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On discrepancy, intrinsic Diophantine
approximation, and spectral gaps

par Alexander GORODNIK et Amos NEVO

Résumé. Dans le présent article, nous établissons des bornes pour la taille de
l’écart spectral pour les actions de groupe sur les espaces homogènes. Notre
approche est basée sur l’estimation des normes des opérateurs de moyennage
appropriés, et nous développons des techniques pour établir des bornes supé-
rieures et inférieures pour de telles normes. Nous montrerons que ce problème
analytique est étroitement lié au problème arithmétique de l’établissement de
bornes sur la divergence de distribution pour les points rationnels sur les varié-
tés de groupes algébriques. Comme application, nous montrons comment éta-
blir une borne effective pour la propriété (τ) des sous-groupes de congruence
des treillis arithmétiques dans les groupes algébriques qui sont des formes de
SL2, en utilisant des estimations dans l’approximation diophantienne intrin-
sèque qui découlent de l’analyse de Heath-Brown des points rationnels sur des
variétés quadratiques de dimension 3.

Abstract. In the present paper we establish bounds for the size of the spec-
tral gap for group actions on homogeneous spaces. Our approach is based on
estimating operator norms of suitable averaging operators, and we develop
techniques for establishing both upper and lower bounds for such norms. We
shall show that this analytic problem is closely related to the arithmetic prob-
lem of establishing bounds on the discrepancy of distribution for rational
points on algebraic group varieties. As an application, we show how to estab-
lish an effective bound for property (τ) of congruence subgroups of arithmetic
lattices in algebraic groups which are forms of SL2, using estimates in intrin-
sic Diophantine approximation which follow from Heath-Brown’s analysis of
rational points on 3-dimensional quadratic surfaces.

1. Introduction

1.1. Introduction. Let G be a locally compact second countable (lcsc)
group. A (strongly continuous) unitary representation π of G on a Hilbert
space H is said to have almost invariant vectors if there exists a sequence
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of unit vectors vn such that ∥π(g)vn − vn∥ → 0 uniformly for g varying in
compact subsets of G. If π does not have almost invariant vectors, π is said
to possess a spectral gap. This fundamental representation-theoretic prop-
erty expresses the fact that the trivial representation of G is “isolated” from
the irreducible representations appearing in the spectral decomposition of
the representation π.

The spectral gap property can be also formulated in explicit quantitative
terms, via norm estimates of averaging operators. For a finite Borel measure
β on G, we define the bounded operator

π(β) : H −→ H , v 7−→
∫

G
π(g)v dβ(g).

It is well-known that π has the spectral gap property if and only if for some
(equivalently, for all) absolutely continuous symmetric probability measure
β whose support generates G, one has ∥π(β)∥ < 1. This leads to the natural
problem of establishing explicit estimates on the norm ∥π(β)∥ that we aim
to address and utilize in the present paper.

We will be especially interested in the spectral gap property for repre-
sentations of semisimple algebraic groups acting on homogeneous spaces
with finite invariant measures, which we now introduce. Let G ⊂ GLn be
an algebraically connected linear algebraic group defined over Q which is
Q-simple. We use the notations:

G∞ := G(R) and GS :=
∏

p∈S
G(Qp)

for a finite set of primes S, and
ΓS := G(Z[S−1]) and ΓS,m := {γ ∈ ΓS : γ = e mod m}

for m coprime to S. We consider the spaces
XS,m := (G∞ ×GS)/ΓS,m

and the corresponding unitary representations ρS,m of the group GS acting
on the spaces L2

0(XS,m) consisting of square-integrable functions with zero
integral.

To simplify notation, when the set S consists of a single prime p, we
write Gp (instead of G{p}) and similarly for the other objects involving S
in the subscript.

We have a (well-defined and unique) direct integral decomposition

ρS,m =
∫

ĜS

π⊕k(π) dΠS,m(π),

where ΠS,m is a Borel measure on the (standard Borel) unitary dual ĜS

(consisting of equivalence classes of strongly continuous irreducible unitary
representations of GS) and 1 ≤ k(π) ≤ ∞ denotes multiplicities. The sup-
port of the measure ΠS,m (w.r.t. the Fell topology on the unitary dual) is
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called the support of the representation ρS,m. Following [5], we introduce
the notion of the automorphic dual of GS :

Ĝaut,0
S :=

⋃
(m,S)=1

supp(ρS,m) and Ĝaut
S = Ĝaut,0

S ∪ {1GS
},

where the closure is taken with respect to the Fell topology on the uni-
tary dual ĜS , and 1GS

denotes the trivial representation of GS . A crucially
important property (called property (τ) for congruence subgroups or the
Ramanujan–Selberg property) of the representations ρS,m is that they are
uniformly isolated from the trivial representation, namely, the sum of the
representations ρS,m has the spectral gap property. This fundamental result
was proved in full generality by Clozel [8], but it has a rich history going
back in some cases to works of Ramanujan and Selberg [35, 36], Kazh-
dan [24], Burger–Sarnak [6], and others. We refer, for instance, to [33, 9, 4]
for detailed surveys.

We introduce the height function on the group GS :

HS(g) :=
∏

p∈S
max(1, ∥gp∥p) for g = (gp)p∈S ∈ GS ,

where ∥ · ∥p denotes the maximum p-adic norms, and the corresponding
compact subsets

(1.1) BS
h := {g ∈ GS : HS(g) ≤ h}.

We consider the Haar-uniform probability measures βS
h supported on the

sets BS
h . Then property (τ) amounts to the estimate (when h ≥ h0(S))

sup
{
∥π(βS

h )∥ : π ∈ Ĝaut,0
S

}
< 1.

In a number of cases, more precise explicit bounds are known. For in-
stance, the Ramanujan–Petersson–Selberg Conjecture amounts to showing
that when G is a form of SL2, then

sup
{
∥π(βS

h )∥ : π ∈ Ĝaut,0
S

}
≪ϵ,S mGS

(BS
h )−1/2+ϵ for all ϵ > 0,

where mGS
denotes a Haar measure on GS . It was established by Deligne

in the case when G is anisotropic over R (see, for instance, [32] for a self-
contained introduction to these results), but is still open otherwise. On
the other hand, one expects only weaker decay bounds for more general
algebraic groups.

The goal of the present paper is to develop upper and lower bounds on
the norms ∥π(βS

h )∥ for automorphic representations, and to demonstrate
their close connection and mutual relationship to problems of intrinsic Dio-
phantine approximation on the corresponding algebraic groups. We note
that the norm estimates are interesting only when the group GS is non-
compact, which we assume throughout the paper.

We now turn to state our main results.



130 Alexander Gorodnik, Amos Nevo

1.2. Lower bounds for operator norms in the automorphic repre-
sentation. Our first result provides an explicit lower bound for the norms
of the averaging operators introduced above.

Theorem 1.1. Let G be an algebraically connected Q-simple linear alge-
braic group defined over Q. If L is a proper reductive algebraic subgroup of
G defined over Q, then there exists C > 0 such that for all h ≥ 1

sup
{

∥π(βS
h )∥ : π ∈ Ĝaut,0

S

}
≥ C

mLS
(LS ∩BS

h )
mGS

(BS
h )

,

where mLS
denotes a Haar measure on LS, and the constant C depends on

G, S, L and the choice of Haar measures. Therefore, for all h ≥ 1,

sup
{

∥ρS,m(βS
h )∥ : m ∈ N with (m,S) = 1

}
≥ C

mLS
(LS ∩BS

h )
mGS

(BS
h )

.

We remark that a general, but weaker, lower bound valid in the present
context is: for all h ≥ 1

(1.2) sup
{
∥π(βS

h )∥ : π ∈ Ĝaut,0
S

}
≥ C

(
mGS

(BS
h )
)−1/2

.

We refer to Remark 3.3 below for a justification of (1.2). Usually, in Theo-
rem 1.1 one can choose the subgroup L, so that mLS

(LS ∩BS
h ) ≫ mGS

(BS
h )ρ

with ρ > 1/2. Then Theorem 1.1 provides a better estimate. We exemplify
this by the following explicit estimates for classical groups:

Corollary 1.2.
(1) For G = SLn with n ≥ 3, for every prime p, if h is sufficiently large,

for all ϵ > 0.:

sup
{

∥π(β{p}
h )∥ : π ∈ Ĝaut,0

p

}
≫ϵ mGp(B{p}

h )−2/n+ϵ .

(2) Let G = SOn with n ≥ 4 and p is prime satisfying p = 1 (mod 4).
Then when n is even, if h is sufficiently large, for all ϵ > 0

sup
{

∥π(β{p}
h )∥ : π ∈ Ĝaut,0

p

}
≫ϵ mGp(B{p}

h )−2/n+ϵ, ϵ > 0,

and when n is odd, if h is sufficiently large, for all ϵ > 0,

sup
{

∥π(β{p}
h )∥ : π ∈ Ĝaut,0

p

}
≫ϵ mGp(B{p}

h )−2/(n−1)+ϵ .

(3) Let G = Sp2n for n ≥ 2. If h is sufficiently large, for all ϵ > 0,

sup
{

∥π(β{p}
h )∥ : π ∈ Ĝaut,0

p

}
≫ϵ mGp(B{p}

h )−2/(n+1)+ϵ .

It is to be expected that the lower bounds in Theorem 1.1 (and in some
cases even the best-possible lower bounds) can be deduced from the descrip-
tion of the continuous automorphic spectrum obtained by Langlands [26].
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However our approach is different, and uses only relatively elementary con-
siderations.

The above result raises the question of estimating the operator norms
for the discrete part of the spectrum. Let ρdisc

S,m denote the subrepresenta-
tion of ρS,m consisting of discretely embedded irreducible subrepresenta-
tions of ρS,m, and let ρcusp

S,m denote its cuspidal subrepresentation, so that∥∥ρdisc
S,m(β)

∥∥ ≥
∥∥ρcusp

S,m (β)
∥∥. We note that a lower bound for

∥∥ρcusp
S,m (β)

∥∥ fol-
lows from the remarkable equidistribution results for cuspidal spectrum
of automorphic representations that was recently established by Matz and
Templier [29] and Finis and Matz [14].

Theorem 1.3. Let G be a split simple simply connected classical algebraic
group defined over Q. Let us assume that G is isotropic and unramified
over Qp and denote by Up a hyper-special maximal compact subgroup of
Gp. Then for any compactly supported Up-biinvariant measure β on Gp,∥∥ρcusp

p,1 (β)
∥∥ ≥ ∥β∥L2 .

For example, when β is a probability measure given as the normalized
characteristic function of a Up-biinvariant subset B of Gp, we obtain the
lower bound ∥∥ρdisc

p,1 (β)
∥∥ ≥ mGp(B)−1/2 .

The bound in Theorem 1.3 implies the bound stated in (1.2) but is estab-
lished for a more restricted setting, and is far less elementary compared to
the discussion in Remark 3.3.

1.3. Spectral gaps and mean-square discrepancy bounds on the
group variety. Now we aim to obtain upper bounds on the averaging
operators, or equivalently on the size of the spectral gap. We shall show that
such bounds can be deduced from the solution of the arithmetic counting
problem of estimating the discrepancy of distribution of rational points.

Let now G be an algebraically connected simply connected Q-simple lin-
ear algebraic group defined over Q. We use notations as above and addition-
ally assume that G∞ is non-compact. Then the subgroup ΓS,m embedded
in G∞ is dense and, in fact, equidistributed in G∞ in a suitable sense
(see [17, 20]). Let mG∞ and mGS

denote Haar measures on G∞ and GS

which are normalized so that ΓS has covolume one in G∞ × GS . We fix a
left-invariant1 Riemannian metric ρ on G∞. Let B(x, r) denote the corre-
sponding balls in G∞. Let also B be a bounded measurable subset of GS of
positive measure. We consider the problem of counting the points of ΓS,m

contained in the domains B(x, r) × B. To study the distribution of ratio-
nal points ΓS,m in G∞, it is natural to consider the following discrepancy

1With obvious modifications our argument applies also to a right invariant metric.
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function:

D
(
ΓS,m, B(x, r) ×B

)
:=
∣∣∣∣∣ |ΓS,m ∩ (B(x, r) ×B)|

mGS
(B) − mG∞(B(e, r))

|ΓS/ΓS,m|

∣∣∣∣∣
where the ball B(x, r) is fixed, and the subsets B eventually exhaust GS .
For instance, one can take B to be the height balls BS

h with h → ∞.
We consider the discrepancy as a function of x as it varies over G∞.

When the subset B of GS is left-invariant under a compact open subgroup
US of GS , the discrepancy D

(
ΓS,m, B(x, r) ×B

)
is left-invariant under the

subgroup ΓS,m ∩ US , which is a finite index subgroup of ΓS ∩ US . In this
case, we define the mean-square discrepancy as

ES,m(r,B) :=
∥∥D(ΓS,m, B( · , r) ×B

)∥∥
L2((ΓS,m∩US)\G∞),

where (ΓS,m ∩US)\G∞ is equipped with the invariant probability measure.
Note that computing the discrepancy is a purely arithmetic problem

which involves estimating the number of rational points satisfying given
Diophantine equations, inequalities and congruence conditions. But we will
show that the behaviour of the discrepancy captures the size of the spectral
gap for the corresponding automorphic representations, a purely analytic
problem. The fact that the mean-square discrepancy can be used to bound
the norms of the averaging operators is formulated as follows.

Theorem 1.4. Let us assume that the set of primes S is unramified and
denote by US a hyper-special maximal compact subgroup of GS (cf. Sec-
tion 2). Let B be any non-empty bounded US-bi-invariant subset of GS of
positive measure. Fix an irreducible unitary representation π of GS which
is discretely embedded in ρS,m. Then there exists r0(π) > 0 such that the
averaging operator π(β) supported on B satisfies the bound

(1.3) ∥π(β)∥ ≪ |ΓS/ΓS,m| r− dim(G∞)ES,m(r,B)
for all 0 < r ≤ r0(π). Here the implied constant depends only on G∞.

While our approach has little in common with the work of Sarnak and
Xue [34], their work was the main inspiration for Theorem 1.4. In fact, [34]
develops an approach for establishing the uniform spectral gap property for
the Archimedean factor based on lattice point counting estimates.

Let us note the following regarding Theorem 1.4:
• For an upper bound on ∥π(β)∥ to be meaningful, it must be strictly

less that 1. As we shall see below, in suitable circumstances this
is indeed the case for the bound (1.3), provided that the measure
of the set B is sufficiently large compared with the inverse of the
measure of the ball B(e, r).

• The assumption that π is discretely embedded in ρS,m is important
for our present argument. We expect however that this argument
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can be developed further to deal with all representations which are
weakly contained in ρS,m. Note that the complete description of
continuous spectrum is known due to the work of Langlands [26].
Therefore, understanding the discretely embedded representations
is the crucial missing ingredient.

In our previous work [17, 20], we have shown that analysis on the homo-
geneous spaces XS,m can be used to establish mean, almost everywhere, and
pointwise bounds for the discrepancy function. Remarkably, Theorem 1.4
(and more generally Theorem 5.2 below) shows that the converse is also
true, and estimates on discrepancy lead to quantitative estimates for the
spectral gap. These observations raise an interesting possibility of studying
the spectral gap problem via arithmetic consideration. Here we carry this
out for forms of SL2.

1.4. Property (τ ) for congruence subgroups. Let G be a linear alge-
braic group defined over Q which is a form of SL2. More explicitly, G can
be viewed as the set of norm one elements in a division algebra defined
over Q. The integral structure on G is defined with respect to an order of
the division algebra. We fix a prime p, and assume that G is isotropic over
R and over Qp. Moreover, we assume that G(Zp) is a hyper-special max-
imal compact subgroup of Gp (which is the case for all but finitely many
primes). In this setting, we derive a bound on the norms of automorphic
representations:

Theorem 1.5. For every ℓ ∈ N coprime to a prime p satisfying the fore-
going conditions, ∥∥ρp,ℓ(β

{p}
h )

∥∥ ≪p,ℓ mGp

(
B

{p}
h

)−κ
,

where κ = 1/4 if G is anisotropic over Q, and κ = 1/16 if G is isotropic
over Q. As a result, for any π ∈ Ĝaut,0

p ,∥∥π(β{p}
h )

∥∥ ≪p,ℓ mGp

(
B

{p}
h

)−κ
.

Our estimate falls short of the best known bound, which corresponds
to κ = 25/64. This bound is due to Kim and Sarnak [25, App. 2] over Q
(and Blomer and Brumley [3] over number fields) and was proved by quite
a different argument. Our approach involves establishing a bound on the
discrepancy function directly using the refined circle method arguments
due to Heath-Brown, and then combining this bound with a version of
Theorem 1.4. We remark that for technical reasons, we will work with
smooth test-functions on G∞ rather than the balls as above.

1.5. Organisation of the paper. In the next section we set up notation
and review basic facts that will be used throughout the paper. Then in
Section 3 we develop a method for proving lower bounds for the norms of
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averaging operators and establish Theorem 1.1 and Corollary 1.2. In Sec-
tion 4 we estimate the norms of averaging operators acting on the discrete
part of the spectrum and prove Theorem 1.3. In Section 5 we show how to
derive norm bounds from estimates on the discrepancy of rational points
and prove Theorem 1.4. This approach will be utilized in Section 6 where
we use the refined circle method technique developed by Heath-Brown [22]
to establish the required estimates on discrepancy and prove Theorem 1.5.

2. Basic notation

Let G ⊂ GLn be a connected semisimple linear algebraic group defined
over a number field K. We denote by Kv, v ∈ V , the completions of K. We
fix a finite set S of non-Archimedean completions such that the group G is
isotropic for at least one completion from S. We denote by G∞ the product
of G(Kv) over the Archimedean completions and by GS the product of
G(Kv) over S. We consider G∞ and GS as locally compact groups equipped
with the topology arising from the field completions. We fix a choice of Haar
measures mG∞ and mGS

on G∞ and GS respectively.
Let OS := {x ∈ K : |x|v ≤ 1 for v /∈ S} denote the subring of K con-

sisting of elements which are Kv-integral for v outside S (also known as
the ring of S-integers in K). For non-Archimedean completions, we write
Ov for the ring of integers in Kv (note that with this notation Ov ̸= O{v}).
We denote by ΓS := G(OS) the S-arithmetic subgroup of G(K). We de-
note by OS the product of G(Ov) over the non-Archimedean completions v
which are not in S. Then ΓS can be viewed as a subgroup of OS , and for
an open subgroup O of OS , we define ΓS,O := ΓS ∩ O. Under the natural
embedding, we view ΓS,O as a subgroup of G∞ ×GS . Then it is a discrete
subgroup with finite covolume, and we consider the homogeneous spaces
XS,O := (G∞ × GS)/ΓS,O equipped with the invariant probability mea-
sures µS,O. Let ρS,O denote the corresponding unitary representations of
the group GS on the spaces L2

0(XS,O), the space of L2-integrable functions
with zero integral.

The group G is said to be unramified over a completion Kv if it is quasi-
split and split over an unramified extension of Kv. If G is unramified over
Kv, there exists a canonical conjugacy class of maximal compact open sub-
groups of Gv — the so-called hyperspecial maximal compact subgroups
(see [39]). We fix a choice Uv of a hyperspecial maximal compact subgroup
Uv ofGv. More generally, we write US :=

∏
v∈S Uv when G is unramified over

every v ∈ S (i.e. unramified over S). The pair (GS , US) is known to have the
Gelfand–Selberg property, namely the convolution algebra L1(US\GS/US)
is commutative. We say that a unitary representation of GS is spherical if
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there exists a non-zero US-invariant vector. It follows from the Gelfand–
Selberg property that if a spherical representation is irreducible, then the
dimension of the space of US-invariant vectors is at most one.

Let ĜS denote the unitary dual of the group GS equipped with the Fell
topology. We recall that given an arbitrary unitary representation σ of GS

on a Hilbert space Hσ, we have the direct integral decomposition

σ =
∫

ĜS

π⊕k(π) dΠS,O(π),

where ΠS,O is a Borel measure on ĜS , and 1 ≤ k(π) ≤ ∞ denotes the
multiplicities. The support of the measure ΠS,O is uniquely defined and is
called the support of the representation σ, denoted supp(σ). One says that
σ is weakly contained in a subset Ω of ĜS if supp(σ) ⊂ Ω, where the closure
is taken with respect to the Fell topology. Namely, this means that every
function of positive type associated to σ can be approximated, uniformly
on compact subsets of GS , by finite sums of functions of positive type
associated to π ∈ Ω. More generally, for unitary representations σ1 and σ2
of GS , we say that σ1 is weakly contained in σ2 if supp(σ1) ⊂ supp(σ2). We
refer to [2, App. F] for basic properties of the notion of weak containment.
In particular, we recall that σ1 is weakly contained in σ2 is equivalent to

(2.1) ∥σ1(F )∥ ≤ ∥σ2(F )∥ for all F ∈ L1(GS),

and that σ is weakly equivalent to the representation ⊕{π : π ∈ supp(σ)}.
We say that a representation is tempered if it is weakly contained in the
regular representation L2(GS).

Following [5], we introduce the notion of automorphic dual of G over S:

Ĝaut
S := Ĝaut,0

S ∪ {1GS
} with Ĝaut,0

S :=
⋃

O⊂OS
supp(ρS,O),

where the union is taken over open subgroups O of OS , and the closure is
with respect to the Fell topology on ĜS . Given a subset B of GS with finite
positive measure, we denote by β the Haar-uniform probability measure
supported on the set B. For π ∈ ĜS , we consider the averaging operators
π(β) which are explicitly defined by

π(β) = 1
mGS

(B)

∫
B
π(g) dmGS

(g).

Recall that for any two finite Borel measures β1 and β2 on GS ,

π(β1 ∗ β2) = π(β1)π(β2) and π(β)∗ = π(β∗).

We will be especially interested in the sets

BS
h := {g ∈ GS : HS(g) ≤ h}
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defined by the height function

HS(g) :=
∏
v∈S

max(1, ∥gv∥v) for g = (gv)v∈S ∈ GS .

In this case, we denote the corresponding probability measure by βS
h (and

when no ambiguity is present, by βh).
For some classes of unitary representations, explicit estimates on the

operator norms ∥π(β)∥ have been established. For instance, according to
the Kunze–Stein Phenomenon (proved for p-adic groups in [40] following
the method of [10]), for every q ∈ [1, 2),

∥f ∗ ϕ∥2 ≪q ∥f∥q∥ϕ∥2 for all f ∈ Lq(GS) and ϕ ∈ L2(GS).

It follows (see [19] for a full account) that for every tempered representation
π, and for every subset B ⊂ GS of positive finite measure,

(2.2) ∥π(β)∥ ≪ϵ mGS
(B)−1/2+ϵ

for all ϵ > 0. More generally, if the tensor power π⊗n is tempered for some
even integer n, then by [30, 18] the following bound holds :

∥π(β)∥ ≪ϵ mGS
(B)−1/(2n)+ϵ

for all ϵ > 0.
In particular, the tensor power property is known to hold for non-trivial

irreducible unitary representations of SLd(Kv) (and more generally simple
groups with property T ). Therefore, for every such representation π,

∥π(β)∥ ≪ mGS
(B)−κ(π)

for some exponent κ(π) > 0, which is uniform in the representation π when
d > 2.

When an irreducible representation π is spherical, then

(2.3) ∥π(β)∥2 = ∥π(β∗ ∗ β)∥ =
∣∣∣∣ 1
mGS

(B)

∫
B
ωπ(g) dmGS

(g)
∣∣∣∣2

≤ 1
mGS

(B)

∫
B

|ωπ(g)|2 dmGS
(g),

where ωπ denotes the spherical functions associated to the representation
π. Then ∥π(β)∥ can be analysed using estimates on the spherical func-
tions. For instance, considering the complementary series representations
of SL2(Qp), one can observe that the norms ∥π(β)∥ may decay arbitrary
slowly for irreducible representations π and thus also construct examples of
(reducible) representations without invariant vectors such that ∥π(β)∥ = 1.
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3. Lower bounds for norms of automorphic representations

Let G be a connected semisimple linear algebraic group defined over
a number field K. We keep the notation and assumptions introduced in
Section 2. Our goal is to establish a lower bound for ∥π(βS

h )∥, for the rep-
resentations π ∈ Ĝaut,0

S .

Theorem 3.1. Let L be any proper reductive algebraic subgroup of G defined
over K. If LS is non-amenable, then for some positive constant C and for
all h ≥ 1,

sup
{

∥π(βS
h )∥ : π ∈ Ĝaut,0

S

}
≥ C

mLS
(LS ∩BS

h )
mGS

(BS
h )

,

where C depends on G, S, L and the choice of Haar measures, but not on h.
In particular, for all h ≥ 1,

sup
{
∥ρS,O(βS

h )∥ : O – an open subgroup of OS} ≥ C
mLS

(LS ∩BS
h )

mGS
(BS

h )
.

Proof. The key starting point of our argument is the fundamental results
from [5] and [9, §3.3] which assert that if π ∈ L̂aut

S , then the induced
representation IndGS

LS
(π) is weakly contained in Ĝaut

S . In particular, if we
denote by τ the unitary representation of GS on L2(GS/LS) (namely the
representation induced from the trivial representation of LS), then it follows
that τ is weakly contained in Ĝaut

S .
We also note that the representation τ does not weakly contain the triv-

ial representation 1GS
. Indeed, consider any lcsc group G and a closed

subgroup L, with G acting on the homogeneous space G/L with infinite
invariant measure. Then weak containment of the trivial representation of
G in L2(G/L) is equivalent to the existence of an asymptotically invariant
(=Følner) sequence of subsets of G/L. The proof of this statement is due
to Eymard [13] and Greenleaf [21, Thm. 4.1]. We refer to [23, Thm. 3.3] for
a short proof, and to [1, §3.1, §4.1] for a full account of this topic.

Furthermore, assume that G is the K-points of an algebraically con-
nected semisimple algebraic group over a locally compact non-discrete field
K of characteristic zero. Then the existence of an asymptotically invari-
ant sequence on G/L implies that L is Zariski-dense in G. This follows
immediately from [23, Thm. 6.1], and thus when L is a proper unimodu-
lar algebraic subgroup, we conclude that the trivial representation is not
weakly contained in L2(G/L). This argument also extends to the case of
finite products of algebraic groups over local fields of characteristic zero.

We can therefore conclude that τ is in fact weakly contained in Ĝaut,0
S .

In particular, τ is weakly contained in the direct sum of π in Ĝaut,0
S (see [2,
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Prop. F.2.7]). Therefore, we deduce that

(3.1) sup
{

∥π(βS
h )∥ : π ∈ Ĝaut,0

S

}
≥ ∥τ(βS

h )∥.

Hence, to finish the proof, it remains to establish a suitable lower bound
for ∥τ(βS

h )∥.
Let ν be a GS-invariant measure on the homogeneous space GS/LS . We

denote by p : GS → GS/LS the factor map. Let ϕ be the characteristic
function of a compact neighbourhood U of the identity coset in GS/LS .
Then〈
τ(βS

h )ϕ, ϕ
〉

= 1
mGS

(BS
h )

∫
GS/LS

∫
BS

h

ϕ(g−1xLS)ϕ(xLS) dmGS
(g)dν(xLS).

We observe that ϕ(g−1xLS) = 1 provided that g ∈ xp−1(U)−1, and it is
equal to zero otherwise. Hence,〈

τ(βS
h )ϕ, ϕ

〉
= 1
mGS

(BS
h )

∫
U
mGS

(
BS

h ∩ xp−1(U)−1)dν(xLS).

If x belongs to a fixed compact subset of GS , then it follows from properties
of p-adic norms that there exists c1 > 0 such that HS(xg) ≤ c1 HS(g) for
all g ∈ GS . Therefore x−1BS

h ⊃ BS
c−1

1 h
, and we deduce that

mGS

(
BS

h ∩ xp−1(U)−1) = mGS

(
x−1BS

h ∩ p−1(U)−1)
≥ mGS

(
BS

c−1
1 h

∩ p−1(U)−1),
and 〈

τ(βS
h )ϕ, ϕ

〉
≥ ν(U)

mGS

(
BS

c−1
1 h

∩ p−1(U)−1)
mGS

(BS
h )

.

If the neighbourhood U is chosen to be sufficiently small, there exists a
continuous section σ : U → p−1(U) of the factor map p such that the map
LS ×U → p−1(U)−1 defined by (u, l) 7→ lσ(u)−1 is a homeomorphism. Since
σ(U) is compact, there exists c2 > 0 such that HS(gx) ≤ c2 HS(g) for all
g ∈ GS and x ∈ σ(U)−1, so that

BS
c−1

1 h
∩ p−1(U)−1 = BS

c−1
1 h

∩ LSσ(U)−1 ⊃ (BS
c−1

1 c−1
2 h

∩ LS)σ(U)−1.

We observe that the Haar measure on p−1(U) ⊂ GS can be decomposed as∫
GS

f dmGS
=
∫

U

∫
LS

f(lσ(u)−1) dmLS
(l) dν(u),

so that

mGS

(
(LS ∩BS

c−1
1 c−1

2 h
)σ(U)−1) ≥ ν(U)mLS

(
LS ∩BS

c−1
1 c−1

2 h

)
.
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Therefore, combining the above estimates, we conclude that〈
τ(βS

h )ϕ, ϕ
〉

≫
mLS

(LS ∩BS
c−1

1 c−1
2 h

)

mGS
(BS

h )
.

Hence, it follows from the definition of the operator norm that

∥τ(βS
h )∥ ≫

mLS

(
LS ∩BS

c−1
1 c−1

2 h

)
mGS

(BS
h )

.

To conclude the proof of the first estimate stated in Theorem 3.1, we re-
call (3.1) and use a property of the volume function formulated and estab-
lished in Lemma 3.2 immediately below.

To prove the second inequality stated in Theorem 3.1, we observe that ev-
ery π ∈ Ĝaut,0

S is weakly contained in
⊕

O{ρS,O}. Hence, it follows from (2.1)
that

∥π(βS
h )∥ ≤ supO∥ρS,O(βS

h )∥,
and the second inequality follows directly from the first estimate. □

Lemma 3.2. Let L ⊂ GLn be a linear reductive algebraic group defined
over a number field K and S a finite set of non-Archimedean completions
of K. We denote by mLS

a Haar measure on the group LS. Then there
exists c > 0 such that the sets BS

h ∩ LS := {g ∈ LS : HS(g) ≤ h} satisfy
mLS

(BS
2h ∩ LS) ≤ cmLS

(BS
h ∩ LS)

for all sufficiently large h.

Proof. First, we consider the case when S = {v} consists of a single comple-
tion v. For notational simplicity, in the present proof we set W (Kv) = Wv

(rather than W{v}) for any algebraic group W . Let us recall the Cartan
decomposition of Lv (see, for instance, [37, Ch. 0]). We take a maximal
Kv-split torus T of L and a minimal parabolic subgroup P associated to
T which has a decomposition P = MU , where M is the centralizer of T
in L, and U is the unipotent radical. We denote by Σ+ the set of posi-
tive roots of A associated to the parabolic subgroup P and Π ⊂ Σ+ the
set of simple roots. We write X (M) for the group of algebraic characters
of M. Given χ ∈ X (M), we write |χ(m)|v = q

⟨χ,ω(m)⟩
v for m ∈ Mv, where

ω : Mv → Hom(X (M),Z). We denote by M0
v the kernel of ω. Then Mv/M

0
v

is free abelian group, and moreover ω(Mv) can be considered as a lattice
in Hom(X (M),R). We set

M+
v := {m ∈ Mv : ⟨α, ω(m)⟩ ≥ 0 for all α ∈ Σ+}.

Let Uv be a good maximal compact subgroup of Lv associated to Av. Then
the Cartan decomposition holds

Lv =
⊔

m∈M+
v /M0

v

UvmUv.
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We also set A+
v := Av ∩M+

v and A0
v := Av ∩M0

v . Then this decomposition
can be rewritten as

Lv =
⊔

a∈A+
v /A0

v , ω∈Ωv
UvaωUv,

where Ωv is a finite subset of Mv.
Let us consider the representation Lv → GLn(Kv). Since the torus T is

Kv-split, the image of Tv is diagonalizable, and we denote by Φ ⊂ X (A) the
set of the corresponding weights. We introduce a modified height function
H′

v : Lv → R+ defined by

H′
v(g) := max(1, ∥a∥′

v) when g ∈ UvaωUv,

where ∥a∥′
v := maxχ∈Φ |χ(a)|v. It follows from the basic properties of norms

and compactness that there exist c1, c2 > 0 such that c1 H′
v ≤ Hv ≤ c2 H′

v.
Therefore, it will be sufficient to analyse measures of the sets

B′
h := {g ∈ Lv : H′

v(g) ≤ h}.

We obtain

mLv (B′
h) =

∑
a∈A+

v /A0
v :H′

v(a)≤h, ω∈Ωv
mLv (UvaωUv).

Since ωUvω
−1 ∩Uv has finite index in both Uv and ωUvω

−1, it is clear that

mLv (UvaUv) ≪ mLv (UvaωUv) ≪ mLv (UvaUv).

Let δ : Mv → R+ denote the modular function of Pv. Then according to [37,
Lem. 4.1.1], there exist c1, c2 > 0 such that

c1 δ(m) ≤ mGS
(UvmUv) ≤ c2 δ(m) for every m ∈ M+

v .

Hence, it remains to investigate the function

V (h) :=
∑

a∈A+
v /A0

v :H′
v(a)≤h

δ(a).

Let us fix a basis of Av/A
0
v which is dual to the basis Π for simple roots.

Then (Av/A
0
v) ⊗ R can be identified with Rr, so that Λv := Av/A

0
v is a

lattice in Rr. For χ ∈ Φ, |χ(a)|v = q

∑r

i=1 ni(χ)ti
v , where ni(χ) ∈ Q and

(t1, . . . , tr) denote the coordinates of a. Similarly, δ(a) = q

∑r

i=1 miti
v with

mi ∈ N. Using this notation, we rewrite V (h) as

V (h) :=
∑

t∈Λv∩Dh
q

∑
i

miti
v ,

where

Dh :=

t ∈ (R+)r :
(

r∑
i=1

ni(χ)ti

)+

≤ logqv
(h) for χ ∈ Φ

 .
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Here we use the notation x+ := max(0, x). We shall also consider the
integral

(3.2) I(h) :=
∫

Dh

q

∑
i

miti
v dt.

Comparing I(h) with suitable Riemann sums for I(h), we deduce that there
exist c1, c2 > 0 and d1, d2 > 0 such that

c1 I(h− d1) ≤ V (h) ≤ c2 I(h+ d2)

for all sufficiently large h. Finally, it follows by a change of variables that
there exists c > 0 such that I(2h) ≤ c I(h) for h ≥ 1. Hence, the similar
estimate also holds for V (h), which completes the proof of the lemma when
S consists of a single completion.

For general S, we observe that the set BS
h ∩L is defined by the condition∑

v∈S log Hv(gv) ≤ log h. Therefore, the required estimate follows from [18,
Prop. 7.7]. □

Remark 3.3. Here we outline a proof of the estimate (1.2). It follows from
the proof of Theorem 3.1 (with LS = {e}) that the regular representation
λGS

is weakly contained in the automorphic spectrum Ĝaut,0
S . Hence, for

any absolutely continuous probability measure β,

∥λGS
(β)∥ ≤ sup

{
∥π(β)∥ : π ∈ Ĝaut,0

S

}
.

Let PS be a minimal parabolic subgroup of GS. Since PS is amenable,
the regular representation λPS

weakly contains trivial representation 1PS
.

Therefore, the induced representation λGS
= IndGS

PS
(λPS

) weakly contains
the induced representation σ := IndGS

PS
(1PS

) (see [2, F.3.5]), and in partic-
ular,

∥σ(β)∥ ≤ ∥λGS
(β)∥ .

This suggests that the Harish-Chandra function ΞGS
, which is the spherical

function associated to the representation σ can be used to estimate the norm
from below. Indeed, it follows from (2.3) that whenever the measure β is
bi-invariant under US,

∥σ(β)∥ =
∫

GS

ΞGS
(g) dβ(g)

since ΞGS
≥ 0. We recall furthermore that the Harish-Chandra function

satisfies the inequality

ΞGS
(g) ≥ C ′ δ1/2(a(g)),

where δ(g) is the modular character of a minimal parabolic subgroup, and
a(g) is the Cartan component of g w.r.t. the associated Cartan decomposi-
tion (see e.g. [37] or [38, Prop. 2.1] in the totally disconnected case, and [15,
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Thm. 4.6.5] in the real case). Therefore,∥∥∥σ(βS
h )
∥∥∥ ≥ C ′mGS

(BS
h )−1

∫
BS

h

δ1/2(a(g)) dmGS
(g).

The argument of the proof of Lemma 3.2 applied to GS and using the anal-
ysis of integrals of the form (3.2), gives that∫

BS
h

δ1/2(a(g)) dmGS
(g) ≥ C ′′mGS

(BS
h )1/2 .

This implies (1.2).

We now turn to Corollary 1.2, and note that the proof of Theorem 3.1 also
provides a method for estimating the volumes mGS

(BS
h ). We demonstrate

the results by executing explicit computations for some classical groups.

Proof of Corollary 1.2. We now fix S = {p}. Since we know that

(3.3) sup
{

∥π(β{p}
h )∥ : π ∈ Ĝaut,0

p

}
≫

mLp(Lp ∩B
{p}
h )

mGp(B{p}
h )

,

it remains to estimate the relevant volumes. It follows from the proof of
Lemma 3.2 that

I(h) ≪ mGp(B{p}
h ) ≪ I(h),

where I(h) is the integral defined in (3.2). We denote by α the maximum
of
∑r

i=1miti on the domain D1. We observe that

hα ≪ I(h) ≪ vol(D1)hα ≪ϵ h
α+ϵ

for all ϵ > 0. In all the cases considered, the corresponding adjoint repre-
sentations on the Lie algebra of G are irreducible, and the domain D1 is
given by

D1 :=
{
t ∈ (R+)r :

r∑
i=1

niti ≤ 1
}
,

where
∑r

i=1 niti is the highest weight of the representation. Then α =
max(mi/ni). These considerations can be used to estimate the norms for
classical groups.

For G = SLn with n ≥ 3, we apply the estimate (3.3) with the subgroup
L = SLn−1. We obtain:

mGp(B{p}
h ) ≫ hn2−n and mLp(Lp ∩B

{p}
h ) ≪ϵ h

(n−1)2−n+1+ϵ

for all ϵ > 0, and it follows that

sup
{

∥π(β{p}
h )∥ : π ∈ Ĝaut,0

p

}
≫ϵ h

−2(n−1)+ϵ ≫ mGp(B{p}
h )−2/n+ϵ.
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Let G = SOn with n ≥ 4. The assumption that p = 1 (mod 4) implies
that G is split over Qp. We apply the estimate (3.3) with the subgroup
L = SOn−1. When n is even, we have

mGp(B{p}
h ) ≫ hn(n−2)/4 and mLp(Lp ∩B

{p}
h ) ≪ϵ h

(n−2)2/4+ϵ

for all ϵ > 0, and

sup
{

∥π(β{p}
h )∥ : π ∈ Ĝaut,0

p

}
≫ϵ h

−(n−2)/2+ϵ ≫ mGp(B{p}
h )−2/n+ϵ.

Similarly, when n is odd,

mGp(B{p}
h ) ≫ h(n−1)2/4 and mLp(Lp ∩B

{p}
h ) ≪ϵ h

(n−1)(n−3)/4+ϵ

for all ϵ > 0, and

sup
{

∥π(β{p}
h )∥ : π ∈ Ĝaut,0

p

}
≫ϵ h

−(n−1)/2+ϵ ≫ mGp(B{p}
h )−2/(n−1)+ϵ.

For G = Sp2n with n ≥ 2, we apply the estimate (3.3) with the subgroup
L = Sp2(n−1). We have

mGp(B{p}
h ) ≫ hn(n+1) and mLp(Lp ∩B

{p}
h ) ≪ϵ h

n(n−1)+ϵ

for all ϵ > 0, and

sup
{

∥π(β{p}
h )∥ : π ∈ Ĝaut,0

p

}
≫ϵ h

−2n+ϵ ≫ mGp(B{p}
h )−2/(n+1)+ϵ. □

4. Lower bounds for operator norms in the discrete spectrum

In this section we discuss lower bounds for the norms of averaging op-
erators for the discrete part of the automorphic spectrum and prove The-
orem 1.3. We start by reviewing basic facts about the Hecke algebras and
representations of p-adic groups (see, for instance, [7]). Let G be a classi-
cal simple simply connected algebraic Q-group which is split over Q. We
fix a prime p such that G is isotropic and unramified over Qp. Let Up be
the hyperspecial maximal compact subgroup of Gp. We consider the Hecke
algebra H(Gp, Up) consisting of compactly supported Up-biinvariant func-
tions on Gp with the product defined by the convolution. The structure of
H(Gp, Up) can be explicitly described as follows. We fix a maximal split
Q-torus T of G and a Borel subgroup B = TN such that the Iwasawa de-
composition Gp = UpTpNp holds. Let Λp := Tp/(Tp ∩ Up) ≃ Zdim(T) and
W := NG(T)/ZG(T) be the Weyl group. For β ∈ H(Gp, Up), we set

ϕβ(t) := ∆p(t)1/2
∫

Np

β(tn) dmNp(n), t ∈ Λp = Tp/(Tp ∩ Up),

where ∆p denotes the modular function of the group TpNp and the invariant
measure mNp on Np is normalized so that mNp(Np ∩ Up) = 1. It is known
that the map β 7→ ϕβ defines an algebra-isomorphism between the Hecke
algebra H(Gp, Up) and the algebra C[Λ]W of W -invariant polynomials in
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C[Λ]. This allows to give a complete description of the spherical functions in
terms of the unramified characters χ : Tp → C×. Given any such character,
the corresponding spherical function is defined by

ωχ(g) :=
∫

Up

∆1/2
p (t(gu))χ(t(gu)) dmUp(u), g ∈ Gp,

where t( · ) denotes the Tp-component with respect to the Iwasawa decom-
position Gp = UpTpNp. Moreover, two such spherical functions are equal iff
the corresponding characters are conjugate with respect to the Weyl group
W . We write Xp for the sets of unramified characters χ : Tp → C× and
X temp

p for the subset of characters with |χ| = 1. We additionally note that
for this correspondence

χ(ϕβ) = β(ωχ) for all χ ∈ Xp and β ∈ H(Gp, Up),
where β(ωχ) =

∫
Gp
ωχ dmGp . On the other hand, the spherical functions

naturally arise from irreducible spherical unramified representations of Gp.
Given such a representation πp, the corresponding spherical functions ωπp

are defined by
ωπp(g) :=

〈
πp(g)vπp , vπp

〉
, g ∈ Gp,

where vπp is a unit-norm Up-invariant vector, which is known to be unique
up to scalar multiple. It follows from uniqueness that

πp(β)vπp = β(ωπp)vπp .

Under the above identifications, the tempered irreducible spherical unram-
ified representations of Gp correspond to the characters in X temp

p , and the
Plancherel formula holds: for all β ∈ H(Gp, Up),∫

Gp

|β(g)|2 dmGp(g) =
∫

χ∈X temp
p /W

|β(ωχ)|2 dνp(χ),

where νp denotes the normalised spherical Plancherel measure for the group
Gp (see [27, Thm. 2]).

Similarly, the spherical spectrum of G∞ is parametrized by a subset of
a∗
C, where a is the Lie algebra of the R-split torus in G∞, and a∗

C denotes
the complexificated dual space. Then ia∗ gives the parametrization of the
tempered spherical spectrum. Let Ω be a bounded domain in ia∗ with
rectifiable boundary. The spherical Plancherel density associated to Ω is
defined as

ΛΩ(t) := C(G∞)
∫

tΩ

c(ρ)
c(λ) dλ ,

where C(G∞) is an explicit positive constant, c is the Harish-Chandra c-
function of G∞, and ρ is the half the sum of positive roots. It is known that
(4.1) ΛΩ(t) = C(Ω)td +O(td−1)
with explicit C(Ω) > 0 and d = d(G∞) ∈ N.
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Let us now consider irreducible spherical unramified automorphic repre-
sentations π of G∞ × Gp discretely embedded in L2

0(Xp,1). Such represen-
tation splits as a tensor product π = π∞ ⊗πp, where π∞ and πp denote the
irreducible spherical representations of G∞ and Gp respectively. We denote
by λπ∞ ∈ a∗

C the infinitesimal character of the Archimedean component
π∞ and by λπp ∈ Xp the characters corresponding to the representations
πp as described above. The representation L2

0(Xp,1) can be viewed as a
subrepresentation of L2

0(G(A)/G(Q)) consisting of functions invariant un-
der

∏
q ̸=p G(Zq). Therefore, with this notation, the equidistribution result

of [29, 14] yields, in particular, that for all β ∈ H(Gp, Up) and t ≥ 1,

(4.2)
∑

π:λπ∞ ∈tΩ
χπp(ϕβ) = ΛΩ(t)

∫
χ∈X temp

p /W
χ(ϕβ) dνp(χ) +OΩ

(
∥β∥L1td−δ

)
,

with explicit δ > 0. Here the sum is taken over irreducible discretely em-
bedded spherical unramified automorphic representations. Let us denote
the number of such representations with λπ∞ ∈ tΩ by N(t). Then taking
β = χUp , we obtain from (4.2) that

(4.3) N(t) = ΛΩ(t) +OΩ
(
td−δ).

The estimate (4.2) was proved in [29] for SLd with somewhat weaker error
term and in [14] for groups satisfying a technical condition, which is satisfied
in particular for all classical split groups. Formula (4.2) underlies our proof
of Theorem 1.3, but we note that we will use only the existence of the limit,
and not the effective error estimates that (4.2) provides.

Proof of Theorem 1.3. We consider the representation

ρt :=
⊕

π:λπ∞ ∈tΩ
πp

of Gp, where the sum is taken over spherical unramified representations π =
π∞ ⊗πp of G∞ ×Gp discretely embedded in L2

0(Xp,1). For each π, we denote
by fπ the corresponding unit spherical vector and set ft :=

∑
π:λπ∞ ∈tΩ fπ.

Then clearly

(4.4) ∥ρt(β)ft∥ ≤
∑

π:λπ∞ ∈tΩ
∥ρt(β)fπ∥ ≤ N(t) ∥ρt(β)∥ .

On the other hand,

ρt(β)fπ = πp(β)fπ = β(ωπp)fπ.
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Since the different components in the sum defining ft are mutually orthog-
onal, we have

∥ρt(β)ft∥2 =
∑

π:λπ∞ ∈tΩ
∥πp(β)fπ∥2 =

∑
π:λπ∞ ∈tΩ

∣∣β(ωπp)
∣∣2

=
∑

π:λπ∞ ∈tΩ
(β∗ ∗ β)(ωπp) =

∑
π:λπ∞ ∈tΩ

χπp(ϕβ∗∗β).

Therefore,

∥ρt(β)ft∥2 = ΛΩ(t)
∫

χ∈X temp
p /W

χ(ϕβ∗∗β) dνp(χ) +OΩ
(
∥β∗ ∗ β∥L1td−δ

)
= ΛΩ(t)

∫
χ∈X temp

p /W
|β(ωχ)|2 dνp(χ) +OΩ

(
∥β∥2

L1td−δ
)
.

Hence, applying the Plancherel Formula, we deduce that

∥ρt(β)ft∥2 = ΛΩ(t)∥β∥2
L2 +OΩ

(
∥β∥2

L1td−δ
)
.

Hence, using (4.1) and (4.3), we conclude that for all ε > 0 and sufficiently
large t (depending on β and ε),

∥ρt(β)ft∥ ≥ (1 − ε)N(t) ∥β∥L2 .

Comparing this estimate with (4.4), we deduce that∥∥∥ρcusp
p,1 (β)

∥∥∥ ≥ ∥ρt(β)∥ ≥ (1 − ε)∥β∥L2 ,

for all ε > 0. This completes the proof. □

5. From discrepancy estimates to spectral gap

Let G be a simply connected K-simple linear algebraic group defined
over a number field K and S a finite set of non-Archimedean completions
of Kv. We use the notation introduced in Section 2, and in particular, we
recall that ΓS,O denotes the family of congruence lattice subgroups in the
product G∞ ×GS . When S consists of unramified places, we denote by US

the hyperspecial maximal compact subgroup of GS . Recall that mGS
and

mG∞ denote Haar measures on G∞ and GS , respectively. We normalize
the Haar measures, so that mGS

(US) = 1 and ΓS has covolume one with
respect to mG∞ ×mGS

.
We will need the following lemma:

Lemma 5.1. Assume that G∞ is not compact. Let U be a compact open
subgroup of GS and Γ := ΓS,O ∩ U . Let F ⊂ G∞ be a fundamental domain
for Γ in G∞. Then F ×U is a fundamental domain for ΓS,O in G∞ ×GS.
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Proof. Since G∞ is not compact, and G is assumed to be simply connected,
it follows from the Strong Approximation Property [31, §7.4] that the image
of ΓS,O in GS is dense. Consider an arbitrary (g∞, gS) ∈ G∞ × GS . Then
it follows from density that there exists γ1 ∈ ΓS,O such that γ1 ∈ g−1

S US .
Hence, (g∞γ1, gSγ1) ∈ G∞ × U . Furthermore, since F is a fundamental
domain for Γ in G∞, there exists γ2 ∈ Γ such that g∞γ1γ2 ∈ F . Then
(g∞γ1γ2, gSγ1γ2) ∈ F × U . This proves that G∞ ×GS = (F × U)ΓS,O.

Suppose that (F × U)γ1 ∩ (F × U)γ2 ̸= ∅ for some γ1, γ2 ∈ ΓS,O. Then
it follows that γ1γ

−1
2 ∈ ΓS,O ∩ U = Γ, and Fγ1γ

−1
2 ∩ F ̸= ∅. Hence, we

conclude that γ1 = γ2. This completes the proof of the lemma. □

We consider the following counting problem for the congruence lattices
ΓS,O. Let us fix a left-invariant Riemannian metric on G∞. For x ∈ G∞ and
r > 0, we denote by B(x, r) the ball centered at x of radius r in G∞. Let
B be a bounded measurable subset of GS of positive measure. We consider
the counting function |ΓS,O ∩ (B(x, r) ×B)| and the discrepancy

D
(
ΓS,O, B(x, r) ×B

)
:=
∣∣∣∣∣ |ΓS,O ∩ (B(x, r) ×B)|

mGS
(B) − mG∞(B(e, r))

|ΓS/ΓS,O|

∣∣∣∣∣ .
We shall show that estimates on the discrepancy can be used to establish
norm bounds for ∥π(β)∥ for the representations π arising from the GS-
action on the spaces XS,O, where β is the probability measure supported
on the set B ⊂ GS .

We will be interested in utilizing L2-bounds for the discrepancy function
as x varies over G∞. Let us assume that the subset B is bi-invariant under
US . Then the discrepancy is left invariant under the subgroup Γ0

S,O :=
ΓS,O ∩ US (viewed as a subgroup of G∞), so that it defines a function on
Γ0

S,O\G∞. We set

ES,O(r,B) :=
∥∥D(ΓS,O, B( · , r) ×B

)∥∥
L2(Γ0

S,O\G∞),

where Γ0
S,O\G∞ is equipped with the invariant probability measure.

We now formulate and prove a more precise version of Theorem 1.4, as
follows.

Theorem 5.2. Assume that S consists of unramified places, and G∞ is not
compact. Let B be a non-empty bounded US-bi-invariant subset of GS. Fix
an irreducible unitary representation π of GS which is discretely embedded
in ρS,O. Then there exists r0(π) > 0 such that for 0 < r ≤ r0(π), the
operator π(β) satisfies the bound

∥π(β)∥ ≤ 2 |ΓS/ΓS,O|mG∞(B(e, r))−1ES,O(r,B).

Proof. Consider
χr(g∞, gS) := χB(e,r)(g∞)χUS

(gS), for (g∞, gS) ∈ G∞ ×GS ,
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namely the characteristic function of the subset B(e, r) × US of G∞ ×GS .
Then

ϕr(g∞, gS) :=
∑

δ∈ΓS,O
χr(g∞δ, gSδ)

defines a function on the space XS,O = (G∞ × GS)/ΓS,O. By the Fubini–
Tonelli Theorem, for x ∈ G∞ and u ∈ US = U−1

S ,∫
B
ϕr
(
b−1(x−1, u)

)
dmGS

(b)

=
∑

δ∈ΓS,O

∫
B
χr(x−1δ, b−1uδ) dmGS

(b)

=
∑

δ∈ΓS,O

∫
B
χB(e,r)(x−1δ)χUS

(b−1uδ) dmGS
(b)

=
∑

δ∈ΓS,O∩(B(x,r)×GS)
mGS

(
uδUS ∩B

)
.

Since the set B is US-bi-invariant, if δ ∈ B, we have uδUS ⊂ B, and if
δ /∈ B, we have uδUS ∩ B = ∅. Hence, since mGS

(US) = 1, it follows that
for every u ∈ US ,∣∣ΓS,O ∩ (B(x, r) ×B)

∣∣ =
∫

B
ϕr
(
b−1(x−1, u)

)
dmGS

(b).(5.1)

We also compute:∫
XS,O

ϕr dµS,O =
∫

(G∞×GS)/ΓS,O

 ∑
δ∈ΓS,O

χr(gδ)

dµS,O(g)

=
∫

G∞×GS

χr(g) d(mG∞ ×mGS
)(g)

|ΓS/ΓS,O|

= mG∞(B(e, r))mGS
(US)

|ΓS/ΓS,O|
= mG∞(B(e, r))

|ΓS/ΓS,O|
.

Therefore, we conclude that for every u ∈ US ,
D(ΓS,O, B(x, r) ×B)

=
∣∣∣∣∣ 1
mGS

(B)

∫
B
ϕr
(
b−1(x−1, u)

)
dmGS

(b) −
∫

XS,O
ϕr dµS,O

∣∣∣∣∣
=
∣∣∣∣∣ρS,O(β)

(
ϕr −

∫
XS,O

ϕr dµS,O

)
(x−1, u)

∣∣∣∣∣ .
Let Ω be a measurable fundamental domain for Γ0

S,O := ΓS,O ∩ US in
G∞. Then for any bounded measurable subset Q of G∞ that injects on
G∞/Γ0

S,O (in particular, for Q = Ω),

(5.2)
∥∥∥∥∥ρS,O(β)

(
ϕr −

∫
XS,O

ϕr dµS,O

)∥∥∥∥∥
L2(Q−1×US)

≤ ES,O(r,B).
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By Lemma 5.1, Ω × US is a fundamental domain for ΓS,O in G∞ × GS .
Hence, we deduce from (5.2) that

(5.3)
∥∥∥∥∥ρS,O(β)ϕr −

∫
XS,O

ϕr dµS,O

∥∥∥∥∥
L2(XS,O)

≤ ES,O(r,B).

For x ∈ G∞ and r > 0, let χx,r denote the characteristic function of the
subset B(x, r) × US of G∞ × GS . Because of left-invariance of the metric,
χx,r(g) = χr(x−1g). We set

ϕx,ϵ(g) :=
∑

γ∈ΓS,O

χx,ϵ(gγ),

which defines a function in L2(XS,O). For x ∈ G∞, let us consider the
operators

ρ∞,O(x) : L2(XS,O) −→ L2(XS,O) : ϕ 7−→ ϕ ◦ x−1.

We observe that ∥ρ∞,O(x)∥ = 1, ρ∞,O(x) commutes with ρS,O(β), and
ϕx,r = ρ∞,O(x)(ϕr). Hence, it follows from (5.3) that for every x ∈ G∞,

(5.4)
∥∥∥∥∥ρS,O(β)ϕx,r −

∫
XS,O

ϕr dµS,O

∥∥∥∥∥
L2(XS,O)

≤ ES,O(r,B).

We use this estimate to conclude the proof of the theorem as follows.
Let π be an irreducible unitary representation of GS which is discretely
embedded in L2

0(XS,O). We observe that since B is US-bi-invariant, the
image of π(β) consists of US-invariant vectors. Hence, if π is not spherical,
then π(β) = 0. Now suppose that π is spherical and denote by Fπ the
function in L2

0(XS,O) which is the unique (up to a phase factor) US-invariant
unit vector of π. Then

ωπ(g) := ⟨π(g)Fπ, Fπ⟩ , with g ∈ GS ,

is the spherical function associated to the representation π. We have

π(β)Fπ = β(ωπ)Fπ and ∥π(β)∥2 = ∥π(β ∗ β∗)∥ = |β(ωπ)|2 ,

and π(β) acts as a projection onto the space of spherical vectors, namely
π(β)F = λFFπ. F is orthogonal to the constant functions, and so it follows
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from (5.4) that when F has unit norm,∣∣⟨ρS,O(β∗ ∗ β)ϕx,r, F ⟩
∣∣ =

∣∣⟨ρS,O(β)ϕx,r, π(β)F ⟩
∣∣

=
∣∣∣∣∣
〈
ρS,O(β)ϕx,r −

∫
XS,O

ϕr dµS,O, π(β)F
〉∣∣∣∣∣

≤
∥∥∥∥∥ρS,O(β)ϕx,r −

∫
XS,O

ϕr dµS,O

∥∥∥∥∥
L2(XS,O)

· ∥π(β)F∥L2(XS,O)

≤ ES,O(r,B) ∥π(β)∥ .
On the other hand, let us choose a sequence of unit vectors ψi in the
representation π such that

∥π(β∗ ∗ β)ψi∥ −→ ∥π(β∗ ∗ β)∥.
Then π(β∗ ∗β)ψi = λiFπ with λi ≥ 0 and λi → ∥π(β∗ ∗β)∥ = ∥π(β)∥2, and∣∣⟨ρS,O(β∗ ∗ β)ϕx,r, ψi⟩

∣∣ =
∣∣⟨ϕx,r, ρS,O(β∗ ∗ β)ψi⟩

∣∣ = λi

∣∣⟨ϕx,r, Fπ⟩
∣∣.

Hence, we obtain the following norm bound

(5.5) ∥π(β)∥ ≤
∣∣⟨ϕx,r, Fπ⟩

∣∣−1
ES,O(r,B)

provided that ⟨ϕx,r, Fπ⟩ ≠ 0.
Let us now consider the function

f(g∞) := Fπ (g∞ΓS,O) with g∞ ∈ G∞.
We note that since Fπ is US-invariant, we have f(g∞) = Fπ ((g∞, u)ΓS,O)
for all u ∈ US . In particular, f is a well-defined measurable locally L2-
integrable function on G∞. Since G∞ΓS,O is dense in G∞ ×GS , it is clear
that f ̸= 0. We compute:

⟨ϕx,r, Fπ⟩ =
∫

XS,O

 ∑
γ∈ΓS,O

χx,r(gγ)

Fπ(gΓS,O) dµS,O(gΓS,O)

=
∫

G∞×GS

χx,r(g)Fπ(gΓS,O) d(mG∞ ×mGS
)(g)

|ΓS/ΓS,O|
.

We recall that χx,r is the characteristic function of the set B(x, r) × US .
Since Fπ is US-invariant,

⟨ϕx,r, Fπ⟩ = |ΓS/ΓS,O|−1
∫

B(x,r)
f dmG∞ .

It follows from the Local Ergodic Theorem (see, for instance, [28, Cor. 2.14])
that for almost every x ∈ G∞,

1
mG∞(B(x, r))

∫
B(x,r)

f dmG∞ −→ f(x) as r −→ 0+.
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For a positive measure set of choices of x,

|f(x)| ≥ 1
2 ∥f∥∞ = 1

2 ∥Fπ∥∞ ≥ 1
2 ∥Fπ∥2 = 1

2 ,

so that choosing a point x where the foregoing inequality holds, and in
addition convergence in the local ergodic theorem holds, it follows that for
0 < r < r0(π)

|⟨ϕx,r, Fπ⟩| ≥ 1/2
|ΓS/ΓS,O|

mG∞(B(x, r)) .

Therefore, the estimate (5.5) implies the claim of the theorem. □

6. Spectral gap for forms of SL2

Let G be a linear algebraic group defined over Q which is a form of SL2.
Namely, G can be realised as the group of norm one elements of a quaternion
algebra D defined over Q:

G := {x ∈ D : N(x) = 1}.

Throughout this section, we always assume that G is isotropic over R,
or equivalently, D(R) ≃ M2(R). We fix an order Λ of D(Q) such that
N(Λ) ⊂ Z. Then N is an integral quadratic form with respect to this
integral structure. The p-adic norm ∥ · ∥p on D(Qp) is defined with respect
to the order Λ.

The group Γ := G∞ ∩ Λ is an arithmetic lattice in G∞ corresponding
to the integral structure defined by Λ. More generally, for a prime p, we
consider the group Γp := G∞ ∩ Λ[p−1] which is a lattice in the product
G∞×Gp. For ℓ ∈ N coprime to p, we also consider the congruence subgroups
Γp,ℓ := {γ ∈ Γp : γ = I (mod ℓ)}. The goal of this section is to analyse
the unitary representations ρp,ℓ of Gp acting on the space L2

0(Xp,ℓ), where
Xp,ℓ := (G∞ × Gp)/Γp,ℓ. More specifically, we will be interested in the
averaging operators ρp,ℓ(βh) defined with respect to the sets

Bh := {b ∈ Gp : ∥b∥p ≤ h}.

Let mp be the Haar measure on Gp normalized so that mp(G(Zp)) = 1,
and m∞ the Haar measure on G∞ normalized so that m∞(G∞/Γ) = 1.

Our main result in this section is the following:

Theorem 6.1. Suppose that G is unramified over Qp. Then for every ℓ ∈ N
coprime to p, ∥∥ρp,ℓ(βh)

∥∥ ≪p,ℓ mp(Bh)−κ,

where κ = 1/4 if G is anisotropic over Q, and κ = 1/16 if G is isotropic
over Q,
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It turns out that the representation-theoretic problem of estimating the
norms

∥∥ρp,ℓ(βh)
∥∥ is closely related to properties of the distribution of ra-

tional points contained in the quadratic surface N(x) = 1. For h ∈ N and
a compactly supported function w : D(R) → R, we consider the counting
function:

Nh(N) :=
∑

x∈Λ:N(x)=h2

w(h−1x).

More generally, for ℓ ∈ N and a coset representative ξ ∈ Λ/ℓΛ, we define

Nh(N,w; ξ) :=
∑

x∈ξ+ℓΛ:N(x)=h2

w(h−1x).

The behaviour of Nh(N,w; ξ) as h → ∞ captures the distribution of the set
of rational points h−1Λ with the prescribed congruence condition. In order
to state an asymptotic formula for Nh(N,w; ξ), we need to introduce local
densities.

For a compactly supported function w on D(R), we define the
Archimedean local density as

σ∞(N,w) := lim
ϵ→0+

(2ϵ)−1
∫

|N(x)−1|≤ϵ
w(x) dx,

where the measure on D(R) ≃ R4 is normalized so that the lattice Λ has
covolume one.

Let ℓ =
∏

q q
sq be the prime decomposition of ℓ and ξ ∈ Λ/ℓΛ. We define,

for a general integer e ∈ N,
Nh(N, qe, qsq , ξ) :=

∣∣{x mod qe+sq : x = ξ mod qsq , N(x) = h2 mod qe}
∣∣.

Then the q-adic local density is defined as

σq(N, ξ, h) := lim
e→∞

Nh(qe, qsq , ξ)
q3e

.

We also set
σf (N, ξ, h) :=

∏
q
σq(N, ξ, h).

With these notations we state:

Theorem 6.2. For every smooth compactly supported function w : D(R) →
R and ξ ∈ Λ/ℓΛ,

Nh(N,w; ξ) = ℓ−4σ∞(N,w)σf (N, ξ, h)h2 +Ow,ℓ,ϵ

(
h3/2+ϵ) for all ϵ > 0.

To prove Theorem 6.2, we follow closely the refined circle method for
quadratic forms developed by Heath-Brown [22], for the case of forms in
four variables. This method is particularly suitable for the derivation of
estimates which are uniform over families of functions w, which will be
crucial for our results, cf. Theorem 6.6 below. We note however that in
order to establish uniform bounds on

∥∥ρp,ℓ(βh)
∥∥ over ℓ, we have to keep
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track of additional congruence conditions beyond those considered in [22].
Furthermore, we need explicit bounds over families of functions w. This
causes considerable technical complications, which motivates our decision
to give a full account of the necessary arguments below.

Making the identification Λ ≃ Z4, we view the reduced norm N as an
integral quadratic form in four variable. We denote by | · | the Euclidean
norm on D(R) ≃ R4 defined by this identification.

The starting point of our argument is a convenient representation of the
Dirac function δn = 1 if n = 0 and δn = 0 for n ̸= 0. We recall (see [22,
Thm. 1] and [12]) that for every Q > 1,

(6.1) δn = cQQ
−2

∞∑
k=1

∑
a mod k

∗
ek(an)H(Q−1k,Q−2n),

where cQ = 1 +ON (Q−N ) for any N > 0, the sum is taken over a coprime
to k, ek(x) = exp(2πix/k), and H is a certain explicit smooth function
on (0,∞) × R. To simplify notation, we set Fh(x) = N(x) − h2. It follows
from (6.1) that

Nh(N,w; ξ)

= chh
−2 ∑

x∈ξ+ℓZ4

∞∑
k=1

∑∗

a mod k

w(h−1x)ek(aFh(x))H
(
h−1k, h−2Fh(x)

)
,

and we are required to estimate the following sum∑
x∈ξ+ℓZ4

w(h−1x)ek(aFh(x))H
(
h−1k, h−2Fh(x)

)

=
∑

b mod k

∑
z mod kℓ

z=ξ(ℓ),z=b(k)

ek(aFh(b))

∑
y∈Z4

f(y)

 ,
where

f(y) := w(h−1(z + (kℓ)y))H
(
h−1k, h−2Fh(z + (kℓ)y)

)
is a smooth compactly supported function. By the Poisson Summation
Formula, ∑

y∈Z4

f(y) =
∑
c∈Z4

f̂(c),

where

f̂(c) =
∫
R4
f(y)e−2πi(c·y) dy = (kℓ)−4ekℓ(c · z)Ik,ℓ(c)
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with

Ik,ℓ(c) :=
∫
R4
w(h−1x)H

(
h−1k, h−2Fh(x)

)
ekℓ(−c · x) dx

= h4
∫
R4
w(x)H

(
h−1k,N(x) − 1

)
ekℓ(−hc · x) dx.

Hence, we deduce that

(6.2) Nh(N,w; ξ) = chh
−2 ∑

c∈Z4

∞∑
k=1

(kℓ)−4Sk(c; ξ)Ik,ℓ(c),

where

Sk(c; ξ) : =
∑∗

a mod k

∑
b mod k

∑
z mod kℓ

z=ξ(ℓ),z=b(k)

ekℓ(aℓFh(b) + c · z)

=
∑∗

a mod k

∑
z mod kℓ
z=ξ(ℓ)

ekℓ(aℓFh(z) + c · z)

=
∑∗

a mod k

ek(−ah2)
∑

z mod kℓ
z=ξ(ℓ)

ekℓ(aℓN(z) + c · z).

First, we observe that the sum Sk(c; ξ) has the following multiplicative
property:

Lemma 6.3. Let k = k1k2 and ℓ = ℓ1ℓ2 such that k1ℓ1 is coprime to k2ℓ2.
Choose integers k̄1, k̄2, ℓ̄1, ℓ̄2 such that

k1k̄1 = 1 (k2ℓ2), k2k̄2 = 1 (k1ℓ1), ℓ1ℓ̄1 = 1 (k2ℓ2), ℓ2ℓ̄2 = 1 (k1ℓ1).

Then
Sk(c; ξ (ℓ)) = Sk1(k̄2ℓ̄2c; ξ (ℓ1))Sk2(k̄1ℓ̄1c; ξ (ℓ2)).

Proof. We also choose integers ℓ̄1 and ℓ̄2 such that ℓ1ℓ̄1 = 1 (k2ℓ2) and
k2k̄2 = 1 (k1ℓ1). We write

z = k2ℓ2k̄2ℓ̄2z1 + k1ℓ1k̄1ℓ̄1z2.

If z1 runs over the integral vectors modulo k1ℓ1 such that z1 = ξ (ℓ1), and
z2 runs over the integral vectors modulo k2ℓ2 such that z2 = ξ (ℓ2), then z
runs precisely over the integral vectors modulo kℓ such that z = ξ (ℓ). Then
since the map N is a quadratic form,

N(k2ℓ2k̄2ℓ̄2z1 + k1ℓ1k̄1ℓ̄1z2)
= (k2ℓ2k̄2ℓ̄2)2N(z1) + (k1ℓ1k̄1ℓ̄1)2N(z2) (mod k1k2ℓ),
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and

ekℓ(aℓN(z)) = ek1k2ℓ

(
a(ℓ1ℓ2(k2ℓ2k̄2ℓ̄2)2N(z1) + ℓ1ℓ2(k1ℓ1k̄1ℓ̄1)2N(z2))

)
= ek1ℓ1

(
aℓ1k2ℓ

2
2k̄

2
2 ℓ̄

2
2N(z1)

)
ek2ℓ2

(
aℓ2k1ℓ

2
1k̄

2
1 ℓ̄

2
1N(z2)

)
= ek1ℓ1

(
ak̄2ℓ1N(z1)

)
ek2ℓ2

(
ak̄1ℓ2N(z2)

)
.

Similarly,

ekℓ(c · z) = ek1ℓ1k2ℓ2

(
c · k2ℓ2k̄2ℓ̄2z1 + c · k1ℓ1k̄1ℓ̄1z2

)
= ek1ℓ1

(
(k̄2ℓ̄2c) · z1

)
ek2ℓ2

(
(k̄1ℓ̄1c) · z2

)
.

Setting

Sk(a, k, ξ (ℓ)) :=
∑

z mod kℓ
z=ξ(ℓ)

ekℓ(aℓN(z) + c · z),

we conclude that

Sk(a, k, ξ (ℓ)) = Sk1

(
ak̄2, k̄2ℓ̄2c; ξ (ℓ1)

)
Sk2

(
ak̄1, k̄1ℓ̄1c; ξ (ℓ2)

)
.

Then

Sk(c; ξ (ℓ)) =
∑∗

a mod k

ek(−ah2)Sk1

(
ak̄2, k̄2ℓ̄2c; ξ (ℓ1)

)
Sk2

(
ak̄1, k̄1ℓ̄1c; ξ (ℓ2)

)
.

We observe that every residue a mod k coprime to k can be uniquely written
as k2a1 + k1a2, where ai is a residue modulo ki coprime to ki. Hence, the
above sum can be rewritten as:∑∗

a1 mod k1

∑∗

a2 mod k2

ek(−(k2a1 + k1a2)h2)Sk1

(
(k2a1 + k1a2)k̄2, k̄2ℓ̄2c; ξ (ℓ1)

)
× Sk2

(
(k2a1 + k1a2)k̄1, k̄1ℓ̄1c; ξ (ℓ2)

)
=

∑∗

a1 mod k1

∑∗

a2 mod k2

ek1(−a1h
2)ek2(−a2h

2)Sk1

(
a1, k̄2ℓ̄2c; ξ (ℓ1)

)
× Sk2

(
a2, k̄1ℓ̄1c; ξ (ℓ2)

)
= Sk1(k̄2ℓ̄2c; ξ (ℓ1))Sk2(k̄1ℓ̄1c; ξ (ℓ2)).

This proves the lemma. □

We record the required properties of the term Sk(c; ξ):

Lemma 6.4. For every c ∈ Z4 and ξ ∈ Λ/ℓΛ,
(i) |Sk

(
c; ξ
)
| ≪ℓ k

3,
(ii) For all ϵ > 0,∑

k≤X

|Sk(c; ξ)| ≪ℓ,ϵ X
7/2+ϵ|c|ϵ when c ̸= 0,
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and ∑
k≤X

|Sk(0; ξ)| ≪ℓ,ϵ X
7/2+ϵhϵ.

Proof. The proof of (i) proceeds as [22, Lem. 25] with minor modifications.
Applying the Cauchy–Schwartz inequality to the sum

Sk

(
c; ξ
)

=
∑∗

a mod k

ek(−ah2)
∑

z mod kℓ
z=ξ(ℓ)

ekℓ(aℓN(z) + c · z),

we obtain that

(6.3) |Sk

(
c; ξ
)
|2

≤ ϕ(k)
∑∗

a mod k

∣∣∣∣∣∣∣∣
∑

z mod kℓ
z=ξ(ℓ)

ekℓ

(
aℓN(z) + c · z

)∣∣∣∣∣∣∣∣
2

≤ ϕ(k)
∑∗

a mod k

∑
z1,z2 mod kℓ
z1=z2=ξ(ℓ)

ekℓ

(
aℓ(N(z2) −N(z1)) + c · (z2 − z1)

)
.

We write N(z) = tzAz for a symmetric matrix A and z2 = z1 + v. Then
the last sum can be rewritten as∑

z1,v mod kℓ
z1=ξ(ℓ),v=0(ℓ)

ekℓ

(
aℓN(v) + c · v

)
ek

(
2a tz1Av

)
.

We consider first the sum over the residues z1 such that the vector 2ℓ tz1A
satisfies 2ℓ tz1A = 0 (mod k). It is clear that the number of such residues
z1 mod kℓ with z1 = ξ(ℓ) is OA,ℓ(1). Since the sum over v has k4 terms,
this implies that the contribution of the sum over such z1 to (6.3) is at
most OA,ℓ(k6). Now we consider the sum over the residues z1 such that
2ℓ tz1A ̸= 0 (mod k). This implies that∑

v mod kℓ
v=0(ℓ)

ek

(
2a tz1Av

)
=

∑
v′ mod k

ek

(
2aℓ tz1Av

′) = 0.

Therefore, we conclude that

|Sk

(
c; ξ
)
| = OA,ℓ(k3),

which proves (i).
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To prove (ii), let us first consider the case when k is coprime to ℓ. Then

Sk(c; ξ) =
∑∗

a mod k

∑
z mod kℓ
z=ξ(ℓ)

ekℓ

(
aℓFh(z) + c · z

)
=

∑∗

a mod k

∑
z′ mod k

ekℓ

(
aℓFh(ξ + ℓz′) + c · (ξ + ℓz′)

)
.

Let ℓ̄ be the residue modulo k such that ℓℓ̄ = 1 (mod k). Then it follows
that

Sk(c; ξ) =
∑∗

a mod k

∑
z′′ mod k

ekℓ

(
aℓFh(z′′) + c · (ξ + ℓℓ̄(z′′ − ξ))

)
,

and
(6.4) |Sk(c; ξ)| ≤ |Sk(ℓ̄c)|,
where

Sk(c) :=
∑

a mod k

∗ ∑
z mod k

ek

(
aFh(z) + c · z

)
.

The quantities Sk(c) were investigated in [22].
We proceed as in [22, Lem. 28]. Let us decompose k = k1k2 where k1 is

square-free, k2 is square-full and (k1, k2) = 1. We also decompose ℓ = ℓ1ℓ2
so that k1ℓ1 is coprime to k2ℓ2. Then according to Lemma 6.3,

Sk(c; ξ (ℓ)) = Sk1(k̄2ℓ̄2c; ξ (ℓ1))Sk2(k̄1ℓ̄1c; ξ (ℓ2)).
We estimate the second factor using (i):

Sk2(k̄1ℓ̄1c; ξ (ℓ2)) ≪ℓ k
3
2.

The first factor can be decomposed further into product over primes q|k1.
We use that according to Lemma [22, Lem. 26], for all primes q which do
not divide the discriminant of N and do not divide both h2 and A−1c,

|Sq(c)| ≪ q5/2(q, h2, A−1c)1/2.(6.5)

We note that this bound also holds when q divides both h2 and A−1c
because of the estimate (i). Now for finitely many primes q dividing either
k or ℓ, we use the bound from (i), and for the remaining primes we use the
estimate (6.5) taking (6.4) into account. This gives the estimate:∑

k≤X

|Sk(c; ξ)| ≤
∑′

k2≤X

∑′′

k1≤X/k2

∣∣Sk1(k̄2ℓ̄2c; ξ (ℓ1))
∣∣ ∣∣Sk2(k̄1ℓ̄1c; ξ (ℓ2))

∣∣
≪ℓ

∑′

k2≤X

∑′′

k1≤X/k2

k
5/2
1 (k1, h

2, A−1c)1/2 k3
2

≤ X5/2 ∑′

k2≤X

k
1/2
2

∑′′

k1≤X/k2

(k1, h
2, A−1c)1/2.
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Here the sums are taken over square-full k2 and square-free k1 respectively.
We use that for k ̸= 0, ∑

n≤Y

(n, k) ≤ Y d(k) ≪ϵ Y k
ϵ

for all ϵ > 0. Hence, we conclude that if c ̸= 0,∑
k≤X

|Sk(c; ξ)| ≪ℓ,ϵ X
7/2|c|ϵ

∑
k2≤X

′

k
−1/2
2 ≪ℓ,ϵ X

7/2+ϵ|c|ϵ.

Similarly, we obtain ∑
k≤X

|Sk(0; ξ)| ≪ℓ,ϵ X
7/2+ϵhϵ.

This completes the proof of (ii). □

We shall use the following properties of the integral Ik,ℓ(c):

Lemma 6.5.
(i) Ik,ℓ(c) = 0 for all k ≥ h.
(ii) For every c ̸= 0 and k > 0,

Ik,ℓ(c) ≪w,ℓ,k h
5k−1|c|−k.

(iii) For c ̸= 0 and ϵ ∈ (0, 1/2),

Ik,ℓ(c) ≪w,ℓ,ϵ
h3+2ϵk1−2ϵ

|c|1−ϵ
.

(iv) Ik,ℓ(0) ≪w,ℓ h
4.

(v) For every k ≪ h and k > 0,

Ik,ℓ(0) = h4
(
σ∞(N,w) +Ow,ℓ,k

(
(k/h)k)).

Proof. Part (i) follows from properties of the function H (see [22, Lem. 4]).
We observe that

Ik,ℓ(c) = (hℓ)4
∫
R4
w(ℓx)H

(
h−1k, ℓ2N(x) − 1

)
ek(−hc · x) dx.

The properties of the integrals

Ik(c) := h4
∫
R4
w(x)H

(
h−1k,N(x) − 1

)
ek(−hc · x) dx.

have been studied in [22], and properties (ii)–(iv) can be deduced directly
from there. In particular, (ii) follows from [22, Lem. 19], (iii) from [22,
Lem. 22], and (iv) from [22, Lem. 22]. To prove (v), we use [22, Lem. 13].
Here we also use that σ∞(ℓ2N,w ◦ ℓ) = ℓ−4σ∞(N,w). □
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Proof of Theorem 6.2. Our starting point is the formula

Nh(N,w; ξ) = chh
−2 ∑

c∈Z4

∞∑
k=1

(kℓ)−4Sk(c; ξ)Ik,ℓ(c).

Using Lemmas 6.4(i) and 6.5(ii), we deduce that for every ϵ > 0,∣∣∣∣∣∣
∑

|c|>hϵ

∞∑
k=1

(kℓ)−4Sk(c; ξ)Ik,ℓ(c)

∣∣∣∣∣∣ ≪w,ℓ,k h
5
( ∞∑

k=1
k−2

) ∑
|c|>hϵ

|c|−θ


= Ow,ℓ,θ(1),

when θ is chosen to be sufficiently large. Now it is sufficient to consider the
sum over |c| ≤ hϵ. It follows from Lemma 6.5(iii) that when c ̸= 0 with
|c| ≤ hϵ,∣∣∣∣∣∣

∑
R≤k<2R

(kℓ)−4Sk(c; ξ)Ik,ℓ(c)

∣∣∣∣∣∣ ≪w,ℓ,ϵ h
3+2ϵ

∑
R≤k<2R

k−3|Sk(c; ξ)|,

Here we used that |c| ≥ 1 for c ∈ Z4\{0}. Hence, using Lemma 6.4(ii) and
summation by parts, we deduce that∑

R≤k<2R

k−3|Sk(c; ξ)| ≪ℓ,ϵ R
1/2+2ϵ.

Hence, we deduce that for every c ̸= 0 with |c| ≤ hϵ,∣∣∣∣∣
h∑

k=1
(kℓ)−4Sk(c; ξ)Ik,ℓ(c)

∣∣∣∣∣ ≪w,ℓ,ϵ h
7/2+4ϵ.

Moreover, according to Lemma 6.5(i), only the terms with k ≤ h are non-
zero. Therefore, we conclude that for every ϵ > 0,

(6.6) Nh(N,w; ξ) = chh
−2ℓ−4

∞∑
k=1

k−4Sk(0; ξ)Ik,ℓ(0) +Ow,ℓ,ϵ

(
h3/2+ϵ).

Using Lemma 6.4(ii), Lemma 6.5(iv), and summation by parts, we deduce
that for every ϵ > 0,∑

R<k≤2R

k−4Sk(0; ξ)Ik,ℓ(0) ≪w,ℓ,ϵ h
4+ϵR−1/2+2ϵ.

This implies that for every ϵ > 0,∑
k>h1−ϵ

k−4Sk(0; ξ)Ik,ℓ(0) ≪w,ℓ,ϵ h
7/2+ϵ.

It follows from Lemma 6.5(v) that

∑
k≤h1−ϵ

k−4Sk(0; ξ)Ik,ℓ(0) = h4σ∞(N,w)

 ∑
k≤h1−ϵ

k−4Sk(0; ξ)

+Ow,ℓ,ϵ(1).
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Hence, we deduce from (6.6) that

Nh(N,w; ξ) = h2σ∞(N,w)ℓ−4

 ∑
k≤h1−ϵ

k−4Sk(0; ξ)

+Ow,ℓ,ϵ

(
h3/2+ϵ).

The last sum corresponds to the classical singular series. It follows from
Lemma 6.4 that it converges absolutely, and moreover,∑

k≤X

k−4Sk(0; ξ) =
∞∑

k=1
k−4Sk(0; ξ) +Oℓ,ϵ

(
X−1/2+ϵ)

for all ϵ > 0. Finally, we recall that if the singular series converges, it is equal
to the product of local densities (see, for instance, [11, Lem. 5.1–5.3]). □

We will also need a uniform version of Theorem 6.2 which applies to
families of functions wg(x) := w(g−1x) with g ∈ G∞.

Theorem 6.6. Let w : D∞ → R be a smooth compactly supported function,
ξ ∈ Λ/ℓΛ, and g ∈ G∞. Then for every δ > 0, θ > 4, and ϵ > 0,

Nh(N,wg; ξ) = ℓ−4σ∞(N,w)σf (N, ξ)h2

+Ow,ℓ,δ,θ,ϵ

(
∥g∥θh3−(θ−4)δ + ∥g∥h3/2+3δ+ϵ

)
.

Proof. As in the proof of Theorem 6.2,

Nh(N,wg; ξ) = chh
−2 ∑

c∈Z4

∞∑
k=1

(kℓ)−4Sk(c; ξ)Ig,k,ℓ(c),

where

Ig,k,ℓ(c) := h4
∫
R4
w(g−1x)H(h−1k,N(x) − 1)ekℓ(−hc · x) dx.

Since the norm N is G∞-invariant, we obtain

Ig,k,ℓ(c) = h4
∫
R4
w(x)H(h−1k, F (x))ekℓ(−hc · gx) dx = Ik,ℓ(tgc).

Our argument proceeds as in the proof of Theorem 6.2 taking the depen-
dences on g into account. Throughout the proof, we will have to deal with
the maps D(R) → D(R) : x 7→ tg±1x with g ∈ G∞. We use the norm of these
maps are estimated in terms of the Euclidean norm ∥g∥E :=

(∑
i,j g

2
ij

)1/2

on the group G∞ ≃ SL2(R).
First, we consider the terms with |c| > hδ. By Lemma 6.5(ii), for every

θ > 0,∣∣∣∣∣∣
∑

|c|>hδ

∞∑
k=1

k−4Sk(c; ξ)Ik,ℓ(tgc)

∣∣∣∣∣∣ ≪w,ℓ,θ h
5
( ∞∑

k=1
k−5|Sk(c; ξ)|

) ∑
|c|>hδ

|tgc|−θ

 .
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By Lemma 6.4(i), the first sum is finite. For θ > 4, the second sum is
estimated as ∑

|c|>hδ

|tgc|−θ ≪ ∥g∥θ
E

∑
|c|>hδ

|c|−θ ≪θ ∥g∥θ
Eh

−(θ−4)δ.

Hence,

(6.7)

∣∣∣∣∣∣
∑

|c|>hδ

∞∑
k=1

k−4Sk(c; ξ)Ik,ℓ(tgc)

∣∣∣∣∣∣ ≪w,ℓ,θ ∥g∥θ
Eh

5−(θ−4)δ.

Next, we estimate the terms with 0 < |c| ≤ hδ. By Lemma 6.5(i)(iii), for
every ϵ ∈ (0, 1/2),∣∣∣∣∣∣

∑
0<|c|≤hδ

∞∑
k=1

k−4Sk(c; ξ)Ik,ℓ(tgc)

∣∣∣∣∣∣
≪w,ℓ,ϵ h

3+2ϵ

(
h∑

k=1
k−3|Sk(c; ξ)|

) ∑
0<|c|≤hδ

|tgc|−(1−ϵ)

 .
It follows from Lemma 6.4(ii),

h∑
k=1

k−3|Sk(c; ξ)| ≪ℓ,ϵ h
1/2+ϵ,

and ∑
0<|c|≤hδ

|tgc|−(1−ϵ) ≪ ∥g∥E ·
∑

0<|c|≤hδ

|c|−(1−ϵ) ≪ ∥g∥Eh
(3+ϵ)δ.

Hence, we conclude that for every ϵ > 0,

(6.8)

∣∣∣∣∣∣
∑

0<|c|≤hδ

∞∑
k=1

k−4Sk(c; ξ)Ik,ℓ(tgc)

∣∣∣∣∣∣ ≪w,ℓ,θ,ϵ ∥g∥Eh
7/2+3δ+ϵ.

Combining (6.7) and (6.8), we deduce that

Nh(N,wg; ξ) = chh
−2ℓ−4

∞∑
k=1

k−4Sk(0; ξ)Ik,ℓ(0)

+Ow,ℓ,θ,ϵ

(
∥g∥θ

Eh
3−(θ−4)δ + ∥g∥Eh

3/2+3δ+ϵ).
The last sum was already estimated as in the proof of Theorem 6.2. □

It will be convenient to interpret the local densities σ∞ and σf group-
theoretically, namely, in terms of the Tamagawa measures for the group G.
We refer to [42, Ch. 2] or [41, Ch. 5] for basic properties of the Tamagawa
measures. Let us fix a nowhere zero regular rational differential form of top
degree on G (this form is known to be unique up to a constant factor).
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Integration with respect to this form defines Haar measures τ∞ and τq

on G∞ := G(R) and Gq := G(Qq) respectively. While the local Tamagawa
measures are only unique up to constant factors, their product is canonical.
In fact, according to the Tamagawa Volume Formula, since G is simply
connected,

(6.9) τ∞(G∞/Γ) ·
∏

q-prime
τq(G(Zq)) = 1.

It will be convenient to define the Tamagawa measures using that G is a
fiber of the norm map N . Let ω0 be the standard one-form on A1, and ω be
the standard form of top degree on D. Then there exists a form η of degree
three on D such that η ∧ N∗(ω0) = ω. We denote by ωy the restriction of
η to the fiber N−1(y) for y ̸= 0, and by τ

(y)
q the corresponding measures

supported on the fibers N−1(y)(Qq). In particular, τq := τ
(1)
q defines a

Tamagawa measure on G(Qq). We note that the fiber measures are uniquely
defined by the disintegration formula

(6.10)
∫

D(Qq)
ϕ(N(x))ψ(x) dx =

∫
Qq\{0}

ϕ(y)
(∫

N−1(y)
ψ dτ (y)

q

)
dy,

where ϕ and ψ are compactly supported locally constant function.
Previously, we used the measures m∞ and mq that are normalized as

m∞(G∞/Γ) = 1 and mq(G(Zq)) = 1.

In view of (6.9), these measures can be expressed in terms of the Tamagawa
measures as

(6.11) m∞ = τ∞(G∞/Γ)−1τ∞ and mq = τq(G(Zq))−1τq.

Lemma 6.7.
(i) Let p be a prime, ℓ ∈ N coprime to p, and ξ ∈ G(Z/ℓZ). Then for

h = ps,

σf (N, ξ, h) = τp(G(Zp))−1h−2τp(Bh)ℓ4τ∞(G∞/Γℓ)−1,

where Bh = {g ∈ Gp : ∥g∥p ≤ h}.
(ii) For every w ∈ Cc(G∞),

σ∞(N,w) =
∫

G∞
w dτ∞.

Proof. The crucial connection between the local densities σq and the Tam-
agawa measures τq is given by the following formula:

(6.12) τq(G(Zq)) = lim
e→∞

q−3e|G(Z/qeZ)|.
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Let q be a prime coprime to both ℓ and p. Then

Nh(N, qe, qsq , ξ) =
∣∣{x mod qe : N(x) = h2 mod qe}

∣∣
=
∣∣{x mod qe : N(x) = 1 mod qe}

∣∣
= |G(Z/qeZ)|.

Hence, it follows from (6.12) that in this case

(6.13) σq(ξ, h) = τq(G(Zq)).

Let q be a prime dividing ℓ =
∏

r-prime r
sr (and coprime to h = ps). We

choose a residue h̄ (mod pe) such that h̄h = 1 (mod qe). Then for e ≥ sq,

Nh(N, qe, qsq , ξ) =
∣∣{x mod qe+sq : x = ξ mod qsq , N(x) = h2 mod qe}

∣∣
= q4sq

∣∣{y mod qe : y = ξ mod qsq , N(y) = h2 mod qe}
∣∣

= q4sq
∣∣{y mod qe : y = h̄2ξ mod qsq , N(y) = 1 mod qe}

∣∣
= q4sq

|G(Z/qeZ)|
|G(Z/qsqZ)| .

Hence, by (6.12) as before,

(6.14) σq(N, ξ, h) = q4sq |G(Z/qsqZ)|−1τq(G(Zq)).

Finally, we claim that

(6.15) σp(N, ξ, h) = h−2τp(Bh).

For z ∈ Q×
p , let us consider the map Φz(x) := z−1x. We observe that

the map Φ transforms the fiber N−1(y) to N−1(z−2y) in (6.10), so that it
follows from uniqueness of this integral decomposition that

(6.16) (Φz)∗
(
τ (y)

p

)
= |z|2p τ (z−2y)

p .

For r > 0 and y ∈ Qp, we set

Br(y) := {x ∈ D(Qp) : N(x) = y, ∥x∥p ≤ r}.

Then
{x ∈ D(Zp) : N(x) = h2 mod pe} =

⊔
y∈h2+peZp

B1(y),

and it follows from (6.10) that∫
h2+peZp

τ (y)
p (B1(y)) dy = p−4e

∣∣{x ∈ D(Z/peZ) : N(x) = h2 mod pe}
∣∣.

Hence,

σp(N, ξ, h) = lim
e→∞

pe
∫

h2+peZp

τ (y)
p (B1(y)) dy.



164 Alexander Gorodnik, Amos Nevo

If e is sufficiently large, for every y ∈ h2 + peZp there exists z such that
z2 = y. Clearly, |z|p = |h|p = h−1. Then by (6.16),

τ (y)
p (B1(y)) = τ (y)

p

(
Φ−1

z

(
B|z|−2

p
(1)
))

= |z|2p τ (1)
p

(
B|z|−2

p
(1)
)

= h−2 τp(Bh).

This implies (6.15).
Furthermore, Φ defines a bijection between

B′
h := {x ∈ D(Qp) : N(x) = h2, ∥x∥p ≤ 1} = {x ∈ D(Zp) : N(x) = h2}

and
Bh = {x ∈ D(Qp) : N(x) = 1, ∥x∥p ≤ h}.

Hence, it follows that

τp(Bh) = τ (1)
p

(
Φ(B′

h)
)

= |h|−2
p τ (h2)

p (B′
h) = h2 τ (h2)

p (B′
h).

Furthermore, it follows from (6.10) that∫
h2+peZp

τ (y)
p (B′

h) dy = p−4e
∣∣{x ∈ (Z/peZ)4 : N(x) = h2 mod pe}

∣∣.
Hence,

σp(N, ξ, h) = lim
e→∞

pe
∫

h2+peZp

τy
p (Bh) dy = τh2

p (B′
h) = h−2τp(Bh).

This proves (6.15).
Combining (6.13), (6.14) and (6.15), we deduce that

σf (N, ξ, h) = ℓ4|G(Z/ℓZ)|−1
(∏

q ̸=p

τq(G(Zq))
)
h−2τp(Bh).

Furthermore, by the Tamagawa Formula (6.9)

σf (N, ξ, h) = ℓ4|G(Z/ℓZ)|−1τp(G(Zp))−1τ∞(G∞/Γ)−1h−2τp(Bh)
= τp(G(Zp))−1h−2τp(Bh)ℓ4τ∞(G∞/Γℓ)−1.

This proves the first formula.
It follows from the disintegration formula (6.10) that

σ∞(N,w) = lim
ϵ→0+

(2ϵ)−1
∫

|N(x)−1|≤ϵ
w(x) dx

= lim
ϵ→0+

(2ϵ)−1
∫ 1+ϵ

1−ϵ

(∫
N−1(y)

w dτ (y)
∞

)
dy =

∫
N−1(1)

w dτ (1)
∞ ,

which proves the second equality. □
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From now on we fix prime p and ℓ ∈ N coprime to p. We always choose
h to be of the form h = ps.

Our next goal is to show that the counting function that we studied
can be interpreted in terms of the averaging operators ρp,ℓ(βh). Let w ∈
Cc(D∞), and for x ∈ G∞, we also set

wx(g) := w(x−1g).

Let χ denote the characteristic function of the subset G(Zp). We introduce
a function ϕw defined by

(6.17) ϕw(g∞, gp) :=
∑

γ∈Γp,ℓ

w(g∞γ)χ(gpγ) for (g∞, gp) ∈ G∞ ×Gp.

This defines the function on Xp,ℓ = (G∞ ×Gp)/Γp,ℓ. The invariant proba-
bility measure µp,ℓ on Xp,ℓ is defined as

∫
Xp,ℓ

 ∑
γ∈Γp,ℓ

f(gγ)

 dµp,ℓ(gΓp,ℓ) = |Γ : Γℓ|−1
∫

G∞×Gp

f d(m∞ ×mp)

for f ∈ Cc(G∞ × Gp). Indeed, if F is a fundamental domain for Γℓ in
G∞, then F × G(Zp) is a fundamental domain for Γp,ℓ in G∞ × Gp. Since
m∞(G∞/Γ) = 1 and mp(G(Zp)) = 1, the above formula indeed defines the
invariant probability measure on Xp,ℓ. In particular, it follows that

∫
Xp,ℓ

ϕw dµp,ℓ = |Γ : Γℓ|−1
(∫

G∞
w dm∞

)(∫
Gp

χdmp

)

= |G(Z/ℓZ)|−1
∫

G∞
w dm∞.

Taking (6.11) and Lemma 6.7 into account, we obtain:

(6.18) σ∞(N,w)σf (N, ξ, h)

=
(∫

G∞
w dτ∞

)
τp(G(Zp))−1h−2τp(Bh)ℓ4τ∞(G∞/Γℓ)−1

= h−2ℓ4
(∫

Xp,ℓ

ϕw dµp,ℓ

)
mp(Bh).
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For u ∈ G(Zp), we obtain:

∫
Bh

ϕw
(
b−1(x−1, u)

)
dmp(b) =

∫
Bh

 ∑
γ∈Γp,ℓ

w(x−1γ)χ(b−1uγ)

dmp(g)

=
∑

γ∈Γp,ℓ

w(x−1γ)mp(uγG(Zp) ∩Bh)

=
∑

γ∈Γp,ℓ∩Bh

wx(γ).

Since

Γp,ℓ ∩Bh =
{
x ∈ Λ[1/p] : N(x) = 1, x = I (mod ℓ), ∥x∥p ≤ h

}
=
{
h−1y : y ∈ Λ, N(y) = h2, y = hI (mod ℓ)

}
,

we conclude that for any u ∈ G(Zp),

(6.19)
∫

Bh

ϕw
(
b−1(x−1, u)

)
dmp(b) = Nh (N,wx, hI mod ℓ) .

We will also use the following result about integrability of the function
ϕw:

Lemma 6.8. ϕw ∈ Lr(Xp,ℓ) for all r ∈ [1,∞).

Proof. Without loss of generality, we may assume that w ≥ 0.
It is sufficient to show that ϕw ∈ Lr(Xp,ℓ) fo every r ∈ N. We obtain

that ∥ϕw∥r
Lr(Xp,ℓ) can be expressed as∫

Xp,ℓ

ϕw(x)r dµp,ℓ(x)

=
∫

(G∞×GS)/Γp,ℓ

 ∑
γ1,...,γr∈Γp,ℓ

ϕw(gγ1) · · ·ϕw(gγr)

dµp,ℓ(gΓp,ℓ)

=
∫

(G∞×GS)/Γp,ℓ

 ∑
γ1,...,γr∈Γp,ℓ

ϕw(gγ1)ϕw(gγ1γ2) · · ·ϕw(gγ1γr)

 dµp,ℓ(gΓp,ℓ)

=
∫

G∞×GS

 ∑
γ2,...,γr∈Γp,ℓ

ϕw(g)ϕw(gγ2) · · ·ϕw(gγr)

 d(m∞ ×mp)(g).

We observe that the product is zero unless

γi ∈ supp(ϕw)−1 supp(ϕw) ⊂ supp(w)−1 supp(w) × G(Zp),
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and there are only finitely many such γi’s. Furthermore, by Hölder
inequality,∫

G∞×GS

ϕw(g)ϕw(gγ2) · · ·ϕw(gγr) d(m∞ ×mp)(g)

≤ ∥ϕw∥Lr(G∞×Gp)∥ϕw ◦ γ2∥Lr(G∞×Gp) · · · ∥ϕw ◦ γr∥Lr(G∞×Gp)

= ∥ϕw∥r
Lr(G∞×Gp) = ∥w∥r

Lr(G∞).

Hence, we conclude that

∥ϕw∥r
r ≪ ∥w∥r

Lr(G∞) < ∞. □

The following proposition verifies Theorem 6.1 for the class of functions
ϕw. While this class of functions is quite “sparse”, we will eventually show
that this can be used to derive this estimate for general functions.

Proposition 6.9. Let w ∈ C∞
c (D∞) be as in Lemma 6.8. Then for every

ϵ > 0, ∥∥∥∥∥ρp,ℓ(βh)ϕw −
∫

Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
L2(Xp,ℓ)

≪w,p,ℓ,ϵ mp(Bh)−σ+ϵ,

where σ = 1/4 if G is a anisotropic over Q and σ = 1/16 otherwise.

Proof. Taking (6.18) and (6.19) into account, Theorem 6.6 can be restated
as follows: for every g ∈ G∞, u ∈ G(Zp), δ > 0, θ > 4, and ϵ > 0,

(6.20) ρp,ℓ(βh)ϕw(g−1, u)

=
∫

Xp,ℓ

ϕw dµp,ℓ +Op,w,ℓ,δ,θ,ϵ

(
∥g∥θ

Eh
1−(θ−4)δ + ∥g∥Eh

−1/2+3δ+ϵ
)
.

We shall use this estimate to prove the proposition.
First, we note that (6.20) implies that for every compact Q ⊂ G∞,∥∥∥∥∥ρp,ℓ(βh)ϕw(( · )−1, u) −

∫
Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
L2(Q)

≪p,w,ℓ,Q,ϵ h
−1/2+ϵ

for all ϵ > 0. If G is anisotropic over Q, then the lattice Γℓ is cocompact in
G∞. Hence, we can choose a compact subset Q such that Q−1 surjects onto
G∞/Γℓ, and the second part of the corollary follows. Then Q−1 × G(Zp)
surjects onto (G∞ × Gp)/Γp,ℓ. Hence, it follows from the above estimate
that∥∥∥∥∥ρp,ℓ(βh)ϕw −

∫
Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
L2(Xp,ℓ)

≪p,w,ℓ,ϵ h
−1/2+ϵ ≪p mp(Bh)−1/4+ϵ.

This proves the proposition when G is anisotropic over Q.
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Now we consider the case when G is isotropic over Q. We observe that if
Q is a subset of G∞ such that Q−1 surjects onto G∞/Γℓ, then as before∥∥∥∥∥ρp,ℓ(βh)ϕw −

∫
Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
L2(Xp,ℓ)

≤
∥∥∥∥∥ρp,ℓ(βh)ϕw(( · )−1, e) −

∫
Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
L2(Q)

.

It follows from the theory of Siegel sets that such Q can be chosen of the
form

Q = Q0 ∪Q1 ∪ · · · ∪Qs,

where Q0 is compact, and for i ≥ 1,
(6.21) Q−1

i := {ka(t)ngi : k ∈ K, t ≥ 0, n ∈ N0}.
Here K = SO(2), a(t) = diag(et, e−t), N0 is a compact subset of the upper
triangular unipotent group, and gi ∈ G(Q).

Let us consider the case when Q is given by (6.21). We note that the
case of the union can be handled by using the triangle inequality. We set

Q<R := {t < logR} and Q≥R := {t ≥ logR}.
We observe that for every θ > 2,∫

Q<R

∥g∥θ
E dm∞(g) ≪

∫ log R

0
e(θ−2)t dt ≪ Rθ−2,

and ∫
Q<R

∥g∥E dm∞(g) ≪ 1.

Hence, it follows from (6.20) that∥∥∥∥∥ρp,ℓ(βh)ϕw(( · )−1, e) −
∫

Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
L2(Q<R)

≪p,w,ℓ,δ,θ,ϵ R
θ−2h1−(θ−4)δ + h−1/2+3δ+ϵ.

To estimate the integral over Q≥R, we consider the set

ΩR :=
(
Q−1

≥R × G(Zp)
)
Γp,ℓ ⊂ Xp,ℓ,

and ωR denote the characteristic function of this set. Then∥∥∥∥∥ρp,ℓ(βh)ϕw(( · )−1, e) −
∫

Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
L2(Q≥R)

≪
∥∥∥∥∥
(
ρp,ℓ(βh)ϕw −

∫
Xp,ℓ

ϕw dµp,ℓ

)
ωR

∥∥∥∥∥
L2(Xp,ℓ)

.
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Using the Hölder inequality, we obtain that for every r ≥ 1 and s =
(1 − 1/r)−1,∥∥∥∥∥

(
ρp,ℓ(βh)ϕw −

∫
Xp,ℓ

ϕw dµp,ℓ

)
ωR

∥∥∥∥∥
2

L2(Xp,ℓ)

≤
∥∥∥∥∥ρp,ℓ(βh)ϕw −

∫
Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
2

L2r(Xp,ℓ)
· ∥ωR∥2

L2s(Xp,ℓ) .

It follows from Jensen inequality that the operator ρp(βh) : L2r(Xp,ℓ) →
L2r(Xp,ℓ) is bounded and the corresponding norm satisfies ∥ρp(βh)∥ ≤ 1.
Hence, since ϕw ∈ L2r(Xp,ℓ) by Lemma 6.8, we conclude that∥∥∥∥∥ρp,ℓ(βh)ϕw(( · )−1, e) −

∫
Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
L2(Q≥R)

≪w,p,ℓ ∥ωR∥L2s(Xp,ℓ)

= µp,ℓ(ΩR)1/(2s)

≤ m∞(Q≥R)1/(2s) ≪s R
−1/s.

This implies that for every ϵ > 0,∥∥∥∥∥ρp,ℓ(βh)ϕw(( · )−1, e) −
∫

Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
L2(Q≥R)

≪w,p,ℓ,ϵ R
−1+ϵ.

Ultimately, we conclude that∥∥∥∥∥ρp,ℓ(βh)ϕw −
∫

Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
L2(Xp,ℓ)

≪p,w,ℓ,δ,θ,ϵ R
θ−2h1−(θ−4)δ + h−1/2+3δ+ϵ +R−1+ϵ.

We choose R = h1/2−3δ. Then for every ϵ > 0,∥∥∥∥∥ρp,ℓ(βh)ϕw −
∫

Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
L2(Xp,ℓ)

≪w,p,ℓ,θ,δ,ϵ h
−σ+ϵ,

where σ := min
(
−(1/2 − 3δ)(θ − 2) + (θ − 4)δ − 1, 1/2 − 3δ

)
. To optimise

the error term, we choose δ = (θ + 1)/(8θ − 14). Then as θ → ∞, we get
σ → 1/8. This implies the theorem. □

Proof of Theorem 6.1. We recall that by Proposition 6.9, for every w ∈
C∞

c (D∞),∥∥∥∥∥ρp,ℓ(βh)ϕw −
∫

Xp,ℓ

ϕw dµp,ℓ

∥∥∥∥∥
L2(Xp,ℓ)

≪w,p,ℓ,ϵ mp(Bh)−σ+ϵ
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for all ϵ > 0, where ϕw ∈ L2(Xp,ℓ) is defined by (6.17). Let us also consider
a family of functions wx(y) := w(x−1y) with x ∈ G∞. We observe that
ϕwx = ρ∞,ℓ(x)(ϕw) for the operator

ρ∞,ℓ(x) : L2(Xp,ℓ) −→ L2(Xp,ℓ) : ϕ 7−→ ϕ ◦ x−1.

Since ρ∞,ℓ(x) commutes with ρp,ℓ(βh) and ∥ρ∞,ℓ(x)∥ = 1, we deduce that
for every x ∈ G∞,∥∥∥∥∥ρp,ℓ(βh)ϕwx −

∫
Xp,ℓ

ϕwx dµp,ℓ

∥∥∥∥∥
L2(Xp,ℓ)

≪w,p,ℓ,ϵ mp(Bh)−σ+ϵ.

Let π be an irreducible unitary representation of Gp which is discretely
embedded in ρp,ℓ. Since the sets Bh are G(Zp)-invariant, π(βh) = 0 when
π has no non-zero G(Zp)-invariant vectors. Hence, we may assume that π
is spherical and denote by Fπ ∈ L2(Xp,ℓ) the unique unit G(Zp)-invariant
vector associated to π. Arguing exactly as in the proof of Theorem 5.2
(see (5.5)), we deduce that

∥π(βh)∥ ≪w,p,ℓ,ϵ |⟨ϕwx , Fπ⟩|−1mp(Bh)−σ+ϵ,

provided that ⟨ϕwx , Fπ⟩ ≠ 0. Moreover,

⟨ϕwx , Fπ⟩ =
∫

G∞
w(x−1g)f(g) dm∞(g),

where f(g) := Fπ(gΓp,ℓ). Since f is a non-zero function which is locally
L2-integrable, it follows from the following general version of the Local
Ergodic Theorem (Lemma 6.7 below) that there exists x ∈ G∞ such that
⟨ϕwx , Fπ⟩ ≠ 0. Hence, we conclude that

(6.22) ∥π(βh)∥ ≪π,w,p,ℓ,ϵ mp(Bh)−σ+ϵ

for all ϵ > 0. We refer to [16, Ch. 2] for the classification of the irreducible
unitary representations of Gp ≃ SL2(Qp). In particular, let us consider
the complementary series representations πs ∈ Ĝp with s ∈ (0, 1). These
representations are spherical, and we recall that the corresponding spherical
function are estimated as
(6.23) ∥g∥−(1−s)

p ≪p,s |ωπs(g)| ≪p,s ∥g∥−(1−s)
p for g ∈ Gp.

Using this bound, we deduce from (2.3) that

h−(1−s) ≪p,s ∥πs(βh)∥ ≪p,s h
−(1−s).

Since also
h2 ≪p mp(Bh) ≪p h

2,

we conclude that
(6.24) mp(Bh)−(1−s)/2 ≪p,s ∥πs(βh)∥ ≪p,s mp(Bh)−(1−s)/2.
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It will be important for us that the implicit constants in (6.23) and hence
in (6.24) are uniformly bounded for s ≤ s0 < 1.

Comparing (6.22) and (6.24) when mp(Bh) → ∞, we deduce that if the
complementary series representation πs is discretely embedded in ρp,ℓ, then
s ≤ 1 − 2σ. Hence, we conclude that if πs ∈ Ĝaut,0

p , then s ≤ 1/2 if G is
anisotropic over Q, and s ≤ 7/8 if G is anisotropic over Q. The continuous
component of the representations ρp,ℓ has been described (in much greater
generality) by Langlands [26]. It follows from this description that the con-
tinuous component is tempered. Moreover, it follows from the description
of the unitary dual of SL2(Qp) (see, for instance, [16, Ch. 2]) that the only
non-tempered irreducible unitary representations are the complementary
series πs. Therefore,

ρp,ℓ =
(∑

i

π⊕ni
si

)
⊕ ρ′

p,ℓ,

where ρ′
p,ℓ is a tempered representation and si ≤ 1 − 2σ for all i. Since for

tempered representations the bound (2.2) holds, we conclude that

∥ρp,ℓ(βh)∥ ≪p,ℓ mp(Bh)−(1−smax)/2,

where smax := max(si). This completes the proof of the theorem modulo
Lemma 6.7. □

Lemma 6.10. There exists a collection of smooth non-negative compactly
supported functions w(r), r ∈ (0, r0), on G∞ such that for every locally
L2-integrable f on G∞,

(6.25)
(∫

G∞
w(r) dm∞

)−1 ∫
G∞

w(r)(x−1g)f(g) dm∞(g) −→ f(x−1)

as r −→ 0+,
for almost all x ∈ G∞.

Proof. We fix a G∞-left-invariant Riemannian metric on D(R) and consider

w(r)(g) := ϕ
(
r−1d(g, e)

)
,

where ϕ is a smooth non-negative symmetric bump function at 0. Moreover,
we assume that ϕ is non-increasing on R+. We note that the claim of the
lemma clearly holds for continuous functions.

We set

Arf(x) :=
(∫

G∞
w(r) dm∞

)−1 ∫
G∞

w(r)(x−1g)f(g) dm∞(g),

and define the corresponding maximal function
Mϕf(x) := sup

r∈(0,r0)
Ar|f |(x).
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If the maximal function satisfies the bound
(6.26) ∥Mϕf∥2 ≪ ∥f∥2

for every L2-integrable f , then by a standard argument one can extend
(6.25) from continuous functions to general L2-integrable functions. Hence,
it remains to prove (6.26). In fact, it can be deduced from the classical
maximal inequality for the operators

Mf(x) := sup
r>0

m∞(B(x, r))−1
∫

B(x,r)
|f(g)| dm∞(g),

where B(x, r) denotes the balls in G∞ with respect to the metric d. We
choose positive parameters αi, ri = Oϕ(1) so that

ϕ ≤
∑

i
αi χB(0,ri) and

∑
i
αiri ≪ϕ 1.

Then ∫
G∞

w(ϵ)(x−1g)|f(g)| dm∞(g) ≤
∑

i

αi

∫
B(x,riϵ)

|f(g)| dm∞(g)

≤
(∑

i

αim∞(B(x, riϵ))
)
Mf(x)

≪ϕ Mf(x).
Hence, (6.26) follows from the classical maximal inequality. □
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