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Congruences of Eisenstein series of level Γ1(N)
via Dieudonné theory of formal groups

par Ningchuan ZHANG

Résumé. Dans cet article, nous donnons une nouvelle explication des idéaux
de congruences des séries d’Eisenstein de niveau Γ1(N) et de caractère χ.
Notre approche est basée sur l’interprétation algébro-géométrique de Katz des
congruences p-adiques des séries d’Eisenstein normalisées E2k de niveau 1. Une
étape cruciale de notre approche consiste à reformuler une correspondance de
Riemann–Hilbert dans l’approche de Katz en termes de la théorie de Dieu-
donné des A-modules formels de hauteur 1 et de leurs schémas de sous-groupes
finis. Nous généralisons en outre cette correspondance de Riemann–Hilbert en
termes de groupes formels de hauteur supérieure à 1.

Abstract. In this paper, we give a new explanation of congruences of Eisen-
stein series of level Γ1(N) and character χ. Our approach is based on Katz’s
algebro-geometric explanation of p-adic congruences of normalized Eisenstein
series E2k of level 1. One crucial step in our argument is to reformulate a
Riemann–Hilbert correspondence in Katz’s explanation in terms of Dieudonné
theory of height 1 formal A-modules and their finite subgroup schemes. We
further generalize this Riemann–Hilbert correspondence in terms of formal
groups of height greater than 1.

In [12], Katz gave an algebro-geometric explanation of the p-adic con-
gruences of normalized Eisenstein series E2k of weight 2k and level 1. Using
a Riemann–Hilbert type correspondence (Theorem 2.15) and a theorem of
Igusa, Katz showed:

Theorem ([12, Corollary 4.4.1]). The followings are equivalent:
(1) There is a modular form of weight 2k whose q-expansion is congru-

ent to 1 modulo pm.
(2) The integer 2k is divisible by (p − 1)pm−1 if p > 2 and by 2α(m) if

p = 2, where α(1) = 0, α(2) = 1, and α(m) = m − 2 if m ≥ 2.
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In proving this theorem, Katz essentially used the fact that (2) is equiv-
alent to:

(2′) The 2k-th power representation Z⊗2k
p of Z×

p is trivial mod pm.
As the space of modular forms of level 1 and weight 2k are spanned by cusp
forms and the normalized Eisenstein series

E2k = 1 − 4k

B2k

∞∑
n=1

σ2k−1(n)qn,

Katz’s theorem gives an upper bound of the p-adic valuation of E2k − 1.
The theorem of Clausen and Von Staudt on Bernoulli numbers then implies
E2k does realize the congruence of modular forms of level 1 and weight 2k
predicted by that of the Z×

p -representation Z⊗2k
p . The first goal of this paper

is to adapt Katz’s method to study congruences between modular forms in

Mk(Γ1(N), χ) = Mk(Γ1(N))χ−1
,

and the constant function 1, where χ : (Z/N)× → C× is a primitive Dirich-
let character of conductor N . By the q-expansion principle, such a modular
form cannot be a cusp form and thus must have an Eisenstein series as a
summand. Our strategy is to study a p-adic version of this problem and then
assemble the congruences at each prime. As we will be working integrally
and p-adically, it is necessary to specify the meanings of level structures.
Let Mell(µN ) be the stack over Z whose R points are:

Mell(µN )(R)

=
{

(C/R, η : µN ↪→ C)
∣∣∣∣ C is an elliptic curve over R,
η is an embedding of group schemes

}
.

When R contains a primitive N -th root of unity, a µN -level structure on
an elliptic curve C is (non-canonically) equivalent to a classical Γ1(N)-level
structure Z/N ↪→ C on C. Write N = pvN ′ where p is coprime to N ′. The
p-adic version of Mell(µN ) we will consider is Mord

ell (pv, Γ1(N ′)), whose R
points are

Mord
ell (pv, Γ1(N ′))(R)

=
{

(C/R, ηp, η′)
∣∣∣∣∣ C is a p-ordinary elliptic curve over R,

ηp : µpv
∼−→ Ĉ[pv], η′ : Z/N ′ ↪→ C[N ]

}
,

where Ĉ is the formal group of the elliptic curve C. The stack
Mord

ell (pv, Γ1(N ′)) is equivalent to the p-completion of Mell(µN ) when p

divides N , and is an open substack otherwise. Now let χ : (Z/N)× → C×
p

be a p-adic primitive Dirichlet character of conductor N . Write Zp[χ] =
Zp[Im χ]. The character uniquely factors as product χ = χp · χ′, where χp

and χ′ have conductors pv and N ′, respectively. Let k be an integer such
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that (−1)k = χ(−1). Denote by Z⊗k
p [χ] the Z×

p × (Z/N ′)×-representation
associated to the character

Z×
p ×

(
Z/N ′)× (a,b)7→ak·χp(a)·χ′(b)−−−−−−−−−−−−−→ (Zp[χ])×.

The first main result of this paper is:

Theorem (Main Theorem 2.5). Let I ⊴ Zp[χ] be an ideal and k ≥ 3. The
followings are equivalent:

(i) There is a modular form f over the stack Mord
ell (pv, Γ1(N ′)) of weight

k and type χ, with q-expansion f(q) ∈ 1 + IqJqK.
(v) The Z×

p × (Z/N ′)×-representation Z⊗k
p [χ] is trivial modulo I.

The proof of the Main Theorem has three major steps:
(I) Identify the Dirichlet character χ with the Galois descent data of a

formal Zp[χ]-module Ĉk,χ over Mord
ell (Γ0(N ′)), whose R-points are

Mord
ell (Γ0(N ′))(R)

=
{

(C/R, H ⊆C[N ′])
∣∣∣∣ C is a p-ordinary elliptic curve over R,

Z/N ′ ∼=H ⊆C[N ] is a flat subgroup scheme

}
.

We then translate congruences of modular forms in
H0(Mord

ell (pv, Γ1(N ′)), ω⊗k ⊗ Zp[χ])χ−1 to those of elements in the
Dieudonné module D(Ĉk,χ) of Ĉk,χ.

(II) Reformulate a Riemann–Hilbert correspondence in Katz’s explana-
tion in terms of the Dieudonné module and the Galois descent data
of height 1 formal A-modules. In Theorem 2.20, we first relate con-
gruences of generators in D(Ĉk,χ) to those of that of finite subgroup
schemes of Ĉk,χ. The latter is then connected to congruences of the
Galois representation [ρk,χ] attached to Ĉk,χ via Galois descent. In
Theorem A.8 and Theorem A.9, we give a generalization of this
correspondence in terms of formal groups of heights greater than 1.

(III) Factor the character ρk,χ associated to the Galois representation
[ρk,χ] and then use a relative version of Igusa’s theorem to reduce
the group to Z×

p × (Z/N ′)×.
The implication from (i) to (v) also follows from [15, Lemma 1.2.2] when
p does not divide N . Our method therefore gives a new explanation of the
connection between congruences of modular forms and p-adic representa-
tions, via the Dieudonné theory of formal A-modules.

Let I(i), I(v) ⊴ Zp[χ] be smallest ideal satisfying (i) and (v), respectively.
Theorem 2.5 implies I(i) = I(v). As the smallest ideal has generators with
the largest p-adic valuations, we will call these smallest ideals “the maximal
congruences” in both scenarios. The maximal congruences of the Z×

p ×
(Z/N ′)×-representations Z⊗k

p [χ] are easy to compute, since the group is



218 Ningchuan Zhang

topologically finitely generated. The result of this computation is recorded
in Theorem 3.4. Following this, we are particularly interested to find explicit
formulas of modular forms in the Eisenstein subspace Ek(pv, Γ1(N ′), χ) that
match the congruences of Z⊗k

p [χ]. Write χ = χp · χ′ as above. When |Im χ′|
is not a power of p or |Im χ′| = 1, the maximal congruence of modular
forms in the H0(Mord

ell (pv, Γ1(N ′)), ω⊗k ⊗ Zp[χ])χ−1 is realized by:

Ek,χ(q) = 1 − 2k

Bk,χ

∞∑
n=1

σk−1,χ(n)qn, where σm,χ(n) =
∑

0<d|n
χ(d)dm.

This is in particular an Eisenstein series. Here Bk,χ is the k-th generalized
Bernoulli number associated to the Dirichlet character χ. They are defined
to as the Taylor coefficients of the following function:

Fχ(t) =
N∑

a=1

χ(a)teat

eNt − 1 =
∞∑

n=0
Bk,χ

tk

k! , χ(a) = 0 if (a, N) ̸= 1.

Arithmetic properties of Bk,χ were studied in [3]. The argument in our
paper therefore relates the denominator of Bk,χ

2k to congruences of the Z×
p ×

(Z/N ′)×-representations Z⊗k
p [χ] in this case.

When |Im χ′| > 1 is a power of p, the maximal congruence is real-
ized as a linear combination of Ek,χ with some other modular forms in
H0(Mord

ell (pv, Γ1(N ′)), ω⊗k ⊗Zp[χ])χ−1 . In this case, congruences of the rep-
resentation Z⊗k

p [χ] shed light on the numerator of Bk,χ

2k . One such exam-
ple is:

Corollary (Proposition 3.10 and Corollary 3.17). Let p > 2 be a prime and
χ : (Z/ℓ)× → C×

p be a Dirichlet character of conductor ℓ such that ℓ ̸= p
is a prime number and |Im χ′| = |Im χ| is a p-power. Denote the maximal
ideal of Zp[χ] by m. Assume (−1)k = χ(−1). Then Bk,χ

2k is an algebraic
p-adic integer in Zp[χ] by [3, Theorem 1]. We then have

Bk,χ

2k
∈ m, when (p − 1) ∤ k.

This relation is reflected in the fact that the maximal congruence of the
Z×

p × (Z/N ′)×-representation Z⊗k
p [χ] is (1) when (p − 1) ∤ k.

We further note that congruences of p-adic representations of Z×
p ×

(Z/N ′)× are related to its group cohomology.

Corollary (Corollary 3.17). Let I ⊴ Zp[χ] be an ideal. The followings are
equivalent:

(1) The ideal I is the maximal congruence of modular forms in
H0(Mord

ell (Γ0(N ′)), ωk,χ).
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(2) The ideal I is the maximal congruence of Z⊗k
p [χ] as a Z×

p ×(Z/N ′)×-
representation.

(3) H1
c (Z×

p × (Z/N ′)× ;Z⊗k
p [χ]) ∼= Zp[χ]/I.

Combined with the explicit formulas of the Eisenstein series that realizes
the maximal congruences, Corollary 3.17 implies that the group cohomol-
ogy H1

c (Z×
p × (Z/N ′)× ;Z⊗k

p [χ]) computes the denominator of Bk,χ

2k when
|Im χ′| is not a power of p and (−1)k = χ(−1). We conclude this paper by
noting that when the character χ is trivial, the continuous group cohomol-
ogy H1

c (Z×
p ;Z⊗2k

p ) appears in other fields of mathematics:
• In chromatic homotopy theory, this group cohomology computes

the p-primary part of the image of the J-homomorphism in the
stable homotopy groups of the sphere. In this way, we have given
a new explanation of the connection between congruences of the
normalized Eisenstein series E2k and the image of J .

• In algebraic K-theory, a theorem of Soulé implies this group coho-
mology is isomorphic to certain étale cohomology which appears in
the Lichtenbaum Conjecture for the Riemann ζ-function.

Notations and conventions.
• Denote the Teichmüller character by the Greek letter ω and denote

the sheaf of invariant differentials on various stacks by the boldface
version of the same Greek letter ω.

• Write Cp for the analytic completion of Qp, the algebraic closure of
the rational p-adics.

• Write G for the constant G-group scheme.
• Write Ĝa and Ĝm for the additive and multiplicative formal groups,

respectively. Denote by µN the N -torsion subgroup scheme of Ĝm,
and by αp the kernel of the p-th power isogeny of Ĝa over an Fp-
algebra.

• By a height 1 or slope 1 formal group Ĝ, we mean Ĝ is étale locally
isomorphic Ĝ⊕d

m , where d is the dimension of Ĝ.
• Let M be a G-representation in an R-modules and χ : G → R× be

a character. We write Mχ for the χ-eigensubspace of M .
• We will suppress the Zp in M ⊗Zp N when M and N are both
Zp-modules.

• Let χ be a Dirichlet character of conductor N . Write N = pvN ′,
where p ∤ N ′. Then there is a unique decomposition χ = χpχ′, where
the conductors of χp and χ′ are pv and N ′, respectively. We fix the
meanings of N , N ′, v, χp, and χ′ throughout the paper.

• We will write “∼=” for 1-categorical isomorphisms and “≃” for equiv-
alences of categories or stacks.
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1. µN -level structures on elliptic curves and modular forms
1.1. The Eisenstein subspace. Let χ : (Z/N)× → C× be a primitive
Dirichlet character of conductor N . We are now going to introduce the
Eisenstein series of level Γ1(N) and character χ, following [8, §5.1] and [25,
Chapter 5].

Definition 1.1. Let Γ ≤ SL2(Z) be a congruence subgroup. Let T ⊆
End(Mk(Γ)) be the Hecke algebra acting on Mk(Γ). Then there is decom-
position of T-modules:

(1.2) Mk(Γ) = Ek(Γ) ⊕ Sk(Γ),

where Sk(Γ) is subspace of cusp forms, i.e. modular forms that vanish at
all cusps. The subspace Ek(Γ) is the Eisenstein subspace of weight k and
level Γ.

Example 1.3. Below is a family of Eisenstein series in Ek(Γ1(N), χ). Let
χ1 : (Z/N1)× → C× and χ2 : (Z/N2)× → C× be two primitive Dirichlet
characters of conductors N1 and N2. Define an Eisenstein series:

Gk,χ1,χ2(z) =
∑

(n,m)̸=(0,0)

χ1(m)χ−1
2 (n)

(mNz + n)k
.

This is an Eisenstein series of weight k and level N1N2.

Theorem 1.4 ([7, Theorem 4.5.2]). Let N > 1 be a positive integer and
k ≥ 3. The Eisenstein series {Gk,χ1,χ2(tz) | (N1N2t)|N, χ2/χ1 = χ} forms
a basis of Ek(Γ1(N), χ).

1.2. µN -level structures. As we will be working integrally and p-adically
at levels divisible by p, it is necessary to specify the meaning of Γ1(N)-level
structures.

Definition 1.5. A µN -level structure on an elliptic curve C is an embed-
ding of group schemes η : µN ↪→ C. Denote by Mell(µN ) the moduli stack
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of elliptic curves with µN -level structures. Let R be a ring. The R points
of Mell(µN ) are

Mell(µN )(R) =

(C/R, η)

∣∣∣∣∣∣
C is an elliptic curve over R and
η : µN ↪→ C is an embedding
of group schemes

 .

Define the space of modular forms of weight k and level µN by

Mk(µN ) = H0(Mell(µN ), ω⊗k), Mk(µN , χ) = Mk(µN )χ−1
,

where χ is a Dirichlet character of conductor N .

Lemma 1.6. The stacks Mk(Γ1(N), χ) and Mk(µN , χ) are equivalent
over C.

Proof. This is because Mell(Γ1(N))(R) ≃ Mell(µN )(R) when R contains
a primitive N -th root of unity. □

Proposition 1.7. When N ≥ 4, Mell(µN ) is represented by a smooth
affine curve over Z.

Proof. By [17, Corollary 4.7.1], it suffices to show:
(1) The forgetful map Mell(µN ) → Mell is relatively representable,

affine, and étale.
(2) Mell(µN ) is rigid, meaning that there is no non-trivial automor-

phism of the pair (C, η : µN ↪→ C).
(1) is proved in [17, Section 4.9, 4.10]. (2) is proved in the [17, Corol-
lary 2.7.4] when N ≥ 4. □

1.3. The q-expansion principle. Let Mell(Γ)R be moduli stack of gen-
eralized elliptic curves over R-schemes with Γ-level structures.

Definition 1.8. A cusp in Mell(Γ)R is an embedding Spf RJqK → Mell(Γ)R

that classifies a Γ-level structure on the Tate curve T (q). The q-expansion
of a modular form f ∈ H0(Mell(Γ)R, ω⊗k) at a cusp is its image under
restriction map to the said cusp.

Proposition 1.9 (The q-expansion principle [12, Theorem 1.6.1]). Let f
be a modular form of weight k, level Γ, and coefficients in R. It is zero iff
its restrictions to all cusps are zero. Furthermore, when the stack Mell(Γ)R

is irreducible, the restriction map to any cusp is injective.

It follows that congruences of modular forms are determined by their q-
expansions at any cusp when Mell(Γ)R is irreducible. By [5, Theorem 1.2.1],
this is indeed the case when Γ = Γ1(N) and R = Z.

Now normalize Ek,χ1,χ2 so that its coefficients are algebraic integers.
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Definition 1.10 (Normalization of Gk,χ1,χ2). When χ2 is non-trivial, we
define normalized Eisenstein series:

Ek,χ1,χ2(q) =
∑
n≥1

 ∑
0<d|n

χ2(d)χ1(n/d)dk−1

 qn.

When χ1 is the trivial character χ0 and χ2 = χ, we define Ek,χ and
Ek,χ0,χ by

Ek,χ(q) = 1 − 2k

Bk,χ

∑
n≥1

 ∑
0<d|n

χ(d)dk−1

 qn,

Ek,χ0,χ(q) = c · Ek,χ(q) = c0 + c1
∑
n≥1

 ∑
0<d|n

χ(d)dk−1

 qn,

where c0, c1 ∈ Z[χ] are coprime and c0/c1 = −Bk,χ

2k .

Remark 1.11. As Z[χ] has non-trivial unit group, the constant c is not
unique in general.

Proposition 1.12. Ek,χ1,χ2(q) ∈ (H0(Mell(µN ), ω⊗k) ⊗Z Z[χ1, χ2])χ1/χ2.

Proof. By Lemma 1.6, Ek,χ1,χ2 ∈ Mk(µN ). It is in the χ1/χ2-eigensubspace
by Theorem 1.4. As the coefficients of Ek,χ1,χ2(q) are all in Z[χ1, χ2] by
Definition 1.10, the q-expansion principle Proposition 1.9 implies that

Ek,χ1,χ2 ∈ H0(Mell(µN ) ×Z SpecZ[χ1, χ2], ω⊗k).
When the conductors of χ1 and χ2 are 3, their images are {±1} and
Z[χ1, χ2] = Z. When the conductors of χ1 and χ2 are at least 4, the claim
follows from Proposition 1.7. □

1.4. p-adic modulis. We will study congruences of modular forms in
Mk(µN , χ) completed at a prime p.

Definition 1.13. An elliptic curve C over a p-complete ring is called
(p-)ordinary if it has nodal singularity, or its reduction mod p is ordinary,
i.e. the formal group Ĉ associated to C has height 1 reduction mod p.

Denote the p-completed moduli stack of p-ordinary elliptic curve by
Mord

ell . This is an open substack of Mell, since it is the non-vanishing locus
of the Hasse invariant.

Restricted to Mord
ell , the µpv -level structures on an elliptic curve C are

identified with the corresponding level structures on the height 1 formal
group Ĉ. As formal groups of height 1 are étale locally isomorphic to Ĝm,
the multiplicative formal group, there is a tower of stacks:

Mtriv
ell · · · Mord

ell (p2) Mord
ell (p) Mord

ell ,
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where Mord
ell (pv) and Mtriv

ell are the moduli stacks with R-points
(C, η : µpv

∼→ Ĉ[pv]) and (C, η : Ĝm
∼→ Ĉ) respectively. The forgetful map

Mord
ell (pv) → Mord

ell is a (Z/pv)×-torsor and Mtriv
ell → Mord

ell is a Z×
p -torsor.

There is a pullback diagram of towers of stacks:

(1.14)
Mtriv

ell · · · Mord
ell (p2) Mord

ell (p) Mord
ell

Spf Zp · · · B(1+p2Zp) B(1+pZp) BZ×
p

⌟ ⌟ ⌟ ⌟

Proposition 1.15 ([1, 14]). When p > 2 or p = 2 and v > 1, Mord
ell (pv)

and Mtriv
ell are affine formal schemes. In particular, Mtriv

ell ≃ Spf Dp where
Dp is the ring of divided congruences of p-adic modular forms.

The strategy now is to relate congruences of Ek,χ to finite subgroups of
the formal groups and formal A-modules associated to p-ordinary elliptic
curves. Below are some facts about needed in the study of formal group of
a p-ordinary elliptic curve.

Proposition 1.16. Let C be a p-ordinary elliptic curve over a Zp-algebra.
Denote its formal group by Ĉ.

(1) C has a canonical subgroup H of order p, where H = Ĉ[p].
(2) The quotient map φ : C 7→ C/H is the relative Frobenius map on

Mord
ell .

(3) Let f(q) be the q-expansion of a modular form over Mord
ell , then

φ∗f(q) = f(qp).
(4) There is an isomorphism of invertible sheaves F : φ∗ω

∼→ ω over
Mord

ell , where ω is the sheaf of invariant differentials of C.

We conclude by comparing the integral and p-adic moduli problems.

Lemma 1.17. If an elliptic curve C admits a µN -level structure, then it
is p-ordinary for all primes p | N .

Proof. As µp is a subgroup scheme of µN when p | N , it suffices to prove
the case when N = p. Notice µp is p-torsion, any embedding of µp into
an elliptic curve C must factor through C[p]. When C is p-supersingular,
C[p] = Ĉ[p]. Thus it reduces to showing that there is no embedding of µp

into a height 2 formal group.
Using Dieudonné theory of finite groups schemes, we can show the only

finite subgroup scheme of rank p in a height 2 formal group is étale locally
isomorphic to αp, which is not étale locally isomorphic to µp. □
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Definition 1.18. Let Mord
ell (pv, Γ1(N ′)) be the stack whose R-points are

Mord
ell (pv, Γ1(N ′))(R)

=
{

(C/R, ηp, η′)
∣∣∣∣∣ C is a p-ordinary elliptic curve over R,

ηp : µpv
∼−→ Ĉ[pv], η′ : Z/N ′ ↪→ C[N ]

}
.

Proposition 1.19. Write N = pv · N ′, where p ∤ N ′. Then we have

(Mell(µN ))∧
p ≃

{
Mord

ell (pv, Γ1(N ′)), if p | N ;
(Mell)∧

p (Γ1(N)), if p ∤ N.

Proof. This follows from Lemma 1.17. □

Proposition 1.20. The forgetful map ξ : Mord
ell (pv, Γ1(N ′))→Mord

ell (Γ0(N ′))
is a torsor of stacks for the group (Z/N)×.

Proof. One can check this by unraveling the definition of G-torsors for
stacks. □

Proposition 1.21. The stack Mord
ell (pv, Γ1(N ′)) is represented by a smooth

formal affine curve over Zp in the following cases:
• N = pv · N ′ ≥ 4 for any p.
• N = p = 3.
• N = N ′ = 3 and p ≡ 2 mod 3.

Proof. When N ≥ 4, the stack Mord
ell (pv, Γ1(N ′)) is the p-completion (when

p | N), or a distinguished open substack of the p-completion (when p ∤ N)
of Mell(µN ) by Proposition 1.19. As the latter is represented by a smooth
affine curve over Z by Proposition 1.7, the first case of the claim follows.

When N = p = 3, Mord
ell (3) is affine by Proposition 1.15.

When N = 3 and p ̸= 3, it suffices to show the moduli problem is rigid
as in the proof of Proposition 1.7. Let ε be a nontrivial automorphism of C
that preserves a Γ1(3)-level structure η′ : Z/3 ↪→ C[3]. Adapting the proof
of [17, Corollary 2.7.3] to the N = 3 case, we can show ε must satisfy
ε2 + ε + 1 = 0. This implies ε is an element of order 3 in aut(C). By [23,
Proposition A.1.2.(c)], aut(C) has an element of order 3 iff the j-invariant
of the elliptic curve C is 0. By [23, Example V.4.4, Exercise 5.7], the j = 0
elliptic curve is p-supersingular when p ≡ 2 mod 3. As a result, when p ≡ 2
mod 3, there is no non-trivial automorphism of a p-ordinary elliptic C that
preserves a Γ1(3)-structure. This shows the moduli problem Mord

ell (Γ1(3))
is rigid at such primes, and hence represented by a smooth formal affine
curve over Zp. □

Remark 1.22. The moduli problem Mord
ell (Γ1(3)) is not rigid when p ≡ 1

mod 3. For such primes, the j = 0 elliptic curve C is p-ordinary. C has an
automorphism ε of order 3. As C[3] is isomorphic to the constant group
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scheme Z/3⊕2, the automorphism ε restricts to an element of order 3 in
GL2(Z/3). From the identity 0 = ε3−1 = (ε−1)3 in End(C[3]) ∼= M2(Z/3),
ε is unipotent. Then there is a basis {P, Q} of C[3] under which ε acts by
the matrix ( 1 1

0 1 ). Let η′ : Z/3 ↪→ C[3] that sends 1 ∈ Z/3 to P ∈ C[3]. The
matrix representations of ε shows it is an automorphism of the pair (C, η′).
Consequently, Mord

ell (Γ1(3)) is not rigid. Therefore the moduli problem not
represented by a scheme.

Proposition 1.23. Let χ be a Dirichlet character of conductor N , where
N = pvN ′ with p ∤ N ′. Denote by Ek(pv, Γ1(N ′), χ) the Eisenstein subspace
in the χ−1-eigensubspace in H0(Mord

ell (pv, Γ1(N ′)), ω⊗k ⊗ Zp[χ]). Then we
have a decomposition:

Ek(µN , χ)∧
p

∼=
⊕

[σ]∈coker ι∗

Ek(pv, Γ1(N ′), ι ◦ σ ◦ χ),

where ι : Q(χ) ↪→ Cp is a field extension and ι∗ : gal(ι(Q(χ))/Qp) →
gal(Q(χ)/Q) is the induced map of ι on Galois groups.

Proof. This is a result of the equivalence of p-adic (Z/N)×-representations
[27, Corollary A.3.5]:

Z[χ] ⊗Z Zp
∼=

⊕
[σ]∈coker ι∗

Zp[ι ◦ σ ◦ χ]. □

Corollary 1.24. Let χ1 and χ2 be p-adic Dirichlet characters of conductors
N1 and N2, respectively. Then the normalized Eisenstein series Ek,χ1,χ2 in
Definition 1.10 defines a p-adic Eisenstein series in Ek(pv, Γ1(N ′), χ2/χ1),
where N = N1N2 = pvN ′ and p ∤ N ′.

2. Eisenstein series and Galois representations
In this section, we adapt Katz’s explanation of congruences of E2k as

p-adic modular forms in [12] to study the congruences of p-adic Eisenstein
series with level (µpv , Γ1(N ′)). The statement and proof of the Main Theo-
rem (2.5) rely heavily on the Dieudonné theory of formal groups and formal
A-modules, which will be briefly reviewed in the next subsection. A refer-
ence for the general theory of formal groups and Dieudonné theory can be
found in [6].

2.1. Review of Dieudonné modules and Galois descent of formal
groups. Let R be a p-complete smooth Zp-algebra such that R/p is an
integrally closed domain and R admits an endomorphism φ : R → R that
lifts the p-th power map on R.

The Dieudonné module D(Ĝ) of a formal group Ĝ0 over R/p is a triple

D(Ĝ) = (M, F : φ∗M −→ M, V : M −→ φ∗M),
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where M = PH1
dR(Ĝ/R) is the primitives in the de Rham cohomology

for some lift Ĝ of Ĝ0 to R and FV = p = V F on the respective do-
mains. Formal groups of the same height h < ∞ over R/p are étale lo-
cally isomorphic to each other. It follows that their isomorphism classes
are classified by the continuous Galois cohomology H1

c (πét
1 (R/p); aut(Γh)),

where Γh is Honda formal group of height h. The Galois cohomology class
[ρ] ∈ H1

c (πét
1 (R/p); aut(Γh)) that corresponds to Ĝ0 is called the Galois

descent data of Ĝ0.
When Ĝ has height (slope) 1, PH1

dR(Ĝ/R) = ω(Ĝ) is the sheaf of in-
variant differentials of Ĝ and F : φ∗M → M is an isomorphism. As a re-
sult, the Verschiebung V is determined by F in this case. We will write
D(Ĝ) = (ω(Ĝ), F : φ∗ω(Ĝ) ∼→ ω(Ĝ)) when Ĝ has height 1.
Example 2.1. Let R be a p-complete algebra and φ : R → R be a lift of
Frobenius map. Denote the Dieudonné module of Ĝm/R, the multiplicative
formal group over R, by D(Ĝm) = (M, F : φ∗M

∼→ M). Then M is a free
R-module of rank 1 generated by an element γ such that F (γ) = γ.

The Galois descent data of height 1 formal groups are described by the
following:
Proposition 2.2. Isomorphism classes of formal groups over a p-complete
algebra R with height 1 reductions modulo p are classified by the abelian
group Hom(πét

1 (R),Z×
p ). In particular, the constant map in Hom(πét

1 (R),Z×
p )

corresponds to Ĝm.

Proof. When h = 1, Γ1 = Ĝm and aut(Ĝm) ∼= Z×
p is an abelian group.

Since R is p-complete, we have πét
1 (R) ∼= πét

1 (R/p). Using the fact that
formal groups of height 1 over R/p are étale locally isomorphic to Ĝm,
the group cohomology H1

c (πét
1 (R);Z×

p ) ∼= H1
c (πét

1 (R/p);Z×
p ) classifies for-

mal groups of height 1 over R/p up to isomorphisms. In particular, the
Galois cohomology class represented by the constant map corresponds to
Ĝm over R/p. This Galois cohomology is an abelian group since Z×

p is an
abelian group. As the étale fundamental group acts trivially on Z×

p , we
have H1

c (πét
1 (R);Z×

p ) ∼= Hom(πét
1 (R),Z×

p ). This shows Ĝm is classified by
the constant group homomorphism in Hom(πét

1 (R),Z×
p ).

By the Lubin–Tate deformation theory of formal groups, height 1
formal groups over R/p have unique deformations to R. This yields
Hom(πét

1 (R),Z×
p ) ∼= H1

c (πét
1 (R);Z×

p ) classifies formal groups over R with
height 1 reductions modulo p up to isomorphisms. □

Proposition 2.2 suggests a natural closed symmetric monoidal structure
in the category of 1-dimensional formal groups of height 1. Let ρi : πét

1 (R) →
Z×

p be the Galois descent data for the height 1 formal groups Ĝi, i = 1, 2.
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Then the Galois descent data for Ĝ1 ⊗ Ĝ2 is ρ1 · ρ2. In terms of Dieudonné
modules, this monoidal structure is described by

D(Ĝ1 ⊗ Ĝ2) = (ω1 ⊗R ω2, F1 ⊗ F2 : φ∗(ω1 ⊗R ω2)
∼= φ∗ω1 ⊗(φ∗R) φ∗ω2

∼−→ ω1 ⊗R ω2),

where D(Ĝi) = (ωi, Fi : φ∗ωi
∼→ ωi). Below are two relevant examples for

this paper:

Example 2.3. Let C be the universal elliptic curve over Mord
ell and Ĉ

be its formal group. Ĉ is a height 1 formal group since C is a p-ordinary
elliptic curve. Denote the Galois descent data for Ĉ by ρ1 : πét

1 (Mord
ell ) → Z×

p .
The pair (ω, F : φ∗ω

∼→ ω) described in Proposition 1.16 is the Dieudonné
module of Ĉ. On q-expansions of modular forms, the Frobenius acts by the
formula F (f(q)) = f(qp). Denote of the k-th monoidal power of Ĉ by Ĉ⊗k.
The Galois descent data for Ĉ⊗k is

ρk : πét
1 (Mord

ell ) ρ1
−→ Z×

p
(−)k

−−−→ Z×
p ,

The Dieudonné module of Ĉ⊗k is

D(Ĉ⊗k) = (ω⊗k, F ⊗k : φ∗ω⊗k ∼−→ ω⊗k),

where F ⊗k(f(q)) = f(qp).

As the Eisenstein series we study in this paper have coefficients in Zp[χ],
it is necessary to work with formal Zp[χ]-modules. Let A be an algebra.
A formal A-module is a formal group Ĝ together with an embedding of
algebras i : A ↪→ EndF G(Ĝ) such that the composite

A EndF G(Ĝ) End(ω(Ĝ))

realizes ω(Ĝ) as an A-module. We will write the power series representation
of i(a) by [a]. Any formal group Ĝ comes with a unique formal Z-module
structure. When Ĝ is defined over a p-complete ring R, this formal Z-
module structure extends (uniquely) to a formal Zp-module structure, since
limv→∞[pv](t) = 0 in RJtK.

Construction 2.4. When A is Zp-algebra that is a finite free Zp-module,
we define a formal A-module Ĝ ⊗ A out of a 1-dimensional formal group
Ĝ. The underlying formal group of Ĝ ⊗ A is Ĝ⊕r, where r is the rank of A
as a free Zp-module. The A-action on Ĝ ⊗ A = Ĝ⊕r is given by

A = EndA-mod(A) EndZp(Z⊕r
p ) EndF G(Ĝ⊕r).
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where the first map is induced by A ∼= Z⊕r
p . Write D(Ĝ) = (ω(Ĝ), F, V ).

The Dieudonné module of Ĝ ⊗ A is

D(Ĝ ⊗ A) = D(Ĝ) ⊗ A = (ω(Ĝ) ⊗ A, F ⊗ 1, V ⊗ 1).

When the height of Ĝ is h, let [ρ] ∈ H1
c (πét

1 (R); aut(Γh)) be the Galois
descent data for Ĝ. The formal A-module Ĝ ⊗ A is étale locally isomorphic
to Γh ⊗ A. Notice there is an embedding of algebras:

i : End(Γh) ↪−→ Endformal A-mod(Γh ⊗ A) ∼= End(Γh) ⊗ A g 7−→ g ⊗ 1.

The embedding i restricts to a group homomorphism on units. The Galois
descent data for Ĝ ⊗ A is then the image of [ρ] under the induced map of
i in Galois cohomology

i∗ : H1
c (πét

1 (R); aut(Γh)) −→ H1
c (πét

1 (R); autformal A-mod(Γh ⊗ A)).

2.2. Statement of the Main Theorem. Let χ : (Z/N)× → C×
p be a

Dirichlet character of conductor N . Write N = pvN ′, where p ∤ N ′. Then χ
uniquely factors as a product χ = χp · χ′, where χp and χ′ have conductors
pv and N ′, respectively. Let Z⊗k

p [χ] be the p-adic (Z/N)×-representation,
whose underlying module is Zp[χ] and where (a, b) ∈ Z×

p × (Z/N ′)× acts
on Zp[χ] by multiplication by ak · χp(a) · χ′(b).

Theorem 2.5 (Main Theorem). Let I ⊴ Zp[χ] be an ideal and k ≥ 3 be
an integer. Then the followings are equivalent:

(i) There is a modular form f ∈ H0(Mord
ell (pv, Γ1(N ′)), ω⊗k ⊗Zp[χ])χ−1

such that f(q) ∈ 1 + IqZp[χ]JqK.
(ii) There is a generator γ ∈ H0(Mord

ell (Γ0(N ′)), ωk,χ) such that
F k,χ(γ) ≡ γ mod I.

(iii) Ĉk,χ[I] ∼= (Ĝm ⊗ Zp[χ])[I].
(iv) The Galois descent data ρk,χ : πét

1 (Mord
ell (Γ0(N ′)) → (Zp[χ])× of

Ĉk,χ is trivial modulo I.
(v) The character Z×

p × (Z/N ′)× (a,b) 7→χp(a)χ′(b)ak

−−−−−−−−−−−−→ (Zp[χ])× is trivial
modulo I.

Remark 2.6. When the character χ is trivial, we recover Katz’s algebro-
geometric explanation of congruences of p-adic Eisenstein series of level 1
in [12, Corollary 4.4.1]. In that case, Step I in the proof above is not needed.

Remark 2.7. The implication from (i) to (v) in Theorem 2.5 also follows
from [15, Lemma 1.2.2] when p does not divide N .

The proof of Theorem 2.5 has three steps, which will be explained in
details in the rest of this section. The meanings of the symbols in the
statement of the theorem are explained in the proof sketch below.
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(I) Viewing the Dirichlet character χ as a Galois cohomology class, we
construct a formal Zp[χ]-module Ĉk,χ of height 1 over Mord

ell (Γ0(N ′))
such that

H0(Mord
ell (pv, Γ1(N ′)), ω⊗k ⊗ Zp[χ])χ−1 ∼= H0(Mord

ell (Γ0(N ′)), ω(Ĉk,χ)).
In this way, we translate congruences of modular forms in this
eigenspace to those of elements in the Dieudonné module of Ĉk,χ.

(II) We relate the congruence of the Dieudonné module D(Ĉk,χ) with
that of the Galois descent data [ρk,χ] for Ĉk,χ by reformulating a
Riemann–Hilbert type correspondence in [12] using the Dieudonné
theory of height 1 formal A-modules and their finite subgroups

(III) The Galois cohomology class [ρk,χ] ∈ H1
c (πét

1 (Mord
ell (Γ0(N ′)));

(Zp[χ])×) is represented by a group homomorphism that factors as

ρk,χ : πét
1 (Mord

ell (Γ0(N ′))) ρ1×λN′−−−−−→ Z×
p ×

(
Z/N ′)× (a,b) 7→χp(a)χ′(b)ak

−−−−−−−−−−−−→ (Zp[χ])×.

Here ρ1 : πét
1 (Mord

ell (Γ0(N ′))) → Z×
p is the Galois descent data for Ĉ

described in Example 2.3 and λN ′ : πét
1 (Mord

ell (Γ0(N ′))) → (Z/N ′)×

classifies the (Z/N ′)×-torsor Mord
ell (Γ1(N ′)) → Mord

ell (Γ0(N ′)). The
theorem then follows from the surjectivity of ρ1 × λN ′ .

2.3. Step I: Dirichlet characters and Galois descent. The first step
in the proof of the Main Theorem is to view the Dirichlet character
χ : (Z/N)× → C×

p as the Galois descent data for a formal A-module
Ĉk,χ of height 1 over Mord

ell (Γ0(N ′)) along the (Z/N)×-torsor
ξ : Mord

ell (pv, Γ1(N ′)) → Mord
ell (Γ0(N ′)).

Construction 2.8. Let (C, ηp, η′) be the universal elliptic curve with the
given level structures over Mord

ell (pv, Γ1(N ′)) and Ĉ be its formal group.
Then Ĉ⊗k ⊗ Zp[χ] is a formal Zp[χ]-module of height 1. Notice that:

• The automorphism group of Ĉ⊗k ⊗Zp[χ] as a formal Zp[χ]-module
is (Zp[χ])×.

• The forgetful map ξ : Mord
ell (pv, Γ1(N ′)) → Mord

ell (Γ0(N ′)) is a
(Z/pv)× × (Z/N ′)×-torsor and (Z/pv)× × (Z/N ′)× ∼= (Z/N)×.

The Dirichlet character χ : (Z/N)× → C×
p then represents a cohomology

class
[χ] ∈ H1((Z/N)× ; (Zp[χ])×)
∼= H1(autMord

ell
(Γ0(N ′))(M

ord
ell (pv, Γ1(N ′))); autformal Zp[χ]-mod(Ĉ⊗k ⊗ Zp[χ])),

where (Z/N)× acts on (Zp[χ])× trivially. This cohomology group classifies
formal Zp[χ]-modules Ĝ over Mord

ell (Γ0(N ′)) such that ξ∗Ĝ ∼= Ĉ⊗k ⊗ Zp[χ]
over Mord

ell (pv, Γ1(N ′)) up to isomorphisms. In this way, the cohomology



230 Ningchuan Zhang

class [χ] corresponds to a formal Zp[χ]-module Ĉk,χ over Mord
ell (Γ0(N ′)).

More precisely, fix an isomorphism η : ξ∗Ĉk,χ ∼→ Ĉ⊗k ⊗ Zp[χ], then for any
σ ∈ (Z/N)× ∼= autMord

ell
(Γ0(N ′))(Mord

ell (pv, Γ1(N ′))), we have a commutative
diagram of isomorphisms:

ξ∗Ĉk,χ σ∗ξ∗Ĉk,χ ξ∗Ĉk,χ

Ĉ⊗k ⊗ Zp[χ] σ∗(Ĉ⊗k ⊗ Zp[χ]) Ĉ⊗k ⊗ Zp[χ]

η

σ⊗1

σ∗η σ∗η

[χ(σ)]

In this diagram,
• The homomorphism [χ(σ)] is defined in Construction 2.4.
• The isomorphism σ∗η is the same as η since (Z/N)× acts on (Zp[χ])×

trivially.
• The correspondence between Ĉk,χ and χ is independent of the

choice of the isomorphism η, since the group autZp[χ](Ĉ⊗k⊗Zp[χ]) =
(Zp[χ])× is abelian.

Let ωk,χ = ω(Ĉk,χ) be the sheaf of invariant differentials of Ĉk,χ. The
sheaf ωk,χ is locally free finitely generated over Mord

ell (Γ0(N ′)), since it is
the cotangent sheaf of a formal scheme that is étale locally isomorphic to
Âr, where r is the rank of Zp[χ] as a Zp-module.

Proposition 2.9. We have an isomorphism of locally free sheaves ξ∗ωk,χ ∼=
ω⊗k ⊗Zp[χ] over the stack Mord

ell (pv, Γ1(N ′)). The sheaf cohomology of ωk,χ

is computed as follows:
(1) For all integers N > 1, we have

(2.10) H0(Mord
ell (pv, Γ1(N ′)), ω⊗k ⊗Zp[χ])χ−1 ∼= H0(Mord

ell (Γ0(N ′)), ωk,χ).

(2) When N > 3 or N = 3 and p ̸≡ 1 mod 3, we have for all s ≥ 0:

Hs(Mord
ell (Γ0(N ′)), ωk,χ)

∼= Hs((Z/N)× ; H0(Mord
ell (pv, Γ1(N ′)), ω⊗k ⊗ Zp[χ])).

(3) When p ∤ ϕ(N) = | (Z/N)× |, we have for all t ≥ 0:

Ht(Mord
ell (Γ0(N ′)), ωk,χ) ∼= Ht(Mord

ell (pv, Γ1(N ′)), ω⊗k ⊗ Zp[χ])χ−1
.
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(4) In particular, when N and p satisfy the conditions in (2) and (3),
we further have:

Hs(Mord
ell (Γ0(N ′)), ωk,χ)

=
{

H0(Mord
ell (pv, Γ1(N ′)), ω⊗k ⊗ Zp[χ])χ−1

, s = 0;
0, otherwise.

Proof. The functor ω is compatible with pullbacks, yielding

ξ∗ωk,χ = ξ∗ω(Ĉk,χ) ∼= ω(ξ∗Ĉk,χ) ∼= ω(Ĉ⊗k ⊗ Zp[χ]) = ω⊗k ⊗ Zp[χ].

To compute Hs(Mord
ell (Γ0(N ′)), ωk,χ), we use the Hochschild–Serre spectral

sequence [20, Theorem 2.20]:

(2.11) Es,t
2 = Hs((Z/N)× ; Ht(Mord

ell (pv, Γ1(N ′)), ξ∗ωk,χ))
−→ Hs+t(Mord

ell (Γ0(N ′)), ωk,χ),

where σ ∈ (Z/N)× acts on ξ∗ωk,χ ∼= ω⊗k ⊗Zp[χ] by the Galois descent data
1 ⊗ χ(σ). As the spectral sequence is concentrated in the first quadrant, its
E0,0

2 -term receives or supports no differentials. This yields (1).
By Proposition 1.21, the stack Mord

ell (pv, Γ1(N ′)) is a formal affine scheme
when N ≥ 4 or N = 3 and p ̸≡ 1 mod 3. It follows that (2.11) is concen-
trated in the t = 0 line in those cases. As a result, the spectral sequence
collapses on the E2-page and we have proved (2).

When p ∤ ϕ(N) = | (Z/N)× |, the group cohomology of (Z/N)× with
coefficients in Zp-modules vanishes in positive degrees. It follows that (2.11)
is concentrated in the s = 0 line in this case and thus collapses on the E2-
page. This implies (3).

Case (4) is the intersection of cases (2) and (3). □

Remark 2.12. Note that 2 is the only prime p dividing ϕ(3) = 2. The
spectral sequence (2.11) collapses on the E2-page for all N ≥ 3 and p.

Write D(Ĉk,χ) = (ωk,χ, F k,χ : φ∗ωk,χ ∼→ ωk,χ). The Frobenius homomor-
phism F k,χ of Ĉk,χ descends from that of ξ∗Ĉk,χ ∼= Ĉ⊗k ⊗ Zp[χ]. Exam-
ple 2.3 and Construction 2.4 yield

ξ∗F k,χ = F ⊗k ⊗ 1: φ∗ω⊗k ⊗ Zp[χ] ∼−→ ω⊗k ⊗ Zp[χ].

Notice F ⊗k ⊗ 1 commutes with the Galois descent data 1 ⊗ χ(σ) for σ ∈
(Z/N)×, we have shown:

Proposition 2.13 (Step I). Let f be a modular form in H0(Mord
ell (pv,

Γ1(N ′)), ω⊗k ⊗ Zp[χ])χ−1 ∼= H0(Mord
ell (Γ0(N ′)), ωk,χ). Then F k,χ(f(q)) =

(F ⊗k ⊗ 1)(f(q)) = f(qp). Let I ⊴ Zp[χ] be an ideal. The followings are
equivalent:
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(i) There is a modular form f ∈ H0(Mord
ell (Γ0(N ′)), ωk,χ) such that

f(q) ∈ 1 + IqJqK.
(ii) There is a generator γ ∈ H0(Mord

ell (Γ0(N ′)), ωk,χ) as an
H0(Mord

ell (Γ0(N ′)), O)⊗Zp[χ]-module such that F k,χ(γ) ≡ γ mod I.

Remark 2.14. There is no guarantee that the modular f above is in the
Eisenstein space Ek(pv, Γ1(N ′), χ).

This concludes Step I in Section 2.2.

2.4. Step II: From Dieudonné modules to Galois representations.
One major tool Katz used in [12, Chapter 4] to explain the congruences of
the normalized Eisenstein series E2k of level 1 is a Riemann–Hilbert type
correspondence. In this subsection, we reformulate the correspondence in
terms of formal A-modules and their finite subgroup schemes, and then
apply it to the formal Zp[χ]-module Ĉk,χ over Mord

ell (Γ0(N ′)) we constructed
in Construction 2.8.

Let κ be a perfect field of characteristic p containing Fq and Wm(Fq) be
the ring of Witt vectors of length m on Fq. Let Sm be a flat affine Wm(κ)-
scheme whose special fiber is normal, reduced, and irreducible. Assume Sm

is formally smooth, so that it admits an endomorphism φ : Sm → Sm that
lifts the q-th power map on Sm/p. Then Katz proved

Theorem 2.15 ([12, Proposition 4.1.1, Remark 4.1.2.1]). There is an
equivalence of closed symmetric monoidal categories:{ Finite locally free sheaves F on Sm

with an isomorphism F : φ∗F
∼−→ F

}

≃
{ Finite free Wm(Fq)-modules

with continuous πét
1 (Sm)-actions

}
.

Proposition 2.16 ([13, Remark 5.5]). Theorem 2.15 holds for affine formal
schemes S over W(κ) under the same assumption. That is, there is an
equivalence of closed symmetric monoidal categories:{ Finite locally free sheaves F on S

with an isomorphism F : φ∗F
∼−→ F

}

≃
{ Finite free W(Fq)-modules

with continuous πét
1 (S)-actions

}
.

This equivalence of Katz is essentially an equivalence of Dieudonné mod-
ule and Galois descent data of a formal group and its finite subgroups. Let
A be a Zp-algebra that is finite free as a Zp-module and Ĝ be formal A-
module of height 1. Let I ⊴ A be an ideal.
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Definition 2.17. Define Ĝ[I] to be the kernel of all the endomorphisms
in I ⊴ A ↪→ End(Ĝ). If Ĝ = Spf RJtK has a coordinate, then Ĝ[I] =
Spf RJtK /([a](t) | a ∈ I) as a finite flat scheme. When I = (a) is a principal
ideal, Ĝ[I] = Ĝ[a] = Spf RJtK/([a](t)).
Proposition 2.18. Let Ĝ be a formal A-module. Write the Dieudonné
module of Ĝ as D(Ĝ) = (M, F, V ). Then M has an A-module structure
and the homomorphisms F and V are A-linear. The Dieudonné module
of Ĝ[I] is D(Ĝ)/I = (M/IM, F : φ∗(M/IM) → M/IM, V : M/IM →
φ∗(M/IM)).
Proposition 2.19. Let Ĝ be a formal A-module over R that is isomorphic
to Ĝ′ over the separable closure Rsep of R. Let the cohomology class [ρ] ∈
H1

c (πét
1 (R); autA(Ĝ′)) be the Galois descent data for Ĝ. [ρ] is represented

by some crossed homomorphism ρ : πét
1 (R) → autA(Ĝ′). Then the Galois

descent data for the finite flat group scheme Ĝ[I] is represented by the
crossed homomorphism:

ρI : πét
1 (R) ρ−→ autA(Ĝ′) −→ aut(Ĝ′[I]),

where the last map autA(Ĝ′) → aut(Ĝ′[I]) is the restriction of the quotient
map to units

EndA(Ĝ′) EndA(Ĝ′)/(I ⊗A EndA(Ĝ′)) ∼= EndA(Ĝ′[I])

In the view of Proposition 2.18 and Proposition 2.19, Katz’s Riemann–
Hilbert correspondence (Theorem 2.15) can be generalized as:
Theorem 2.20. Let Ĝ be a formal A-module of height 1 over R, where
Spf R satisfies the same assumptions as in Theorem 2.15. Let D(Ĝ) =
(M, F : φ∗M

∼→ M) and ρ : πét
1 (R) → A× be the Dieudonné module and

Galois descent data for Ĝ, respectively. Then the followings are equivalent:
(1) There is a generator γ of M as an R ⊗ A-module such that Fγ ≡ γ

mod I.
(2) Ĝ[I] ∼= (Ĝm ⊗ A)[I].
(3) The composition homomorphism ρI : πét

1 (R) ρ−→ A× ↠ (A/I)× is
trivial.

Proof. Let’s prove the case when R = R/p. By [11, Main Theorem 1],
the functor D is an equivalence over R. The claim then follows from the
computation of the Dieudonné module and the Galois descent data of Ĝm

in Example 2.1, as well as Proposition 2.18 and Proposition 2.19.
Now let R be a Wκ-algebra. Using the Lubin–Tate deformation theory,

we can show there is an equivalence between height 1 formal groups over
R/p and their deformations to R/p. The claim now follows from the R =
R/p-case. □
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Remark 2.21. Katz’s Theorem 2.15 is the I = (pm) ⊴ A = WFq case of
Theorem 2.20.

Remark 2.22. We can generalize Theorem 2.15 and Proposition 2.16 in
terms of formal groups and formal A-modules of height/slope h > 1. In
that case, we need to study the Dieudonné module of the Honda formal
group Γh of height h and its finite subgroup schemes. The result is included
in Appendix A.

Now apply Theorem 2.20 to the formal Zp[χ]-module Ĉk,χ over
Mord

ell (Γ0(N ′)) constructed in Construction 2.8, we have established Step II
in Section 2.2:

Corollary 2.23 (Step II). Let I ⊴ Zp[χ] be an ideal. The followings are
equivalent:

(ii) There is a generator γ ∈ H0(Mord
ell (Γ0(N ′)), ωk,χ) such that

F k,χ(γ) ≡ γ mod I.
(iii) Ĉk,χ[I] ∼= (Ĝm ⊗ Zp[χ])[I].
(iv) The Galois descent data ρk,χ : πét

1 (Mord
ell (Γ0(N ′)) → (Zp[χ])× of

Ĉk,χ is trivial modulo I.

2.5. Step III: Factorizations of the Galois descent data. The fi-
nal step is to study the Galois descent data ρk,χ for Ĉk,χ. Denote by
ξ : Mord

ell (pv, Γ1(N ′)) → Mord
ell (Γ0(N ′)) the forgetful map. Recall from Con-

struction 2.8, Ĉk,χ is constructed using the following data:
• A formal Zp[χ]-formal module ξ∗Ĉk,χ ∼= Ĉ⊗k ⊗ Zp[χ] over

Mord
ell (pv, Γ1(N ′)).

• Ĉk,χ corresponds to descent data [χ] ∈ H1((Z/N)× ; (Zp[χ])×).

Proposition 2.24. ρk,χ : πét
1 (Mord

ell (Γ0(N ′)) → (Zp[χ])× factors as

ρk,χ : πét
1 (Mord

ell (Γ0(N ′)))
ρ1×λξ−−−−→ Z×

p × (Z/N)× (−)k·χ(−)−−−−−−→ (Zp[χ])×,

where λξ : πét
1 (Mord

ell (Γ0(N ′))) → (Z/N)× is the character that classifies the
(Z/N)×-torsor ξ.

Proof. Recall in Construction 2.8, we used the following correspondence to
construct Ĉk,χ from the character χ:

(2.25) H1((Z/N)× ; (Zp[χ])×)

∼=

Formal Zp[χ]-modules Ĝ over Mord
ell (Γ0(N ′))

such that ξ∗Ĝ ∼= Ĉ⊗k⊗ Zp[χ] over Mord
ell (pv, Γ1(N ′))


/

∼ .

Here, the constant group homomorphism on the left hand side corresponds
to the formal Zp[χ]-module Ĉ⊗k ⊗ Zp[χ] over Mord

ell (Γ0(N ′)). Now we need
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to describe this correspondence in terms of the Galois descent data ρ
Ĝ

of
Ĝ. On one hand, since ξ∗Ĝ ∼= Ĉ⊗k ⊗ Zp[χ], the composition

(2.26) πét
1 (Mord

ell (pv, Γ1(N ′)))
πét

1 (ξ)
−−−−→ πét

1 (Mord
ell (Γ0(N ′)))

ρ
Ĝ−−→ (Zp[χ])×

is the same as the Galois descent data for the formal Zp[χ]-module Ĉ⊗k ⊗
Zp[χ] over Mord

ell (pv, Γ1(N ′)). On the other hand, by Example 2.3 and Con-
struction 2.4, this Galois descent data also factors as

(2.27) πét
1 (Mord

ell (pv, Γ1(N ′)))
πét

1 (ξ)
−−−−→ πét

1 (Mord
ell (Γ0(N ′)))
ρ1
−→ Z×

p
(−)k

−−−→ Z×
p

i−→ (Zp[χ])×.

Denote the composition i ◦ (−)k ◦ ρ1 in (2.27) by ρk. Since the first maps
in (2.26) and (2.27) are both πét

1 (ξ) and the compositions are the same, the
difference of ρ

Ĝ
and ρk must factor through the cokernel of πét

1 (ξ). We have
the following diagram:

πét
1 (Mord

ell (pv, Γ1(N ′))) πét
1 (Mord

ell (Γ0(N ′))) (Z/N)× 1

(Zp[χ])×

πét
1 (ξ) λξ

ρ
Ĝ ρk

∃! χ
Ĝ

As the cokernel of πét
1 (ξ), the map λξ classifies the (Z/N)×-torsor

ξ : Mord
ell (pv, Γ1(N ′)) → Mord

ell (Γ0(N ′)). It follows the that there exists
a unique character χ

Ĝ
: (Z/N)× → Zp[χ] such that for any σ ∈

πét
1 (Mord

ell (Γ0(N ′))), ρ
Ĝ

(σ) = (ρ1(σ))k · (χ
Ĝ

◦ λξ)(σ).
This χ

Ĝ
is the character corresponding to Ĝ in (2.25). Since Ĉk,χ is

constructed using χ, we have

ρk,χ(σ) = (ρ1(σ))k · (χ ◦ λξ)(σ) = ((−)k · χ(−)) ◦ (ρ1 × λξ)(σ)

for all σ ∈ πét
1 (Mord

ell (Γ0(N ′))). □

Now we need to find the image of ρ1 × λξ.

Proposition 2.28. ρ1×λξ : πét
1 (Mord

ell (Γ0(N ′))) → Z×
p ×(Z/N)× factors as:

ρ1 × λξ : πét
1 (Mord

ell (Γ0(N ′))) ρ1×λN′−−−−−→ Z×
p ×

(
Z/N ′)×

(a,b)7→(a,[a],b)−−−−−−−−−→ Z×
p × (Z/pv)× ×

(
Z/N ′)× ∼= Z×

p × (Z/N)× ,

where λN ′ : πét
1 (Mord

ell (Γ0(N ′))) → (Z/N ′)× classifies the (Z/N ′)×-torsor
Mord

ell (Γ1(N ′)) → Mord
ell (Γ0(N ′)).
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Proof. We prove the factorization by translating Galois representations into
torsors over Mord

ell (Γ0(N ′)).

Lemma 2.29. The Z×
p -torsor Mtriv

ell (Γ0(N ′)) → Mord
ell (Γ0(N ′)) is classified

by the character ρ1 : πét
1 (Mord

ell (Γ0(N ′))) → Z×
p , where Mtriv

ell (Γ0(N ′)) is a
stack whose R-points are

Mtriv
ell (Γ0(N ′))(R) = {(C/R, η : Ĝm

∼−→ Ĉ, H ⊆ C[N ′]) | H ∼= Z/N ′}.

Proof of the Lemma. Recall that [ρ1] ∈ H1
c (πét

1 (Mord
ell (Γ0(N ′)));Z×

p ) is the
Galois descent data for Ĉ, the formal group of the universal elliptic curve
over Mord

ell (Γ0(N ′)). The character ρ1 then corresponds to a Z×
p -torsor over

Mord
ell (Γ0(N ′)) such that its fiber over the an R-point (C/R, H ⊆ C[N ′]) is

the set of triples (C/R, η : Ĝm
∼→ Ĉ, H ⊆ C[N ′]). □

Lemma 2.29 implies that the character ρ1 × λξ classifies the torsor
Mtriv

ell (pv, Γ1(N ′)) → Mord
ell (Γ0(N ′)) for the group Z×

p × (Z/N)×, where
Mtriv

ell (pv, Γ1(N ′)) is a stack whose R-points are

Mtriv
ell (pv, Γ1(N ′))(R) =

(C/R, η, ηp, η′)

∣∣∣∣∣∣∣
η : Ĝm

∼−→ Ĉ,

ηp : µpv
∼−→ Ĉ[pv],

η′ : Z/N ′ ↪→ C[N ′]

 .

Sitting in between Mtriv
ell (pv, Γ1(N ′)) and Mord

ell (Γ0(N ′)) is the stack
Mtriv

ell (Γ1(N ′)), whose R-points are

Mtriv
ell (Γ1(N ′))(R) = {(C/R, η, η′) | η : Ĝm

∼−→ Ĉ, η′ : Z/N ′ ↪→ C[N ′]}.

In the Z×
p × (Z/N)×-torsor

Mtriv
ell (pv, Γ1(N ′)) Mtriv

ell (Γ1(N ′)) Mord
ell (Γ0(N ′)),

the first map Mtriv
ell (pv, Γ1(N ′)) → Mtriv

ell (Γ1(N ′)) is a (Z/pv)×-torsor that
admits a section:

s : Mtriv
ell (Γ1(N ′)) −→ Mtriv

ell (pv, Γ1(N ′)),
(C/R, η, η′) 7−→ (C/R, η, η|

Ĉ[pv ], η′).

The existence of this section implies that ρ1 × λξ must factor through the
map ρ1 × λN ′ : πét

1 (Mord
ell (Γ0(N ′))) → Z×

p × (Z/N ′)×, which corresponds to
the Z×

p × (Z/N ′)×-torsor Mtriv
ell (Γ1(N ′)) → Mord

ell (Γ0(N ′)). The formula of
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s then yields a commutative diagram:

πét
1 (Mord

ell (Γ0(N ′))) Z×
p × (Z/N)×

Z×
p × (Z/N ′)× Z×

p × (Z/pv)× × (Z/N ′)×

ρ1×λξ

ρ1×λN′

(a,b) 7→(a,[a],b)

□

Combining Proposition 2.24 and Proposition 2.28, we have shown

Corollary 2.30. ρk,χ : πét
1 (Mord

ell (Γ0(N ′)) → (Zp[χ])× factors as

(2.31) ρk,χ : πét
1 (Mord

ell (Γ0(N ′))) ρ1×λN′−−−−−→ Z×
p ×

(
Z/N ′)×

(a,b)7→χp(a)χ′(b)ak

−−−−−−−−−−−−→ (Zp[χ])×.

To relate the congruence of ρk,χ with that of the second map in (2.31),
it remains to show:

Proposition 2.32. ρ1 × λN ′ : πét
1 (Mord

ell (Γ0(N ′))) → Z×
p × (Z/N ′)× is

surjective.

Proof. By [26, Theorem 5.4.2], the surjectivity of ρ1 × λN ′ is equivalent to
the connectivity of the Z×

p ×(Z/N ′)×-torsor it classifies. As ρ1×λN ′ classifies
the torsor Mtriv

ell (Γ1(N ′)) → Mord
ell (Γ0(N ′)), we need to show Mtriv

ell (Γ1(N ′))
is connected.

By a relative version of Igusa’s theorem in [17, Corrollary 12.6.2.(2)],
Mtriv

ell (Γ1(N ′)) is connected whenever Mord
ell (Γ1(N ′)) is. The integral stack

Mell(Γ1(N ′)) has geometrically connected fiber by [5, Theorem 1.2.1]. It
is also smooth by [17, Corollary 4.7.1]. It follows that Mell(Γ1(N ′)) is ir-
reducible and so is its p-completion Mell(Γ1(N ′))∧

p . From this we conclude
Mord

ell (Γ1(N ′)) is irreducible (hence connected), since it is an open substack
of an irreducible stack. □

Now by Corollary 2.30 and Proposition 2.32, we have proved:

Corollary 2.33 (Step III). Let I ⊴ Zp[χ] be an ideal. The followings are
equivalent:

(iv) The composition ρk,χ : πét
1 (Mord

ell (Γ0(N ′)))→(Zp[χ])×↠(Zp[χ]/I)×

is trivial.
(v) The composition Z×

p × (Z/N ′)× (a,b) 7→χp(a)χ′(b)ak

−−−−−−−−−−−−→ (Zp[χ])× ↠
(Zp[χ]/I)× is trivial.
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3. The maximal congruence of Eisenstein series
Theorem 2.5 identifies congruences of modular forms in H0(Mord

ell (pv,

Γ1(N ′)), ω⊗k ⊗Zp[χ])χ−1 with that of Z⊗k
p [χ] as a Z×

p × (Z/N ′)×-represent-
ation in Zp[χ]-modules. In this section, we first compute the maximal con-
gruence of Z⊗k

p [χ] and then find explicit examples of modular forms that
realize this congruence in many cases. In all the examples we study, there is
a modular form in the Eisenstein space Ek(pv, Γ1(N ′), χ) that realizes the
maximal congruence.

3.1. Congruences of p-adic representations.

Definition 3.1. Let R be a p-complete local ring and M be a torsion-free
R-module with a continuous R-module action by a profinite group G. M
is said to be a trivial G-representation modulo an ideal I ⊴ R if G acts
on M/IM trivially, or equivalently (M/IM)G = M/IM . The maximal
congruence of M as a G-representation is the smallest ideal I such that
M/IM is a trivial G-representation.

Remark 3.2. The G-action on the quotient M/IM is well defined since G
acts by R-linear maps. Otherwise, we need to assume I ⊴ R is a G-invariant
ideal, i.e. gI = I for all g ∈ G.

Lemma 3.3. When the underlying R-module of the G-representation M
is R, the G-action of M is then associated to a character χ : G → R×. Let
{gi | i ∈ I} be a set of generators of G. The maximal congruence of M is
the ideal (1 − χ(gi) | i ∈ I).

Proof. The maximal congruence of M is by definition the ideal (1 − χ(g) |
g ∈ G). Notice that

(1 − χ(gg′)) = (1 − χ(g) + χ(g) − χ(gg′))
⊆ (1 − χ(g)) + (χ(g) − χ(gg′)) = (1 − χ(g)) + (1 − χ(g′)).

and that (1−χ(g−1)) = (χ(g)−1), we have (1−χ(g) | g ∈ G) = (1−χ(gi) |
i ∈ I). □

When p > 2, Z×
p is topologically cyclic. When p = 2, Z×

2 = {±1} × (1 +
4Z2) and 1 + 4Z2 is topologically cyclic. Let g be a topological generator of
Z×

p when p > 2 and a topological generator of 1 + 4Z2 when p = 2.

Theorem 3.4. The congruences of Z⊗k
p [χ] have seven cases:

(I) p > 2 and the conductor of χ is p or 1. In this case, χ = ωa

for some integer 0 ≤ a ≤ p − 2, where ω : (Z/p)× → Z×
p is the

p-adic Teichmüller character. The image of χ is contained in Z×
p .
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Then the maximal congruence of Z⊗k
p [ωa] is the following ideal in

Zp = Zp[ωa]:

(1 − gkχ(g)) = (1 − gkωa(g)) =
{

(pvp(k)+1), (p − 1) | (k + a);
(1) otherwise.

(II) p = 2 and the conductor of χ is 4 or 1. In this case, χ = ωa for a = 0
or 1, where ω : (Z/4)× → Z×

2 is the 2-adic Teichmüller character.
As g ∈ 1 + 4Z2, ω(g) = 1. Again the image of χ is contained in Z×

2 .
Then the maximal congruence of Z⊗k

2 [ωa] is the following ideal in
Z2 = Z2[ωa]:

(1 − gkωa(g), 1 − (−1)kωa(−1)) =
{

(2vp(k)+2), 2 | (k + a);
(2), otherwise.

(III) p > 2 and the conductor of χ is pv > p. In this case, (Z/pv)× ∼=
(Z/p)× × Cpv−1 and As χ is primitive of conductor pv, χ|Cpv−1 is
injective. As a result, Zp[χ] = Zp[ζpv−1 ]. Zp[ζpv−1 ] is a p-complete
local ring with uniformizer 1 − ζpv−1. Write χ|(Z/p)× = ωa for some
0 ≤ a ≤ p − 2. Then the maximal congruence of Z⊗k

p [ωa] is the
following ideal in Zp[ζpv−1 ] = Zp[χ]:

(1 − gkχ(g)) = (1 − ζpv−1gkωa(g)) =
{

(1 − ζpv−1), (p − 1) | (k + a);
(1), otherwise.

(IV) p = 2 and the conductor of χ is 2v > 4. In this case, (Z/2v)× ∼=
(Z/4)× × C2v−2. As χ is primitive of conductor 2v, χ|C2v−2 is injec-
tive. As a result, Z2[χ] = Z2[ζ2v−2 ]. Z2[ζ2v−2 ] is a 2-complete local
ring with uniformizer 1 − ζ2v−2. Write χ|(Z/4)× = ωa for a = 0 or
1. Then the maximal congruence of Z⊗k

2 [χ] is the following ideal in
Z2[ζ2v−2 ] = Z2[χ]:

(1 − ζ2v−2gkωa(g), 1 − (−1)kωa(−1)) = (1 − ζ2v−2) for all k and a.

(V) N ′ ̸= 1 and |Im χ′| is not a power of p. In this case, Im χ′ contains
of a root of unity ζn′ whose order n′ is coprime to p. As 1 − ζn′ is
invertible in Zp[ζn′ ] ⊆ Zp[χ], we have the maximal congruence of
Z⊗k

p [χ] is the ideal (1) in Zp[χ].
(VI) p > 2, N ′ ̸= 1 and |Im χ′| > 1 is a power of p. In the case,

Im χ′ is generated by ζpv′ for some v′ ≥ 1. We have Z⊗k
p [χ] =

Zp[ζpmax(v−1,v′) ]. Write χp|(Z/p)× = ωa for some 0 ≤ a ≤ p − 2.
Then the maximal congruence of Z⊗k

p [χ] is the following ideal in
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Z⊗k
p [χ] = Zp[ζpmax(v−1,v′) ]:

(1 − gkχ(g), 1 − ζpv′ ) = (1 − ζpv−1gkωa(g), 1 − ζpv′ )

=
{

(1 − ζpmax(v−1,v′)), (p − 1) | (k + a);
(1), otherwise.

(VII) p = 2, N ′ ̸= 1 and Q2(χ′) is a totally ramified extension of Q2. In
the case, the image of χ′ is generated by ζ2v′ for some v′ ≥ 1. We
have Z⊗k

2 [χ] = Z2[ζ2max(v′,v−2) ]. Write χ2|(Z/4)× = ωa for a = 0, 1.
Then the maximal congruence of Z⊗k

2 [χ] is the following ideal in
Z2[ζ2max(v′,v−2) ] = Z2[χ]:

(1 − ζ2v′ , 1 − ζ2v−2gkωa(g), 1 − (−1)kωa(−1)) = (1 − ζ2max(v′,v−2))
for all k and a.

3.2. Realizations of the maximal congruence. Having computed
the maximal congruence of the Z×

p × (Z/N ′)×-representation Z⊗
p [χ], now

we give explicit examples of modular forms in the Eisenstein subspace
Ek(pv, Γ1(N ′), χ) whose q-expansions realize the maximal congruence.

Let k ≥ 3 be an integer such that (−1)k = χ(−1). Recall from Theo-
rem 1.4 and Corollary 1.24 that Eisenstein subspace Ek(pv, Γ1(N ′), χ) ⊗Qp

is spanned by Eisenstein series of the forms:

Ek,χ0,χ(qt) = c · Ek,χ(qt) = c ·

1 − 2k

Bk,χ

∑
n≥1

 ∑
0<d|n

χ(d)dk−1

 qnt

 ,

Ek,χ1,χ2(qt) =
∑
n≥1

 ∑
0<d|n

χ−1
1 (n/d)χ2(d)dk−1

 qnt,

where
• c is Zp[χ] with the smallest valuation so that Ek,χ0,χ(qt) ∈ Zp[χ]JqK.
• χ1 and χ2 are characters of conductors N1 and N2 satisfying

χ1/χ2 = χ−1 and (N1N2t) | N .
By the q-expansion principle Proposition 1.9, an element of Ek(pv, Γ1(N ′), χ)
is a Qp-linear combination f(q) of these Ek,χ1,χ2(q) such that f(q)∈Zp[χ]JqK.
Write Ek,χ0,χ and Ek,χ1,χ2 for Ek,χ0,χ(q) and Ek,χ1,χ2(q), respectively. Us-
ing the arithmetic properties of generalized Bernoulli numbers in [3, The-
orems 1 and 3], we can check

Proposition 3.5. In Cases I–V in Theorem 3.4, the Eisenstein series Ek,χ

realizes the maximal congruence predicted in Theorem 2.5.

By [3, Theorem 1], Bk,χ

k is an algebraic p-adic integer when N is not a
power of p. As a result Ek,χ(q) does not realize the maximal congruence in
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Cases VI and VII in Theorem 3.4. Instead, we can consider linear combi-
nations of basis in the Eisenstein subspace. In general, it is hard to write
down the explicit formulas of modular forms that satisfies the maximal con-
gruence predicted in Theorem 2.5 and Theorem 3.4 in Cases VI and VII.
Here, we work out one of the simplest cases in the rest of this subsection.

Example 3.6. Consider the character χ : (Z/ℓ)× → C×
p , where ℓ is a

prime different from p > 2 and Qp(χ) is a totally ramified extension of Qp.
In this case, Zp[χ] = Zp[ζpm ] for some m ≥ 1 is a p-complete local ring with
uniformizer ϖ = 1 − ζpm . Write the maximal ideal of Zp[χ] by m. By [3,
Theorem 1], Bk,χ

2k is an algebraic p-adic integer. As a result, we can take
Ek,χ0,χ to be:

Ek,χ0,χ = Bk,χ

2k
−

∑
n≥1

 ∑
0<d|n

χ(d)dk−1

 qn.

Comparing Theorem 2.5 and Case VI in Theorem 3.4, we should expect
to find a modular form of weight k, level Γ1(ℓ), and character χ that is con-
gruent to 1 modulo m = (ϖ) only when (p−1) | k, and there is no modular
form of level Γ1(ℓ) and character χ that is congruent to 1 modulo m2. The
Eisenstein subspace in this case Ek(Γ1(ℓ), χ) is spanned by Ek,χ0,χ(q) and
Ek,χ−1,χ0(q).

When (p − 1) | k, the maximal congruence is realized by a linear com-
bination of the two basis Eisenstein series with some cusp forms poten-
tially, since neither of them satisfies the maximal congruence relation. As
Bk,χ

2k ∈ Zp[χ], we have Bk,χ

2k · Ek,χ ∈ Zp[χ]JqK. Notice that the coefficients
of q in Ek,χ0,χ and Ek,χ−1,χ0 are −1 and 1, respectively. Consider the q-
expansion of their sum:

(3.7) Ek,χ0,χ + Ek,χ−1,χ0 = Bk,χ

2k
+

∑
n≥1

anqn

= Bk,χ

2k
+

∑
n≥1

 ∑
0<d|n

(χ−1(n/d) − χ(d))dk−1

 qn.

Lemma 3.8. Ek,χ0,χ +Ek,χ−1,χ0 ≡ Bk,χ

2k mod mqJqK for all k with (−1)k =
χ(−1).

Proof. We need to show the coefficient an of qn in (3.7) is in m for all n ≥ 1.
Write n = ℓwn′ where ℓ ∤ n′. Since the conductor of χ is the prime number
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ℓ, χ(a) = 0 iff ℓ | a. As a result, we have

an =
∑

0<d|n
(χ−1(n/d) − χ(d))dk−1

=
∑

0<d|n
χ−1(n/d)dk−1 −

∑
0<d|n

χ(d)dk−1

=
∑

ℓw|d|n
χ−1(n/d)dk−1 −

∑
0<d|n′

χ(d)dk−1

(set d = ℓwd′ in the first summation)

=
∑

0<d′|n′

χ−1(n′/d′)(ℓwd′)k−1 −
∑

0<d|n′

χ(d)dk−1

=
∑

0<d′|n′

χ−1(n′)χ(d′)ℓw(k−1)d′k−1 −
∑

0<d|n′

χ(d)dk−1

= (χ−1(n′)ℓw(k−1) − 1)
∑

0<d|n′

χ(d)dk−1.(3.9)

Since (Z/ℓ)× surjects onto Cpm by assumption, there is a congruence ℓ ≡ 1
mod p. This implies ℓw(k−1) ≡ 1 mod p. Also, as χ−1(n′) ̸= 0 is a p-power
root of unity, we have 1 − χ−1(n′) ∈ m. Combining these two facts, we
conclude

χ−1(n′)ℓw(k−1) − 1 = χ−1(n′) − 1 + χ−1(n′)(ℓw(k−1) − 1) ∈ m

for all n′ not divided by ℓ. This shows an ∈ m for all n. From this, we
conclude Ek,χ0,χ + Ek,χ−1,χ0 ≡ Bk,χ

2k mod mqJqK. □

Proposition 3.10. The algebraic p-adic integer Bk,χ

2k is in m if (p − 1) ∤ k.

Proof. When (p − 1) ∤ k, there are no modular forms in H0(Mord
ell (pv,

Γ1(N ′)), ω⊗k ⊗Zp[χ])χ−1 whose q-expansion is in 1+mqJqK by Theorem 2.5
and Case VI in Theorem 3.4. In particular, this applies to modular forms
in the Eisenstein subspace Ek(Γ1(ℓ), χ). In Lemma 3.8, we showed all the
an’s in (3.7) are in m. Then its constant term Bk,χ

2k must also be in m so
that there is a non-trivial common factor. □

Remark 3.11. Numerical experiments with SageMath [22] indicate that:
• When (p − 1) ∤ k, it is possible that Bk,χ

2k ∈ ms for some s > 1.
(ℓ = 67, p = 11, k ≡ 4 mod (p − 1))

• When (p − 1) | k, Bk,χ

2k ̸∈ m for all cases tested. Assuming the
maximal congruence f(q) ≡ 1 mod m is realized by an element
in the Eisenstein space when (p − 1) | k, then we can prove that
Bk,χ

2k ̸∈ m.
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3.3. Congruence and group cohomology. Let Z⊗k
p [χ] be the

representation of Z×
p × (Z/N ′)× associated to the character Z×

p ×

(Z/N ′)× (a,b) 7→χp(a)χ′(b)ak

−−−−−−−−−−−−→ (Zp[χ])×. The maximal congruence of Z⊗k
p [χ]

as a Z×
p × (Z/N ′)×-representation is closely related to its group cohomol-

ogy. Suppose (R,m) is a p-complete discrete valuation ring and let ϖ ∈ m
be a uniformizer. For a torsion-free R-module M , the total quotient module
M/ϖ∞ can be defined from a short exact sequence of R-modules:

(3.12) 0 M M [ϖ−1] M/ϖ∞ 0,

where M [ϖ−1] := M ⊗R R[ϖ−1].

Remark 3.13. (3.12) is the colimit of the following tower of short exact
sequences:

0 M M M/ϖ 0

0 M M M/ϖ2 0

0 M M M/ϖ3 0

· · · · · · · · ·

ϖ

ϖ

ϖ2

ϖ

ϖ3

ϖ

When M is a G-representation in R-modules, we note the short exact
sequence above is G-equivariant. It is straightforward to check:

Lemma 3.14. Let G be a group and ρ : G → R× be a group homomorphism
(character), which induces a G-action on R as an R-module. Denote this
representation by M . Then either M is a trivial representation (i.e. MG =
M), or the maximal congruence of M is given by the an ideal mr such that
(M/ϖ∞)G ∼= M/mr.

Lemma 3.15. Assumptions and notation as the above. Suppose G is topo-
logically finitely generated. When MG = 0, there is a natural injection
δ : (M/ϖ∞)G → H1

c (G; M).

Proof. Apply H∗
c (G; −) on (3.12), we get a long exact sequence of G coho-

mology that start with:

0 −→ MG −→ (M [ϖ−1])G −→ (M/ϖ∞)G

δ−→ H1
c (G; M) −→ H1

c (G; M [ϖ−1]) −→ · · ·
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The fixed points (M [ϖ−1])G = 0 since

(M [ϖ−1])G =
(
colim(M ϖ−→ M

ϖ−→ · · · )
)G

∼= colim(MG ϖ−→ MG ϖ−→ · · · ) = (MG)[ϖ−1] = 0.

Here we used the fact the finite limit (−)G (as G is topologically finitely
generated) commutes with the filtered colimit (−)[ϖ−1] by [19, Theorem 1
in Section IX.2]. This shows δ is injective. □

Proposition 3.16. When Z⊗k
p [χ] is a nontrivial (Z/N)×-representation,

i.e. either k ̸= 0 or χ is nontrivial, the connecting homomorphism
δ : (Z⊗k

p [χ]/ϖ∞)Z
×
p ×(Z/N ′)×

→ H1
c (Z×

p × (Z/N ′)× ;Z⊗k
p [χ]) is an isomor-

phism.

Proof. The injectivity of δ follows from Lemma 3.15, since the group Z×
p ×

(Z/N ′)× is topologically finitely generated and Z⊗k
p [χ]Z

×
p ×(Z/N ′)×

= 0 when
k ̸= 0 or χ is nontrivial.

As p is a power of the uniformizer ϖ, there are isomorphisms M [ϖ−1] ∼=
M [1/p] ∼= Q⊗k

p (χ). Next, we show that H1
c (Z×

p × (Z/N ′)× ;Q⊗k
p (χ)) = 0.

Note that group cohomology of the finite subgroup (Z/p)× × (Z/N ′)×

with rational coefficients vanishes in positive degrees. The Hochschild–Serre
spectral sequence then implies

H1
c (Z×

p ×
(
Z/N ′)×;Q⊗k

p (χ)) ∼= H0
c ((Z/p)××

(
Z/N ′)×; H1

c (1+pZp;Q⊗k
p (χ))).

The claim then follows from an explicit computation that

H1
c (1 + pZp;Q⊗k

p (χ))) = 0

when either k ̸= 0 or χ is non-trivial. □

Now combining Theorem 2.5 and Proposition 3.16 yields:

Corollary 3.17. The followings are equivalent:
(1) I ⊴ Zp[χ] is the maximal congruence of modular forms in

H0(Mord
ell (Γ0(N ′)), ωk,χ).

(2) H1
c (Z×

p × (Z/N ′)× ;Z⊗k
p [χ]) ∼= Zp[χ]/I.

Comparing Corollary 3.17 with Proposition 3.5 and Proposition 3.10, the
group cohomology H1

c (Z×
p × (Z/N ′)× ;Z⊗k

p [χ]) computes the denominator
of Bk,χ

2k ∈ Qp(χ) under the assumptions in Cases I–V in Theorem 3.4.
In Cases VI and VII, this cohomological computation sheds light on the
numerator of Bk,χ

2k when (p − 1) ∤ k (still does not determine the valuation
in general).
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Remark 3.18. When the character χ is trivial, the group cohomology
H1

c (Z×
p ;Z⊗k

p ) computes the image of the J-homomorphism in the stable
homotopy groups of spheres. The precisely connection was laid out by the
author in [27]. Therefore we have given a new explanation between con-
gruences of the normalized Eisenstein series E2k of level 1 and the image
of J in this paper. More generally when the character is non-trivial, the
author constructed a family of Dirichlet J-spectra and K(1)-local spheres,
whose homotopy groups are computed by the group cohomologies Hs

c (Z×
p ×

(Z/N ′)× ;Z⊗t
p [χ]) in the same paper.

Remark 3.19. Generalized Bernoulli numbers are related to the Dirichlet
L-functions attached to the Dirichlet character χ: (See [10])

L(1 − k, χ) = −Bk,χ

k
.

When χ is the trivial character, the Dirichlet L-function is the same as
the Riemann ζ-function (up to Euler factors at primes dividing N). A
theorem of Soulé [24] implies that the group cohomology H1

c (Z×
p ;Z⊗2k

p )
is isomorphic to the étale cohomology group H1

ét(Z[1
p ],Zp(2k)). The latter

computes the p-part of the denominator of the special value ζ(1−2k) of the
Riemann ζ-function by the Lichtenbaum Conjecture. This is a special case
of the (confirmed) Bloch–Kato Conjecture for the Riemann zeta function.
A similar connection between étale cohomology and Dirichlet L-functions
is proved in [2, 9].

Appendix A. A Riemann–Hilbert correspondence arising from
formal groups

A.1. Dieudonné modules of formal groups. In this subsection, we
will compute the Dieudonné modules of the Honda formal groups. First,
let’s recall the basic definition of Dieudonné modules of formal groups fol-
lowing [16].

Definition A.1. Let κ be a finite field of characteristic p and Wκ be its ring
of Witt vectors. Let R be a flat Wκ-algebra such that R/p is an integrally
closed domain over κ. In addition, assume that R admits an endomorphism
φ : R → R that lifts the Frobenius φ0 on R/p (the p-th power map). Let
Ĝ0 be a formal group over a finite field R/p. The Dieudonné module of Ĝ0
is a triple D(Ĝ0) = (M, F, V ) consisting of:

• M = PH1
dR(Ĝ/R), where Ĝ is a lift of Ĝ0 to R; PH1

dR stands for the
primitives in first de Rham cohomology. This is explicitly identified
as

(A.2) PH1
dR(Ĝ/R) ∼=

{f(t)∈Qp⊗RJtK | f(0)=0, df and ∂f are integral}
{f(t) ∈ RJtK | f(0) = 0}
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in [16, p. 193], where ∂f(x, y) = f(x) − f(x +
Ĝ

y) + f(y).
• F : φ∗M → M and V : M → φ∗M are induced by the factorization

of the [p]-series map on Ĝ0:

Ĝ0 Ĝ0

φ∗
0Ĝ0

[p]

.

Remark A.3. M = PH1
dR(Ĝ/R) does not depend on the lift Ĝ0 to R. This

is because the ideal (p) ⊴ R has a divided power structure. Moreover, the
assignment Ĝ0 7→ PH1

dR(Ĝ/R) is functorial in Ĝ0.

To compute the Dieudonné module, we need to simplify (A.2).

Theorem A.4 ([4], [21, (A2.2.4)]). Let Ĝ be a formal group over a p-local
algebra R. Then Ĝ has a coordinate t such that its logarithm has the form

log
Ĝ

(t) =
∞∑

i=0

mi

pi
tpi

, m0 = 1, mi ∈ R.

This is called the p-typical coordinate of Ĝ. The p-series of a p-typical
formal group satisfies:

[p]
Ĝ

(t) = pt +
Ĝ

∑
i≥1

Ĝvit
pi

.

Remark A.5. There are several different, but equivalent, definitions of
Dieudonné modules in the literature. The one in [4] switches the F and
the V maps in Definition A.1. See [16, §5.5] for a comparison of different
definitions.

Definition A.6. Let κ be a perfect field of characteristic p, containing Fph .
The Honda formal group Γh of height h is a one-dimensional commutative
formal group scheme over κ with a coordinate t, such that [p]Γh

(t) = tph .

Example A.7. When h = 1, Γ1 ∼= Ĝm, since the latter has p-series [p](t) =
tp over Fp.

Choose a lift of Γh to Wκ with a p-typical coordinate such that [p]Γh
=

pt +Γh
tph . We can find a basis for D(Γh):

f0(t) =
∑
i≥0

tpih

pi
, f1(t) =

∑
i≥0

tpih+1

pi
, . . . , fh−1(t) =

∑
i≥0

tpih+h−1

pi
,
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such that the matrix representations of F and V with respect to this basis
{f0, . . . , fh−1} are:

F =
(

pIh−1
1

)
, V =

(
p

Ih−1

)
.

In particular, we have V h(f0) = f0
(
tph

)
= pf0(t). When h = 1, we have

F (f0) = f0 and V (f0) = pf0.

A.2. Statement of the correspondence.

Theorem A.8. Let R be as in Definition A.1. Then the following categories
are equivalent:

(1) Dieudonné modules (M, F, V ) such that M/V is an invertible R/p-
module generated by γ ∈ M such that

Fγ ≡ V h−1(a0γ) mod V h, where a0 ∈ (R/p)×.

(2) πét
1 (R)-representations in rank 1 free Oh-modules, where

Oh = WFph⟨σ⟩/{σh = p, aφσ = σa}.

(3) One dimensional formal groups of height h over R/p.

Proof. We prove the equivalence as follows:

(1) ⇐⇒ (3). (1) is the description of the Dieudonné module of a height h
formal group. The equivalence was proved in [11].

(2) ⇐⇒ (3). Oh is the algebra of endomorphisms of Γh over Fph . The equiv-
alence follows from the theory of Galois descent for formal groups and
Lazard’s result [18, Théorème IV] that formal groups of the same height
are étale locally isomorphic to each other. □

The Riemann–Hilbert correspondence (1) ⇐⇒ (2) is then an equivalence
between the Dieudonné module data and the Galois descent data of formal
groups. When h = 1, we recover Katz’s Proposition 2.16. Congruences of
the categories in this equivalence are related to the finite subgroup schemes
of the formal groups.

Theorem A.9. Suppose (M, F, V ), ρ ∈ H1
c (πét

1 (R); O×
h ) and Ĝ correspond

to each other in Theorem A.8. Then the followings are equivalent:
(1) There is a generator γ ∈ M such that Fγ ≡ V h−1γ mod V h−1+m.
(2) The Galois representation ρ is trivial mod σm.
(3) The finite subgroup scheme of Ĝ of rank pm is isomorphic to the

corresponding rank pm finite subgroup scheme of the Honda formal
group Γh of height h.
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Proof. The Dieudonné modules and Galois descent data for finite subgroup
schemes of Ĝ0 are described in Proposition 2.18 and Proposition 2.19, re-
spectively. Using the computation of D(Γh) at the end of the previous sub-
section, the proof of the theorem is now similar to that of Theorem 2.20 in
the height 1 case. □

We recover Theorem 2.15 when h = 1. Theorem A.8 and Theorem A.9
also hold for p-divisible formal A-modules of finite dimensions in general.
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