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Résumé. Dans [5], nous avons examiné deux analogues, « multiplicatif » et
« additif à la Carlitz–Drinfeld », des congruences basiques bien connues de
Fermat et Wilson dans le cas de polynômes sur un corps fini. Lorsque l’on les
considère modulo puissances supérieures des irréductibles, c’est-à-dire comme
« supercongruences », on trouve des relations intéressantes entre elles ainsi que
des liens avec les dérivées arithmétiques et les valeurs zêta. Dans le présent
travail, nous développons plus systématiquement le premier analogue et son
lien avec les dérivées arithmétiques, en donnant beaucoup plus de conditions
équivalentes reliant les deux, en utilisant aussi les « dérivées mixtes ». En
outre, nous trouvons et démontrons des factorisations remarquables en produit
d’irréductibles faisant intervenir des conditions sur les dérivées de certaines
quantités fondamentales de l’arithmétique des corps de fonctions.

Abstract. In [5], we looked at two (“multiplicative” and “Carlitz–Drinfeld
additive”) analogs each, for the well-known basic congruences of Fermat and
Wilson, in the case of polynomials over finite fields. When we look at them
modulo higher powers of primes, i.e. at “supercongruences”, we find interest-
ing relations linking them together, as well as linking them with arithmetic
derivatives and zeta values. In the current work, we expand on the first analog
and connections with arithmetic derivatives more systematically, giving many
more equivalent conditions linking the two, now using “mixed derivatives”
also. We also observe and prove remarkable prime factorizations involving
derivative conditions for some fundamental quantities of the function field
arithmetic.

1. Introduction
In the well-known number field-function field analogy, the cyclic group

/multiplicative group of finite fields nature of (Z/pZ)∗ and (Fq[t]/℘Fq[t])∗,
(where p is a prime in Z and ℘ is an irreducible polynomial in Fq[t]) gives
parallel statements and proofs for Fermat’s little theorem and the Wilson
theorem. But the different group theoretic nature of (Z/pkZ)∗ (cyclic for
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odd prime p) from (Fq[t]/℘kFq[t])∗, for higher k is partly responsible for
the fact that the question of infinitude of Wieferich or Wilson primes is
mysterious and still open for integers, while at least a naive (multiplicative)
analog has a nice complete answer [4, 5] for the polynomial case. Somewhat
surprisingly, it involves derivatives very intimately.

In this paper, we explore this further and prove more results by providing
equivalence between supercongruences and vanishing of various arithmetic
higher (pure (Theorems 4.1 and 5.1) or mixed (Theorem 5.2)) derivatives.

Next we show (Theorem 7.3) that while the fundamental “numbers”
Dd, Ld of the function field arithmetic (see the start of Section 7 for def-
initions, factorizations) have beautiful regular symmetric prime factoriza-
tions exactly involving all the primes of degree ≤ d, with multiplicities
simply depending on just their degrees; simple perturbations Dd−1 − c or
Ld−1 − c (c ∈ F∗

q) have “derivative constant” characterizations of the de-
gree d primes occurring in their factorizations, leading to very few “special
Wilson primes” as factors, and prime factors of larger degrees being mys-
terious. We also note that Dd and Ld occur as (reciprocal) coefficients in
Carlitz–Drinfeld exponential and logarithm series for Fq[t] respectively, and
that Dd is the Carlitz factorial of qd. For more, we refer to [2, §2.5, 4.13].

Interestingly, the Wilson primes (“double derivative vanishing” condi-
tion) are exactly the primes involved in a strange hybrid version (Theo-
rem 7.1) of the famous Wolstenholme theorem that p2 divides 1 + 1/2 +
· · ·+1/(p−1), for prime p > 3. See Section 7 for some numerical examples of
Theorems 7.3 and 7.1 for more on these strangely beautiful factorizations.

2. Basic definitions and Fermat–Wilson analogs
Let A = Fq[t], where Fq is a finite field of q elements, where q is a power

of a prime p. Let ℘ denote a monic prime of A of degree d (in t), so that
its residue field F℘, inside the completion A℘ of A at ℘, has cardinality
Norm ℘ = qd. Let θ ∈ F℘ be the Teichmüller representative of t modulo ℘.
Note that ℘ =

∏
(t − θqi) is the minimal polynomial in A for θ. We have

the well-known Fermat theorem analog: aNorm ℘ ≡ a mod ℘, for a ∈ A.

Definition 2.1. Let a ∈ A. We say that ℘ is a Wieferich prime base a (or
a-Wieferich), if aNorm ℘ ≡ a mod ℘2.

Often, but not here, one excludes in the definition the trivial cases a =
0, 1,−1 classically, and a ∈ Fq in the function field case, as these are exactly
the cases where ap = a and aNorm ℘ = a respectively. We also note here that
the notion depends on a (modulo ℘2) and not just on a modulo ℘.

We have the well-known Wilson theorem analog: Fd ≡ −1 mod ℘, where
Fd is the product of all non-zero polynomials of degree less than d (which
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represent “smallest” representatives of all non-zero residue classes mod-
ulo ℘). (For more analogies, using the Carlitz factorial, we refer to [5].)

Definition 2.2. We say that ℘ is a Wilson prime, if Fd ≡ −1 mod ℘2.

3. Three arithmetic derivatives
We now give definitions and some basic comments on the three arith-

metic derivatives, in fact, a derivative, a Frobenius-difference quotient and
a difference quotient. Let a ∈ AF℘ = F℘[t].

The usual derivative. Let a(1) := D(a) := da/dt and denote by a(i) :=
Di(a) := dia/dti.

Fermat quotient (i.e., Frobenius-difference quotient) derivative.
Let Q℘(a) := (aNorm ℘ − a)/℘ and denote its i-th iteration by Qi

℘.

Teichmüller difference quotient derivative. Define a[i] = ∆i(a) by
a[0](t) = a(t) and a[i+1](t) = (a[i](t)− a[i](θ))/(t− θ).

Remarks.
(I) All these derivatives give self-maps on AF℘, and the first two restrict

to self-maps on A also. They are all F℘-linear. They depend on the
choice t of the generator of A only through its sign.

(II) They all evaluate to zero on constants a ∈ F℘. Evaluated on p-th
powers, the first one vanishes, the second one vanishes modulo ℘,
and the second and third one vanish when evaluated at t = θ.

(III) Let us denote the degree in t by deg. When deg(a) > 0,
(i) deg(da/dt) ≤ deg(a) − 1, with strict inequality, exactly when

p divides deg(a),
(ii) deg(Q℘(a)) = qd deg(a)− d,
(iii) deg a[1] = deg(a)− 1.

(IV) For f =
∑

fit
i ∈ F℘[t], we have

(i) da/dt =
∑

ifit
i−1,

(ii) Q℘(a) =
∑

fi(tiqd − ti)/℘,
(iii) a[1] =

∑
fi
∑i

j=1 ti−jθj−1.
(V) Part (iii) of (IV) implies that a[1]|t=θ = da/dt|t=θ (formally, without

using definition of θ) and similarly for higher derivatives. This also
follows from the fact that these higher differences are polynomials
which are continuous, so the derivative-limit is the evaluation.

(VI) We will not give corresponding (twisted) derivatives properties for
each, as we do not need them. But see e.g., [1] for analogous set-ups
in characteristic zero.
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4. Fermat supercongruence and the first derivative of the base
By the definition, the condition that “℘ is a-Wieferich” is equivalent to

“Q℘(a) ≡ 0 mod ℘”. The condition being equivalent to higher multiplicity
of the root θ, by the usual detection of such multiplicities by derivatives in
the polynomial case, we get more transparent (e.g., (i) below) equivalent
vanishing derivative conditions, as follows.

Theorem 4.1. The following conditions are equivalent.
(0) Prime ℘ is a-Wieferich,
(i) da/dt ≡ 0 mod ℘,
(i′) (da/dt)|t=θ = 0,
(ii) Q℘(a) ≡ 0 mod ℘,
(ii′) Q℘(a)|t=θ = 0,
(iii) a[1]|t=θ = 0.

Proof. The equivalence of (0) and (ii) follows from definitions. The equiv-
alence with (i) was also noted e.g., in [5, p. 195]. The equivalence of (ii)
with (ii′), and of (i) with (i′) follow, since ℘ is minimal polynomial over A of
θ. The equivalence (i′) with (iii) was noted in Remark (V) of Section 3. □

As an immediate corollary, we get

Theorem 4.2.
(i) If there are infinitely many a-Wieferich primes, then a = bp for

some b ∈ A, and then all the primes of A are a-Wieferich.
(ii) There are no a-Wieferich primes, if and only if a = bp + ct, with

b ∈ A and c ∈ F∗
q.

Remarks. We can also see this [5, p. 195] from the following. If a =
∑

ait
i,

we have, modulo ℘2, (without loss of generality ℘ ̸= t) that

aqd − a =
∑

ait
i((tqd−1 − 1 + 1)i − 1) ≡

∑
ait

i

(
i

1

)
([d]/t)1 = (da/dt)[d],

This suggests that while we do not have distinguished “t” in the rational
numbers case to compare da/dt, given p, a mod p analog of db/da may be
the ratio of Fermat quotients (bp − b)/(ap − a).

If we take a = ℘ and divide the displayed congruence by ℘ we see that
d℘/dt ≡ −1/Q℘(t) mod ℘.

Since d℘/dt has degree less than that of ℘, this allows us to extract d℘/dt

from Q℘(t) modulo ℘. In contrast to d℘/dt and ℘[1], the Fermat quotient
Q℘(t), which occurs analogously in our main theorems, feels more like the
derivative of t rather than of ℘ with respect to t. This explains the reciprocal
relation.
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5. Wilson supercongruence and the second derivatives of the
prime

We restrict to p > 2, for simplicity, leaving the p = 2 discussion to [5].

Theorem 5.1. Let p > 2. The following are equivalent.
(0) Prime ℘ is a Wilson prime,
(i) d2℘/dt2 = 0,
(i′) d2℘/dt2 ≡ 0 mod ℘,
(i′′) (d2℘/dt2)|t=θ = 0,
(ii) Q2

℘(t) ≡ 0 mod ℘,
(ii′) Q2

℘(t)|t=θ = 0,
(iii) ℘[2]|t=θ = 0.

Proof. The equivalence of (0), (i), (ii) and (iii) was proved in the main
theorems [4, Thm. 2.5, Thm. 2.9]. The equivalence of (i) with (i′) and (ii)
with (ii′) follows as before. □

Remarks. As a corollary, we got a simple characterization of Wilson
primes ℘ =

∑
pit

i as irreducible polynomials with (from (i)) non-zero pi

occurring only when p divides i or i − 1. We deduced [4, Thm. 2.10] their
infinitude for any given A. It was also proved [4, Thm. 2.9] that if the
Wilson congruence holds modulo ℘2, it automatically holds modulo ℘p−1.

To these three “pure” double derivatives conditions, we now add six more
“mixed” double derivatives equivalent conditions.

Theorem 5.2. The following are equivalent to the conditions of the previ-
ous theorems.

(i-ii) dQ℘(t)/dt ≡ 0 mod ℘,
(i-ii′) (dQ℘(t)/dt)|t=θ = 0,
(ii-i) Q℘(d℘/dt) ≡ 0 mod ℘,
(ii-i′) (Q℘(d℘/dt))|t=θ = 0,
(i-iii) (d℘[1]/dt)|t=θ = 0,
(iii-i) (d℘/dt)[1])|t=θ = 0,
(ii-iii) (Q℘(℘[1]))|t=θ = 0,
(iii-ii) (Q℘(t)[1])|t=θ = 0.

Proof. The equivalence of (i-ii) with the “primed” version (i-ii′) and of (ii-i)
with (ii-i′) follows since ℘ is the minimal polynomial over A for θ. We now
use freely the Remarks of Section 3 in the proof, and show the equivalences,
one by one, to some previously established ones.

The equivalence of (i-ii) ([5, Thm. 2.6]) follows from the first congruence
in Remarks of Section 4 specialized at a = Q℘(t) = [d]/℘, where [d] = tqd−t,
since ℘ divides [d] with multiplicity 1.
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(i) implies that d℘/dt = ap for some a ∈ A, so that its Fermat quotient is
divisible by ℘p−1, so it implies (ii-i). Conversely, (ii-i) implies that (℘′)qd −
℘′ = f℘2, for some f ∈ A. Taking derivative with respect to t, we get f ′℘2+
2f℘℘′ = −℘′′, so that ℘ divides ℘′′, which by the degree considerations
immediately implies (i).

By the quotient rule, (i-iii) implies that (t−θ)3 divides ℘′(t)(t−θ)−(℘(t)−
℘(θ)), so that (t−θ)2 divides ℘′′(t)(t−θ)+℘′(t)−℘′(t) = ℘′′(t)(t−θ), which
implies (i′′). Conversely, since ℘′(t) = ℘′(θ) by Remark (V) of Section 3,
we have

d
dt

℘[1](t) = ℘′(t)
t− θ

− ℘(t)− ℘(θ)
(t− θ)2 = ℘′(t)− ℘′(θ)

t− θ
− ℘[1](t)− ℘[1](θ)

t− θ
.

Now the second quantity vanishes at t = θ by (iii), and by (ii) the numerator
of the first quantity is divisible by (t− θ)p. This implies (i-iii).

(iii-i) implies that (t − θ)2 divides ℘′(t) − ℘′(θ), so that t − θ divides
℘′′(t) implying (i′′). Conversely, (i) implies ℘′ is p-th power, so that (℘′)[1]

is divisible by (t− θ)p−1 implying (iii-i).
(ii-iii) implies (t− θ)℘, and so also (t− θ)2, divides (℘[1])qd −℘[1]. Taking

the derivative with respect to t, we see that t−θ divides d/dt(℘[1]) implying
(i-iii). Conversely, (iii) implies that (t − θ)2 divides := ℘[1](t) − ℘[1](θ), so
it divides xqd − x = (℘[1](t))qd − ℘[1](t) implying (ii-iii).

(iii-ii) is equivalent to the divisibility of Q℘(t)−Q℘(t)|t=θ, which is equiv-
alent to the divisibility if d/dt(Q℘(t)) by t− θ, which is (i-ii′). □

Remark. The condition (ii-i) can be restated in a more striking form saying
that ℘ is Wilson if and only if ℘ is base d℘/dt-Wieferich.

6. Examples
Let us verify, by direct calculations, the nine equivalent conditions of the

two main theorems (Theorems 5.1, 5.2) for the family of Artin–Schreier
primes ℘ = tp − t−m for A = Fp[t], m∈ F∗

p, and p > 2. That these primes
are Wilson primes was noted and proved already in [3, Thm 7.1].

Since D℘ = −1, D2℘ = 0, we get (i).
Since ℘[1] = (t− θ)p−1 − 1, ℘[2] = (t− θ)p−2, we get (iii).
The calculation Q℘(t) = (tpp − t)/(tp − t −m) = ℘pp−1 + ℘pp−2 + · · · +

℘p−1 + 1 shows that ℘p−2 divides Q2
℘(t) verifying (ii).

This calculation also implies (i-ii) immediately.
We have Q℘(℘′(t)) = Q℘(−1) = 0 implying (ii-i).
We have d/dt(℘[1]) = (p− 1)(t− θ)p−2 implying (i-iii).
Since ℘′ = −1, we have (℘′)[1] = 0 implying (iii-i).
We see that Q℘(℘[1]) = Q℘((t − θ)p−1 − 1) = [((t − θ)p−1 − 1)pp −

((t− θ)p−1 − 1)]/℘ is divisible by (t− θ)p−2, hence we have (ii-iii).
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Since ℘(θ) = 0, the calculation above of Q℘(t) shows that (Q℘(t))[1] =
(Q℘(t)− 1)/(t− θ) is divisible by (t− θ)p−2 and we verify (iii-ii).

7. Derivative conditions on primes occurring in some natural
factorizations

Let us recall some basic quantities/notation from Carlitz associated to
the arithmetic of A. For a non-negative integer n, we put [n] = tqn − t. We
put L0 = D0 = 1 and for a positive integer n, we put Ln = [n]Ln−1, Dn =
[n]Dq

n−1.
Recall (see e.g., [2, §2.5]) the nice factorizations of these fundamental

quantities: The quantity [d] is the product of all (monic) primes of degree
dividing d, Dd is the product of all monic polynomials of degree d, and Ld

is the (monic) least common multiple of all polynomials of degree d. So
Ld =

∏
℘⌊d/k⌋, and Dd =

∏
℘nk , where both the products run over (monic)

primes ℘ of degree k ≤ d and nk =
∑

qd−ek: the sum over 1 ≤ e ≤ ⌊d/k⌋.

Second derivative condition: Wilson primes.

Theorem 7.1. Let p > 2. The degree d primes dividing (the numerator of)
1/[1]+1/[2]+· · ·+1/[d−1] ∈ Fq(t) (or equivalently, dividing the polynomial
−L′

d−1 = Ld−1/[1] + · · ·+ Ld−1/[d− 1]) are exactly the Wilson primes, i.e.,
the primes of degree d with the vanishing second derivative. These exist only
if p divides d or d− 1. They occur with multiplicity (at least) p− 2.

Proof. The Wilson primes of degree d are, by definition, those ℘ which
occur with multiplicity at least 2 in the factorization Fd +1, and we have [4,
p. 1842] Fd = (−1)dDd/Ld. Hence exactly these ℘’s divide the derivative

D′
dLd −DdL′

d

L2
d

=
−Dq

d−1Ld − [d]Dq
d−1L′

d

L2
d

= Dq
d−1

Ld−1 + L′
d

[d]L2
d−1

.

Now, by the product rule of derivatives, we have

L′
d + Ld−1 = −[d]([d− 2] · · · [1] + [d− 1][d− 3] · · · [1] + · · · )

= −[d]Ld−1

( 1
[d− 1] + 1

[d− 2] + · · ·+ 1
[1]

)
,

so that the derivative above is Dq
d−1/Ld−1 times the first expression in the

theorem. The first claim follows, since by the above factorization results,
Dd−1 or Ld−1 factorization does not involve any prime of degree d. The sec-
ond claim follows from the characterization [4, Thm. 2.9] of Wilson primes,
which implies that d or d− 1 has to be divisible by p. The final claim fol-
lows from the result [4, Thm. 2.9] that for Wilson primes ℘, the Wilson
supercongruence hold mod ℘p−1. □
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In [3, Thm. 7.1], we showed that in addition to Wilson congruence, there
is also “naive Wilson congruence” [1] · · · [p − 1] ≡ −1 mod ℘p−1, where ℘
is Artin–Schreier prime ℘ = tp − t − c of Fq[t], where q = p. We had
conjectured [3, p. 281] with some evidence, that the existence of non-trivial
gcd between Ld−1+1 = [1] · · · [d−1]+1 and [d] implies p divides d. This was
proved (communication with the author, 15 October 2015) by Alexander
Borisov. The statement and the proof immediately generalizes to:

Theorem 7.2. Let d > 1. If Ld−1 + c and [d] have a non-trivial gcd, where
c ∈ F∗

q, then p divides d.

Proof (Borisov). Non-trivial gcd implies existence of a root w ∈ Fqd

for Ld−1 + c. Put xj = wqj . Then the root means
∏d−1

j=1(x0 − xj) =
(−1)d−1(−c) = (−1)dc, and raising to qi powers gives

∏
j ̸=i(xi − xj) =

(−1)dc. Now Lagrange interpolation at the d points of the constant poly-
nomial in x gives c =

∑d−1
i=0 c

∏
j ̸=i(x − xj)/

∏
(xi − xj). Comparing coef-

ficients of xd−1 gives 0 =
∑

c/((−1)sc) = (−1)s∑d−1
i=0 1 = d(−1)s, thus p

divides d. □

Our conjecture [5, 2.2.5(i)] in connection with “additive Wieferich–
Wilson primes” saying that “if p > 2 and gcd between [d] and 1− [d− 1] +
[d − 1][d − 2] − · · · + (−1)d−1Ld−1 is non-trivial, then p divides d” is still
open.

First derivative condition: Special Wilson primes. Recall the nice
regular factorizations of fundamental quantities [d], Ld, Dd given above,
where for a given degree, all the primes of that degree occur with the
same (non-negative) multiplicity. In contrast, we have:

Theorem 7.3. Let d > 1. For c ∈ F∗
q, the degree d primes dividing Ld−1−c

(are also those dividing Dd−1 + (−1)dc) are exactly the degree d primes ℘
with d℘/dt = (−1)d−1c, i.e., the monic primes ℘ = ap + (−1)d−1ct for
some a ∈ A. These thus exist only when p divides d. When they exist they
occur with multiplicity at least p−1 (which seems to be even exact in “small
degree and q” data, except when p = 2, d = 3, when it is 2) for the L-case,
and with multiplicity one for the D case.

Proof. First note the following simple calculation (in fact, equivalent to the
Wilson congruence, since Fd = (−1)dDq

d−1/Ld−1) modulo [d]:

Dq
d−1 =

d−2∏
i=0

(tqd−1 − tqi)q =
∏

(tqd − tqi+1) ≡
∏

(t− tqi+1) = (−1)d−1Ld−1.

Next note that, for ℘ a prime of degree d, we have ([d]/℘)Dq
d−1 = Dd/℘,

which is the product of all monic polynomials of degree d not divisible
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by ℘, so modulo ℘ it is just Fd ≡ −1 by the Wilson congruence. In fact,
Dd/℘ ≡ Fd mod ℘q−1, though we will not need this. This is seen by the
mod ℘q−1 calculation

Dd

℘
=

∏
a∈A+,deg a<d

∏
θ∈F∗

q

(℘ + θa) =
∏

(℘q−1 − aq−1)

≡
∏

(−aq−1) = (−1)dDd/Ld = Fd.

Combining these two observations with the connection between the Fer-
mat quotient and the derivative observed in Remarks of Section 4, we see
that modulo a prime ℘ of degree d, we have

Ld−1 ≡ c ←→ Dq
d−1 ≡ (−1)d−1c

←→ Q℘(t) = [d]/℘ ≡ (−1)d/c

←→ d℘/dt ≡ (−1)d−1c.

Since Dd−1+c = [d−1]Dq
d−2+c has derivative −Dq

d−2, we see that degree
d primes in its factorization can occur with multiplicity at most one.

Let p > 2. Assume that for prime ℘ of degree d divides Ld−1 − c.
Then by above, d℘/dt is constant and thus, ℘ is a Wilson prime and so
by Theorem 7.1, we know that ℘p−2 divides L′

d−1. Hence, ℘p−1 divides
Ld−1 − c. □

Remarks.
(i) By Theorem 4.2, these special Wilson primes can be also described

as the prime basis a of degree d for which there are no Wieferich
primes, and that these exist only if p divides d, or d = 1.

(ii) It is clear from the above factorizations that the primes of degree
less than d do not divide these quantities. As mentioned in the ex-
amples below, many very large degree (than d) primes can occur,
and we do not know their characterization. Since the quantities
[i], Li, Di are invariant for translations t→ t + c, c ∈ Fq, the prime
factorization has orbits under these. This explains multiplicities or
number of some large given degree primes which occur in the fac-
torization.

(iii) While the number of primes of degree d is of the order qd/d, this
exponent d becomes 2d/p and d/p respectively (under naive ran-
domness assumptions) for Wilson and special Wilson primes, when
p > 2.

(iv) For completeness, we record the easy case (probably already in the
literature, but the author could not find a reference) of the factor-
ization of [d]− c, for c ∈ F∗

q .
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Claim. If ℘ divides [d]− c, then degree of ℘ is a divisor of pd, but
not of d. In particular, p divides degree ℘.

This is seen as follows. Modulo ℘, we have tqd ≡ t + c, and
thus tqrd ≡ t + rc, by induction on the natural number r, proved
by raising to qd-th powers. In particular, tqpd ≡ t modulo ℘. This
implies the claim, given the factorization of [n]’s recalled above. As
an example, we see that if d = pk, [d] − c is a product of qd/pk+1

distinct (since the derivative of [d]−c is −1, it is always square-free)
primes of degree pk+1 each.

Examples.
(0) If d = 1, Lq−1

d−1 − 1 = 0, and all the degree 1 primes are of the
required form having constant derivatives. In the next case, d = p,
it follows from [3, Thm. 7.1] and we know even that all these are
Artin–Schreier primes, thus have derivatives −1 and already divide
Lp−1 + 1. In higher degrees, we thus get generalizations of these
primes and they can occur for any c in general, but for some (low)
degrees there are none for some or for all c’s. (e.g., for q = 2, d = 8
or q = 3, d = 9, c = −1 or q = 4, d = 4, c = 1 there are none)

(1) If q = 3, d = 6, there are total 116 primes of degree d, out of which 6
have constant derivative, and 15 have vanishing second derivative.
Then the degree 363 quantity L5 + 1 (L5 − 1 respectively) is the
product of the three degree 6 primes with derivative 1 (derivative
−1 respectively) each with multiplicity 2, three degree 14 primes
and three degree 95 primes (all with multiplicity 1). The polyno-
mial in the Theorem 7.1 has degree 360 and is a product of the
15 degree 6 primes with vanishing second derivative, three primes
each of degrees 28, 24, 20, two of degree 18, three of degree 2, and
the three primes of degree 1 each with multiplicity 4. If q = 3,
d = 9, there are six primes of degree 9 dividing L2

8 − 1 they all
divide L8 − 1. If q = 3, d = 12, there are no primes of degree 12
with constant derivative.

(2) If q = 2, d = 14, there are total 1161 primes of degree 14, out
of which 12 have constant derivative. The factorization of the de-
gree 16382 polynomial L13 + 1 is the product of exactly the 12
primes above, one prime each of degree 22, 128, and 9260, and two
primes each of degree 1156, 2246. (Here I assume that the SAGE
factor command indeed factored into primes.)

Questions. Here are some of the natural questions that arise:
(1) We proved that for Wilson primes, the Wilson congruence holds

modulo ℘p−1. Does it ever (or infinitely often) hold modulo even
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higher power, if d > 1, p > 2? Often we have only proved lower
bounds for the multiplicities, what are the exact multiplicities?

(2) Are there nice generalizations of these phenomena for other function
field situations, say even in class number one?

(3) What are the distributions in the congruence classes when we do
not have supercongruence? (i.e., when do not have the zero class
modulo ℘2.)

(4) Interestingly, the three derivatives appear in parallel fashion in the
theorems, though the Fermat quotient is more like (negative) recip-
rocal of derivative of ℘.
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