as above.

(1) If fa does not divide r, then Mr = 0.
(2) The following decomposition of a IH holds.

When f~ does not divide n, this formula means a IH= 0.

Proof. For t E J(N), we let a(t) E act on the characters of
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H. Then we have the following equality:

If fa does not divide n/r, then we can take a t E J(N) which satisfies
t - 1 (mod n/r) and B(t) 0 1. For such t, we have 89t = or - Therefore
the above formula shows Mr = 0. Further, since every character of H is
uniquely written in the form for a divisor r of n and t E 

that formula also proves the decomposition of a IH given in (2).

Here we can give a proposition referring to the values of a. It states that
the values of a are always multiples of the Gauss sum T (X) .

PROPOSITION 4. Notation is as above. 
’

(1) If fa does not divide n(= the order of g), then a(g) = 0.
(2) When fÀ n, the number a(g)lr(À) belongs to RN. More precisely,

with the notation in §2.
(3) If fÀ n and k E Z is prime to n, then

Proof. (1) follows from (2) of Proposition 3. When fÀ I n, Proposition 3
also shows, for k E N, the formula
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with the notation in §2. Thus Hasse’s formula (Proposition 1) completes
the proof.

4. Connection with generalized Bernouilli numbers

In this section we give a relation between Gauss sum characters and the
generalized Bernoulli numbers which was mentioned in the introduction.

Let f : X - Y be a finite Galois covering of connected compact Riemann
surfaces with Galois group G. When ,~’ is a locally free Oy - module of
finite rank on Y, , f*7 denotes its pull-back to X. The group G naturally
acts on the sheaf f*7 ( f*:F is a G - sheaf ), and the cohomology groups
Hz (X, , f*7) (i = 0, 1) are G - modules. Here we are concerned with the
character

where, for a G - module V, ch(V) denotes the character of G determined
by V.

Remark. The sheaf Ok of holomorphic differentials on X is not necessarily
of the form for a locally free sheaf 7 on X. However, by virtue of the
Serre duality, we can obtain a statement about (see Corollary
below) .

The character 1L can be described by using the genus of Y, the rank and
degree of ,~’ and the ramification of the covering f : X - Y (Proposition
5 below). That result was first obtained by Chevalley and Weil[l] (see also
Weil[16]). Here we adopt a formulation which uses induced characters ([9]).
In order to give the result we introduce some notation. For a point P E X
put Gp = Ig E P = PI, the stabilizer of P. The group Gp acts
on the cotangent space of X at P = mp/m 2 where mp
is the maximal ideal of the local ring at P), which determines an element
0 p E Hom(Gp, C~) . (As a consequence, we see that G~ is a cyclic group.)
Denoting by IndG p the induction of characters from GP to G, we define a
character vp E R(G) by

where np = Note that we have vp = vg.p for P E X and g E G,
because Gg.p = gGpg-1 and B9.P(h) = Op(g-lhg) hold (h E Gp). We
denote the regular character of G by regG, i.e. regg = ch(C[G]), the
character of the group ring C[G]. Then we have
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PROPOSITION 5. Notation is the same as above.

(1) The sum Vp is divisible by IGI, i.e. 1/ = rbr ¿PEX 1/p belongs
to R(G).

(2) We have

where and rank(J’) are the degree and rank of F, respec-
tively, and gy is the genus of Y.

Proof. (1) and the fact thato = rank(J’) . v holds for an integer m
are shown in [9,Theorem 2]. Comparing degrees, we obtain m = deg(J’) -

by virtue of the Riemann-Roch theorem and the Riemann-
Hurwitz formula for genera applied to the covering f : X - Y (see e.g.
[3,Chapter IV], [16]).

Before stating our Theorem, we introduce the generalized Bernoulli num-
ber BIt).. For a non-trivial Dirichlet character A, Bl,a is defined by

(see e.g. [ 15, Chapter 4]). It is well-known that B1,À = 0 holds when A is
even (i.e. a-1 = 1 ). Further we have a relation between B1,À and L -
functions. Namely, denoting by L(s, A) the Dirichlet L - function associated
with A, we have the equalities L(0, and L~1, A) = 
When an (irreducible) character of G is given, we consider, following Hecke,
a certain linear combination of the inner products  ti, X’Y &#x3E;0 instead of
 Jt, x &#x3E;G itself. Thus we have

THEOREM. Let the notations be as above. For a character x of G and
A E ~rx)^, tet be the Gauss sum character defined in §3. Then for
the inner product (a linear combination of the "multiplicities" in it of the
conjugates o f X )
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we have the following result.

(1) If A is the trivial character, then

where Gp is the stabilizer of P defined above and 1G p denotes the
trivial character of Gp. Here recall that there are tGI/tGpl points
on X which are conjugate to P (i. e. of the form g. P with g E G).

(2) If A is even (’B(-1) = 1) and non-trivial, then m(x,’B) = 0 .
(3) If A is odd (~(-1) _ -1), then m(x,’B) is a multiple of B1,À, that

is, belongs to Ra ( = the integer ring of the field
-y E r x) ) . More precisely, for P E X and a divisor r of

define Mr,p E Ra by

Further for m E N put p(m) = ~P(1-.~(p)), where p runs over the
prime divisors of rn,. Then we have

and its right hand side belongs to R~.

Proof. Put a = a(X, A). In view ofPropositon 5, it is sufficient to compute
 ~) regg &#x3E;G and  &#x3E;G = I 1GI  al lJp &#x3E;G . First, we obtain an

equality  a, regg &#x3E;G = c~(e) = A(-y)X"(e) = 
where e denotes the unit element of G . Therefore we have

(A is the trivial character),
(A is not trivial).

Take a point P E X and define Gp and 0p as above. Then we have

Vp = ~d P 11 d ~ nP = I Gp I - In computing  a, vp &#x3E;~,
we first assume that A is even. In this case  a, vp &#x3E;~ =  a, Pp &#x3E;~
holds because of (1) in Proposition 2 (note that we have  &#x3E;G =

 &#x3E;G ~. Since the complex conjugate of Øi is we obtain
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1/p = Therefore,
by the Frobenius reciprocity for induced characters,

Combinig these, we obtain (1) and (2) in view of Proposition 5. Here-
after we assume that X is odd. By Proposition 3 we have the following
decomposition of Q lap:

where, in the summation, r runs through the divisors of Accord-

ingly, again by the Frobenius reciprocity,

where for t E J (m), ¡is the integer satisfying 0  i  m and i = t (mod m).
For m E N satisfying I m, elementary calculation shows iA(t) =

Consequently,  a, vp &#x3E;~ = Sum-

ming over P E X we obtain

Since Mr,p = holds for g E G and the set ~g ~ P E X ( g E G}
consists of points, we see that the sum above belongs to Ra ( recall
Mr, p E Rx). Thus, in view of Proposition 5, we have completed the proof
of (3) .

Finally we refer to the case of the sheaf Ok of holomorphic differentials
on X. Since H1(X,f2~) = C, the trivial module, we are concerned with
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the G - module V = When f : X - Y is ramified, Ql is
not of the form f* F, and hence we can not apply Theorem directly to Ql
However, by virtue of the Serre duality (see e.g. [3,Chapter III] ) , V is
the G - module dual to Because Ox = we can apply
the Theorem to t~X ( H°(X, Ox) = C ), and consequently obtain a result
about V. We indicate in the Corollary below that generalized Bernoulli
numbers appear in the decomposition of the G - module V, omitting to
state the detailed decomposition.

COROLLARY. ,Let V be as above and = ch(V) E R(G . For a charac-
ter x of G and an odd element A E the inner product  a(x, À) , 1] &#x3E;G
is a muttipte of the generalized Bernoulli number BIt).."

REFERENCES

[1] C. Chevalley and A. Weil, Über das Verhalten der Integrale erster Gattung bei Au-
tomorphismen des Funktionenkörpers, Abh. Math. Sem. Hamburg Univ. 10 (1934),
358-361, A. Weil: Collected Papers, vol. I, 68-71.

[2] H. Feldmann, Über das Verhalten der Modulfunktionen von Primzahlstufe bei be-
liebigen Modulsubstitutionen, Abh. Math. Sem. Hamburg Univ. 8 (1931), 323-347.

[3] R. Hartshorne, Algebraic Geometry, Springer Verlag, New York-Heidelberg-Berlin,
1977.

[4] K. Hashimoto, Representations of the finite symplectic group Sp(4, Fp) in the spaces
of Siegel modular forms, Contemporary Math. 53 (1986), 253-276.

[5] H. Hasse, Vorlesungen über Zahlentheorie, zweite Auflage, Springer Verlag, Berlin-
Gottingen-Heidelberg-New York, 1964.

[6] E. Hecke, Mathematische Werke, zweite Auflage, Vandenhoeck &#x26; Ruprecht,
Göttingen, 1970.

[7] H. Joris, On the evaluation of Gaussian sums for non-primitive Dirichlet characters,
L’enseignement math. 23 (1977), 13-18.

[8] D. L. McQuillan, A generalization of a theorem of Hecke, Amer. J. Math. 84 (1962),
306-316.

[9] S. Nakajima, Galois module structure of cohomology groups for tamely ramified
coverings of algebraic varieties, J. Number Theory 22 (1986), 115-123.

[10] S. Nakajima, Action of finite groups on the holomorphic differentials of Riemann



154

surfaces and the class numbers of imaginary quadratic fields, Reports of Number
Theory Symposium, Osaka in Japanese (1989), 37-42.

[11] H. Saito, On the representation of SL2 (Fq) in the space of Hilbert modular forms,
J. Math. Kyoto Univ. 15 (1975), 101-128.

[12] J.-P. Serre, Linear Representations of Finite Groups, Springer Verlag, Berlin

Heidelberg-New York, 1977.

[13] K. Shih, On the construction of Galois extensions of function fields and number
fields, Math. Ann. 207 (1974), 99-120.

[14] H. Spies, Die Darstellung der inhomogenen Modulargruppe mod qn durch die ganzen
Modulformen gerader Dimension, Math. Ann. 111 (1935), 329-354.

[15] L. C. Washington, Introduction to cyclotomic fields, Springer Verlag, New York-
Heidelberg-Berlin, 1982.

[16] A. Weil, Über Matrizenringe auf Riemannschen flächen und den Riemann-Rochschen
Satz, Abh. Math. Sem. Hamburg Univ. 11 (1935), 110-115, A. Weil: Collected Pa-
pers, I,80-85.

[17] S. H. Weintraub, PSL2(Zp) and the Atiyah-Bott fixed-point theorem, Houston J.
Math. 6 (1980), 427-430. 

’

Shoichi NAKAJIMA

Department of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo 153, Japon
e-mail : Shoichi@tansei.cc.u-tokyo.ac.jp


