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Frobenius distributions for real quadratic orders

par Peter STEVENHAGEN

ABSTRACT. - We present a density result for the norm of the fundamental
unit in a real quadratic order that follows from an equidistribution assump-
tion for the infinite Frobenius elements in the class groups of these orders.

1. Introduction

This paper deals with the distribution of the Frobenius element of the in-
finite prime over the class group in certain families of real quadratic orders.
It contains precise results for these distributions that are at this moment
mostly conjectural, but provide a satisfactory ’explanation’ for observations
that have not been understood otherwise, such as those concerning the fre-
quency of real quadratic fields having fundamental unit of norm -1. They
are somewhat similar in spirit to the Cohen-Lenstrà heuristics [3], y which
’explain’ the average behavior of class groups of number fields. However,
our underlying assumptions are of a more specific nature than those in [3],
and weak versions of our density results can actually be proved. Our con-
jectures answer an old open question that goes back at least to Euler, but
does not seem to appear explicitly in the literature any earlier than in a
1932 paper by Nagell [5].

Nagell’s question concerns the solvability of the well known negative Pell
equation

for non-square d E Z&#x3E;1 in integers x, y E Z. A necessary condition for
solvability is obviously that -1 is a square modulo all divisors of d, i.e.
that d is not divisible by 4 or a prime p = 3 mod 4. This can be phrased
more concisely by stating that d is the sum of two coprime squares. Thus,
let us denote by S the set of integers that can be written as the sum of
two coprime squares. With S- denoting the set of integers d for which
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x2 - dy2 ~ -1 has integral solutions, Nagell’s question is: does S- have a
natural density in S, i.e. does the limit

exist? It appears that the well known characterization of S- as the set
of integers d &#x3E; 1 for which dl has a continued fraction expansion with
odd period length is not of any use in answering this question, and it is
not even known whether the liminf and the limsup of this expression are
in the open interval (0, 1). The same applies to the somewhat simpler
question that is obtained by restricting to squarefree d in Nagell’s problem
or, equivalently, by posing the problem for real quadratic fields. More

precisely, let D be the set of real quadratic fields K for which -1 is in
the norm image and D- c D the subset of fields K E D for
which the norm of the fundamental unit equals -1. Then we have D =
(Q (U2) : d E s? and-even though OK may not be of the form 
also D- = (Q(v2) : d E S-}. The analogue of Nagell’s question, which
has been studied extensively by Rédei [7], can now be phrased as: does the
limit 

, , r +, - -- , v,, , ., &#x3E;rr f r _  - A / r 

exist and, if it does, what is its value? Existing tables as those occurring in
[1] and [5] show that the value of this fraction is around .860 for X = 10~ and
decreases slowly to assume the value .799 for X =107. The considerations
in this paper make it very plausible that the answer to both questions is
the following.

CONJECTURE. The limit valuers P and Q exist and are equal to

and

where is defined as
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with vp denoting the numbers of factors 2 occurring in p -1,

We will see in the next section why the convergence to these limit values
is extremely slow.

The densities in our conjecture give rise to absolute estimates for the
number of d E S^ and K E Dy, as the counting functions for the sets S
and D are known to satisfy the asymptotic relations

and

These relations are consequences of results of Rieger [8].

2. The fundamental case .

In this section we reduce the density problem for real quadratic fields
from the introduction to a statement on Frobenius distributions and explain
how this gives rise to the indicated value of P.

Suppose we are given a quadratic field K E D with discriminant D, ring
of integers C~ and class group Cl. Denote by C the narrow class group of
K, which may be identified with the class group of binary quadratic forms
of discriminant D. There is a natural surjection C -~ Cl whose kernel is
generated by the class ~oo E C of the principal ideal generated by m. If C~
contains a unit E of negative norm, then the ideal m. O can be generated
by the element em of norm D &#x3E; 0 and is the unit element in C. If all
units in 0 have norm 1, then Foe has order 2 in C. Thus, we have .K E D-
if and only if F 00 is the trivial element in C.

By class field theory, we can identify C with the Galois group over K
of the narrow Hilbert class field H of K. The maximal real subextension

H+/K of H/K corresponds to the factor group Cl of C, so F 00 generates
the decomposition group of the real prime in and can be viewed
as the Frobenius element at infinity. Our conjecture for real quadratic
fields tells us that we should expect the Frobenius Fao for the family D of
real quadratic fields to be trivial with probability P. The Cohen-Lenstra
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heuristics on the average behavior of class groups explicitly exclude the 2-
parts of quadratic class groups that we have to deal with here. The reason
for this is that these 2-parts are not at all ’random’ in their sense of the
word, and consequently we should not expect F 00 to behave as a ’random
2-torsion element in a random abelian 2-group’.
What we have to take into account when studying the average behavior

of the element F 00 E C is that this Frobenius element is not only in the
2-torsion subgroup C~2~ of ambigous ideal classes, but also in the principal
genus C2 C C of squares in C. If D has exactly t distinct prime divisors,
then there are t ramified prime ideals ~1, ~2, ... , pt in C~, and it is a classical
theorem that the classes of these ideals in C generate the 2-torsion subgroup
C[2] C C, subject to a single non-trivial relation. More precisely, if V = F2
is a vector space of dimension t with standard basis over the field of two
elements and 1/; : V 2013~ C[2] maps the i-th basis vector in V to the class
of pj in C, then o is surjective and its kernel is 1-dimensional. As is

by definition the ideal class of pi in C, we want to know how often
= 0 is the non-trivial relation between the classes of the ideals pi, i.e.

how often the element u = (1)~=1 E V mapping to generates the kernel
of 1/;. We take into account that u lies in the subspace V’ = 0 -’(C [21 n C2),
and that the dimension of V’ equals e + 1, where e =, log2 ( # ( C (2~ n C2)) is
the 4-rank of the class group C.

This reduces the question to linear algebra on a vector space V’ whose
dimension does not depend on the 2-rank of C (which, as we have seen, is
one less than the number t of prime divisors of D), but only on the 4-rank
of C (which, a priori, is merely bounded by t -1), Thus for e &#x3E; 0, we
write D(e) for the set of real quadratic fields .K E D for which the 4-rank
of the narrow class group C equals e. For K E D(e), we want the non-zero
element u in the (e + 1 )-dimensional vector space V’ to be the generator of
the 1-dimensional subspace ker 0 C V’. If we assume (somewhat sloppily,
given our present notation) that ker 0 should behave like a ’random 1-
dimensional space of V’, we expect the following to hold.

2.1. CONJECTURE. For every e &#x3E; 0, the subset D(e)- = D(e) Cl D- has
natural density (2e+1 _ l)-l in D(e).

Extensive numerical evidence for this conjecture is provided in [2].
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Conjecture 2.1 is a theorem for e = 0, in which case the 2-Hilbert class
field of K equals the genus field of K, and it suffices to observe that the
genus field of a real quadratic field is real if and only if we have K E D.

A serious problem in proving 2.1 seems to be that we cannot say anything
without fixing the number of primes t in D. More precisely, the best thing
that seems to be within reach at the moment is a result for the subset Dt of
D consisting of discriminants having exactly t distinct prime divisors. Set
Dt(e) = Dt n D(e) and Dt(e)- = Dt n D(e)-. Then 2.1 can be formulated
as follows for the sets Dt.

2.2. CONJECTURE. For every pair (t, e) of integers satisfying 0  e  t,
the subset Dt(e)~ has naturel density (2e+1 _ 1)-1 in D(e).

So far, we can only prove upper and lower densities for Dt(e)- in Dt (e)
that are not too far from the conjectured density (2e+1 _ 1)-1. For instance,
it is shown in [11] that, for every t &#x3E; e, the upper density of Dt(e)- in Dt(e)
is bounded by 2-e, so the probability for the Frobenius F 00 E C to be trivial
decreases indeed exponentially with the 4-rank e of C. For the values e = 1
and e = 2 there are in addition the non-trivial lower bounds 1/4 and 1/32
for the lower density of Dt(e)- in Dt(e).

The problem of deriving density results for D = from results on
the subsets Dt also arises when we want to prove that each subset D(e) has
a natural density in D, which is necessary to obtain the value of P in 1.1
from our conjecture 2.1. Again, if we fix the number of primes in D, there
is the following precise result. For the details of the proof we refer again to
(11~.

2.3. THEOREM. For each pair (t, e) of non-negative integers satisfying
t &#x3E; e, the set Dt (e) has a natural density inside Dt that is equal to

...-+-1 1 1 - - -*,

In order to get rid of the dependence on t, one observes that the number
w(D) of distinct prime factors of D has a normal order that tends to infinity
with D. More precisely, one can show [4, theorem 431] that for everye &#x3E; 0,
the set of D satisfying

has density 1. It is therefore very plausible to expect that D(e) has a
natural density in D for every e &#x3E; 0, and that this density can be evaluated
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by passing to the limit t -~ oo in 2.3, yielding a value

However, the fact that we are dealing with a countable set D, which does
not carry a a-additive measure, makes it unclear how this can be derived
from theorem 2.3.

Combination of theorem 2.3 with our weaker conjecture 2.2 yields the
following.

2.4. THEOREM. Let t 2: 1 be an integer, and suppose that conjecture 2.2
holds f or all pairs (t, e) . Then the natural density o f Dt inside Dt exists
and equals

t-1 .. ,

e==U

where the rational numbers are as defined in theorem 2.3.

The proven upper and lower bounds for the densities in conjecture 2.2
lead to unconditional results for the lower density P t and the upper density
Pt of Ð¡ inside Dt, for which we refer to [11]. This yields the following
unconditional estimates for small t.

As we already explained, the density result corresponding to 2.4 for the full
set D is not a direct corollary of 2.1, since we do not know that D(e) has
the required density in D. However, under the assumption that this
is indeed the case, we deduce from 2.1 that the natural density of D- in D
exists and is equal to

This is the first half of the conjecture in section 1.

We finally observe that in order to observe numerically that the natural
density of D- in D tends to P, one has to consider quadratic fields K E D
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in a range where W ~0 ~K) ) has a large average value. In any interval of the
form (1, X) for which it is computationally feasible to count the number
of K E D^, the slow growth rate of log log(A(K)) implies that this will
not be the case. More precisely, the proportion of prime discriminants,
which are all in D~, will be so high that one finds approximations of the
required density that are considerably larger than P. However, even when
working with small discriminants only one can check the numerical ade-
quacy of the basic hypotheses 2.1 and 2.2 directly rather than from formal
corollaries as theorem 2.4, see [11]. Extensive numerical evidence for our
basic assumptions can be found in [2].

3. The general case

In order to answer Nagell’s original question, we need to extend the
analysis of the previous section to arbitrary real quadratic orders. We
have seen that for the subset E C S of squarefree numbers d without
prime divisors congruent to 3 mod 4, the density of E- = E n S- in E
is conjecturally equal to the number P defined in the introduction. As S
consists by definition of all non-square integers D &#x3E; 1 that are not divisible

by 4 or a prime congruent to 3 mod 4, standard arguments show that the
subset E of squarefree elements in S has natural density

in S. Now every element D E S can uniquely be written as D = with
d and f &#x3E; 1, and there is the obvious implication D = E 

d E ~-. What we propose to do in this section is to define a function
: Z~i 2013~ [0, 1] such that, at least heuristically, is the fraction of

d E E- for which the converse holds, i.e. the density in E- of those d
satisfying E S ~ . In particular, we will have ib( I) =1 and 1b( f) = 0 if
f is divisible by 2 or a prime congruent to 3 mod 4.

The derivation of the heuristical density Q of S~ in S is then straight-
forward. As the counting function for S grows like the den-

sity in S of the numbers D = f 2d E S with given ’square part’ f equals
If we require in addition that the squarefree part d

be in E- , this density gets multiplied by P, and if we finally want f 2 d E S-
there is by definition of V) an additional factor o (f ). Summing over f , we
find the value
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We will see in a moment that V) is a multiplicative function defined by
ib( f) = Epi f prime ’ 1) so the Euler product expansion

shows that our expression for Q is the same as the one occurring in the
introduction.

In order to define the function 0, we need to determine for every f &#x3E; 1
the of those d in E - that satisfy f 2 d E S- . A basic obser-
vation, due to R6dei [6], is that this only depends on the set of primes
dividing f . He proves the following.

3.1. LEMMA. Let d in E- and f &#x3E; 1 be given,. Then f 2d is in S- if and
only if p2d 2s in S- for every prime number In addition, we have the
following.

(1) if p = 2 or p = 3 mod 4, then p2d is not in 57 ;
(2) if p is odd and divides d, then p2d is in s-;
(3) if p -1 mod 4 and (p) _ -1, then p2d is 2n s-.
We are still left with the case that p = 1 mod 4 is a prime that splits

completely in Q(U2) . This is the most difficult case, and there is no crite-
rion for solvability of the negative Pell equation for p2d that is similar to
those given in lemma 3.1. However, we can prove the following.

3.2. LEMMA. Let d zn E- and a prime p -1 mod 4 that splits completely
in be given. Let Ed be a fondamental unit in 0 = and pip a
prime in 0. Then p2d is in S- if and only if the order (0/1’)* its
congruent to 4 mod 8.

Proof. Note first that the condition that the order of Ed be congruent to
4 mod 8 does not depend on the choice of the fundamental unit.

We have p2d E s- if and only if the order Op = of index
p in C? contains units of negative norm, and this happens if and only if
d is in ~~ and the quotient of unit groups C~*/C~p, which is finite and
generated by Ed mod 0;, has odd order. We use the natural embedding
C~*~C~p ~ In our case, the ring is isomorphic to
a product Z/pZ x Z/pZ in which the subring Z/pZ cO/pO is embedded
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along the diagonal. Writing R : () ~ for the reduction modulo a prime
p of C~ lying over p, we have a natural isomorphism

It follows that the image of ed for d E E- has odd order in (0/pO)*/(Z/pZ)*
if and only if has odd order in (0/p)*. As the order of is

divisible by 4, we arrive at the conclusion of the lemma. 0

It follows from the preceding two lemmas that the probability with which
we have f 2d E S- for fixed f depends strongly on the residue class of
d E E- modulo f . We now invoke a result of Rieger [8] that tells us how
the elements of E are distributed over the residue classes modulo a given
number f .

3.3. THEOREM. Let f &#x3E; 1 be a product of distinct prirraes congruent to
1 mod 4, and define

Then the set E f(a) _ {x E ~ : x - a mod f } has a natural density inside
E for each integer a, and this density equals

In deriving the correct value of ~{ f ), we need two ’reasonable’ assump-
tions that appear to be correct in practice, but are probably not so easy to
prove. The first assumption is that the distribution result in 3.3, which is
proved for E only, remains correct if we replace E by ~-. This is a natural
assumption as no relations are known to exist between the residue class of
the discriminant A(K) of a real quadratic field K modulo an odd prime
p ~ 1 mod 4 and the sign of the norm of the fundamental unit of K.

With this assumption, we try to establish for a given prime number p
the natural density of the set of d E E- that satisfy p2d E S- inside
the full set E - . For p = 2 and p = 3 mod 4 we have 0(p) = 0 in view of
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lemma 3.1 (1). For p == 1 mod 4, we know by the same lemma that p2 d is
in S~ if the Legendre symbol (~) is equal to 0 or -1. These d contribute

to by 3.3 and our assumption. For the remaining d, i.e. those d

satisfying (4) = 1, we have to determine in view of lemma 3.2 whether the
order of the fundamental unit Ed modulo (a prime over) p is congruent to
4 mod 8. At this point we need a second assumption, on which we will
comment in a moment: the elements Ed for d E E- satisfying (4 = 1 areP)
randomly distributed over the non-zero residue classes modulo p, so they
have order congruent to 4 mod 8 with probability 21-v for p a prime with
v ~ 2 factors 2 in the factorization of ~~Z~pZ)* = p -1. Thus, writing vp
for the number of factors 2 in p -1, we expect a contribution

to 0 (p) from the d E ~- that lie in the P 21 residue classes modulo p
satisfying (.4 = 1. Summarizing, we see that 0(p) for p prime has to be
defined by

with vp denoting the number of factors 2 occurring in p -1. We now com-
bine lemma 3.1 and the independence of the distributions modulo different
primes p implied by 3.3 to arrive at the definition

for arbitrary f &#x3E; 1. Note that this is the multiplicative definition of 0 we
used in our Euler product expansion.

The second assumption in the preceding heuristic derivation involves the
distribution of the residue class of the fundamental unit éd modulo a prime
ideal p of fixed index p in C~ = when d ranges over certain subsets
of E or E-. We assumed that this residue class, which is of course only
determined up to sign and taking the inverse residue class in (0/p)*, is



131

’equidistributed over (O /p) * ’ if all these rings are identified with ~Z/pZ)*.
In certain situations similar to ours such assumptions have been proved,
and numerical evidence for it exists in others. We refer to [10] for equidis-
tribution results when d ranges over the primes congruent to 1 mod 4 and
p is a power of the prime over 2. In [9] there are numerical data related to
a problem of Eisenstein, which deals with the case that d is a squarefree
number congruent to 5 mod 8 and p is the prime 20. For such d, the ring
C~/2C~ is the field of 4 elements, and Ed turns out to be the unit element in
the group (C~~2C~) * ^--’ Z/3Z in approximately 1 out of 3 cases. It is shown
in [12] that Ed is in the unit class for infinitely many d, and that the upper
density of the set of such d inside the set of all squarefree d = 5 mod 8 is
at most 1/2. Unfortunately, the general case of our assumption does not
appear to be easily accessible at the moment.

4. Generalizations

The approach we have given to examine the distribution of the class of a
fixed prime over the class group in a family of quadratic fields can readily
be extended to more general situations.

Already in the real quadratic case, one can focus attention on the precise
relation in the class group that exists between the classes of the ramifying
primes rather than restricting one’s attention to the question whether F 00 =
0 is that relation. For a description of the equidistribution phenomenon that
should then be expected we refer to [11].

For abelian fields of higher degree, say of prime degree p, the p-part of
the class group can be studied in a way that is highly similar to the study
of the 2-class group in the quadratic case. One then studies the p-class
group as a module over the complete cyclotomic ring R = In this

situation, there is again an essentially unique relation between the classes of
the ramifying primes whose form can be examined. Its distribution should
depend on the m2-rank of the class group, where m is the maximal ideal of
R. We leave it to the reader to extend the heuristics from the quadratic
case to this more general situation. Unlike in the quadratic case, there is
to my knowledge no numerical material available that could be used to see
whether such heuristics give a description that is matched by the behavior
of small examples.


