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Congruences of Eisenstein series of level I'; (V)
via Dieudonné theory of formal groups

par NINGCHUAN ZHANG

RESUME. Dans cet article, nous donnons une nouvelle explication des idéaux
de congruences des séries d’Eisenstein de niveau I';(N) et de caractére x.
Notre approche est basée sur I'interprétation algébro-géométrique de Katz des
congruences p-adiques des séries d’Eisenstein normalisées Fsj, de niveau 1. Une
étape cruciale de notre approche consiste a reformuler une correspondance de
Riemann—Hilbert dans ’approche de Katz en termes de la théorie de Dieu-
donné des A-modules formels de hauteur 1 et de leurs schémas de sous-groupes
finis. Nous généralisons en outre cette correspondance de Riemann—Hilbert en
termes de groupes formels de hauteur supérieure a 1.

ABSTRACT. In this paper, we give a new explanation of congruences of Eisen-
stein series of level T'y (V) and character x. Our approach is based on Katz’s
algebro-geometric explanation of p-adic congruences of normalized Eisenstein
series Fop of level 1. One crucial step in our argument is to reformulate a
Riemann—Hilbert correspondence in Katz’s explanation in terms of Dieudonné
theory of height 1 formal A-modules and their finite subgroup schemes. We
further generalize this Riemann-Hilbert correspondence in terms of formal
groups of height greater than 1.

In [12], Katz gave an algebro-geometric explanation of the p-adic con-
gruences of normalized Eisenstein series Foy, of weight 2k and level 1. Using
a Riemann-Hilbert type correspondence (Theorem 2.15) and a theorem of
Igusa, Katz showed:

Theorem ([12, Corollary 4.4.1]). The followings are equivalent:

(1) There is a modular form of weight 2k whose q-expansion is congru-
ent to 1 modulo p™.

(2) The integer 2k is divisible by (p — 1)p™ " if p > 2 and by 2™ if
p =2, where a(1) =0, a(2) =1, and a(m) =m — 2 if m > 2.
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In proving this theorem, Katz essentially used the fact that (2) is equiv-
alent to:

(2") The 2k-th power representation Z;?Qk of Z, is trivial mod p™.

As the space of modular forms of level 1 and weight 2k are spanned by cusp
forms and the normalized Eisenstein series
4k &
Eo, =1~ 5= ) oo-1(n)q",
2k pn—1
Katz’s theorem gives an upper bound of the p-adic valuation of Fo, — 1.
The theorem of Clausen and Von Staudt on Bernoulli numbers then implies
FEy, does realize the congruence of modular forms of level 1 and weight 2k
predicted by that of the Z; -representation Zf?%. The first goal of this paper
is to adapt Katz’s method to study congruences between modular forms in
My(T1(N), x) = My(T1(N)X
and the constant function 1, where y: (Z/N)* — C* is a primitive Dirich-
let character of conductor N. By the g-expansion principle, such a modular
form cannot be a cusp form and thus must have an Fisenstein series as a
summand. Our strategy is to study a p-adic version of this problem and then
assemble the congruences at each prime. As we will be working integrally
and p-adically, it is necessary to specify the meanings of level structures.
Let My (pun) be the stack over Z whose R points are:

Meu(pun)(R)

C' is an elliptic curve over R,
- {(C/R’ n: puy = C) 7 is an embedding of group schemes} .

When R contains a primitive N-th root of unity, a uy-level structure on
an elliptic curve C is (non-canonically) equivalent to a classical I'1 (V)-level
structure Z/N < C on C. Write N = p’ N’ where p is coprime to N’. The

ord

p-adic version of M.y (pn) we will consider is M%%(p”,T'1(N')), whose R
points are

MEE (", T1(N'))(R)

= {(C/R, Mps 1)

C is a p-ordinary elliptic curve over R,
Myt o — Clp"), n':Z/N' = C[N][

where C is the formal group of the elliptic curve C. The stack
M2 (p? T1(N")) is equivalent to the p-completion of Mey(uy) when p
divides N, and is an open substack otherwise. Now let x: (Z/N)* — CJ
be a p-adic primitive Dirichlet character of conductor N. Write Zy[x] =
Zp[Im x]. The character uniquely factors as product x = x; - x’, where x,
and x’ have conductors p¥ and N’, respectively. Let k be an integer such
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that (—1)* = x(—1). Denote by Z$*[x] the ZX x (Z/N')*-representation
associated to the character

a akxp(a)x
Z; X (Z/N/)X ( 7b)'_> XP( )X (b) (

The first main result of this paper is:

Theorem (Main Theorem 2.5). Let Z < Z,[x| be an ideal and k > 3. The
followings are equivalent:
(i) There is a modular form f over the stack M%2(p®, T'1(N")) of weight
k and type x, with q-expansion f(q) € 1+ Zq[q].
(v) The Z; x (Z)N')* -representation Z?k[x] is trivial modulo T.

Zp[x])*-

The proof of the Main Theorem has three major steps:
(I) Identify the Dirichlet character x with the Galois descent data of a
formal Zy[x]-module C*X over M°¢(T'y(N’)), whose R-points are
M (To(N"))(R)
C is a p-ordinary elliptic curve over R,
— !
- {(C/R’HQC[N ) Z/N'=H CC[N] is a flat subgroup scheme}'

We then translate congruences of modular forms in
HO(/\/l‘c?}"ld(p”,1“1(N’)),<1J‘m ® ZpA[X])X_1 to those of elements in the
Dieudonné module D(C*X) of C*:X,

(IT) Reformulate a Riemann—Hilbert correspondence in Katz’s explana-
tion in terms of the Dieudonné module and the Galois descent data
of height 1 formal A-modules. In Theorem 2.20, we first relate con-
gruences of generators in ]D)(CA’I“’X ) to those of that of finite subgroup
schemes of C*X. The latter is then connected to congruences of the
Galois representation [p*X] attached to C*X via Galois descent. In
Theorem A.8 and Theorem A.9, we give a generalization of this
correspondence in terms of formal groups of heights greater than 1.

(ITT) Factor the character p*X associated to the Galois representation

[p"X] and then use a relative version of Igusa’s theorem to reduce
the group to Z; x (Z/N")*.
The implication from (i) to (v) also follows from [15, Lemma 1.2.2] when
p does not divide N. Our method therefore gives a new explanation of the
connection between congruences of modular forms and p-adic representa-
tions, via the Dieudonné theory of formal A-modules.

Let Z5), Z(vy < Zyp[x] be smallest ideal satisfying (i) and (v), respectively.
Theorem 2.5 implies Z(;) = Z(,). As the smallest ideal has generators with
the largest p-adic valuations, we will call these smallest ideals “the maximal
congruences” in both scenarios. The maximal congruences of the Z; x

(Z/N'")*-representations Z$*[y] are easy to compute, since the group is
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topologically finitely generated. The result of this computation is recorded
in Theorem 3.4. Following this, we are particularly interested to find explicit
formulas of modular forms in the Eisenstein subspace & (p¥,T'1(N'), x) that
match the congruences of Zg@k [x]. Write x = x, - X’ as above. When |Im y/|
is not a power of p or [Imx’| = 1, the maximal congruence of modular
forms in the HO(M%A(p¥, T1(N)), w®* @ Z,y[x])X"" is realized by:

Ep\(q) —1——XZUk 1,x(n)q", where o, \(n Z x(d
X n=1 0<d|n

This is in particular an Eisenstein series. Here By, , is the k-th generalized
Bernoulli number associated to the Dirichlet character x. They are defined
to as the Taylor coefficients of the following function:

X teat o0 .
F(t) = eNti_Z kxk" x(a) =0if (a,N) # 1.
a=1

Arithmetic properties of By, were studled in [3] The argument in our

(Z/N'")*-representations Z$*[y] in this case.

When |[Imx/| > 1 is a power of p, the maximal congruence is real-
ized as a linear combination of Ej , with some other modular forms in
HO(MA(p¥, T1(N")), w®* @ Z,[x])X . In this case, congruences of the rep-
resentation Z3*[x]
ple is:

Corollary (Proposition 3.10 and Corollary 3.17). Let p > 2 be a prime and
x: (Z/0)" — C} be a Dirichlet character of conductor £ such that £ # p
is a prime number and |Im x'| = [Im x| s a p-power. Denote the maximal
ideal of Zp[x] by m. Assume (—1)k = x(—1). Then BQ'“];X is an algebraic
p-adic integer in Z,[x| by [3, Theorem 1]. We then have

B,
: -1 .
T when (p— 1)1k

This relation is reflected in the fact that the mazimal congruence of the
Ly % (Z)N'")* -representation fo’k[x] is (1) when (p—1) { k.

We further note that congruences of p-adic representations of Z; x
(Z/N")* are related to its group cohomology.
Corollary (Corollary 3.17). Let T QZ,[x| be an ideal. The followings are
equivalent:

(1) The ideal T is the maximal congruence of modular forms in
HY (MG (To(N')), whX).
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The ideal I is the mazimal congruence of ZS*[x] as a ZX x (Z/N')* -
representation.
HUZy x (Z/N") S Z5"(X]) = Zp[X] /T

Combined with the explicit formulas of the Eisenstein series that realizes
the maximal congruences, Corollary 3.17 implies that the group cohomol-

ogy HCI(Z; x (Z/N'")* ;Zf?k[x]) computes the denominator of 25X when

2k

[Im x'| is not a power of p and (—1)¥ = y(—1). We conclude this paper by
noting that when the character x is trivial, the continuous group cohomol-
ogy H!} (Z;;Z?Qk) appears in other fields of mathematics:

In chromatic homotopy theory, this group cohomology computes
the p-primary part of the image of the J-homomorphism in the
stable homotopy groups of the sphere. In this way, we have given
a new explanation of the connection between congruences of the
normalized Eisenstein series Fo; and the image of J.

In algebraic K-theory, a theorem of Soulé implies this group coho-
mology is isomorphic to certain étale cohomology which appears in
the Lichtenbaum Conjecture for the Riemann (-function.

Notations and conventions.

Denote the Teichmiiller character by the Greek letter w and denote
the sheaf of invariant differentials on various stacks by the boldface
version of the same Greek letter w.

Write C, for the analytic completion of Q,, the algebraic closure of
the rational p-adics.

Write G for the constant G-group scheme.

e Write @a and G’m for the additive and multiplicative formal groups,

respectively. Denote by py the N-torsion subgroup scheme of G,
and by «,, the kernel of the p-th power isogeny of G, over an Fp-
algebra.

By a height 1 or slope 1 formal group CA?, we mean G is étale locally
isomorphic @ﬁd, where d is the dimension of G.

Let M be a G-representation in an R-modules and y: G — R* be
a character. We write MX for the y-eigensubspace of M.

We will suppress the Z, in M ®z, N when M and N are both
Zy-modules.

Let x be a Dirichlet character of conductor N. Write N = p"N’,
where p t N'. Then there is a unique decomposition x = x,x’, where
the conductors of x, and x’ are p and N’, respectively. We fix the
meanings of N, N, v, x;, and X’ throughout the paper.

We will write “=” for 1-categorical isomorphisms and “~” for equiv-
alences of categories or stacks.
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1. pn-level structures on elliptic curves and modular forms

1.1. The Eisenstein subspace. Let x: (Z/N)* — C* be a primitive
Dirichlet character of conductor IN. We are now going to introduce the
Eisenstein series of level I'; (/V) and character y, following [8, §5.1] and [25,
Chapter 5].

Definition 1.1. Let I' < SLy(Z) be a congruence subgroup. Let T C
End(M(T")) be the Hecke algebra acting on My(I"). Then there is decom-
position of T-modules:

(1.2) M(T') = &E(T) @ Sk(T),

where Si(T") is subspace of cusp forms, i.e. modular forms that vanish at
all cusps. The subspace & (T') is the Fisenstein subspace of weight k and
level T'.

Example 1.3. Below is a family of Eisenstein series in E(I'1(N), x). Let
x1: (Z/N1)* — C* and x2: (Z/N3)* — C* be two primitive Dirichlet
characters of conductors N; and N,. Define an Eisenstein series:

x1(m)xz ' (n)
Grxixe (2) = Z S YRR
(nmy20) (MNZ 1)

This is an Eisenstein series of weight k and level N1Ns.

Theorem 1.4 ([7, Theorem 4.5.2]). Let N > 1 be a positive integer and
k > 3. The Eisenstein series {Gg y, yo(t2) | (N1Not)|N, x2/x1 = x} forms
a basis of E(T'1(N), x).

1.2. pn-level structures. As we will be working integrally and p-adically
at levels divisible by p, it is necessary to specify the meaning of I'; (IV)-level
structures.

Definition 1.5. A pupy-level structure on an elliptic curve C is an embed-
ding of group schemes n: puy < C. Denote by M, (un) the moduli stack
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of elliptic curves with py-level structures. Let R be a ring. The R points
of Mey(un) are

n: py — C is an embedding
of group schemes

My (MN)<R) - {(C/R7 77)

C' is an elliptic curve over R and }

Define the space of modular forms of weight k£ and level uy by
1

Mi(pn) = H' (Men(pn), @), Mi(un, x) = Mp(pn)X

where x is a Dirichlet character of conductor V.

Lemma 1.6. The stacks Mp(T'1(N),x) and My(un,x) are equivalent
over C.

Proof. This is because M (T'1(N))(R) ~ Mgy (un)(R) when R contains
a primitive N-th root of unity. O

Proposition 1.7. When N > 4, Mg(un) is represented by a smooth
affine curve over Z.

Proof. By [17, Corollary 4.7.1], it suffices to show:

(1) The forgetful map My(uny) — M,y is relatively representable,
affine, and étale.
(2) Mey(pn) is rigid, meaning that there is no non-trivial automor-
phism of the pair (C,n: un — C).
(1) is proved in [17, Section 4.9, 4.10]. (2) is proved in the [17, Corol-
lary 2.7.4] when N > 4. O

1.3. The g-expansion principle. Let M;(I")g be moduli stack of gen-
eralized elliptic curves over R-schemes with I'-level structures.

Definition 1.8. A cusp in My (T') g is an embedding Spf R[q] — M, (T) g
that classifies a I'-level structure on the Tate curve T'(¢q). The g-expansion
of a modular form f € HO(M(I)gr,w®*) at a cusp is its image under
restriction map to the said cusp.

Proposition 1.9 (The g-expansion principle [12, Theorem 1.6.1]). Let f
be a modular form of weight k, level ', and coefficients in R. It is zero iff
its restrictions to all cusps are zero. Furthermore, when the stack My ()R
is irreducible, the restriction map to any cusp is injective.

It follows that congruences of modular forms are determined by their ¢-
expansions at any cusp when M.y (T") g is irreducible. By [5, Theorem 1.2.1],
this is indeed the case when I' =I'1 (V) and R = Z.

Now normalize E}, y, y, so that its coefficients are algebraic integers.
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Definition 1.10 (Normalization of Gy, y, y,). When x» is non-trivial, we
define normalized Eisenstein series:

Ek’,x1,x2 = Z ( Z X2 Xl n/d)dk 1)

n>1 \0<dln

When y; is the trivial character x° and y2 = x, we define Ej  and
By o bY

Ek‘,X( ) 1—- ka ( Z X dkl) qna
n>1

0<d|n
Eyyox(q) =c- Ery(q) =co+c Z Z X(d)dk_1 q",
n>1 \0<d|n
where ¢g, c; € Z[x] are coprime and ¢y/c; = —BQ'“,;X.

Remark 1.11. As Z[x] has non-trivial unit group, the constant c¢ is not
unique in general.

Proposition 1.12. Ej ,, \,(q) € (HO My (pun), w®F) @7 Z[x1, x2]) /%2,

Proof. By Lemma 1.6, Ej; y, v, € Mp(pn). It is in the x1/x2-eigensubspace
by Theorem 1.4. As the coeflicients of Ej ,, ,(q) are all in Z[x1, x2| by
Definition 1.10, the g-expansion principle Proposition 1.9 implies that

Ejxixe € HY (Meu(pn) xz Spec Z[x1, x2], w®").

When the conductors of x; and xo are 3, their images are {£1} and
Z[x1,x2] = Z. When the conductors of x1 and y2 are at least 4, the claim
follows from Proposition 1.7. O

1.4. p-adic modulis. We will study congruences of modular forms in
My (pun, x) completed at a prime p.

Definition 1.13. An elliptic curve C over a p-complete ring is called
(p-)ordinary if it has nodal singularity, or its reduction mod p is ordinary,
i.e. the formal group C associated to C has height 1 reduction mod p.

Denote the p-completed moduli stack of p-ordinary elliptic curve by
Mgﬁd This is an open substack of M.y, since it is the non-vanishing locus
of the Hasse invariant.

Restricted to /\/lofl , the pyv-level structures on an elliptic curve C' are
identified with the corresponding level structures on the height 1 formal
group C. As formal groups of height 1 are étale locally isomorphic to C:’m,
the multiplicative formal group, there is a tower of stacks:

Me” M (P?) —— M (p) —— M,
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where Mgﬁd( V) and MU are the moduli stacks with R-points
(Cyn: e = Clp ]) and (C,n: Gy, — C) respectively. The forgetful map
M2 (p?) — M is a (Z/p?)*-torsor and MU — M4 is a Z;-torsor.
There is a pullback diagram of towers of stacks:

MG —— - —— M) —— M (p) —— MY
(1.14) J N J 4 l 4 l N J

SpfZy — -+ — B(1+p*Z,) — B(1+pZ,) — BL}

Proposition 1.15 ([1, 14]). Whenp > 2 orp =2 and v > 1, M%d(pY)
triv ~

and /\/l?l”lw are affine formal schemes. In particular, M) Spr where
D, is the ring of divided congruences of p-adic modular forms.

The strategy now is to relate congruences of Ej y to finite subgroups of
the formal groups and formal A-modules associated to p-ordinary elliptic
curves. Below are some facts about needed in the study of formal group of
a p-ordinary elliptic curve.

Proposition 1.16. Let C' be a p-ordinary elliptic curve over a Zy,-algebra.
Denote its formal group by C.

(1) C has a canonical subgroup H of order p, where H = C[p].
(2) The quotient map ¢: C +— C/H is the relative Frobenius map on

Mo,
(3) Let f(q) be the g-expansion of a modular form over MSZ, then
©*fla) = f(d).

(4) There is an isomorphism of invertible sheaves F: ¢*w = w over
Mgﬁd, where w is the sheaf of invariant differentials of C.

We conclude by comparing the integral and p-adic moduli problems.

Lemma 1.17. If an elliptic curve C admits a pn-level structure, then it
is p-ordinary for all primes p | N.

Proof. As i, is a subgroup scheme of py when p | N, it suffices to prove
the case when N = p. Notice p, is p-torsion, any embedding of p, into
an elliptic curve C' must factor through C[p]. When C' is p-supersingular,
C[p] = C[p]. Thus it reduces to showing that there is no embedding of Lp
into a height 2 formal group.

Using Dieudonné theory of finite groups schemes, we can show the only
finite subgroup scheme of rank p in a height 2 formal group is étale locally
isomorphic to «;, which is not étale locally isomorphic to . O
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Definition 1.18. Let M%d(p”,T'1(N')) be the stack whose R-points are
MEE (", T1(N'))(R)
= {(C/R, Mps 1)

Proposition 1.19. Write N = p” - N', where pt N'. Then we have
(M ZZ(MN))/\ ~ {Mgfld(pv ,T1(NY), ifp| N;
€ p —

Myt pipe — Clp*], n': ZJN' < C|N]

C is a p-ordinary elliptic curve over R,}

(Mell) (FI(N))v ZfPTN
Proof. This follows from Lemma 1.17. g

Proposition 1.20. The forgetful map & : M2 (p¥, Ty (N')) — M2 (T (N))
is a torsor of stacks for the group (Z/N)™.

Proof. One can check this by unraveling the definition of G-torsors for
stacks. 0

Proposition 1.21. The stack M%d(p®, T1(N")) is represented by a smooth
formal affine curve over Z, in the following cases:

e N =p" - N'>4 for any p.

e N=p=3.

e N=N'=3andp=2 mod 3.

Proof. When N > 4, the stack M%(p?, '1(N)) is the p-completion (when
p | N), or a distinguished open substack of the p-completion (when p { V)
of Mey(un) by Proposition 1.19. As the latter is represented by a smooth
affine curve over Z by Proposition 1.7, the first case of the claim follows.

When N = p = 3, M%%(3) is affine by Proposition 1.15.

When N = 3 and p # 3, it suffices to show the moduli problem is rigid
as in the proof of Proposition 1.7. Let € be a nontrivial automorphism of C
that preserves a I'1(3)-level structure n': Z/3 — C|[3]. Adapting the proof
of [17, Corollary 2.7.3] to the N = 3 case, we can show ¢ must satisfy
€2 + ¢+ 1 = 0. This implies € is an element of order 3 in aut(C). By [23,
Proposition A.1.2.(c)], aut(C') has an element of order 3 iff the j-invariant
of the elliptic curve C is 0. By [23, Example V.4.4, Exercise 5.7], the j =0
elliptic curve is p-supersingular when p = 2 mod 3. As a result, when p = 2
mod 3, there is no non-trivial automorphism of a p-ordinary elliptic C' that
preserves a I'1(3)-structure. This shows the moduli problem M%d(TI';(3))
is rigid at such primes, and hence represented by a smooth formal affine
curve over Zy. O

Remark 1.22. The moduli problem MZ2¢(I'1(3)) is not rigid when p = 1
mod 3. For such primes, the j = 0 elliptic curve C' is p-ordinary. C' has an
automorphism e of order 3. As C[3] is isomorphic to the constant group
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scheme Z/3%2, the automorphism ¢ restricts to an element of order 3 in

GLy(Z/3). From the identity 0 = e3—1 = (¢—1)3 in End(C[3]) & M2(Z/3),

¢ is unipotent. Then there is a basis {P, Q} of C[3] under which ¢ acts by

the matrix (§1). Let n: Z/3 < C|[3] that sends 1 € Z/3 to P € C[3]. The

matrix representations of e shows it is an automorphism of the pair c,n').
ord

Consequently, MZ;*(I'1(3)) is not rigid. Therefore the moduli problem not
represented by a scheme.

Proposition 1.23. Let x be a Dirichlet character of conductor N, where
N = p" N’ with pt N'. Denote by E,(p*,T'1(N'), x) the Eisenstein subspace
in the x~!-eigensubspace in HO (M (p?,T'1(N")), w®* @ Z,[x]). Then we
have a decomposition:

5k(MN7X)1/;\g @ Ex(p”, T1(N"),L000%),

[c]€coker v*

where v: Q(x) — C, is a field extension and o*: gal(¢(Q(x))/Qp) —
gal(Q(x)/Q) is the induced map of v on Galois groups.

Proof. This is a result of the equivalence of p-adic (Z/N)*-representations

[27, Corollary A.3.5]:
Zix]| @z Ly = @ Zpltooox]. O

[o]€coker v*

Corollary 1.24. Let x1 and x2 be p-adic Dirichlet characters of conductors
N7 and Na, respectively. Then the normalized Eisenstein series Ej y, v, in
Definition 1.10 defines a p-adic Eisenstein series in E(p”, T1(N'), x2/x1),
where N = NNy = p’N' and pt N’'.

2. Eisenstein series and Galois representations

In this section, we adapt Katz’s explanation of congruences of Ey as
p-adic modular forms in [12] to study the congruences of p-adic Eisenstein
series with level (ype,I'1(N”)). The statement and proof of the Main Theo-
rem (2.5) rely heavily on the Dieudonné theory of formal groups and formal
A-modules, which will be briefly reviewed in the next subsection. A refer-
ence for the general theory of formal groups and Dieudonné theory can be
found in [6].

2.1. Review of Dieudonné modules and Galois descent of formal
groups. Let R be a p-complete smooth Zy-algebra such that R/p is an
integrally closed domain and R admits an endomorphism ¢: R — R that
lifts the p-th power map on R.

The Dieudonné module ]DD(@) of a formal group Gy over R/p is a triple

~

D(G) = (M,F: o*M — M,V: M — ¢*M),
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where M = PH&R(CA;/R) is the primitives in the de Rham cohomology
for some lift G of Gy to R and FV = p = VI on the respective do-
mains. Formal groups of the same height h < oo over R/p are étale lo-
cally isomorphic to each other. It follows that their isomorphism classes
are classified by the continuous Galois cohomology H}(7§!(R/p);aut(T'},)),
where I'y, is Honda formal group of height h. The Galois cohomology class
[p] € HY(x$(R/p); aut(I,)) that corresponds to Gy is called the Galois
descent daAta of @0. R R

When G has height (slope) 1, PHi;(G/R) = w(G) is the sheaf of in-
variant differentials of G and F': @*M — M is an isomorphism. As a re-
sult, the Verschiebung V is determined by F' in this case. We will write
ID)(G) = (w(G),F: ¢*w(G) S w(@)) when G has height 1.

Example 2.1. Let R be a p-complete algebra and ¢: R — R be a lift of
Frobenius map. Denote the Dieudonné module of @m /R, the multiplicative
formal group over R, by ]D)(CA?m) = (M,F: ¢*M = M). Then M is a free
R-module of rank 1 generated by an element ~ such that F(y) = ~.

The Galois descent data of height 1 formal groups are described by the
following:

Proposition 2.2. Isomorphism classes of formal groups over a p-complete
algebra R wz’th height 1 reductions modulo p are classified by the abelian
group Hom(m§ (R) Z.5). In particular, the constant map in Hom(w$'(R),ZX)

corresponds to Gm

Proof. When h = 1, T’y = G and aut(@ ) = Z, is an abelian group.
Since R is p-complete, we have m{'(R) = (R/p) Using the fact that
formal groups of height 1 over R/p are etale locally isomorphic to C:’m,
the group cohomology HZ(w{*(R); ZY) = H}(n{'(R/p); Z)) classifies for-
mal groups of height 1 over R/p up to isomorphisms. In particular, the
Galois cohomology class represented by the constant map corresponds to
@m over R/p. This Galois cohomology is an abelian group since Zy is an
abelian group. As the étale fundamental group acts trivially on Z;, we
have H}(n{'(R);Z;) = Hom(m$'(R),Z)). This shows Gy is classified by
the constant group homomorphism in Hom(7§*(R), Zy).

By the Lubin—Tate deformation theory of formal groups, height 1
formal groups over R/p have unique deformations to R. This yields
Hom(n{"(R),Z)) = Hcl(wft(R);Z;) classifies formal groups over R with
height 1 reductlons modulo p up to isomorphisms. O

Proposition 2.2 suggests a natural closed symmetric monoidal structure
in the category of 1-dimensional formal groups of height 1. Let p;: 7{'(R) —
Z, be the Galois descent data for the height 1 formal groups Gy, i = 1,2.
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Then the Galois descent data for él & ég is p1 - p2. In terms of Dieudonné
modules, this monoidal structure is described by

D(G1 ® Gy) = (w1 ®p wa, F1 ® Fy: ¢* (w1 ®p wa)

= "W @ (prg) PTW2 — W1 OR W),

where ]D)(CA},) = (w;, F; 1 p*w; = w;). Below are two relevant examples for
this paper:

Example 2.3. Let C' be the universal elliptic curve over Mgfld and C
be its formal group. Cisa height 1 formal group since C' is a p-ordinary
elliptic curve. Denote the Galois descent data for C by p!: (M) — Zy -
The pair (w, F': ¢*w = w) described in Proposition 1.16 is the Dieudonné
module of C. On g-expansions of modular forms, the Frobenius acts by the
formula F(f(q)) = f(¢?). Denote of the k-th monoidal power of C by C®*.
The Galois descent data for C®* is
1 (_)k

k. _ét ordy P X X
p T (Mell)—>Zp ;Zpa

The Dieudonné module of C®F is
D(@@k) _ (w®k7F®k: @*w®k e w®k)7
where F®F(f(q)) = f(qP).

As the Eisenstein series we study in this paper have coefficients in Zy[x],
it is necessary to work with formal Zy[x]-modules. Let A be an algebra.

~

A formal A-module is a formal group G together with an embedding of

~

algebras i: A — Endpg(G) such that the composite

A Endpe(G) —— End(w(G))

~

realizes w(G) as an A-module. We will write the power series representation
of i(a) by [a]. Any formal group G comes with a unique formal Z-module
structure. When G is defined over a p-complete ring R, this formal Z-
module structure extends (uniquely) to a formal Z,-module structure, since

limy_s oo [p*](£) = 0 in R[¢].

Construction 2.4. When A is Zy-algebra that is a finite free Z,-module,
we define a formal A-module G ® A out of a 1-dimensional formal group
G. The underlying formal group of GoAis CA}@T, where r is the rank of A
as a free Zy-module. The A-action on GoA=Go is given by

A = Endpmod(4) —— Endz, (Z¥") —— Endpa(Go7).
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where the first map is induced by A = Z2". Write D(G) = (w(G),F,V).
The Dieudonné module of G ® A is

DGR A) =DG)®A=(wG)®AF21,Vel).

When the height of G is h, let [p] € Hl( ¢(R);aut(I'y)) be the Galois
descent data for G. The formal A-module G ® A is étale locally isomorphic
to I', ® A. Notice there is an embedding of algebras:

1: End(Fh) — Endformal A—mod(Fh ® A) = End(Fh) A gr—g®1.

The embedding ¢ restricts to a group homomorphism on units. The Galois
descent data for G ® A is then the image of [p] under the induced map of
i in Galois cohomology

iv: H (7§ (R);aut(Ty)) — HY (7S (R); autiormal A-mod(Ln @ A)).

2.2. Statement of the Main Theorem. Let x: (Z/N)* — C} be a
Dirichlet character of conductor N. Write N = p* N’, where pt N’. Then y
uniquely factors as a product x = xj, - X', where x, and x” have conductors
p¥ and N’, respectively. Let Zf?k [x] be the p-adic (Z/N)*-representation,
whose underlying module is Z,[x] and where (a,b) € ZX x (Z/N')* acts
on Z,[x] by multiplication by a* - x,(a) - x'(b).

Theorem 2.5 (Main Theorem). Let Z < Zy[x] be an ideal and k > 3 be
an integer. Then the followings are equivalent:
(i) There is a modular form f € HO(MO(p¥, T1(N')), w®kR@7Z,[x]))X~
such that f(q) € 1+ ZqZy[x][q]-
(ii) There is a generator v € HO(MZUA(To(N")),wrX) such that
FkX(y) =~ mod Z.
(i) CHX(Z] & (G © Z, () [Z).
(iv) The Galois descent data p*X: mSt((MOA(To(N')) — (Zpx])* of
Ckx is trivial modulo T. o
(v) The character 2 x (Z/N')* (@0)xp (@) (B (Zp[x])* s trivial
modulo 7.

1

Remark 2.6. When the character x is trivial, we recover Katz’s algebro-
geometric explanation of congruences of p-adic Eisenstein series of level 1
in [12, Corollary 4.4.1]. In that case, Step I in the proof above is not needed.

Remark 2.7. The implication from (i) to (v) in Theorem 2.5 also follows
from [15, Lemma 1.2.2] when p does not divide N.

The proof of Theorem 2.5 has three steps, which will be explained in
details in the rest of this section. The meanings of the symbols in the
statement of the theorem are explained in the proof sketch below.



Congruences of Eisenstein series of level T'1 (V) 229

(I) Viewing the Dirichlet character y as a Galois cohomology class, we

construct a formal Zy[y]-module C*X of height 1 over M%#(T(N"))
such that

HO (MG (p", T1(N)), wF @ Z, X)X = HO(MEGHTo(N')), w(CFY)).
In this way, we translate congruences of modular forms in this
eigenspace to those of elements in the Dieudonné module of Ckx,

(II) We relate the congruence of the Dieudonné module D(C*X) with
that of the Galois descent data [p"X] for C*X by reformulating a
Riemann—Hilbert type correspondence in [12] using the Dieudonné
theory of height 1 formal A-modules and their finite subgroups

(IIT) The Galois cohomology class [p"X] € H(m{(M2A(To(N)));
(Zp[x])*) is represented by a group homomorphism that factors as

a,b »(a)x’ (b)a®
P Tl (MO(T(N))) < x (z/N')*< LDl O 7y

Here pl': 7{(M24(To(N"))) — Z, is the Galois descent data for C
described in Example 2.3 and Ay : 7¢t(M24(Do(N'))) — (Z/N')*
classifies the (Z/N')*-torsor M (T (N')) — M%A(To(N')). The
theorem then follows from the surjectivity of p* x Apyv.

plx)\N/

2.3. Step I: Dirichlet characters and Galois descent. The first step

in the proof of the Main Theorem is to view the Dirichlet character

x: (Z/N)* — C) as the Galois descent data for a formal A-module

CkX  of height 1 over MIATo(N')) along the (Z/N)*-torsor

& M (p", T1(N')) — MZHTo(N')).

Construction 2.8. Let (C,n,,7) be the universal elliptic curve with the
ord

given level structures over M%%(p¥,I'1(N’)) and C be its formal group.
Then C®* © Z,[x] is a formal Z,[y]-module of height 1. Notice that:
e The automorphism group of C%* @ Zp[x] as a formal Z,[x]-module
is (Zp[x])™
e The forgetful map &: MOTd(p Fl(N')) — MILTH(N')) is a
(Z/p®)* x (Z/N")"-torsor and (Z/p*)* x (Z/N')* = (Z/N)*.
The Dirichlet character x: (Z/N)* — C, then represents a cohomology
class

] € HY((Z/N)* (Zp[x))*)
= Hl (autMZﬁd(I‘g(N’)) (Mg;"ld(pv, Pl(N/)))a autformal Zp[x]—mod(0®k ® Zp [X]))a

where (Z/N)™* acts on (Zp[x])* trivially. This cohomology group classifies
formal Z,[x]-modules G over M%d(T'o(N')) such that £*G = C®F @ Z,[x]
over Mgﬁd(p”,Fl(N ")) up to isomorphisms. In this way, the cohomology
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class [x] corresponds to a formal Z,[x]-module C*X over M4 (To(N")).
More precisely, fix an isomorphism 7: f*Ck’X 5 C% @1 »x], then for any
o€ (Z/N) = authﬁd(Fo(N/))(Mgﬁd(p”, I'1(N"))), we have a commutative
diagram of isomorphisms:

g*ék,x o®1 O_*&-*ak,x g*ak,x
UJ a*ni a*ni
C¥* @ Zy[x] —— 0" (C®* @ Zy[x]) == C*F @ Z,[x]
[x(o)]

In this diagram,

e The homomorphism [y(o)] is defined in Construction 2.4.

e The isomorphism o*7 is the same as ) since (Z/N)™ acts on (Zp[x])*
trivially.

e The correspondence between C*X and x is independent of the
choice of the isomorphism 7, since the group auty, ] (6’ kRZy[x]) =
(Zp[x])* is abelian.

Let whX = w(CkX) be the sheaf of invariant differentials of C*X. The
sheaf w®X is locally free finitely generated over M2d(Io(N')), since it is
the cotangent sheaf of a formal scheme that is étale locally isomorphic to
A", where r is the rank of Zp[x] as a Z,-module.

Proposition 2.9. We have an isomorphism of locally free sheaves £*wX =

WPk R7Z,[X] over the stack M (p®,T'1(N')). The sheaf cohomology of w*X
is computed as follows:

(1) For all integers N > 1, we have
(2.10) HOME (", DL (V) w0 & Zy )Y 2 HOMEGTo(NV'), ).
(2) When N >3 or N =3 and p Z1 mod 3, we have for all s > 0:
H* (M (To(N')), w™X)
= H*((Z/N)* s HO (M (0", T1(N')), 0™ @ Zy[x]))-
(3) When pt¢(N) =|(Z/N)™ |, we have for all t > 0:

—1

H (M (To(N'), w"X) 2 H (M (", T1(N')), w®* @ Zp[x])¥
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(4) In particular, when N and p satisfy the conditions in (2) and (3),
we further have:

H* (M (To(N')), ™)

HO(MEG(p, Ty (N), w0 @ Zy )X, s = 0;
0, otherwise.

Proof. The functor w is compatible with pullbacks, yielding
EWh = £w(C) = w(g T = w(C™F @ Z,[) = 0™ § 2]

To compute H*(ME(To(N')), w®X), we use the Hochschild-Serre spectral
sequence [20, Theorem 2.20]:

(211) Ey' = H((Z/N)*; H (M (p", T1(N')), € wh))
— H* P (M (To(N'), w),

where o € (Z/N)* acts on £*wkX = w®*R7Z,[x] by the Galois descent data
1® x(0). As the spectral sequence is concentrated in the first quadrant, its
Eg’o—term receives or supports no differentials. This yields (1).

By Proposition 1.21, the stack M%(p?, '1(N')) is a formal affine scheme
when N >4 or N =3 and p # 1 mod 3. It follows that (2.11) is concen-
trated in the ¢ = 0 line in those cases. As a result, the spectral sequence
collapses on the Es-page and we have proved (2).

When p { ¢(N) = |(Z/N)* |, the group cohomology of (Z/N)* with
coefficients in Z,-modules vanishes in positive degrees. It follows that (2.11)
is concentrated in the s = 0 line in this case and thus collapses on the F»-
page. This implies (3).

Case (4) is the intersection of cases (2) and (3). O

Remark 2.12. Note that 2 is the only prime p dividing ¢(3) = 2. The
spectral sequence (2.11) collapses on the Fs-page for all N > 3 and p.

Write D(CFX) = (whX, FFX: p*wkX 5 wkX) The Frobenius homomor-
phism F*X of C*X descends from that of £*C*FX = O%F @ 7,[x]. Exam-
ple 2.3 and Construction 2.4 yield

EFMN = FP @10 g*w @ Z,[x] = w® @ Zy[x].

Notice F®* @ 1 commutes with the Galois descent data 1 ® x(o) for o €
(Z/N)™, we have shown:

Proposition 2.13 (Step I). Let f be a modular form in HO(Mg}}d(p“,
T1(N)),w®F @ Z,[\])X " = HOMEGHTo(N)),whX). Then FFX(f(q)) =
(F®* @ 1)(f(q)) = f(¢"). Let T < Z,[x] be an ideal. The followings are
equivalent:
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(i) There is a modular form f € HO(M%A(To(N")),wkX) such that
fla) € 1+ Zq[q].

(ii) There is a generator v € HOMAHTo(N)),wkX) as an
HO(M(To(N")), O)RZy[x]-module such that F¥X(y) =~ mod Z.

Remark 2.14. There is no guarantee that the modular f above is in the
Eisenstein space E(p¥, T'1(N'), x).

This concludes Step I in Section 2.2.

2.4. Step II: From Dieudonné modules to Galois representations.
One major tool Katz used in [12, Chapter 4] to explain the congruences of
the normalized Eisenstein series Foj, of level 1 is a Riemann—Hilbert type
correspondence. In this subsection, we reformulate the correspondence in
terms of formal A-modules and their finite subgroup schemes, and then
apply it to the formal Z,[x]-module CFX over MZAT(N')) we constructed
in Construction 2.8.

Let x be a perfect field of characteristic p containing F, and W,,(F,) be
the ring of Witt vectors of length m on F,. Let S, be a flat affine W,,(x)-
scheme whose special fiber is normal, reduced, and irreducible. Assume S,,
is formally smooth, so that it admits an endomorphism ¢: S,, — S, that
lifts the g-th power map on S,,/p. Then Katz proved

Theorem 2.15 ([12, Proposition 4.1.1, Remark 4.1.2.1]). There is an
equivalence of closed symmetric monoidal categories:

Finite locally free sheaves F on Sy,
{with an isomorphism F: o*F f}
Finite free W, (IF,)-modules
- {with continuous Wft(Sm)—actions} .

Proposition 2.16 ([13, Remark 5.5]). Theorem 2.15 holds for affine formal
schemes S over W(k) under the same assumption. That is, there is an
equivalence of closed symmetric monoidal categories:

Finite locally free sheaves & on S
with an isomorphism F: ¢*F —» F
{ Finite free W(F,)-modules }

with continuous ' (S)-actions

This equivalence of Katz is essentially an equivalence of Dieudonné mod-
ule and Galois descent data of a formal group and its finite subgroups. Let
A be a Zjy-algebra that is finite free as a Z,-module and G be formal A-
module of height 1. Let Z < A be an ideal.
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Definition 2.17. Define CA;'[I] to be the kernel of all the endomorphisms
in Z 9 A < End(G). If G = SpfR[[t] has a coordinate, then G[Z] =
Spf R[t] /([a](t) | a € Z) as a finite flat scheme. When Z = (a) is a principal
ideal, G[Z] = Gla] = Spf R[t]/([a](¢)).

Proposition 2.18. Let G be a formal A-module. Write the Dieudonné
module of G as D(G) = (M, F,V). Then M has an A-module structure
and the homomorphisms F and V are A-linear. The Dieudonné module
of GIZ] is D(G)/T = (M/IM,F: o*(M/IM) — M/IM,V: M/IM —
p*(M/IM)).

Proposition 2.19. Let G bea formal A-module over R that is isomorphic
to G' over the separable closure R of R. Let the cohomology class [p] €
HY (7 (R); aut o(G")) be the Galois descent data for G. [p] is represented
by some crossed homomorphism p: T¢(R) — auts(G'). Then the Galois
descent data for the finite flat group scheme @[I] is represented by the
crossed homomorphism:

pr: THR) 5 aut4(G') — aut(G'[Z)),

where the last map aut o(G') — aut(G'[Z]) is the restriction of the quotient
map to units

EndA(G') — Enda(G')/(Z ®4 End(G')) = Enda(G'[Z))

In the view of Proposition 2.18 and Proposition 2.19, Katz’s Riemann—
Hilbert correspondence (Theorem 2.15) can be generalized as:

Theorem 2.20. Let G be a formal A-module of height 1 over R, where
Spf R satisfies the same assumptions as in Theorem 2.15. Let D(é) =
(M,F: o*M 5 M) and p: n{*(R) — AX be the Dieudonné module and
Galois descent data for @, respectively. Then the followings are equivalent:
(1) There is a generator v of M as an R® A-module such that Fy =~
mod Z.
(2) GI] = (G, ® A)[Z].
(3) The composition homomorphism pr: m$H(R) & AX — (A/T)* is
trivial.

Proof. Let’s prove the case when R = R/p. By [11, Main Theorem 1],
the functor D is an equivalence over R. The claim then follows from the
computation of the Dieudonné module and the Galois descent data of Gm
in Example 2.1, as well as Proposition 2.18 and Proposition 2.19.

Now let R be a Wk-algebra. Using the Lubin-Tate deformation theory,
we can show there is an equivalence between height 1 formal groups over
R/p and their deformations to R/p. The claim now follows from the R =
R/p-case. O
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Remark 2.21. Katz’s Theorem 2.15 is the Z = (p™) < A = WF, case of
Theorem 2.20.

Remark 2.22. We can generalize Theorem 2.15 and Proposition 2.16 in
terms of formal groups and formal A-modules of height/slope A > 1. In
that case, we need to study the Dieudonné module of the Honda formal
group I'y, of height h and its finite subgroup schemes. The result is included
in Appendix A.

Now apply Theorem 2.20 to the formal Z,[x]-module CFX over
M24(To(N')) constructed in Construction 2.8, we have established Step II
in Section 2.2:

Corollary 2.23 (Step II). Let Z < Z,[x] be an ideal. The followings are
equivalent:
(ii) There is a generator v € HO(MIA(To(N")),wrX) such that
FF¥X(y) =~ mod T.
(i) CFX[T] = (G @ Z,[X))[Z]
(iv) The Galois descent data p*X: w{(MATo(N")) — (Zy[x])* of
CFX s trivial modulo T.
2.5. Step III: Factorizations of the Galois descent data. The fi-
nal step is to study the Galois descent data p*X for C*X. Denote by
& MIA(p?, T1(N')) = ME(To(N')) the forgetful map. Recall from Con-
struction 2.8, CFX is constructed using the following data:
e A formal Zp[x]-formal module ¢Chx = Ok g Zp|x] over
MG (p°, T1(N')).
o CkX corresponds to descent data [x] € H'((Z/N)*; (Z,[x])*).
Proposition 2.24. p*X: 7{(M2A(To(N')) — (Zp[x])* factors as

PR Tl (MELT(N'))) 2225 7% x (2N L2, (7,1 %,

where )\5 T (MZATo(N'))) — (Z/N)* is the character that classifies the
(Z/N)* -torsor €.

Proof. Recall in Construction 2.8, we used the following correspondence to
construct C*X from the character :

(225) H'((Z/N)* 3 (Zp[x])™)
_ | Formal Zj|[x]-modules G over MZUA(TH(N")) /
| such that £*G =~ C®*® Z,[x] over M2 (p", T1(N)) .

Here, the constant group homomorphism on the left hand side corresponds
to the formal Z,[x]-module C®* ® Z,[x] over M%(To(N")). Now we need
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to describe this correspondence in terms of the Galois descent data pg of
G. On one hand, since £*G = C% Zp|x], the composition

(226)  wf{MEG" TV (M) 2 (2,00)"

is the same as the Galois descent data for the formal Z,[x]-module C® @
Zp|x] over MOTd(p¥,T'1(N')). On the other hand, by Example 2.3 and Con-
struction 2.4, this Galois descent data also factors as

T4 (€)
— T

(2.27) af (M (p°, T1(N))) T (M (To(N)))

(—)* i
iR LY —— LY = (Zp[x]) ™.

Denote the composition i o (—)* o p! in (2.27) by p*. Since the first maps
n (2.26) and (2.27) are both 7§ (¢) and the compositions are the same, the
difference of pz and p® must factor through the cokernel of 7{*(¢). We have
the following diagram:

' (€)
—

T (M (p°, T1(N'))) r{ (MEGHTY(N')) o (Z/N)* —— 1

As the cokernel of 7§/(¢), the map M¢ classifies the (Z/N)*-torsor
€ MOA(pV T1(N") — MUATo(N)). Tt follows the that there exists
a unique character xg: (Z/N)* — Zp[x] such that for any o €
T (M To(N")), pgo) = (p'(0)" - (xg © Ae)(0)-

This xgz is the character corresponding to G in (2.25). Since CFX s
constructed using y, we have

PEX(a) = (p1(0))" - (x 0 Ae)(0) = ((—)* - x(=)) o (p" X Ae)(0)
for all o € w¢{(ME(To(N"))). O
Now we need to find the image of p! x A¢.
Proposition 2.28. p! x\¢: m{{(M2ZA(To(N'))) — Ly x(ZLIN)* factors as:

Pl Act i (MEITO(N)) 22250 2 (2/ V')

O, 7 (2/p) x (Z/N')* 2 L x (Z/N)”

where Ay mH(MOETo(N"))) — (Z/N')* classifies the (Z/N')* -torsor
MEHTLN')) = MZGHTo(N')).
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Proof. We prove the factorization by translating Galois representations into
torsors over M 4(To(N")).

Lemma 2.29. The Z;,—torsor MU (T(N")) — MAATo(N)) is classified
by the character p': 7$(MZA(To(N'))) — ZX, where M (Do(N')) is a
stack whose R-points are

M (To(N)(R) = {(C/R,n: G = C,H C C[N']) | H = Z/N'}.

Proof of the Lemma. Recall that [pl] € H(m{{(M24(To(N'))); Z, ) is the
Galois descent data for C , the formal group of the universal elliptic curve
over M 4(T(N")). The character p! then corresponds to a Z,-torsor over

M3 (To(N')) such that its fiber over the an R-point (C/R, H C C[N')) is
the set of triples (C/R,n: Gy = C, H C C[N")). O

Lemma 2.29 implies that the character p' x A¢ classifies the torsor
MU (Y T1(N')) — MIATo(N')) for the group Ly % (Z/N)*, where
MUY (p? T1(N')) is a stack whose R-points are

n: Gm - C,
MG B THUND)(R) = 3 (C/ Ry, ') | 1y e — Clp'),
n':Z/N — C[N']

Sitting in between M (Y T1(N')) and M%E(To(N")) is the stack
MUYy (N')), whose R-points are

MG (DL (N)(R) = {(C/R,mn) | 0z G = Cof s Z/N' — CIN]}.
In the Z; x (Z/N)*-torsor
MG P", T1(N')) —— MEGF(T(N') —— M (To(N')),

the first map M (p¥, Ty (N')) — M (T (N")) is a (Z/p¥)*-torsor that
admits a section:
s: MG (CL(N')) — Mg (0, T (N')),
(C/Rm ') = (C/ R mlg1)-
The existence of this section implies that p' x A¢ must factor through the

map p' x Ayr: 7§ (MZGETo(N'))) — ZX x (Z/N')™, which corresponds to
the ZX x (Z/N')*-torsor M*(T1(N')) — MZ*(Lo(N)). The formula of
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s then yields a commutative diagram:

T MEILTH(N))) —L22 7% (2N

91X)‘N’J ‘

23 x (z/ Ny LY g (o)< (2N

Combining Proposition 2.24 and Proposition 2.28, we have shown

Corollary 2.30. pFX: 7ft(M24(To(N')) — (Zp[x])* factors as

pIX)\N/

(2.31) p"X: wf (M (To(N'))) Zy x (Z/N')"

(a,b) (a)x’(b)a®
X (Zo[X))*

To relate the congruence of p¥X with that of the second map in (2.31),
it remains to show:

Proposition 2.32. p!' x Ay/: 7{{(MZGH(Co(N") — ZY x (Z/N')* is
surjective.

Proof. By [26, Theorem 5.4.2], the surjectivity of p! x Ay is equivalent to
the connectivity of the ZX x (Z/N')*-torsor it classifies. As p! x Ay classifies
the torsor M%#(I'(N')) — M d(To(N')), we need to show MU# (T (N'))
is connected.

By a relative version of Igusa’s theorem in [17, Corrollary 12.6.2.(2)],
MU (T (N")) is connected whenever M24(T'y(N')) is. The integral stack
M. (T1(N')) has geometrically connected fiber by [5, Theorem 1.2.1]. It
is also smooth by [17, Corollary 4.7.1]. It follows that M (T'1(N’)) is ir-
reducible and so is its p-completion M.y (I'1(N'));). From this we conclude
MA(T1(N")) is irreducible (hence connected), since it is an open substack
of an irreducible stack. g

Now by Corollary 2.30 and Proposition 2.32, we have proved:

Corollary 2.33 (Step III). Let Z < Zy[x] be an ideal. The followings are
equivalent:
(iv) The composition pkX: wé{(M2A(To(N'))) = (Zy[x])* = (Zy[x]/T)*
is trivial.
(v) The composition 7 x (Z/N')*
(Zp[x]/T)* is trivial.

(a,b)—=xp(a)X’ (b)a

> (ZpIX)* —
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3. The maximal congruence of Eisenstein series

Theorem 2.5 identifies congruences of modular forms in HO(Md(pv,

T'1(N'), w®* @Z,[x]))X with that of ZS*[x] as a Z¥ x (Z/N') ™ -represent-
ation in Zp[x]-modules. In this section, we first compute the maximal con-
gruence of Z;?k[x] and then find explicit examples of modular forms that
realize this congruence in many cases. In all the examples we study, there is
a modular form in the Eisenstein space & (p”,T'1(N’), x) that realizes the
maximal congruence.

3.1. Congruences of p-adic representations.

Definition 3.1. Let R be a p-complete local ring and M be a torsion-free
R-module with a continuous R-module action by a profinite group G. M
is said to be a trivial G-representation modulo an ideal Z < R if G acts
on M/TM trivially, or equivalently (M/ZM)% = M/TM. The maximal
congruence of M as a G-representation is the smallest ideal Z such that
M/IM is a trivial G-representation.

Remark 3.2. The G-action on the quotient M/ZM is well defined since G
acts by R-linear maps. Otherwise, we need to assume Z < R is a G-invariant
ideal, i.e. ¢Z =7 for all g € G.

Lemma 3.3. When the underlying R-module of the G-representation M
is R, the G-action of M is then associated to a character x: G — R*. Let
{gi | i € I} be a set of generators of G. The mazimal congruence of M is
the ideal (1 — x(g;) | i €I).

Proof. The maximal congruence of M is by definition the ideal (1 — x(g) |
g € G). Notice that

(1—x(99") = 1= x(9) + x(9) — x(99))
C (1 —x(9) + (x(9) — x(g9")) = 1 = x(9)) + (1 = x(¢))-

and that (1-x(g7")) = (x(9) —1), we have (1-x(g) | g € G) = (1—x(g:) |
iel). O

When p > 2, Z is topologically cyclic. When p = 2, Zy ={£1} x 1+
47,) and 1+ 4Zs is topologically cyclic. Let g be a topological generator of
Z; when p > 2 and a topological generator of 1+ 4Zy when p = 2.

Theorem 3.4. The congruences of Zg@k[x] have seven cases:

a

(I) p > 2 and the conductor of x is p or 1. In this case, x = w
for some integer 0 < a < p — 2, where w: (Z/p)* — Zy is the
p-adic Teichmiiller character. The image of x is contained in Z, .
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Then the mazimal congruence of Zf?k[w“] is the following ideal in
Ly = Lp[w?:

(™, (p=1) | (k+a);
(1) otherwise.

(1-¢"x(9)) = (1 = g*w"(9)) = {

(IT) p = 2 and the conductor of x is 4 or 1. In this case, x = w® fora =0
or 1, where w: (Z/4)* — Z is the 2-adic Teichmiiller character.
As g € 1447, w(g) = 1. Again the image of X is contained in Zz .
Then the mazimal congruence of Z?k[w“] is the following ideal in
ZQ = ZQ [w“]:

2vp(k)+2) 9 ’ (k+a);

1—g"wg),1— (—=1)Fw(-1)) = ( ’ ’

(1= g"(g) (=)W (=1)) {(2), otherwise.

(IIT) p > 2 and the conductor of x is p* > p. In this case, (Z/p¥)* =
(Z/p)* x Cypo—1 and As x is primitive of conductor p®, X|va_1 is
injective. As a result, Zp[x| = Zp|Qpo-1]. Zp|Gu-1] s a p-complete
local ring with uniformizer 1 — (1. Write X|(Z/p)>< = w?® for some
0 < a < p—2. Then the mazimal congruence of Z?k[wa] is the
following ideal in Zy[(w—1] = Zp[x]:

(1_Cp“*1)7 (p—l) ’ (k+a);

(1), otherwise.

(1= g"x(9)) = (1= Gu1ghw(9)) = {

(IV) p = 2 and the conductor of x is 2 > 4. In this case, (Z/2°)" =
(Z]4)™ x Cov—2. As x is primitive of conductor 2°, x|c,,_, s injec-
tive. As a result, Za|[x] = Za[Cov—2]. Z2[(ov—2] is a 2-complete local
ring with uniformizer 1 — (qv—2. Write X\(Z/4)x =w® fora=0 or
1. Then the mazimal congruence of Z?k[x] is the following ideal in
Lo [Cov—2] = Zo[x]:

(1 — Cpo—2g*w?(g),1 — (=1)*w(=1)) = (1 — Cyo—2) for all k and a.

(V) N'"#1 and [Im x| is not a power of p. In this case, Im X" contains
of a root of unity ¢, whose order n' is coprime to p. As 1 — (v is
invertible in Z,[Cn] C Zpx], we have the mazimal congruence of
ZSE[X] is the ideal (1) in Zy[X].

(VI) p > 2, N' # 1 and [Imx'| > 1 is a power of p. In the case,
Im ' is generated by (o for some v\ > 1. We have Zg@k[x] =
Zp[Cymax(o—1,0]- Write Xp|(Z/p)>< = w® for some 0 < a < p— 2.

Then the maximal congruence of Zf?k[)d is the following ideal in
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Z3*X) = Zp|Cymaxto-1.01]

(1= 0"x(9):1 =) = (1= Guorgh (). 1= ()
— {(1 = Guax—109), (P —1) | (k+a);

(1), otherwise.

(VIT) p =2, N' #1 and Qa(X') is a totally ramified extension of Qz. In
the case, the image of X' is generated by (o for some v' > 1. We
have Z?k[x] = Zo[Comax(v v—2)]. Write X2|(Z/4)>< = w? fora = 0,1.

Then the mazimal congruence of Z%@k[x} is the following ideal in
ZQ[CQmax(v’,v—Z)] = ZQ [X] ’

(1= Gury 1 = Goo2g"w®(9), 1 = (=1)*w*(=1)) = (1 = Comant/o-2))
for all k and a.

3.2. Realizations of the maximal congruence. Having computed
the maximal congruence of the ZX x (Z/N')”*-representation Z$[x], now
we give explicit examples of modular forms in the Eisenstein subspace
Ex(p¥, T1(N'), x) whose g-expansions realize the maximal congruence.

Let k£ > 3 be an integer such that (—1)¥ = x(—1). Recall from Theo-
rem 1.4 and Corollary 1.24 that Eisenstein subspace & (p”,I'1(N'), x) ® Q,
is spanned by Eisenstein series of the forms:

%wm%wﬂmm:°(“;fz(2xwfgfﬁ,

X n>1 \0<d|n

Ek:Xl:XQ (qt)
0<d|n

( > xfl(n/d)m(d)d’“‘l) g,
n>1

where

e cis Zy[x] with the smallest valuation so that Ej 0 \(q") € Zy[x][q].
e x1 and x2 are characters of conductors N; and N» satisfying
x1/x2 = x ! and (N1 Nat) | N.
By the g-expansion principle Proposition 1.9, an element of & (p¥, I} (N'), x)
is a Q,-linear combination f(q) of these Ey, 1, ,(¢) such that f(q) € Zy[x][q]-
Write Ej o, and Ej y, y, for By 0,(q) and Ej y, y,(q), respectively. Us-
ing the arithmetic properties of generalized Bernoulli numbers in [3, The-
orems 1 and 3|, we can check

Proposition 3.5. In Cases I-V in Theorem 3.4, the Eisenstein series Ey,
realizes the mazimal congruence predicted in Theorem 2.5.

By [3, Theorem 1], BZ’X is an algebraic p-adic integer when N is not a

power of p. As a result Ej,, (q) does not realize the maximal congruence in
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Cases VI and VII in Theorem 3.4. Instead, we can consider linear combi-
nations of basis in the Eisenstein subspace. In general, it is hard to write
down the explicit formulas of modular forms that satisfies the maximal con-
gruence predicted in Theorem 2.5 and Theorem 3.4 in Cases VI and VII.
Here, we work out one of the simplest cases in the rest of this subsection.

Example 3.6. Consider the character x: (Z/)* — CJ, where / is a
prime different from p > 2 and Q,(x) is a totally ramified extension of Q,.
In this case, Zp[x] = Zp[(ym] for some m > 1 is a p-complete local ring with
uniformizer w = 1 — (pm. Write the maximal ideal of Z,[x] by m. By [3,

Theorem 1], B;,;X is an algebraic p-adic integer. As a result, we can take

Ej} yo0 to be:

Comparing Theorem 2.5 and Case VI in Theorem 3.4, we should expect
to find a modular form of weight k, level I'; (¢), and character y that is con-
gruent to 1 modulo m = (w) only when (p—1) | k, and there is no modular
form of level I';(¢) and character x that is congruent to 1 modulo m?. The
Eisenstein subspace in this case & (I'1(£), x) is spanned by Ej 0 ,(¢q) and
Ek,x—l,xo (Q)

When (p — 1) | k, the maximal congruence is realized by a linear com-
bination of the two basis Eisenstein series with some cusp forms poten-
tially, since neither of them satisfies the maximal congruence relation. As
Bex ¢ Zyp|x], we have ﬂ Eyx € Zp[x][q]- Notice that the coefficients
of ¢ in Ej 0, and Ek,x 17 o are —1 and 1, respectively. Consider the g¢-
expansion of their sum:

(3.7) Ejyoy + Epy-1,0 = ’X + > ang”
n>1

( >, (Hn/d) - (d))dk‘l) 7"

0<d|n

n>1

Lemma 3.8. 0, +FEj 1,0 = BQ’“];X mod mq[q] for all k with (—1)F =
X(=1)-

Proof. We need to show the coefficient a,, of ¢" in (3.7) is in m for all n > 1.
Write n = ¢*“n’ where £ 1 n’. Since the conductor of x is the prime number
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¢, x(a) =0iff £| a. As a result, we have

an= Y (X '(n/d) — x(d)d""

0<d|n

Z X~ n/d dk 1 Z X dk*l
0<d|n 0<d|n

= > x'(n/d)d*t = > x(d)d"!
2v|dln o<d|n’

(set d = £d’ in the first summation)

Z X*l /dl gwd/ k-1 Z X dk’fl

o<d'|n/ 0<d|n’
_ Z X_l(n/)x(d/)fw(k_l)d/k_l— Z X(d)dk:—l
o<d'|n’ 0<d|n’
(3.9) = (') —1) Y x(d)d
0<d|n’

Since (Z/¢)™ surjects onto Cpym by assumption, there is a congruence ¢ = 1
mod p. This implies £*®*~1 =1 mod p. Also, as x1(n') # 0 is a p-power
root of unity, we have 1 — x~!(n’) € m. Combining these two facts, we
conclude

Xfl(n/)gw(kfl) — 1= Xfl(n/) 1+ Xfl(n/)(gw(kfl) _ 1) em

for all n’ not divided by £. This shows a, € m for all n. From this, we
conclude Ej, o, + Ejp 1,0 = % mod mq[q]. O

Proposition 3.10. The algebraic p-adic integer '“ X isinmif (p—1) 1 k.

Proof. When (p — 1) { k, there are no modular forms in H®(MZ2(p?,
['1(N')), w®*®7Z,[x])X"" whose g-expansion is in 1+mg[q] by Theorem 2.5
and Case VI in Theorem 3.4. In particular, this applies to modular forms
in the Eisenstein subspace & (I'1(¢), x). In Lemma 3.8, we showed all the

ap’s in (3.7) are in m. Then its constant term Bz’“k" must also be in m so
that there is a non-trivial common factor. U

Remark 3.11. Numerical experiments with SageMath [22] indicate that:

e When (p — 1) t k, it is possible that BQ'“I;X € m® for some s > 1.

{=67,p=11,k=4 mod (p—1))

e When (p — 1) | k, Bk" ¢ m for all cases tested. Assuming the
maximal congruence f ( ) = 1 mod m is realized by an element
in the Eisenstein space when (p — 1) | k, then we can prove that

ka gm
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3.3. Congruence and group cohomology. Let Zf?k’[x] be the
representation of ZY x (Z/N')* associated to the character Z) x

a a)v’ ak
(Z/N')" (@.b)=xp()x'(b) (Zp[x])*. The maximal congruence of Zf}”“[x]

as a Z, x (Z/N' )*-representation is closely related to its group cohomol-
ogy. Suppose (R, m) is a p-complete discrete valuation ring and let w € m
be a uniformizer. For a torsion-free R-module M, the total quotient module
M /@™ can be defined from a short exact sequence of R-modules:

(3.12) 0 M M[w ] —— M/@™® —— 0,

where M[w~ ! := M ®r Rl 1].

Remark 3.13. (3.12) is the colimit of the following tower of short exact
sequences:

0 M= M M/w — 0
0 M= M M/ —— 0
w
0 M= M M/ —— 0
w

When M is a G-representation in R-modules, we note the short exact
sequence above is G-equivariant. It is straightforward to check:

Lemma 3.14. Let G be a group and p: G — R* be a group homomorphism
(character), which induces a G-action on R as an R-module. Denote this
representation by M. Then either M is a trivial representation (i.e. MC =

M), or the maximal congruence of M is given by the an ideal m" such that
(M /™) = M/m".

Lemma 3.15. Assumptions and notation as the above. Suppose G is topo-
logically finitely generated. When M = 0, there is a natural injection
§: (M/w>®)¢ — HNG; M).

Proof. Apply HY(G;—) on (3.12), we get a long exact sequence of G coho-
mology that start with:

0— MY — (Mo )¢ — (M/o>)¢

2 HY(G; M) — HYG; M[w™]) — -
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The fixed points (M[w™!])¢ = 0 since

(M) = (colim(M = M =)
= colim(MG “ ME¢ = ) = (MG)[wfl] =0.

Here we used the fact the finite limit (—)¢ (as G is topologically finitely
generated) commutes with the filtered colimit (—)[cw~!] by [19, Theorem 1
in Section IX.2]. This shows 0 is injective. g

Proposition 3.16. When Z%@k[x] is a nontrivial (Z/N)* -representation,
z'e either k # 0 or x is nontrivial, the connecting homomorphism
8 (ZEF[x]) /)2 ¥ EIND" — HNZX x (Z/N')*;ZEF]x)) is an isomor-
phzsm
Proof. The injectivity of § follows from Lemma 3.15, since the group Z; x
(Z/N")* is topologically finitely generated and Zf?k [X] Zp X(Z/N')* = ( when
k # 0 or x is nontrivial.
As p is a power of the uniformizer w, there are isomorphisms M[w~!] &
MI1/p] = QF%(x). Next, we show that H}(ZX x (Z/N')";Q*(x)) = 0.
Note that group cohomology of the finite subgroup (Z/p)* x (Z/N')*

with rational coefficients vanishes in positive degrees. The Hochschlld Serre
spectral sequence then implies

H(Zy < (Z/N")"; Q5" (x) = HY((Z/p)* x (Z/N') s He (14pZp; Q3 (X))
The claim then follows from an explicit computation that

H} (14 pZy; Q5% (x))) = 0
when either k£ # 0 or x is non-trivial. g

Now combining Theorem 2.5 and Proposition 3.16 yields:

Corollary 3.17. The followings are equivalent:

(1) T < Zplx] is the mazimal congruence of modular forms in
HOMETo(N), ).
(2) HUZy < (Z/N')" s ZF*(X]) = Zp[x])/Z.

Comparing Corollary 3.17 with Proposition 3.5 and Proposition 3.10, the
group cohomology HY(ZX x (Z/N')"; Z*[x]) computes the denominator

of Qkx € Qp(x) under the assumptions in Cases I-V in Theorem 3.4.
In Cases VI and VII, this cohomological computation sheds light on the
numerator of B;,;X when (p — 1) t k (still does not determine the valuation

in general).
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Remark 3.18. When the character y is trivial, the group cohomology
Hg(Z;;Zf?k) computes the image of the J-homomorphism in the stable
homotopy groups of spheres. The precisely connection was laid out by the
author in [27]. Therefore we have given a new explanation between con-
gruences of the normalized Eisenstein series Foj of level 1 and the image
of J in this paper. More generally when the character is non-trivial, the
author constructed a family of Dirichlet J-spectra and K (1)-local spheres,
whose homotopy groups are computed by the group cohomologies H;(Z, x

(Z/N')*; Z$"'[x]) in the same paper.
Remark 3.19. Generalized Bernoulli numbers are related to the Dirichlet
L-functions attached to the Dirichlet character x: (See [10])
_B/ax
e

When y is the trivial character, the Dirichlet L-function is the same as
the Riemann (-function (up to Euler factors at primes dividing N). A
theorem of Soulé [24] implies that the group cohomology H&(Z;;Zf?%)

L(1—k,x) =

is isomorphic to the étale cohomology group H, elt(Z[%], Zp(2k)). The latter
computes the p-part of the denominator of the special value ((1—2k) of the
Riemann (-function by the Lichtenbaum Conjecture. This is a special case
of the (confirmed) Bloch-Kato Conjecture for the Riemann zeta function.
A similar connection between étale cohomology and Dirichlet L-functions
is proved in [2, 9].

Appendix A. A Riemann—Hilbert correspondence arising from
formal groups

A.1. Dieudonné modules of formal groups. In this subsection, we
will compute the Dieudonné modules of the Honda formal groups. First,
let’s recall the basic definition of Dieudonné modules of formal groups fol-
lowing [16].

Definition A.1. Let x be a finite field of characteristic p and Wk be its ring
of Witt vectors. Let R be a flat Wk-algebra such that R/p is an integrally
closed domain over . In addition, assume that R admits an endomorphism
¢: R — R that lifts the Frobenius ¢ on R/p (the p-th power map). Let
Go be a formal group over a finite field R/p. The Dieudonné module of Go
is a triple D(Go) = (M, F, V) consisting of:
e M = PH(G/R), where G is a lift of Go to R; PH} stands for the
primitives in first de Rham cohomology. This is explicitly identified
as

f(t)eQ,®R[t]| f(0)=0, df and Of are integral}
{f(t) € R[t] | £(0) = 0}

(A.2) PHI(G/R) = {
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in [16, p. 193], where 0f(z,) = f(z) — f(x +59) + f(y).
o F: o*M — M and V': M — ¢*M are induced by the factorization
of the [p]-series map on G:

éo GO

Remark A.3. M = PH}(G/R) does not depend on the lift G to R. This
is because the ideal (p) < R has a divided power structure. Moreover, the
assignment Gy — PHJ (G/R) is functorial in Gj.

[»]

¢5Go

To compute the Dieudonné module, we need to simplify (A.2).

Theorem A.4 ([4], [21, (A2.2.4)]). Let G be a formal group over a p-local

o~

algebra R. Then G has a coordinate t such that its logarithm has the form

oo . .
logs(t) = Z %t” , mo =1,m; € R.

=0

This is called the p-typical coordinate of G. The p-series of a p-typical
formal group satisfies:

Pla(t) = pt+5 > “vit?.
i>1

Remark A.5. There are several different, but equivalent, definitions of
Dieudonné modules in the literature. The one in [4] switches the F' and
the V' maps in Definition A.1. See [16, §5.5] for a comparison of different
definitions.

Definition A.6. Let  be a perfect field of characteristic p, containing F .
The Honda formal group I'j, of height h is a one-dimensional commutative
formal group scheme over x with a coordinate ¢, such that [p|r, (t) = "

~

Example A.7. When h = 1,T'; = G,,, since the latter has p-series [p](t) =
t? over .

Choose a lift of ', to Wr with a p-typical coordinate such that [p]r, =
pt +r, " . We can find a basis for D(I',):
tpih tp

h) =3 T A= —— - fia) =2

Y3 7
i>0 i>0 P i>0 P

ih+1 ih+h—1

tP

)
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such that the matrix representations of F' and V with respect to this basis

{fos-- ., fa—1} are:

_ plh—1 B P
P=( ") vl )

In particular, we have V"(fy) = fo (tph> = pfo(t). When h = 1, we have
F(fo) = fo and V(fo) = pfo.

A.2. Statement of the correspondence.

Theorem A.8. Let R be as in Definition A.1. Then the following categories
are equivalent:

(1) Dieudonné modules (M, F,V') such that M/V is an invertible R/p-
module generated by v € M such that

Fy=V"Yapy) mod V", where ag € (R/p)*.
(2) m{(R)-representations in rank 1 free Oy-modules, where
Op = WFu (0)/{o" = p,a¥c = ca}.
(3) One dimensional formal groups of height h over R/p.

Proof. We prove the equivalence as follows:

(1) <= (3). (1) is the description of the Dieudonné module of a height h
formal group. The equivalence was proved in [11].

(2) <= (3). O, is the algebra of endomorphisms of I'y, over .. The equiv-
alence follows from the theory of Galois descent for formal groups and
Lazard’s result [18, Théoreme IV] that formal groups of the same height
are étale locally isomorphic to each other. O

The Riemann—Hilbert correspondence (1) <= (2) is then an equivalence
between the Dieudonné module data and the Galois descent data of formal
groups. When h = 1, we recover Katz’s Proposition 2.16. Congruences of
the categories in this equivalence are related to the finite subgroup schemes
of the formal groups.

Theorem A.9. Suppose (M,F,V), p € H(7$/(R); O)) and G correspond
to each other in Theorem A.8. Then the followings are equivalent:
(1) There is a generator v € M such that Fy = VP15 mod Vi—1+m,
(2) The Galois representation p is trivial mod c™.
(3) The finite subgroup scheme of G of rank p™ is isomorphic to the
corresponding rank p™ finite subgroup scheme of the Honda formal
group I'y, of height h.
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Proof. The Dieudonné modules and Galois descent data for finite subgroup
schemes of C:’o are described in Proposition 2.18 and Proposition 2.19, re-
spectively. Using the computation of D(I'y,) at the end of the previous sub-
section, the proof of the theorem is now similar to that of Theorem 2.20 in
the height 1 case. O

We recover Theorem 2.15 when h = 1. Theorem A.8 and Theorem A.9
also hold for p-divisible formal A-modules of finite dimensions in general.
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