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Résumé. On note respectivement L et M les spectres de Lagrange et de
Markov. Il est connu que L ⊂M et que M \L ̸= ∅. Dans ce travail, on détecte
de nouvelles lacunes dans L et M en utilisant les deux méthodes suivantes.
Premièrement, on obtient de telles lacunes en décrivant une nouvelle partie de
M \L proche de 3,938 : cette région (avec trois autres candidats) a été trouvée
en étudiant les images de L récemment produites par V. Delecroix et les deux
derniers auteurs à l’aide de l’algorithme expliqué dans l’un des appendices de
cet article. En outre, on obtient les plus grands éléments connus de M \ L et
on améliore la minoration de la dimension de Hausdorff de M \L obtenue par
les deux derniers auteurs avec M. Pollicott et P. Vytnova (heuristiquement,
on obtient une nouvelle minoration de la dimension de M \ L par 0,593).
Deuxièmement, on utilise une idée de renormalisation et un critère d’épaisseur
(issu de la thèse de doctorat du troisième auteur) pour détecter une infinité de
lacunes maximales de M s’accumulant près de la lacune de Freiman précédant
le célèbre rayon de Hall [4,52782956616 . . . ,∞) ⊂ L.

Abstract. Let L and M denote the Lagrange and Markov spectra, respec-
tively. It is known that L ⊂M and that M \L ̸= ∅. In this work, we exhibit
new gaps of L and M using two methods. First, we derive such gaps by de-
scribing a new portion of M \L near to 3.938: this region (together with three
other candidates) was found by investigating the pictures of L recently pro-
duced by V. Delecroix and the last two authors with the aid of an algorithm
explained in one of the appendices to this paper. As a by-product, we also get
the largest known elements of M \L and we improve upon a lower bound on
the Hausdorff dimension of M \ L obtained by the last two authors together
with M. Pollicott and P. Vytnova (heuristically, we get a new lower bound of
0.593 on the dimension of M \ L). Secondly, we use a renormalisation idea
and a thickness criterion (reminiscent from the third author’s PhD thesis)
to detect infinitely many maximal gaps of M accumulating to Freiman’s gap
preceding the so-called Hall’s ray [4.52782956616 . . . ,∞) ⊂ L.
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Mots-clefs. Lagrange and Markov spectra, maximal gaps, Hausdorff dimension.
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1. Introduction

The classical theory of Diophantine approximation is concerned with
how well irrational numbers can be approximated by rational numbers.
Given a positive real number α we define its best constant of Diophantine
approximation to be

L(α) := lim sup
p,q→∞

1
|q(qα− p)| .

In a sense, L(α) is the largest constant so that the inequality∣∣∣∣α− p

q

∣∣∣∣ <
1

L(α)q2

has infinitely many solutions p, q ∈ N, q ̸= 0. The Lagrange spectrum is
defined to be the set

L := {L(α) |α ∈ R \Q}.
Perron [17] proved that if we have the continued fraction expansion

α = [a0; a1, a2, . . .] := a0 + 1
a1 + 1

a2+ 1
...

,

then we have
L(α) = lim sup

n→∞
([an; an−1, . . . , a0] + [0; an+1, an+2, . . .]).

As such, we are also able to define the Lagrange spectrum in terms of the
bi-infinite shift space Σ := {1, 2, 3, . . .}Z. More specifically, for (ai)i∈Z ∈ Σ
we define

λ0((ai)i∈Z) := [a0; a−1, a−2, . . .] + [0; a1, a2, . . .],
and, for j ∈ Z,

λj((ai)i∈Z) := λ0(σj((ai)i∈Z)) = λ0((ai+j)i∈Z),
where σ : Σ→ Σ is the left-shift sending (ai)i∈Z to (ai+1)i∈Z. We can now
define the Lagrange spectrum to be

L :=
{

lim sup
j→∞

λj(a)
∣∣∣∣ a ∈ Σ

}
.

Similarly, given (ai)i∈Z ∈ Σ we define
m((ai)i∈Z) := sup

n∈Z
λn((ai)i∈Z).

Then the Markov spectrum is defined to be the set
M := {m(a) | a ∈ Σ}.

In the sequel, we will write a sequence (ai)i∈Z as the string
. . . a−2a−1a∗

0a1a2 . . .
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where the asterisk denotes the 0th position. We will also use an overline to
denote periodicity so that, for example, the sequence ai = (i mod 3) + 1
is denoted 1∗23 = . . . 1231231∗23123123 . . .. This notation should be clear
from the context as we will mostly restrict to the subshift {1, 2, 3, 4}Z so,
in particular, all ai will be single digits.

Markov [10, 11] first studied the spectra L and M around 1880. It is
known that L ⊂ M ⊂ R+ with L ∩ (0, 3) = M ∩ (0, 3) an explicit discrete
set. In 1975, Freiman [4] showed that [µ,∞) ⊂ L ⊂M , and (ν, µ)∩M = ∅
with ν, µ ∈M , where

ν = λ0(323444313134∗313121133313121) = 4.52782953841 . . .

and
µ = λ0(12131322344∗3211313121) = 4.52782956616 . . . .

The ray [µ,∞) is known as Hall’s ray after earlier work of Hall [6] (see also
the intermediate results of Freiman–Judin [5], Hall [7], Freiman [3] and
Schecker [19]).

Freiman [2] also showed that M \ L ̸= ∅. In fact, the second and third
authors together with M. Pollicott and P. Vytnova [14] recently proved that
the Hausdorff dimension HD(M \ L) of M \ L satisfies

0.537152 < HD(M \ L) < 0.796445.

We direct the reader to the survey [13] and the textbooks of Cusick–
Flahive [1] and Lima–Matheus–Moreira–Romaña [9] for more details on
these spectra.

1.1. A new portion of M \ L. Our first result finds a new portion of
M \ L and gives an improved lower bound for its Hausdorff dimension.

Theorem 1.1. The intersection of M \ L with the interval (3.938, 3.939)
is non-empty. The largest known element of M \ L is

m(12331113311321231133311121211333∗11121211333)
= 3.938776241989784909 . . . .

Remark 1.2. Our proof of this result yields that the local dimension
of M \ L near 3.938 coincides with the dimension of a dynamically de-
fined Cantor set which is richer than the Cantor set Ω considered in [14,
§4.6.5]. In particular, this improves the lower bound on HD(M \L) and, in
fact, a heuristic computation (based on the so-called Jenkinson–Pollicott
method [8]) indicates that HD(M \ L) > 0.593: see the next section.

The proof of this result is contained in Section 2. We also, in Appendix A,
give some additional newly discovered portions of M \L. We do not give the
proof of these claims as they do not lead to significantly better estimates
of the Hausdorff dimension of M \ L.
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1.2. New maximal gaps of M . Our second result concerns maximal
gaps in the Markov spectrum M . Recall that Freiman proved that the gap
(ν, µ) is a maximal gap of M . We find infinitely many new maximal gaps
of M accumulating to Freiman’s gap. Specifically, we prove the following.

Theorem 1.3. There is a sequence (αn, βn) of maximal gaps of M such
that limn→∞ αn = limn→∞ βn = ν.

In Section 3, we give a proof of Freiman’s result that (ν, µ) is a maximal
gap since the contributing lemmas are used in Section 4 in which we prove
Theorem 1.3 via a renormalisation idea (leading to a sort of “recurrence on
scales”) and a thickness criterion in the spirit of the discussion of [15].

1.3. Computational assistance in the investigations of M \ L. The
candidate sequence giving rise to elements of M \ L analysed in Section 2
and those discussed in the appendix were discovered with the assistance of
a computer search. The code was essentially running the arguments we will
give in Section 2 which are themselves similar to those given in previous
work of the second and third authors concerning elements of M \L near to
3.7096 [12].

We now describe the ideas behind the computer search. Firstly, for a
candidate finite sequence a we determine the Markov value of the periodic
sequence s = a determined by a. We then consider modifications of this
sequence s where we force the sequence to instead terminate by 21 to the
right or by 12 to the left. We find the modification that gives the smallest
increase in the corresponding Markov value. Call this modified sequence w.
Next, we try to determine the central portions of sequences that could give
rise to Markov values in the range [m(s), m(w)+ϵ], for some small (possibly
negative) ϵ. By searching for central portions of larger and larger length we
can observe evidence for the one-sided periodicity we hope to make use of
in the arguments given in Section 2. If we see no evidence for such one-
sided periodicity after searching for central portions of a reasonable length
then we throw out the candidate a and try for a new finite sequence. The
pseudo-code describing the algorithm used to determine the central portions
of candidate sequences is given in Appendix B.

In practice the candidate finite sequences a are chosen to be odd length
non-semi-symmetric words, where a word is semi-symmetric if it is a palin-
drome or a concatenation of two palindromes. We direct the reader to [12,
Subsection 1.3] for a discussion of why odd length non-semi-symmetric
words are natural candidates for finding elements of M \ L.

Acknowledgements. We are thankful to the referee whose comments
helped to improve this paper.
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2. A new portion of M \ L near 3.938

We consider the word of odd length 11121211333. Note that it is non-
semi-symmetric (in the sense of Flahive), i.e., it is not a palindrome nor
a concatenation of two palindromes. Below, we use boldface to highlight
decimal places of importance.

The Markov value of the associated periodic sequence is

λ0(11121211333∗) = 3.938776241981028026 . . .

Generally speaking, our goal below is to show that a portion of M \ L
occurs near

λ0(1212121133311121211333∗11121211333) = 3.938776241981139302 . . .

In the sequel, we shall study a sequence

(. . . , x−m, . . . , x−1, x∗
0, x1, . . . , xn, . . . ) ∈ {1, 2, 3}Z

with a Markov value m(x) = λ0(x) nearby 3.9387762419811.
For a finite sequence a, inequalities of the form λ0(. . . a . . . ) > v, say,

mean that we have λ0(w) > v for all bi-infinite sequences w that are ob-
tained by extending a on both sides.

2.1. Local uniqueness. Note that x0 = 3. Moreover, the possible vicini-
ties of x∗

0 (up to transposition) are 13∗1, 13∗2, 13∗3, 23∗2, 23∗3, 33∗3.

Lemma 2.1.
(i) λ0(. . . 13∗1 . . . ) > 4.11
(ii) λ0(. . . 33∗3 . . . ) ≤ λ0(. . . 33∗2 . . . ) ≤ λ0(. . . 23∗2 . . . ) < 3.884.

By the previous lemma, up to transposition, it suffices to analyse the
extensions to the right of 23∗1 and 33∗1, i.e., 23∗11, 23∗12, 23∗13, 33∗11,
33∗12, 33∗13.

Lemma 2.2. λ0(. . . 3∗13 . . . ) > λ0(. . . 3∗12 . . . ) > 3.957.

By the previous lemma, it suffices to analyse the extensions to the left
of 23∗11 and 33∗11, i.e., 123∗11, 223∗11, 323∗11, 133∗11, 233∗11, 333∗11.

Lemma 2.3.
(i) λ0(. . . 323∗11 . . . ) > λ0(. . . 223∗11 . . . ) > 3.9678
(ii) λ0(. . . 133∗11 . . . ) < 3.9228.

By the previous lemma, it suffices to analyse the extensions to the right of
123∗11, 233∗11, 333∗11, i.e., 123∗111, 123∗112, 123∗113, 233∗111, 233∗112,
233∗113, 333∗111, 333∗112, 333∗113.
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Lemma 2.4.
(i) λ0(. . . 123∗111 . . . ) > 3.9673
(ii) if 131 and 312 are forbidden, then λ0(. . . 233∗113 . . . ) <

λ0(. . . 233∗112 . . . )<λ0(. . . 233∗111 . . . )≤λ0(. . . 21233∗11132 . . . )<
3.93676

(iii) λ0(. . . 333∗113 . . . ) < λ0(. . . 333∗112 . . . ) < 3.8969.
By the previous lemma, it suffices to analyse the extensions to the left of

123∗112, 123∗113, 333∗111, i.e., 1123∗112, 2123∗112, 3123∗112, 1123∗113,
2123∗113, 3123∗113, 1333∗111, 2333∗111, 3333∗111.
Lemma 2.5.

(i) λ0(. . . 1123∗112 . . . ) > λ0(. . . 2123∗112 . . . ) > 3.9414; in particular,
123∗112 is forbidden if 312 is forbidden

(ii) λ0(. . . 2123∗113 . . . ) < 3.93768
(iii) if 131 is forbidden, then λ0(...1123∗113...)≥λ0(...1123∗11323 ...) >

3.9419.
By the previous lemma, it suffices to analyse the extensions to the right

of 1333∗111, 2333∗111, 3333∗111, i.e., 1333∗1111, 1333∗1112, 1333∗1113,
2333∗1111, 2333∗1112, 2333∗1113, 3333∗1111, 3333∗1112, 3333∗1113.
Lemma 2.6.

(i) λ0(. . . 333∗1113 . . . ) > 3.94084
(ii) λ0(. . .3333∗1111. . .) < λ0(. . .2333∗1111. . .) < λ0(. . .1333∗1111. . .) <

3.92786
(iii) λ0(. . . 3333∗1112 . . . ) < λ0(. . . 2333∗1112 . . . ) < 3.93844.
By the previous lemma, it suffices to analyse the extensions to the left

of 1333∗1112, i.e., 11333∗1112, 21333∗1112, 31333∗1112. Since 213 and 313
are forbidden (cf. Lemma 2.2), our task is reduced to study the extensions
to the right of 11333∗1112, i.e., 11333∗11121, 11333∗11122, 11333∗11123.
Lemma 2.7. λ0(. . . 11333∗11123 . . . ) < λ0(. . . 11333∗11122 . . . ) < 3.93631.

By the previous lemma, it suffices to analyse the extensions to the left
and right of 11333∗11121 (while taking into account that 213 is forbid-
den), i.e., 111333∗111211, 211333∗111211, 311333∗111211, 111333∗111212,
211333∗111212, 311333∗111212.
Lemma 2.8. λ0(. . . 311333∗111211 . . . ) < λ0(. . . 211333∗111211 . . . ) <
λ0(. . . 111333∗111211 . . . ) < 3.938464.

By the previous lemma (and after recalling that 131 and 3111333 are
forbidden, cf. Lemmas 2.1 and 2.6(i)), it suffices to analyse the exten-
sions to the left of 111333∗111212, 211333∗111212, 311333∗111212, i.e.,
1111333∗111212, 1211333∗111212, 2111333∗111212, 2211333∗111212,
2311333∗111212, 3211333∗111212, 3311333∗111212.
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Lemma 2.9. λ0(. . . 2111333∗111212 . . . ) > 3.93889.

By the previous lemma, it suffices to analyse the extensions to the right of
1111333∗111212, 1211333∗111212, 2211333∗111212, 2311333∗111212,
3211333∗111212, 3311333∗111212, i.e.,

• 1111333∗1112121, 1111333∗1112122, 1111333∗1112123
• 1211333∗1112121, 1211333∗1112122, 1211333∗1112123
• 2211333∗1112121, 2211333∗1112122, 2211333∗1112123
• 2311333∗1112121, 2311333∗1112122, 2311333∗1112123
• 3211333∗1112121, 3211333∗1112122, 3211333∗1112123
• 3311333∗1112121, 3311333∗1112122, 3311333∗1112123.

Lemma 2.10.
(i) λ0(. . .1111333∗1112121. . .)>λ0(. . .1111333∗1112122. . .)>3.938835
(ii) max{λ0(. . . 1211333∗1112123 . . . ), λ0(. . . 1211333∗1112122 . . . ),

λ0(. . . 2211333∗1112123 . . . )} < λ0(. . . 2211333∗1112122 . . . ) <
3.938751

(iii) λ0(. . .3211333∗1112121. . .)>λ0(. . .2211333∗1112121. . .)>3.938824
(iv) λ0(. . . 3211333∗1112123 . . . ), λ0(. . . 2311333∗1112122 . . . ),

λ0(. . . 2311333∗1112123 . . . ), λ0(. . . 3311333∗1112122 . . . ),
λ0(. . . 3311333∗1112123 . . . ) < λ0(. . . 3211333∗1112122 . . . ) <
3.9387718.

By the previous lemma (and after recalling that 312, 22311 and 32311
are forbidden, cf. Lemmas 2.2 and 2.3(i)), it suffices to analyse the exten-
sions to the left of 1111333∗1112123, 1211333∗1112121, 2311333∗1112121,
3311333∗1112121, i.e.,

• 11111333∗1112123, 21111333∗1112123, 31111333∗1112123
• 11211333∗1112121, 21211333∗1112121
• 12311333∗1112121
• 13311333∗1112121, 23311333∗1112121, 33311333∗1112121.

Lemma 2.11.
(i) λ0(. . . 11111333∗1112123 . . . ) > 3.9388049
(ii) λ0(. . . 11211333∗1112121 . . . ) > 3.9387855
(iii) if 312 and 313 are forbidden, then λ0(. . . 21111333∗1112123 . . . ) ≥

λ0(. . . 21111333∗111212311 . . . ) > 3.93877973.

By the previous lemma (and after recalling that 213 is forbidden),
it suffices to analyse the extensions to the right of 31111333∗1112123,
21211333∗1112121, 12311333∗1112121, 13311333∗1112121, 23311333∗1112121,
33311333∗1112121, i.e.,

• 31111333∗11121231, 31111333∗11121232, 31111333∗11121233
• 21211333∗11121211, 21211333∗11121212
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• 12311333∗11121211, 12311333∗11121212
• 13311333∗11121211, 13311333∗11121212
• 23311333∗11121211, 23311333∗11121212
• 33311333∗11121211, 33311333∗11121212.

Lemma 2.12.
(i) if 312 and 313 are forbidden, then λ0(. . . 31111333∗11121231 . . . ) ≤

λ0(. . . 31111333∗111212311 . . . ) < 3.938775326
(ii) if 131 is forbidden, then λ0(. . . 31111333∗11121233 . . . ) >

λ0(. . . 31111333∗11121232 . . . ) ≥ λ0(. . . 231111333∗11121232 . . . ) >
3.9387807

(iii) λ0(. . . 21211333∗11121212 . . . ) > λ0(. . . 3311333∗11121212 . . . ) >
3.938783

(iv) λ0(. . . 12311333∗11121211 . . . ) < λ0(. . . 3311333∗11121211 . . . ) <
3.9387521.

By the previous lemma (and after recalling that 312 and 1123113 are for-
bidden, cf. Lemmas 2.2 and 2.5(iii)), it suffices to analyse the extensions to
the left of 21211333∗11121211, and 12311333∗11121212, i.e.,
121211333∗11121211, 221211333∗11121211, 321211333∗11121211, and
212311333∗11121212.
Lemma 2.13. If 131 is forbidden, then

λ0(. . . 321211333∗11121211 . . . ) > λ0(. . . 221211333∗11121211 . . . )
≥ λ0(. . . 221211333∗1112121132 . . . )
> 3.9387772.

By the previous lemma, it suffices to analyse the extensions to the right
of 121211333∗11121211, 212311333∗11121212, i.e., 121211333∗111212111,
121211333∗111212112, 121211333∗111212113, 212311333∗111212121,
212311333∗111212122, 212311333∗111212123.
Lemma 2.14.

(i) λ0(. . .121211333∗111212111. . .)>λ0(. . .121211333∗111212112 . . .)>
3.9387821

(ii) if 312 and 313 are forbidden, then λ0(. . .212311333∗11121212 . . .) ≥
λ0(. . . 212311333∗11121212311 . . . ) > 3.938776505.

By the previous lemma (and after recalling that 312 is forbidden), it
suffices to analyse the extensions to the left of 121211333∗111212113, i.e.,
1121211333∗111212113, 2121211333∗111212113.
Lemma 2.15. λ0(. . . 2121211333∗111212113 . . . ) < 3.93877609.

By the previous lemma (and after recalling that 131 is forbidden), it
suffices to analyse the extensions to the right of 1121211333∗111212113,
i.e., 1121211333∗1112121132, 1121211333∗1112121133.
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Lemma 2.16. If 131 and 211321 are forbidden1, then

λ0(. . .1121211333∗1112121132. . .) ≤ λ0(. . .231121211333∗11121211322 . . .)
< 3.938775922.

By the previous lemma, we are led to investigate the extensions of
1121211333∗1112121133. More concretely, the following statement is an im-
mediate corollary of our discussions so far:

Corollary 2.17. Let x ∈ {1, 2, 3}Z be a sequence such that 3.93877609 <
m(x) = λ0(x) < 3.938776505. Then,

. . . x−1x∗
0x1 · · · = . . . 1121211333∗1112121133 . . . .

2.2. Self-replication. Our current goal is to describe the extensions
of the string 1121211333∗1112121133 leading to a Markov value strictly
smaller than 3.938776241981443.

For this sake, note that the extensions to the left of

1121211333∗1112121133

are
11121211333∗1112121133, 21121211333∗1112121133

and 31121211333∗1112121133.

Lemma 2.18.

λ0(. . . 31121211333∗1112121133 . . . ) > λ0(. . . 21121211333∗1112121133 . . . )
> 3.93877687.

By the previous lemma, it suffices to analyse the extensions to the right
of 11121211333∗1112121133, i.e.,

11121211333∗11121211331, 11121211333∗11121211332,

and 11121211333∗11121211333.

Lemma 2.19.

λ0(. . .11121211333∗11121211331. . .) > λ0(. . .11121211333∗11121211332 . . .)
> 3.938776301.

By the previous lemma, it suffices to analyse the extensions to the left
of 11121211333∗11121211333, i.e.,

111121211333∗11121211333, 211121211333∗11121211333,

and 311121211333∗11121211333.

1Compare with Lemma 2.5(i)
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Lemma 2.20.

λ0(. . . 111121211333∗11121211333 . . . )
> λ0(. . . 211121211333∗11121211333 . . . )
> 3.938776282.

By the previous lemma (and the fact that 312 and 313 are forbidden), it
suffices to analyse the extensions to the right of 311121211333∗11121211333,
i.e.,

311121211333∗1112121133311, 311121211333∗111212113332,

and 311121211333∗111212113333.

Lemma 2.21. If 131 is forbidden, then

λ0(. . . 311121211333∗111212113333 . . . )
> λ0(. . . 311121211333∗111212113332 . . . )
≥ λ0(. . . 2311121211333∗111212113332 . . . ) > 3.938776248.

By the previous lemma (and after recalling that 131, 22311, 32311,
123111 are forbidden, cf. Lemmas 2.1(i), 2.3(i), 2.4(i)), it suffices to
analyse the extensions to the left of 311121211333∗1112121133311, i.e.,
3311121211333∗1112121133311. Now, we observe that the extensions to the
left of 3311121211333∗1112121133311 are 13311121211333∗1112121133311,
23311121211333∗1112121133311, 33311121211333∗1112121133311.

Lemma 2.22. If 213 and 3331113 are forbidden, then

λ0(. . . 13311121211333∗1112121133311 . . . )
> λ0(. . . 23311121211333∗1112121133311 . . . )
≥ λ0(2123311121211333∗111212113331112) = 3.938776242699.

By the previous lemma, it suffices to analyse the extensions to the right
of 33311121211333∗1112121133311, i.e., 33311121211333∗11121211333111,
33311121211333∗11121211333112, 33311121211333∗11121211333113.

Lemma 2.23.

λ0(. . . 33311121211333∗11121211333113 . . . )
> λ0(. . . 33311121211333∗11121211333112 . . . ) > 3.93877624592.

By the previous lemma (and after recalling that 213 and 313 are forbid-
den), it suffices to analyse the extensions to the left of

33311121211333∗11121211333111,
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i.e.,
1133311121211333∗11121211333111, 233311121211333∗11121211333111,

and 333311121211333∗11121211333111.

Lemma 2.24. If 213 and 3331113 are forbidden, then

λ0(. . . 333311121211333∗11121211333111 . . . )
> λ0(. . . 233311121211333∗11121211333111 . . . )
≥ λ0(. . . 233311121211333∗1112121133311121) > 3.93877624206.

By the previous lemma (and after recalling that 3331113 is forbidden),
it suffices to analyse the extensions to the right of

1133311121211333∗11121211333111,

i.e.,
1133311121211333∗111212113331111,

and
1133311121211333∗111212113331112.

Lemma 2.25.
λ0(. . . 1133311121211333∗111212113331111 . . . ) > 3.93877624309

By the previous lemma, it suffices to analyse the extensions to the right
of 1133311121211333∗111212113331112, i.e,

• 1133311121211333∗1112121133311121,
• 1133311121211333∗1112121133311122,
• 1133311121211333∗1112121133311123.

Lemma 2.26.

λ0(. . . 1133311121211333∗1112121133311123 . . . )
> λ0(. . . 1133311121211333∗1112121133311122 . . . ) > 3.938776242211.

By the previous lemma (and after recalling that 213 is forbidden), it
suffices to analyse the extensions to the right of

1133311121211333∗1112121133311121,

i.e.,
1133311121211333∗11121211333111211,

and
1133311121211333∗11121211333111212.

Lemma 2.27.
λ0(. . . 1133311121211333∗11121211333111211 . . . ) > 3.93877624201.
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By the previous lemma (and after recalling that 3111333, 2111333111212,
11113331112121 are forbidden, cf. Lemmas 2.6(i), 2.9, 2.10(i)), it suffices to
analyse the extensions to the left of 1133311121211333∗11121211333111212,
i.e.,

21133311121211333∗11121211333111212,

and
31133311121211333∗11121211333111212.

As it turns out, the extensions to the right of these two words are:
• 21133311121211333∗111212113331112121,
• 31133311121211333∗111212113331112121,
• 21133311121211333∗111212113331112122,
• 31133311121211333∗111212113331112122,
• 21133311121211333∗111212113331112123,
• 31133311121211333∗111212113331112123.

Lemma 2.28.

min
{
λ0(. . . 21133311121211333∗111212113331112123 . . . ),

λ0(. . . 31133311121211333∗111212113331112123 . . . ),
λ0(. . . 31133311121211333∗111212113331112122 . . . )

}
> λ0(. . . 21133311121211333∗111212113331112122 . . . )
≥ λ0(. . . 12121133311121211333∗111212113331112122 . . . )
> 3.938776241990046,

since 32113331112121 and 22113331112121 are forbidden by Lemma 2.10,
11211333111212 is forbidden by Lemma 2.11, and 32121133311121211 and
22121133311121211 forbidden by Lemma 2.13.

By the previous lemma (and after recalling that 2121133311121212 and
213 are forbidden, cf. Lemmas 2.12(iii) and 2.2), it suffices to analyse
the extensions to the right of 21133311121211333∗111212113331112121,
31133311121211333∗111212113331112121, i.e.,

21133311121211333∗1112121133311121211,

and
31133311121211333∗1112121133311121211.

As it turns out, the extensions to the right of these two words are

21133311121211333∗11121211333111212113,

and
31133311121211333∗11121211333111212113
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because the strings 121211333111212111, 121211333111212112 are forbid-
den (cf. Lemma 2.14(i)). Finally, the resulting words extend to the right as

21133311121211333∗111212113331112121133
and

31133311121211333∗111212113331112121133
because 131 and 11323, 11322, 211321 are forbidden (cf. Lemmas 2.3(i)
and 2.5(i)).

In summary, our discussion so far yields the following statement:
Corollary 2.29. Let x ∈ {1, 2, 3}Z be a sequence with Markov value m(x) <
3.938776241990046. If x contains the string 1121211333∗1112121133, say,

x = . . . xi−9 . . . x∗
i . . . xi+10 . . . = . . . 1121211333∗1112121133 . . . ,

then one has
x = . . . xi−15 . . . x∗

i . . . xi+21 . . .

= . . . 1133311121211333∗11121211333∗∗1112121133 . . .

and the vicinity of x∗∗
i+11 is 1121211333∗∗1112121133. In particular, by re-

cursively analysing the positions xi+11k, k ∈ N, one actually has
x = . . . xi−15 . . . x∗

i . . . = . . . 1133311121211333∗11121211333.

Let
j0 := λ0(11121211333∗) = 3.938776241981028026 · · · ∈ L

and
j1 := λ0

(
21233111331132123113331112121133311121211

333∗11121211333111212232
)

= 3.93877624199054947868687 · · · ∈ L.

Proposition 2.30. If j0 ≤ m(a) = λ0(a) < 3.9387762419922 then (up to
transposition) either

• a = . . . 21133311121211333∗111212113331112122 . . . ;
• a = . . . 21133311121211333∗11121211333; or
• a = . . . 31133311121211333∗11121211333.

Proof. Since j0 ≤ m(a) = λ0(a) < 3.9387762419922, we can use Corol-
lary 2.17 and all of the results from Lemma 2.18 up to Lemma 2.27. Be-
cause

min
{
λ0(. . . 21133311121211333∗111212113331112123 . . . ),

λ0(. . . 31133311121211333∗111212113331112123 . . . ),
λ0(. . . 31133311121211333∗111212113331112122 . . . )

}
> 3.9387762419922,
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we can partly use Lemma 2.28 together with the subsequent analysis to
derive that either

• a = . . . 21133311121211333∗111212113331112122 . . . ;
• a = . . . 21133311121211333∗11121211333; or
• a = . . . 31133311121211333∗11121211333. □

Proposition 2.31. If j0 < m(a) < 3.9387762419922 and a contains
21133311121211333∗111212113331112122,

then m(a) ≥ j1.

Proof. As in Lemma 2.28, we are forced to have
m(a) = λ0(. . . 12121133311121211333∗111212113331112122 . . . ).

Therefore, our task is reduced to check that if
m(a) = λ0(. . . 12121133311121211333∗111212113331112122 . . . ),

then one actually has m(a) ≥ j1. For this sake, observe that
λ0(a) ≥ λ0(. . . 112121133311121211333∗111212113331112122 . . . ).

At this point, Lemmas 2.18, 2.20, 2.22 and 2.24 force us to have
λ0(a) ≥ λ0(. . . 113331112121133311121211333∗111212113331112122 . . . ).

Hence,
λ0(a) ≥ λ0(. . .123113331112121133311121211333∗111212113331112122 . . .)
since 131, 32311 and 22311 are forbidden (cf. Lemmas 2.1 and 2.3). It
follows from Lemma 2.5(iii) that

λ0(a) ≥ λ0(. . . 132123113331112121133311121211
333∗111212113331112122 . . . ).

After Lemmas 2.2, 2.4(i), 2.5(i), one has

λ0(a) ≥ λ0(. . . 3111331132123113331112121133311121211
333∗111212113331112122 . . . ).

By Lemmas 2.1(i), 2.3(i), 2.4(i), 2.6(i), the strings 131, 23111 and 3331113
are forbidden, so that

λ0(a) ≥ λ0(21233111331132123113331112121133311121211
333∗111212113331112122 . . . ).

We also have that

λ0(a) ≥ λ0(21233111331132123113331112121133311121211
333∗1112121133311121223 . . . ).
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We claim that a cannot contain 2231. Indeed, Lemma 2.2 forbids 22313
and 22312 since both contain 313 or 312, while Lemma 2.3 forbids 22311.
So we see that 2231 can never be extended.

We also claim that a cannot contain 3231. Indeed, Lemma 2.2 forbids
32313 and 32312 since both contained 313 or 312, while Lemma 2.3 forbids
32311. So we see that 3231 can never be extended.

Therefore, since 2231 is forbidden,

λ0(a) ≥ λ0(21233111331132123113331112121133311121211
333∗11121211333111212232 . . . ).

We also have that 3231 is forbidden and so we find that
λ0(a) ≥ λ0(21233111331132123113331112121133311121211

333∗11121211333111212232) = j1. □

Proposition 2.32. The open interval J = (j0, j1) is a maximal gap of L.

Proof. If a is periodic and j0 ≤ m(a) ≤ j1 < 3.9387762419922, then Propo-
sition 2.30 tells us that a = 11121211333 in which case m(a) = j0 ̸∈ J ,
or a contains 21133311121211333∗111212113331112122. In the latter case,
Proposition 2.31 then tells us that m(a) ≥ j1 and so again m(a) ̸∈ J .
Therefore, J does not contain the Markov value of any periodic sequence
and so, since the Lagrange spectrum is the closure of the set of Markov
values of periodic sequences, we conclude that J is indeed a maximal
gap of L. □

Proposition 2.33. Let a ∈ {1, 2, 3}Z be a sequence with Markov value
j0 < m(a) = λ0(a) < j1 then m1 ≤ m(a) ≤ m4, where

m1 = m(123311133113212121133311121211333∗11121211333)
= 3.9387762419810960597 . . .

and
m4 = m(12331113311321231133311121211333∗11121211333)

= 3.938776241989784909 . . . .

Proof. By Propositions 2.30 and 2.31, we have that
a = . . . 21133311121211333∗11121211333

or

a = . . . 31133311121211333∗11121211333.

We begin by analysing the former. Since 32113331112121 and
22113331112121 are forbidden by Lemma 2.10, 11211333111212 is forbid-
den by Lemma 2.11, and 32121133311121211 is forbidden by Lemma 2.13,
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we have
a = . . . 12121133311121211333∗11121211333.

Since 312 is forbidden, this sequence extends to the left with 1 or 2. Suppose
that it extends by a 1. By Corollary 2.29, and the same arguments we just
made, we see that

a = . . . 12121133311121211333∗∗∗11121211333∗11121211333

and, once again, this word could extend on the left with 1 or 2. Here,
the triple ∗∗∗ indicates the neighbourhood in which Corollary 2.29 is being
applied. However, an extension with 2 is not possible because this would
force λ−11(a) > λ0(a) = m(a), a contradiction. Continuing would leave us
with a = 11121211333, so m(a) = j0, which is also a contradiction. So we
must have

a = . . . 212121133311121211333∗11121211333.

Now

m(a) ≥ m(. . . 13212121133311121211333∗11121211333).

By Lemma 2.2, 313 and 213 are forbidden in a and so

m(a) ≥ m(. . . 113212121133311121211333∗11121211333).

Lemmas 2.4 and 2.5 forbid 111321 and 2113212, so we must have

m(a) ≥ m(. . . 3113212121133311121211333∗11121211333).

Similar arguments allow us to show that

m(a) ≥ m(. . . 311133113212121133311121211333∗11121211333).

Lemma 2.1 forbids 131. We claim that 23111 is also forbidden. Lemma 2.3
forbids 223111 and 323111 while Lemma 2.4 forbids 123111 and so 23111
is never extendible and so must be forbidden. Therefore,

m(a) ≥ m(. . . 3311133113212121133311121211333∗11121211333).

Lemma 2.6 prevents 3331113 and so

m(a) ≥ m(. . . 23311133113212121133311121211333∗11121211333).

From here on, 312 being forbidden by Lemma 2.2 gives us that

m(a) ≥ m(123311133113212121133311121211333∗11121211333) = m1.

Now analysing the possibility that

a = . . . 31133311121211333∗11121211333.

Since 131 is forbidden, we have

m(a) ≤ m(. . . 231133311121211333∗11121211333).
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Now, we are forbidden to have 32311 and 22311 so we must have
m(a) ≤ m(. . . 1231133311121211333∗11121211333).

Next, since 1123113 is forbidden, we must have
m(a) ≤ m(. . . 21231133311121211333∗11121211333).

Then
m(a) ≤ m(. . . 321231133311121211333∗11121211333).

Now we have
m(a) ≤ m(. . . 1321231133311121211333∗11121211333).

Since 313 and 213 are forbidden, we must have
m(a) ≤ m(. . . 11321231133311121211333∗11121211333).

Now 111321 and 211321 are forbidden so we must have
m(a) ≤ m(. . . 311321231133311121211333∗11121211333).

Then
m(a) ≤ m(. . . 13311321231133311121211333∗11121211333).

Since 313 and 213 are forbidden we get
m(a) ≤ m(. . . 113311321231133311121211333∗11121211333).

Then
m(a) ≤ m(. . . 31113311321231133311121211333∗11121211333).

Now 131 is forbidden and extending by 2 would lead to one of 32311,
22311, or 123111 all of which are forbidden. So we obtain

m(a) ≤ m(. . . 331113311321231133311121211333∗11121211333).
We have that 3331113 is forbidden and so we must have

m(a) ≤ m(. . . 2331113311321231133311121211333∗11121211333).
From here we obtain

m(a) ≤ m(12331113311321231133311121211333∗11121211333) = m4.

This completes the proof. □

An immediate consequence of our discussion so far is the following state-
ment:

Corollary 2.34. HD((M \L) ∩ (j0, j1)) = HD(K) where K is the Gauss–
Cantor set of continued fractions with entries 1, 2, 3 not containing the
following forbidden strings (nor their transposes):

• 131, 312, 313, 22311, 32311, 123111, 123112, 1123113,
• 3331113, 2111333111212, 11113331112121,
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• 11113331112122, 22113331112121, 32113331112121,
• 111113331112123, 112113331112121, 211113331112123,
• 3111133311121232, 3111133311121233, 2121133311121212,
• 331133311121212, 22121133311121211, 32121133311121211,
• 121211333111212111, 121211333111212112,
• 21231133311121212, 11212113331112121133.

Proof. Denote by F the set consisting of the strings above and their trans-
poses. By Corollary 2.17, if x ∈ {1, 2, 3}Z and j0 < m(x) < j1,
then . . . x−1x∗

0x1 · · · = . . . 1121211333∗1112121133 . . . (up to transposition).
Furthermore, the discussion before Corollary 2.17 says that x doesn’t con-
tain the strings in F \ {γ, γt}, where γ = 11212113331112121133 is the
“self-replicating” word and γt is its transpose.

By Propositions 2.30 and 2.31, one actually has that
x = yt1133311121211333∗11121211333

where y ∈ {1, 2, 3}N doesn’t contain strings from F \ {γ, γt}. By Propo-
sition 2.33 and Corollary 2.29, either y has the form y = δ11121211333
where δ is a finite string or y doesn’t contain a string from F . In par-
ticular, M ∩ (j0, j1) is included in the union of a countable set and a set
which is bi-Lipschitz homeomorphic to K, so that HD((M \L)∩ (j0, j1)) =
HD(M ∩(j0, j1)) ≤ HD(K). Since it is not hard to see that (M \L)∩(j0, j1)
contains the set{

m(yt212121133311121211333∗11121211333) :
yt21212 doesn’t contain strings from F

}
which is bi-Lipschitz homeomorphic to K, the argument is now complete.

□

Performing calculations using the methods of Jenkinson–Pollicot [8], we
obtained heuristics suggesting that 0.593 < HD(K ′) < HD(K ′′) < 0.595,
where K ′ is the Gauss–Cantor set of continued fractions with entries 1, 2,
3 not containing the forbidden strings 131, 312, 313, 22311, 32311, 123111,
123112, 1123113, 3331113, and 11333111212 (nor their transposes), and
K ′′ is the Gauss–Cantor set of continued fractions with entries 1, 2, 3
not containing the forbidden strings 131, 312, 313, 22311, 32311, 123111,
123112, 1123113, 3331113 (nor their transposes). Since the every forbidden
string for K has a subword that is a forbidden string for K ′, we see that
K ′ ⊂ K. Similarly, since the forbidden strings for K ′′ are a strict subset of
those for K, we have K ⊂ K ′′. Hence we expect the heuristic

0.593 < HD(K) < 0.595
to be true which would also give us that HD(M \L) > 0.593, an improved
lower bound.
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3. Freiman’s gap

In [4, Section 10, pp. 66–71], G. Freiman proved the following result:

Theorem 3.1. One has M ∩ (ν, µ) = ∅ where
ν = [4; 3, 1, 3, 1, 3, 4, 4, 4, 3, 2, 3] + [0; 3, 1, 3, 1, 2, 1, 1, 3, 3, 3, 1, 3, 1, 2, 1]

and
µ = [4; 4, 3, 2, 2, 3, 1, 3, 1, 2, 1] + [0; 3, 2, 1, 1, 3, 1, 3, 1, 2, 1].

In this section, we extract key parts of the proof of this theorem. For this
sake, we restrict from now on our attention to the sequences a = (an)n∈Z ∈
(N∗)Z such that

4 < m(a) = λ0(a) < 5.

Note that these inequalities imply that
a ∈ {1, 2, 3, 4}Z and a0 ∈ {3, 4}.

3.1. Preliminaries. We require the following results the proofs of which
can be found in [9, Appendix D]. The first determine that the central por-
tion of a candidate sequence giving rise to Markov values in the range (ν, µ)
must be (up to transposition) . . . 34∗3 . . . or . . . 34∗4 . . . .

Lemma 3.2. If m(a) < 4.55, then a ∈ {1, 2, 3, 4}Z can not contain the
subwords 41, 42 or their transposes.

Lemma 3.3. If m(a) < 4.52786, then a ∈ {1, 2, 3, 4}Z can not contain the
subwords 313133, 443131344 or their transposes.

Corollary 3.4. Suppose that 4.5278 < m(a) = λ0(a) < 4.52786. Then,
a ∈ {1, 2, 3, 4}Z has the form . . . a−1a0a1 · · · = . . . 343 . . . or . . . 344 . . . (up
to transposition).

3.2. Extensions of the word 343. The following results analyse possible
extensions of . . . 34∗3 . . . .

Lemma 3.5. If m(a) < 4.52786, then a ∈ {1, 2, 3, 4}Z can not contain the
subwords 3432, 134312, 31343132, 21313431312 or their transposes.

Corollary 3.6. If 4.5278295 < m(a) = λ0(a) < 4.5278296 and a−1a0a1 =
343, then a−9 . . . a0 . . . a7 = 33112131343131344 (up to transposition).

Lemma 3.7. If m(a) < 4.528, then a ∈ {1, 2, 3, 4}Z can not contain the
subwords 334, 223444 or their transposes.

We include the proof of the following corollary as we will make use of
the details in the next section.

Corollary 3.8. If 4.5278295 < m(a) = λ0(a) < 4.5278296 and a−1a0a1 =
343, then m(a) ≤ ν.
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Proof. By Corollary 3.6, we have that
a−9 . . . a0 . . . a7 = 33112131343131344

(up to transposition). We want to maximize 4.5278295 < m(a) = λ0(a) <
4.5278296. By Lemma 3.2, this means that

a−9 . . . a0 . . . a9 = 3311213134313134443.

By Lemma 3.7, we have a−9 . . . a0 . . . a11 = 331121313431313444323. By
Lemma 3.5, we derive a−9 . . . a0 . . . a11 = 33112131343131344432344. By
repeating this argument, we conclude that

a−9 . . . a0 . . . a7 · · · = 33112131343131344432344.

Similarly, we have from Lemma 3.7 that
a−10 . . . a0 . . . a7 = 333112131343131344.

By Lemma 3.2, we get a−13 . . . a0 . . . a7 = 131333112131343131344. By
Lemma 3.3, a−15 . . . a0 . . . a7 = 12131333112131343131344. By repeating
this argument, we get . . . a−9 . . . a0 . . . a7 = 12131333112131343131344.

In summary, our assumptions imply the maximal value of m(a) is ν. □

3.3. Extensions of the word 344. The following corollary results from
an analysis of possible extensions of . . . 34∗4 . . . .

Corollary 3.9. If 4.5278291 < m(a) = λ0(a) < 4.527832 and a−1a0a1 =
344, then m(a) ≥ µ.

3.4. End of the proof of Theorem 3.1. The desired result follows di-
rectly from Corollaries 3.4, 3.8 and 3.9.

4. Gaps of the spectra nearby Freiman’s gap

In this section we prove Theorem 1.3. The proof of this theorem begins
with the following lemmas.

Lemma 4.1. If 4.5278295 < m(a) = λ0(a) < 4.5278296, then either
m(a) ≥ µ > ν or m(a) ≤ ν and, up to transposition,

a = . . . 3311213134∗3131344 . . . .

Proof. This is a direct consequence of Corollaries 3.4, 3.6, 3.8 and 3.9. □

Define, for n, m ∈ N,
θn := (444323)n = 444323 . . . 444323︸ ︷︷ ︸

n times

and
θ′

m := (313121)m = 313121 . . . 313121︸ ︷︷ ︸
m times

.
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Lemma 4.2. The family of sets

Wn,m :=
{
m(a) = λ0(a) ∈ (4.5278295, µ) :

a = θt323444313134∗313121133313121θ′ with

θ = θnθ̂, θ′ = θ′
mθ̃, and θ̂, θ̃ ∈ {1, 2, 3, 4}N

}
indexed by n, m ∈ N is a basis of neighbourhoods of ν in M .

Proof. This follows directly from Lemma 4.1 and the proof of Corollary 3.8.
□

Lemma 4.3. Let

K = {[0; θ] : θ ∈ {1, 2, 3, 4}N doesn’t contain the strings 14, 24, 433,

434, 131313, 2343, 223444, 123444 or their transposes},

K1 = {[0; 3, 1, 3, 1, 2, 1, θ̃] ∈ K},

K2 = {[0; 4, 4, 4, 3, 2, 3, θ̂] ∈ K},
and define

g(x) = [0; 3, 1, 3, 1, 2, 1 + x] and h(y) = [0; 4, 4, 4, 3, 2, 3 + y].

Then, for each n, m ∈ N, one has

Wn,m ⊂ An + Bm

where

An = {[4; 3, 1, 3, 1, 2, 1, 1, 3, 3, 3, 1, 3, 1, 2, 1 + gn−1(x)] : x ∈ K1},

and
Bm = {[0; 3, 1, 3, 1, 3, 4, 4, 4, 3, 2, 3 + hm−1(y)] : y ∈ K2}.

Proof. This is an immediate consequence of Lemma 4.2, and the fact that
Lemmas 3.2, 3.3, 3.5, 3.7 ensure that a ∈ {1, 2, 3, 4}N with m(a) < µ can’t
contain the strings 14, 24, 433, 434, 131313, 2343, 223444, 123444 or their
transposes. □

In view of Lemma 4.3, our task is reduced to find gaps in the arithmetic
sums An + Bm for infinitely many pairs of indices n, m. In this direction,
we observe that K1 and K2 are dynamical Cantor sets which are invariant
under the contractions

g(x) = [0; 3, 1, 3, 1, 2, 1 + x] and h(y) = [0; 4, 4, 4, 3, 2, 3 + y]

whose fixed points are

α = [0; 313121] and β = [0; 444323].
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For subsequent reference, we note that g and h can be rewritten as

g(x) = 14x + 19
53x + 72 , h(y) = 127y + 436

538y + 1847 .

In particular,

g′(x) = 1
(53x + 72)2 , h′(y) = 1

(538y + 1847)2

and

α = 2
√

462− 29
53 , β =

√
243542− 430

269 .

Lemma 4.4. One has α = min K1, β = min K2, and
log |g′(α)|
log |h′(β)| ∈ R \Q.

Proof. The fact that α = min K1, β = min K2 follows from the definition
of K1, K2 and the constraint on the continued fraction expansions of the
elements of K. Furthermore, a straightforward computation yields

g′(α) = 1
(43 + 2

√
462)2 and h′(β) = 1

(987 + 2
√

243542)2 .

Since 462 = 2 · 3 · 7 · 11 and 243542 = 2 · 13 · 17 · 19 · 29, their square roots
generate distinct quadratic extensions of Q and

g′(α)m = 1
(43 + 2

√
462)2m

̸= 1
(987 + 2

√
243542)2n

= h′(β)n

for all n, m ∈ N∗. Hence, log |g′(α)|
log |h′(β)| ∈ R \ Q. This ends the proof of the

lemma. □

Also for later use, let us recall the following bound on the distortion of
certain inverse branches of the Gauss map:

Lemma 4.5. Let f(x) = [0; a1, . . . , ak + x] be the inverse branch of the
Gauss map associated to a finite word (a1, . . . , ak) ∈ {1, 2, 3, 4}k, k ≥ 1.
Then,

1
2.3 <

|f ′(x)|
|f ′(y)| < 2.3

for any
√

2−1
2 ≤ x, y ≤ 2

√
2− 2.

Proof. Since

f(z) = pk−1z + pk

qk−1z + qk
and |f ′(z)| = 1

(qk−1z + qk)2 ,
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where pj

qj
= [0; a1, . . . , aj ] for all 1 ≤ j ≤ k, we have

1
2.3 <

(
1 +
√

2
2(2
√

2− 1)

)2

≤ |f
′(x)|
|f ′(y)| =

( qk−1
qk

y + 1
qk−1

qk
x + 1

)2

≤
(

2(2
√

2− 1)
1 +
√

2

)2

< 2.3

for
√

2−1
2 ≤ x, y ≤ 2

√
2− 2 (as 1/5 ≤ qk−1/qk ≤ 1). □

An interesting consequence of this lemma is the fact that the sets An

and Bm (cf. Lemma 4.3) are mildly distorted “copies” of K1 and K2. For
this reason, the next lemma about the “thickness” of K1 and K2 at their
minima will be useful later.

Lemma 4.6. Consider the intervals R0 = [α, α1], U0 = (α1, α2), L0 =
[β, β1] and V0 = (β1, β2), where

• α1 is the largest element of K1 of the form [0; 3, 1, 3, 1, 2, 1, 3, θ̃],
• α2 is the smallest element of K1 of the form [0; 3, 1, 3, 1, 2, 1, 2, θ̃],
• β1 is the largest element of K2 of the form [0; 4, 4, 4, 3, 2, 3, 4, θ̂],
• β2 is the smallest element of K2 of the form [0; 4, 4, 4, 3, 2, 3, 3, θ̂].

Then,
|R0|
|U0|

< 1 and |L0|
|V0|

<
1

100 .

Proof. Since the strings 41, 42 and 2343 are forbidden in continued frac-
tion expansions in K, we have that β1 ≤ [0; 4, 4, 4, 3, 2, 3, 4, 4, 3] and β2 ≥
[0; 4, 4, 4, 3, 2, 3, 3, 1], and

|L0|
|V0|

= β1 − β

β2 − β1
< 0.008565 <

1
100 .

Similarly, we have

α1 ≤ [0; 3, 1, 3, 1, 2, 1, 3, 4] and α2 ≥ [0; 3, 1, 3, 1, 2, 1, 2, 1, 3],

and
|R0|
|U0|

= α1 − α

α2 − α1
< 0.98479 < 1.

This completes the argument. □

At this point, we are ready to complete the proof of Theorem 1.3. In fact,
Lemmas 4.2 and 4.3 reduce our task to find gaps in An + Bm for infinitely
many n, m ∈ N∗. Since An = f0 ◦ gn(K1) and Bm = f1 ◦ hm(K2), where

f0(x) = [4; 3, 1, 3, 1, 2, 1, 1, 3, 3 + x] and f1(x) = [0; 3, 1, 3, 1, 3 + x],
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Figure 4.1. Producing gaps in An + Bm.

and Lemma 4.4 ensures the denseness of {|g′(α)|n/|h′(β)|m : n, m ∈ N∗} in
R+, we get2, for any c ∈ R+, there are infinitely many n, m ∈ N∗ such that

c

2 <
|Rn|
|Lm|

< 2c,

where Rn = f0 ◦ gn(R0) and Lm = f1 ◦ hm(L0). Because Lemma 4.5 also
says that

|Lm|
|Vm|

<
2.3
100 and |Rn|

|Un|
< 2.3,

where Un = f0 ◦ gn(U0), Vm = f1 ◦ hm(V0) are gaps of An and Bm (as U0
and V0 are gaps of K1 and K2), we conclude that
|Lm|
|Un|

= |Lm|
|Rn|

· |Rn|
|Un|

<
2
c
· 2.3 and |Rn|

|Vm|
= |Rn|
|Lm|

· |Lm|
|Vm|

< 2c · 2.3
100 .

Thus, if we take c = 5, then
|Lm|
|Un|

< 0.92 < 1 and |Rn|
|Vm|

< 0.23 < 1.

This ends the proof of Theorem 1.3 because the inequalities above imply
that An + Bm has a gap: indeed, these estimates say that any parameter
t ∈ R such that t − Un contains Lm and their right endpoints are suffi-
ciently close also satisfies t− Rn ⊂ Vm and, a fortiori, (t− An) ∩ Bm = ∅
(see Figure 4.1); hence, An + Bm misses an entire open interval of param-
eters. Furthermore, in the language of the statement of Theorem 1.3, each
maximal gap (αn, βn) in the infinite sequence is contained in Aj + Bk, for
some j, k ∈ N, with the diameter of Aj + Bk tending to 0 as j, k → ∞.
Note that j, k → ∞ as n → ∞. It then follows from Lemma 4.2 that
limn→∞ αn = limn→∞ βn = ν, as claimed.

Appendix A. Additional elements of M \ L

Here we present new elements of M \L that are less than those discussed
in Section 2. We only give the definitions of the sequences and Cantor sets
involved and leave the proofs to the interested reader. These new sequences

2Actually, using the general distortion bound statement in Chapter 4 of Palis–Takens
book [16], it is possible to show that for any c ∈ R+ and 0 < ε < 1, one has c(1 − ε) <
|Rn|
|Lm| < c(1 + ε) for infinitely many n, m ∈ N∗.
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were also discovered using the computational search technique discussed in
the introduction.

A.1. Elements of M \ L near to 3.676. Computer investigations lead
us to believe that there is a portion of M \ L near to 3.676 given by an
analysis of the subset of the real line near to

m(3∗21112123) = 3.676699417246755742 . . . .

A.2. Elements of M \ L near to 3.726. Computer investigations lead
us to believe that there is a portion of M \ L near to 3.726 given by an
analysis of the subset of the real line near to

m(3322211121223∗) = 3.726146224233042720 . . . .

Computer investigations also lead us to believe that there is a portion
of M \ L near to 3.726 given by an analysis of the subset of the real line
near to

m(33222121223∗) = 3.726278993734881116 . . . .

A.3. Elements of M \ L near to 3.942. Computer investigations lead
us to believe that there is a portion of M \ L near to 3.942 given by an
analysis of the subset of the real line near to

m(33211121232331113∗) = 3.942001159911341469 . . . .

Note that this value is higher than the elements near to 3.938 that we
rigorously considered in this paper. We chose not to analyse this sequence
since, given its length, it would require a more involved analysis of the com-
binatorics without (in heuristic calculations) giving rise to an appreciable
increase in the Hausdorff dimension estimates of M \ L.

Appendix B. Pseudo-code for computer search

Below is the pseudo-code for the part of the computer search that deter-
mines the central portion of sequences a ∈ {1, 2, 3, 4}Z for which m(a) =
λ0(a) ∈ [l, n], for some interval [l, n]. The algorithm was implemented using
the SageMath mathematical software [18].

The code can also be used to ‘confirm’ results about gaps in the spectra.
For example, when running the code on intervals like (0,

√
5), (
√

12,
√

13)
or other known gaps the code terminates and returns an empty list of
candidate sequences. On closed intervals, if the endpoints correspond to
unique sequences, the code will return a two element list of finite sequences
approaching the sequences corresponding to the endpoints.
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Algorithm 1 - Find sequences whose Markov values could lie in the range
[l, n]

candidates← [1∗, 2∗, 3∗, 4∗]
forbidden_words← [ ]
alphabet← {_, 1, 2, 3, 4} # _ is the empty string
extensions← (alphabet× alphabet) \ {(_, _)}
l← l
n← n
length_limit← maximum length of sequences to search up to
min_seq_len← minimum length of all sequences in candidates
while min_seq_len < length_limit and candidates ̸= [] do

for sequence in candidates do
remove sequence from candidates
for (x, y) in extensions do

allowable← True
trial_sequence← concatenation(x, sequence, y)
if trial_sequence contains any words from forbidden_words then

continue # the sequence is forbidden so move on to the next
end if
λmax ← maximum possible value of λ0(trial_sequence)
if λmax < l then

continue # λ0 is too small so move on to the next sequence
end if
for z in trial_sequence do

j ← position of z in trial_sequence
λmin ← minimum possible value of λj(trial_sequence)
if λmin > n then

append trial_sequence to forbidden_words
allowable← False # the Markov value is too large

end if
end for
if allowable then # the Markov value can lie in [l, n]

append trial_sequence to candidates
end if

end for
end for
if candidates ̸= [ ] then

min_seq_len← minimum length of all sequences in candidates
end if

end while
return candidates
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