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Extensions of mod p representations of division
algebras

par Andrew KEISLING et Dylan PENTLAND

Résumé. Soit F un corps local sur Qp ou Fp ((t)) et soit D une algèbre à di-
vision centrale simple sur F de degré d. Dans le cas p-adique, on suppose que
p > de+1 où e est le degré de ramification sur Qp; sinon on suppose seulement
que p et d sont premiers entre eux. Pour le sous-groupe I1 = 1+ϖDOD de D×,
on détermine la structure de H1(I1, π) en tant que représentation de D×/I1
pour une Fp-représentation lisse irréductible quelconque π de D×. Nous utili-
sons ceci pour calculer le groupe Ext1

D×(π, π′) pour des représentations lisses
irréductibles quelconques π et π′ de D×. Dans le cas p-adique, via la dualité
de Poincaré, nous pouvons calculer les groupes de cohomologie supérieurs et
les extensions de degré maximal.

Abstract. Let F be a local field over Qp or Fp ((t)), and let D be a cen-
tral simple division algebra over F of degree d. In the p-adic case, we assume
p > de + 1 where e is the ramification degree over Qp; otherwise, we need
only assume p and d are coprime. For the subgroup I1 = 1 + ϖDOD of D×

we determine the structure of H1(I1, π) as a representation of D×/I1 for an
arbitrary smooth irreducible Fp-representation π of D×. We use this to com-
pute the group Ext1

D×(π, π′) for arbitrary smooth irreducible representations
π and π′ of D×. In the p-adic case, via Poincaré duality we can compute the
top cohomology groups and compute the highest degree extensions.

1. Introduction
Let F be a non-Archimedean local field whose residue field has charac-

teristic p. In the local Langlands program, division algebras play an im-
portant role because of the Jacquet–Langlands correspondence. This cor-
respondence states that for a division algebra D of invariant 1/n over F
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there is an injection{irreducible smooth
representations
of D× over Qℓ

}
/ ≃

{ irreducible smooth
representations

of GLn(F ) over Qℓ

}
/ ≃

here one can describe the image well. Here, we choose the prime ℓ so that
ℓ ̸= p. The objects on the right side appear in the Langlands correspon-
dence for GLn, which is then in natural bijection with certain Weil–Deligne
representations over Qℓ.

When we instead take representations over a field of characteristic p,
the problem becomes more difficult. There has been some progress towards
proving a characteristic p local Langlands correspondence, such as in [1],
but in general it is not clear how to formulate the Jacquet–Langlands cor-
respondence given above. One attempt has been made in [10], where for a
division algebra of invariant 1/n over F , Scholze constructs a functor{ smooth admissible

representations
of GLn(F ) over Fp

} {smooth admissible
representations
of D× over Fp

}
F

where F(π) also carries an action of Gal(F/F ). This gives some evidence
for a mod p analogue of the Jacquet–Langlands correspondence. Because
of this, understanding the representation theory of D× with Fp coefficients
can be expected to be of use in the mod p local Langlands program. The
irreducible representations of D× over Fp are easy to classify, however be-
cause Rep(D×) is not semisimple it is important to understand extensions
between irreducible representations. These are what we will ultimately char-
acterize.

Let D be a central simple division algebra over a non-Archimedean local
field F of degree d, with a choice of uniformizer ϖD and ring of integers OD.

For a|d, set D×
a = F×O×

D⟨ϖa
D⟩. Then let π = IndD×

D×
a
χ and π′ = IndD×

D×
a′
χ′

be irreducible representations, where χ and χ′ are characters of D×
a and

D×
a′ . In Section 5, we prove the following main theorem with some mild

constraints on the residue field characteristic of F .

Theorem (Theorem 21). Assume that p > de + 1 if F/Qp and that
gcd(p, d) = 1 if F/Fp ((t)).

Let χ, χ′, π and π′ be as defined in the setup above, and define the set

S = {χs : s = ϖi
D, 0 ≤ i < gcd(a, a′)},

so that the elements s form a set of coset representatives for D×
a′ \D×/D×

a .

There are two types of direct summands in Ext1
D×(π, π′). If Res

D×
a′

D×
lcm(a,a′)

χ′

is equal to some χs ∈ S, we have a nonzero direct summand Aχs fitting into



Extensions of mod p representations of division algebras 47

an exact sequence

0 −→ Fp −→ Aχs −→ H1(1 + πF OF ,Fp) −→ 0.

We also get a nonzero direct summand Aχs ≃ Fp for each χs ∈ S for which

Res
D×

a′

D×
lcm(a,a′)

χ′ ⊗ (χs)∗ is extended trivially from a character x 7→
(

x
σ(x)

)pi

.

Set Aχs = 0 otherwise. Then Ext1
D×(π, π′) ≃

⊕
χs∈S Aχs.

We note that the cohomology ring of the pro-p group 1+πF OF with the
trivial action is known to be

⊗
i∈I Fp[xi]/x2

i for some index set I when p is
large enough so that there is no p-torsion. In this case 1 +πF OF is a direct
product of |I| copies of Zp as a topological group. In the p-adic case we have
|I| = [F : Qp], and in the local function field case we have I = N. Thus,
Aχs of the first type described in the theorem has dimension [F : Qp]+1 as
an Fp-vector space in the p-adic case and countable dimension in the local
function field case.

This paper is organized as follows: in Section 2, we go over some ba-
sic information about local division algebras and their representations. In
Section 3, we translate the problem of computing extensions to one of com-
puting certain cohomology groups. Then, in Section 4, we compute the
cohomology group H1(1 + ϖDOD, π) for any smooth irreducible represen-
tation π. Setting I1 = 1 + ϖDOD, we do this by computing the Frattini
subgroup [I1, I1]Ip

1 . We additionally show that almost all elements of this
subgroup are of the form [x, y]zp for x, y, z ∈ I1. More explicitly, when
d > 4 this is true for every element of the Frattini subgroup that does not
also lie in the subgroup I3 = 1 +ϖ3

DOD. In Section 5, we use this to com-
pute Ext1

D×(π, π′) for arbitrary smooth irreducible representations π and
π′ of D×. In the p-adic case, we use Poincaré duality to compute higher
extensions and also show how to get partial information about H2(I1,Fp).
This is enough to compute all extension groups for a quaternion algebra
over Qp.

1.1. Notation. Throughout, we will fix some notation. We let F be a p-
adic field of ramification degree e and residue field degree f over Qp. We
also allow F to be an extension of Fp ((t)). We will need p > de + 1 in the
p-adic case and in the local function field case we need gcd(p, d) = 1.

We denote a choice of uniformizer by πF , the ring of integers by OF , and
the residue field by kF = Fq. The choice of discrete valuation is given by
νF , normalized so that νF (πF ) = 1.

Over F , we consider a degree d > 1 central simple division algebra D,
so that dimF D = d2. We use ϖD for a choice of a uniformizer with respect
to νD := 1

dνF ◦ Nrd, where Nrd is the reduced norm on D. We moreover
choose ϖD so that ϖd

D = πF . We denote the ring of integers by OD, and the
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residue field by kD = Fqd . We fix an algebraic closure Fp and embeddings
kF ↪→ kD ↪→ Fp. The notation [ · ] is used for the Teichmüller lift kD → D.
We let σ be a generator of Gal(kD/kF ) such that ϖD[x]ϖ−1

D = [σ(x)] for all
x ∈ kD, and set I1 = 1 +ϖDOD to be the unique pro-p Iwahori subgroup
of D×. For a|d we set D×

a := F×O×
D⟨ϖa

D⟩.
Given a smooth representation π of a locally profinite group G, we

use Extn
G(π,−) to denote the nth derived functor of HomG(π,−), where

HomG(π, π′) is the space of G-equivariant linear maps from π to another
smooth G-representation π′. All representations will be over Fp. We use 1
to denote the trivial character of G, which is the space Fp with the trivial
action. If χ : G → F×

p is a character of G, then we use χ∗ to denote the dual
character, so χ ⊗ χ∗ = 1. For a normal subgroup H ≤ G and a character
χ : H → F×

p , define χs(h) to be χ(s−1hs) for s ∈ G and h ∈ H - we use
this in the Mackey formula.

Throughout, the cohomology groups Hn(G,A) are continuous cohomol-
ogy groups for a topological group G and discrete G-module A. As a special
case of this, Hom(G,A) is the group of continuous homomorphisms from
G to A, which we sometimes emphasize by writing it as Homcont(G,A).
For a compact open subgroup K of a locally profinite group G, the Hecke
algebra HK is the algebra Fp[K \ G/K] of Fp-valued bi-K-invariant con-
tinuous functions of compact support under convolution. For any group G
and g, h ∈ G, we use the convention [g, h] = ghg−1h−1. We use [G,G] and
[G,G]Gp to denote the closures of the commutator and Frattini subgroups
of an ℓ-group G.

2. Preliminaries
2.1. Structure of division algebras. There is a decomposition

D× ≃ ϖZ
D ⋉ (k×

D ⋉ I1),

similar to the analogous decomposition of F× except we must use semidirect
products due to non-commutativity. The subgroup I1 has a filtration

Ii = 1 +ϖi
DOD,

where Ii/Ii+1 ≃ kD as an additive group for i ≥ 1. We may understand
elements of D explicitly via Teichmüller lifts [ · ] : kD → D, which allows a
unique representation of every element as x =

∑
i≥n[xi]ϖi

D.
Up to isomorphism, the central simple division algebras D over F are

classified by the result of the invariant map

Br(F ) invF−−−→ Q/Z.
This is an isomorphism, and the isomorphism classes [D] of degree d central
simple division algebras are obtained as preimages of r

d where gcd(r, d) = 1.
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The value r reflects the choice of the generator σ :=(x 7→xqr ) of Gal(kD/kF ),
such that ϖD[x]ϖ−1

D = [σ(x)].

2.2. Representations of D×. We work with smooth representations of
D× with coefficients in Fp, which makes the following well-known lemma
crucial:

Lemma 1. Let G be a pro-p group. Then any nonzero smooth representa-
tion V over Fp has V G ̸= 0.

Proof. This is a classical result, which can be easily deduced from Propo-
sition 26 in [11] which deals with finite p-groups. □

To begin, we would like to understand the characters of D×. There is an
exact sequence

1 −→ D×
Nrd=1 −→ D× Nrd−−→ F× −→ 1,

where exactness follows from the fact that Nrd is surjective. This is because
the degree d unramified extension E/F is contained in D and one can show
Nrd |E = NmE/F , so surjectivity of Nrd follows from surjectivity of the
norm map from O×

E to O×
F for unramified extensions and the fact that

Nrd(ϖD) is a unit multiple of πF . It is known that D×
Nrd=1 = [D×, D×], see

for example [8, §1.4.3]. Then any character D× → F×
p arises as

χ : D× Nrd−−→ F× κ−→ F×
p

because F×
p is abelian, so any homomorphism into this group must factor

through the abelianization. We can easily classify the characters κ of F× via
F× ≃ πZ

F ×k×
F × (1+πF OF ), where the final component is pro-p and hence

we only need to compute characters of πZ
F × k×

F by the previous lemma.
These are both cyclic groups, so the characters are then determined by
where we send the generators of each component.

Now we turn to classifying characters of D×
a . Recall that this subgroup

is defined to be F×O×
D⟨ϖa

D⟩ where a|d. As special cases, D×
d = F×O×

D and
D×

1 = D×. We have a decomposition

D×
a ≃ ϖaZ

D ⋉ (k×
D ⋉ I1),

and so we can denote elements by (ϖan
D , x, y) where x ∈ k×

D and y ∈ I1.

Lemma 2. The characters of D×
a are given by

χa,α,m : (ϖan
D , x, y) 7−→ αn NmkD/Fqa (x)m.

Here, α ∈ F×
p and m ∈ Z.
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Proof. As I1 is a pro-p group, Lemma 1 implies that any character mapping
to F×

p must only depend on ϖan
D and x. Because ϖaZ

D and k×
D are cyclic and

k×
D embeds into F×

p , such a character must be of the form χ : (ϖan
D , x, y) 7→

αnxm. The only thing to work out is exactly which values of m are allowed.
In order for χ to be well-defined on D×

a , it must be the case that

χ([x]) = χ(ϖa
D[x]ϖ−a

D ) = χ([σa(x)]).

In particular, xm = σa(xm) for all x ∈ k×
D. This gives a congruence con-

dition on m. Namely, viewing m ∈ Z/|k×
D|Z, if σ sends x 7→ xqr we have

m ≡ qarm (mod |k×
D|). This means qd−1

qa−1 divides m, and so the character
restricted to k×

D factors through the norm map NmkD/Fqa . From this we
know that any character must take the form given in the lemma. □

Corollary 3. Suppose a|a′ are divisors of d. Then

ResD×
a

D×
a′
χa,α,m = χa′,αa′/a,m′

where m′ = qa′ −1
qa−1 m, which implies that NmkD/Fqa (x)m = NmkD/F

qa′ (x)m′

for all x ∈ k×
D.

In particular, we see that we can obtain all characters χa′,α′,0 from re-
strictions of characters χ1,α,0 = κ ◦ Nrd of D× as we may choose α to be
an ath root of α′ (recall d is assumed to be coprime to p in any case).
We will now show that all irreducible representations can be obtained from
inductions of characters of D×

a .
In the following theorem, a character χ of k×

D is said to be of order a if
a is the minimal integer such that χ(x) = χ(σa(x)) for all x ∈ k×

D. Such
a character can be inflated along the quotient map O×

D → k×
D, and then

extended trivially to F×O×
D. By assigning the value of ϖa

D to be 1, it is
then extended to D×

a .

Theorem 4 ([6, Prop. 1.3.1]). The smooth irreducible mod p representa-
tions V of D× are given by

Vχ,κ := IndD×

D×
a

(χ⊗ κ) .

Here, κ is a character of the type χa,α,0. The character χ is extended from
an order a character of k×

D.
We have Vχ,κ ≃ Vχ′,κ′ if and only if κ = κ′ and χ = (χ′)s for some

s ∈ D×.

Proof. Let V be an irreducible representation of D× over Fp. Then, again
by Lemma 1, we know V I1 is a nonzero subrepresentation because I1 is
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pro-p and normal, so V I1 = V . It follows that irreducible representations
of D× are in bijection with those of

D×/I1 ≃ ϖZ
D ⋉ k×

D.

The irreducible representations of this group over Fp are well-known, as it
is a semidirect product of ϖZ

D ≃ Z and a finite abelian group with order
prime to p. This is shown in [11, §8.2], and the irreducibles match up to
those given in the theorem statement. □

3. Reduction to cohomology
We will begin by explaining how to reduce the computation of the groups

Extn
D×(π, π′) to extensions between characters, after which we can reduce

that problem to computation of certain cohomology groups. There are two
main facts used in this reduction: first, that π and π′ are induced from
characters. Secondly, the inductions are from finite index subgroups, so
Frobenius reciprocity is a two-sided adjunction.

Lemma 5. For a locally profinite group G, let H ≤ G be a closed subgroup
such that [G : H] < ∞, and let V and W be smooth representations of the
groups H and G respectively. Then we have

Extn
G(IndG

H V,W ) ≃ Extn
H(V,ResG

H W ).
This also holds in the other direction.

Proof. This is a well-known fact from category theory: Frobenius reciprocity
carries on to the derived functors of Hom because we have an adjunction
both ways, since for finite index subgroups compact induction agrees with
induction. □

Now we can use this to reduce our problem to computing extensions
of characters. Consider irreducible representations π = IndD×

D×
a
χ and π′ =

IndD×

D×
a′
χ′. Here, we have absorbed the κ component in the notation of The-

orem 4 into χ, so that χ and χ′ are more general characters of D×
a and D×

a′

rather than characters extended from k×
D. We would like to compute the

dimension of Extn
D×(π, π′).

Theorem 6. Let χ, χ′, π and π′ be as given above. Then

Extn
D×(π, π′) ≃

⊕
s∈D×

a′ \D×/D×
a

Extn
D×

lcm(a,a′)
(1, (Res

D×
a′

D×
lcm(a,a′)

χ′) ⊗ (χs)∗),

where s is a coset representative of the double coset s. The characters χs

on D×
lcm(a,a′) are defined as χs(x) = χ(s−1xs), and so are conjugated re-

strictions of χ.
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Proof. We first apply Frobenius reciprocity, the first time on the right in-
duced representation. By the previous lemma, we may apply it for Extn as
the subgroups D×

a and D×
a′ have finite index in D×. We have

Extn
D×(π, π′) = Extn

D×

(
IndD×

D×
a
χ, IndD×

D×
a′
χ′
)

≃ Extn
D×

a′

(
ResD×

D×
a′

IndD×

D×
a
χ, χ′

)
.

By the Mackey formula, we have

ResD×

D×
a′

IndD×

D×
a
χ ≃

⊕
s∈D×

a′ \D×/D×
a

Ind
D×

a′

sD×
a s−1∩D×

a′
χs,

where s is a representative of the double coset s. Because D×
a is normal,

the subgroup we induce from is simply D×
a ∩D×

a′ = D×
lcm(a,a′).

We now pull out the direct sum and apply Frobenius reciprocity on the
other side. We then obtain an isomorphism between

Extn
D×(π, π′) ≃

⊕
s∈D×

a′ \D×/D×
a

Extn
D×

a′

(
Ind

D×
a′

D×
lcm(a,a′)

χs, χ′
)

and ⊕
s∈D×

a′ \D×/D×
a

Extn
D×

lcm(a,a′)

(
χs,Res

D×
a′

D×
lcm(a,a′)

χ′
)
.

The result then follows after tensoring with (χs)∗ on each individual exten-
sion group. □

Thus, it suffices to be able to compute Extn
D×

a
(1, χ) for any character χ

of D×
a .

We can now employ all the tools of group cohomology to solve our prob-
lem. It is tempting to try to use the Hochschild–Serre spectral sequence
and identify Extn

D×
a

(1, χ) with Hn(D×
a , χ), but this does not quite work.

Since we must work with continuous cohomology and smooth representa-
tions, and D×

a is not a profinite group, we cannot use the Hochschild–Serre
spectral sequence in this case. However, we can recover a similar spectral
sequence.

Proposition 7. There is a first quadrant spectral sequence

Ei,j
2 = Hi(D×

a /I1,Hj(I1, χ)) =⇒ Exti+j

D×
a

(1, χ).

Proof. From equation (32) in [7, §9], letting H ≃ Fp[D×
a /I1] be the Hecke

algebra of I1, we have a spectral sequence

Ei,j
2 = Exti

H(1,Hj(I1, χ)) =⇒ Exti+j

D×
a

(1, χ).
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On the left we take Ext in the category of all H-modules, and on the right
we take it in the category of smooth representations of D×

a . As constructed
in [7], this spectral sequence is used for GL2. However a subcase applies in
our setting, which we will briefly explain.

We have EndD×
a

(c - IndD×
a

I1
1) = H ≃ Fp[D×

a /I1]. Let RepI1
D×

a
be the full

subcategory of the category of smooth D×
a representations RepD×

a
consist-

ing of representations generated by their I1-invariants. There is a functor
I : RepD×

a
→ ModH sending π 7→ πI1 = HomD×

a
(c - IndD×

a
I1

1, π). There is
also a functor J : M 7→ M ⊗H (c - IndD×

a
I1

1) going the other way, from
ModH to RepD×

a
.

The relevant fact needed for the construction of the spectral sequence
is that when viewed as functors between RepI1

D×
a

and ModH, I and J are
quasi-inverse to each other. This can be directly verified in this case because
I1 is normal in D×

a . Indeed, a representation π being generated by its I1-
invariants means any v ∈ π can be written as a sum of elements of the
form d · w for d ∈ D×

a and w ∈ πI1 . By normality, I1 will again fix d · w,
so in fact arbitrary v is also fixed. It follows that RepI1

D×
a

is equivalent
to representations with a trivial action of I1. Using ModH ≃ RepD×

a /I1
, I

equivalently sends π 7→ πI1 as a D×
a /I1 representation. The action of D×

a /I1
on πI1 recovers the D×

a action as π already has a trivial I1 action, which
is precisely what the functor J does. Thus, in our setting the functors are
again quasi-inverse and we have the desired spectral sequence.

Now we return to the spectral sequence Ei,j
2 = Exti

H(1,Hj(I1, χ)) =⇒
Exti+j

D×
a

(1, χ). As the extension group is computed in the category of all
H-modules or equivalently D×

a /I1-representations, we have

Ei,j
2 = Exti

D×
a /I1,all(1,H

j(I1, χ)) =⇒ Exti+j

D×
a

(1, χ)

where the subscript all means we take the category of all representations.
Now use that D×

a /I1 is discrete, so we can identify Exti
D×

a /I1,all(1,H
j(I1, χ))

with the continuous group cohomology Hi(D×
a /I1,Hj(I1, χ)). This yields

the claimed spectral sequence. □

As the spectral sequence of Proposition 7 is a first quadrant spectral se-
quence, we may obtain the following five-term exact sequence of low degree
terms:

0 −→ H1(D×
a /I1, χ) −→ Ext1

D×
a

(1, χ) −→ (Hom(I1,Fp) ⊗ χ)D×
a /I1

−→ H2(D×
a /I1, χ) −→ Ext2

D×
a

(1, χ)
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Here, we have expanded the definition of H1(I1, χ)D×
a /I1 . Thus, we obtain an

exact sequence similar to the inflation-restriction exact sequence we would
obtain via the Hochschild–Serre spectral sequence if D×

a were a profinite
group.

In Corollary 19, we use the same spectral sequence to obtain a description
of Extn

D×
a

(1, χ) in terms of the cohomology of I1, so this step in our method
works for all degrees of extensions.

4. Cohomology of I1

Recall that we use I1 to denote the subgroup 1 + ϖDOD of D×. A key
step in computing all extensions of irreducible representations of D× is to
understand the space H1(I1, π) as a representation of D×

a /I1, where π is
a smooth irreducible representation of D×

a . Note that at the end of the
previous section we had reduced to the case where π was a character, but
the computation is the same if π is an irreducible of any dimension which
is what we will assume here.

Since the action of I1 is trivial on π, we have H1(I1, π) ≃ Hom(I1,Fp)⊗π,
where the action of g ∈ D×

a /I1 on Hom(I1,Fp) sends a homomorphism φ
to x 7→ φ(g−1xg) and we view π as a representation of D×

a /I1. Note that
we use the normality of I1 here - in general, this cohomology group is only
a module over the Hecke algebra HI1 . Thus, we seek to understand the
homomorphism space Hom(I1,Fp).

Because the additive group Fp is abelian and every element is p-torsion,
any homomorphism φ : I1 → Fp will factor through the following diagram:

I1 Fp

I1
[I1,I1]Ip

1

φ

φ′

The homomorphism φ′ is unique given φ. The closed subgroup [I1, I1]Ip
1 ◁I1

generated by commutators and pth powers is called the Frattini subgroup
of I1.

Hence, we can reduce our problem of computing Hom(I1,Fp) to that of
computing Hom(I1/[I1, I1]Ip

1 ,Fp). We do this by computing the Frattini
subgroup itself.

4.1. The Frattini subgroup. To compute [I1, I1]Ip
1 , we will begin with

computing Ip
1 . In the p-adic case, this has a simple description.

Proposition 8. If F is an extension of Qp, then Ip
1 = 1 +ϖde+1

D OD when
p > de+ 1.
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Proof. First we show that Ip
1 ⊂ 1+ϖde+1

D OD. Let 1+x ∈ I1 for x ∈ ϖDOD.
Then we have (1+x)p =

∑
0≤i≤p

(p
i

)
xi = 1+px

∑
1≤i≤p−1

((p
i

)
/p
)
xi−1 +xp.

Because F is a p-adic field, we have ϖde
D = πe

F = pu for some unit u ∈ O×
F .

Thus, because x ∈ ϖDOD, px is in ϖde+1
D OD. Moreover, because p > de+1,

we have that xp is in ϖde+1
D OD, so (1 + x)p is in 1 +ϖde+1

D OD as desired.
Now we show that Ip

1 ⊃ 1+ϖde+1
D OD. Let 1+y ∈ 1+ϖde+1

D OD for some
y ∈ ϖde+1

D OD. As a formal power series, we know that( ∞∑
n=0

(
1/p
n

)
Y n

)p

= 1 + Y,

so to prove that 1 + y ∈ Ip
1 it suffices to show that

∑∞
n=0

(1/p
n

)
yn converges

in I1.
Because the n = 0 term in this series is 1 and ϖDOD is closed in D, it

suffices to show that νD

((1/p
n

)
yn
)
> 0 for all n > 0 and that νD

((1/p
n

)
yn
)

→
∞ as n → ∞. We have the identity(

1/p
n

)
= (−1)n

n!
∏

0≤i≤n−1

(
ip− 1
p

)
.

Thus, because νD = νF = eνp on Qp (where νp is the p-adic valuation), we
compute

νD

((
1/p
n

)
yn

)
= νD(yn) − (eνp(n!) + eνp(pn)) = nνD(y) − e(νp(n!) + n).

We also have νD(ϖD) = 1
d , so because y ∈ ϖde+1

D OD, we have νD(y) ≥
νD(ϖde+1

D ) = e
(
1 + 1

de

)
. By Legendre’s formula, νp(n!) is bounded above

by n
p−1 . Therefore,

νD

((
1/p
n

)
yn

)
≥ ne

(
1 + 1

de

)
− ne

( 1
p− 1 + 1

)
,

and because p− 1 > de this will be greater than 0 for n > 0 and approach
∞ as n → ∞. □

When F is an extension of Fp ((t)), we work in characteristic p, so we
have (1 + x)p = 1 + xp. This implies that

Ip
1 = 1 + (ϖDOD)p.

We now turn to computing [I1, I1]. Consider first the group 1 + πF OF .
In the p-adic case, assuming p > de+1 ensures this group has no p-torsion,
while in the local function field case this fact is a given. This implies that as
a topological group we have 1+πF OF is isomorphic to Z[F :Qp]

p in the p-adic
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case, and ZN
p in the local function field case. This leads to the following

decomposition, which will be useful here as well as later on.

Lemma 9. Suppose p > de+ 1 if F/Qp or gcd(p, d) = 1 if F/Fp ((t)). We
have a decomposition

I1 = (1 + πF OF ) × I1,Nrd=1,

where I1,Nrd=1 is the kernel of the reduced norm restricted to I1.

Proof. Because 1 + πF OF is a direct product of copies of Zp as a multi-
plicative group, it follows that every element has a unique dth root, which
means that Nrd |1+πF OF

: x 7→ xd is surjective. Any element x ∈ I1 can
then be divided by an element of 1+πF OF to land in I1,Nrd=1, which shows
I1 = (1 + πF OF )I1,Nrd=1. These subgroups have trivial intersection, since
the only dth root of 1 in 1+πF OF is 1. Finally, both of these subgroups are
normal because 1+πF OF is central, so we have I1 = (1+πF OF )× I1,Nrd=1
as desired. □

As 1 + πF OF is central in I1, we then have [I1, I1] = [I1,Nrd=1, I1,Nrd=1].
We compute this using [8, §1.4]. The following lemma is useful when con-
sidering the lowest nonzero coefficients of commutators in the subgroup
[I1,Nrd=1, I1,Nrd=1 ∩ Ii]. This will be used in the theorem that follows.

Lemma 10. Let i ≥ 0, and for y ∈ kD let φi,y ∈ EndkF
(kD) denote the

map
φi,y : x 7−→ σ(x)y − xσi(y).

The image of φi,y is the subspace

ker(TrkD/kF
) ·

∏
0≤j≤i

σj(y),

which has codimension one for y ∈ k×
D.

Proof. Since σ fixes kF , the kF -linearity of this map follows immediately.
When y = 0, the result is clear, so suppose now that y ∈ k×

D.
We first compute the kernel of this map. We have φi,y(x) = 0 if and only

if σ(x)y = xσi(y). For x ̸= 0, this is equivalent to x
σ(x) = y

σi(y) , which always
has a solution x by the multiplicative version of Hilbert’s theorem 90 as

NmkD/kF
(y/σi(y)) = 1

and σ is a generator of the Galois group. Again since σ is a generator, we
have k⟨σ⟩

D = kF , so the kernel is one-dimensional: supposing for nonzero x′

we have x′

σ(x′) = x
σ(x) , then σ(x′

x ) = x′

x so the ratio lies in k×
F . Thus, imφi,y

is a codimension one subspace. Noting that
φi,y(x)∏

0≤j≤i σ
j(y) = σ(x)∏

0<j≤i σ
j(y) − x∏

0≤j<i σ
j(y) ,
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applying σ to the second term on the right hand side yields the first term,
so the right hand side is contained in ker(TrkD/kF

) and

imφi,y ⊂ ker(TrkD/kF
) ·

∏
0≤j≤i

σj(y).

The additive version of Hilbert’s theorem 90 says

ker TrkD/kF
= im(σ(x) − x) = imφi,1,

which was shown to also have codimension one. Hence, we have equality. □

Theorem 11. We have

[I1, I1]Ip
1 = I1,Nrd=1I

p
1 ∩ I2,

and
[I1,Nrd=1, I1,Nrd=1]Ip

1,Nrd=1 = I1,Nrd=1 ∩ I2 = I2,Nrd=1.

When F/Qp, we may describe Ip
1 as in Proposition 8, and when F/Fp ((t))

we have Ip
1 = 1 + (ϖDOD)p. Here, we make the same assumptions on p as

Lemma 9.

Proof. There is a filtration Ii,Nrd=1 := I1,Nrd=1∩Ii. As previously discussed,
by Lemma 9 we have

[I1, I1] = [I1,Nrd=1, I1,Nrd=1].

By Theorem 1.9 in [8], for d > 2 this commutator subgroup equals I2,Nrd=1.
This can be extended to the case of d = 2 here because of the restrictions
on p. Because Ip

1 ⊂ I2, the first claim of the theorem follows as

[I1, I1]Ip
1 = I2,Nrd=1I

p
1 = I1,Nrd=1I

p
1 ∩ I2.

Similarly, the second claim follows by noting that Ip
1,Nrd=1 ⊂ Ip

1 ⊂ I2, hence
it is a subgroup of I1,Nrd=1 ∩ I2 = I2,Nrd=1 and so the commutator accounts
for the entire Frattini subgroup of I1,Nrd=1.

The argument in [8] is short, so we summarize it here. We show first that
under the quotient map qi : Ii → Ii/Ii+1 ≃ kD we have

qi+1([I1,Nrd=1, Ii,Nrd=1]) = qi+1(Ii+1,Nrd=1).

To do this, we first show that the image qi+1([I1,Nrd=1, Ii,Nrd=1]) contains
the elements φi,y(x) where y ∈ q1(I1,Nrd=1) = kD and x ∈ qi(Ii,Nrd=1),
where we have qi(Ii,Nrd=1) = kD if d ∤ i and qi(Ii,Nrd=1) = ker(TrkD/kF

) if
d|i. Indeed, if y = 1 +

∑
n≥1[yn]ϖn

D ∈ I1,Nrd=1 and x = 1 +
∑

n≥i[xn]ϖn
D ∈

Ii,Nrd=1, then we have

[y, x] = 1 + ((y − 1)(x− 1) − (x− 1)(y − 1))y−1x−1,
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from which we obtain

[y, x] = 1 + ([y1]ϖD[xi]ϖi
D − [xi]ϖi

D[y1]ϖD) +O(ϖi+2
D ),

so qi+1([y, x]) = φi,y1(xi).
Then Lemma 10 can be used to show that these φi,y(x) generate all of

qi+1(Ii+1,Nrd=1): when d|(i + 1), we have im(φi,y) = ker(TrkD/kF
) for any

y, so we get all of qi+1(Ii+1,Nrd=1); when d ∤ (i + 1), we can show that
we generate all of qi+1(Ii+1,Nrd=1) = kD by first finding y, y′ ∈ kD so that
im(φi,y) ̸= im(φi,y′). Choosing y = 1 and y′ such that

∏
0≤j≤i σ

j(y′) does
not lie in kF , we can always do this. If, in addition, d|i, the values x are
restricted to ker(TrkD/kF

) so we need to justify why this still suffices. The
image of φi,y|ker(TrkD/kF

) still has codimension one since kF = ker(φi,y) has
trivial intersection with ker(TrkD/kF

) (because p and d are coprime) and so
restricted to ker(TrkD/kF

) the map φi,y is an isomorphism. Thus, we have
qi+1([I1,Nrd=1, Ii,Nrd=1]) = qi+1(Ii+1,Nrd=1).

It then follows that

[I1,Nrd=1, Ii,Nrd=1]Ii+2,Nrd=1 = Ii+1,Nrd=1.

Now [I1,Nrd=1, I1,Nrd=1] is a non-central normal subgroup of D×
Nrd=1, and so

by Theorem 3.3 in [8] it is open and contains Ij,Nrd=1 for some j. Supposing
that the minimal such j satisfies j > 2, then we have

[I1,Nrd=1, I1,Nrd=1] ⊃ [I1,Nrd=1, Ij−2,Nrd=1]Ij,Nrd=1 = Ij−1,Nrd=1,

which contradicts the fact that j is minimal. Thus, we must have j ≤ 2.
But we also have [I1,Nrd=1, I1,Nrd=1] ⊂ I2,Nrd=1, so we have equality. □

Remark. In the case of d = 2, as shown in [9, §5], the same result about the
commutator subgroup of I1,Nrd=1 being I2,Nrd=1 will still hold so long as D
is not a dyadic division algebra. This case is ruled out because gcd(p, d) = 1
in any case, so this assumption is important to include.

4.2. A commutator construction. While not needed for computing the
group H1(I1, π), we can actually show that nearly all elements of [I1, I1]Ip

1
are products of a single commutator and a pth power, rather than prod-
ucts of many commutators and a pth power as done above. Namely, every
element of [I1, I1]Ip

1 that does not lie in I3 is a product of a commutator
and pth power when d > 4.

We first study q2([I1, I1]) in detail in Proposition 12 to determine the
exact number of ways a given value in kD can be produced. We use this
in the corollary that follows to show there are enough ways to do this
that we can inductively choose x, y ∈ I1 so that [x, y] produces the desired
commutator by studying the coefficient of ϖi

D in the expansion of [x, y]
using Teichmüller representatives.
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Proposition 12. Suppose d > 4 and fix α ∈ k×
D. There exist 1+[x]ϖD ̸= 1

and 1 + [y]ϖD ̸= 1 such that

q2([1 + [x]ϖD, 1 + [y]ϖD]) = α,

and x/y does not lie in any proper subfield of kD.

Proof. If we show that there are more than qd/2+1−1
q−1 ratios x/y achieve any

given value of α, then the claim follows. This is because

qd/2+1 − 1
q − 1 ≥

∑
a≤d/2

qa ≥
∣∣∣∣∣ ⋃
a|d,a<d

Fqa

∣∣∣∣∣,
the number of elements in the union of all proper subfields of kD. We first
show that the number of ratios can be deduced from the number of pairs
(x, y).

To have q2(1+[x]ϖD, 1+[y]ϖD]) = α requires xσ(y)−σ(x)y = α. Viewed
as a curve Cα over kD, this has many symmetries. The (q + 1)th roots of
unity ⟨ζ⟩ = µq+1(kD) act on Cα. Note that these agree with the (qr + 1)th
roots of unity as (r, d) = 1, which is why this makes sense.

In particular, given (x, y) ∈ Cα(kD) we have (ζx, ζy) as another solution.
If we fix the ratio x/y, then the system

xσ(y) − σ(x)y = α, x/y = β

gives x = yβ, so we solve yβσ(y) − σ(y)σ(β)y = α. Note that β− σ(β) ̸= 0
as α ̸= 0, so if solutions exist there are |µq+1(kD)| of them. Thus, over
nonzero values α the number of ratios x/y from (x, y) ∈ Cα(kD) is precisely
|Cα(kD)|/|µq+1(kD)|, where |Cα(kD)| denotes the number of points over kD.

Thus, we now want to show |Cα(kD)| exceeds |µq+1(kD)| qd/2+1−1
q−1 . If we

are given x, y ∈ k×
D, then (x, y) lies on some Cα(kD) for α ∈ kD. Via

Lemma 10, we may show exactly |k×
D| · |k×

F | of these yield α = 0. Then we
conclude ∑

α∈k×
D

|Cα(kD)| = (|k×
D|)2 − |k×

D| · |k×
F |.

There are two relevant actions on the family of curves Cα:
• For z ∈ k×

D, if (x, y) ∈ Cα(kD) then (zx, zy) ∈ Czσ(z)α(kD).
• For A∈GL2(kF ), if (x, y)∈Cα(kD) then A·(x, y) lies in Cdet A·α(kD).

Let d be odd. The first point shows for α the cosets k×
D/k

×(q+1)
D we get a

common value of |Cα(kD)| as the image of zσ(z) is identical to zq+1 (as r
is coprime to d). As d is odd, the image of zq+1 consists of all the squares.
The second item shows that these two common values are the same. Thus,
|Cα(kD)| = |k×

D| − |k×
F | = qd − q when α ∈ k×

D because we have produced
bijections between Cα(kD) over all α ∈ k×

D.
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Now let d be even, and let α ∈ kD. We claim the curve

Cα : xσ(y) − σ(x)y = α

has its kD points in bijection with

Xα : σ(x)x+ σ(y)y = ζα.

Here, we choose ζ ̸= 0 so that σ(ζ) = −ζ.
Explicitly, given (x, y) ∈ Xα we first choose ω such that σ(ω)ω = −1.

Then (x+ ωy, ωx+ y) is a solution to xσ(y) + σ(x)y = (σ(ω) + ω)ζα. We
have (σ(ω) +ω) ∈ k×

F . Dividing the x coordinate by ζ, we get a solution to
xσ(y) − σ(x)y = (σ(ω) + ω)α. Using the GL2(kF ) action, the solutions are
in bijection.

Finally, we observe that points in Xα(kD) are in bijection with solutions
to xq+1 + yq+1 = ζα, simply because xq+1 and σ(x)x take on the same
values (as r and d are coprime) and have equal numbers of preimages for
each value. The explicit number of solutions to this general type of equation
is computed in [15], and will satisfy the desired bound so long as d > 4.
In particular, the values |Cα(kD)| take on constant values for each coset of
k×

D/k
×(q+1)
D , with one coset for ζα = −1 taking the value

qd + 1 + (−q)d/2 q − q3

q + 1 − (q + 1)

and the others a common value so that the average is qd − q. The coset for
ζα = −1 counts points on xq+1 + yq+1 + 1 = 0, which when projectivized
(to add q + 1 points) is the Fermat curve

xq+1 + yq+1 + zq+1 = 0.

The zeta function of this curve is well-known over Fq2 (see [12]). That
the remaining cosets take the same value can be seen from the explicit
formula of [15]. Thus, we have shown the desired bound on |Cα(kD)| and
the proposition follows. □

The following corollary is analogous to the result at the end of Sec-
tion 1.4.3 of [8], which states that in [D×, D×] every element is a product
of at most two commutators (this was originally shown in [14]). We will
first prove a helpful lemma.

Lemma 13. Set x = 1 +
∑

i≥1[xi]ϖi
D, and similarly for y.

Let de > i > 1 and assume x1, . . . , xi−1 and y1, . . . , yi−1 are fixed in kD.
The ϖi+1

D coefficient of the commutator [x, y] is a Teichmüller lift of

C + φi,x1(yi) + φi,y1(xi).

Here, C ∈ kD is a constant only depending on x1, . . . , xi−1 and y1, . . . , yi−1.
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Proof. To do this calculation, we recall that we have

[x] + [y] = [x+ y] +O(p).

If F/Fp ((t)), this error is zero, while in the p-adic case note that p ∈ ϖde
D OD

so this error term is quite small.
Write

x−1 = 1 +
∑
i≥1

(1 − x)i

and the same for y. We will understand [x, y] = xyx−1y−1 using these ex-
pansions. First, note that the coefficient of ϖi+1

D in the commutator, via
this expansion, only depends on x1, . . . , xi, xi+1 and y1, . . . , yi, yi+1: this is
because the error terms in [x] + [y] = [x + y] + O(p) are small. In partic-
ular, if when expanding we have any expression [x]ϖi

D + [y]ϖi
D then it is

[x+y]ϖi
D +O(ϖi

Dp), and hence when calculating [x, y] by expanding when
i > 0 the error lies in Ide+1 as p ∈ ϖde

D , and therefore does not matter (the
i = 0 case doesn’t occur for expansion of the commutator).

Now knowing we can ignore the error terms, we need only consider x−1

up to 1 + (1 − x) + (1 − x)2 and similarly for y−1 as we only want the
terms using [xi] and [yi]. Now observe the contributions from xi+1 and yi+1
cancel. Further, we can only get a term contributing to the coefficient of
ϖi+1

D depending on xi or yi if we combine them with y1 and x1 respectively.
This gives the claimed formula. □

Now we are ready to do the commutator construction, using this formula
to show we can produce enough commutators.

Corollary 14. Suppose d > 4, and assume p > de + 1 in the p-adic case
and gcd(p, d) = 1 in the local function field case. Any element α ∈ [I1, I1]Ip

1
with q2(α) ̸= 0 can be constructed as a product of a commutator and a pth
power.

Proof. We wish to write α ∈ [I1, I1]Ip
1 \I3 as [x, y]zp for x, y, z ∈ I1. Suppose

we have x = 1+
∑

i≥1[xi]ϖi
D, and similarly for y. We fix x1 and y1 to be as in

Proposition 12, so q2([x, y]) = q2(α) ∈ k×
D and x1/y1 does not lie in a proper

subfield of kD. The previous lemma shows that we can fix x1, . . . , xi−1 and
y1, . . . , yi−1 for any i so that there is α = [x, y]zp whose coefficient [αi+1]
of ϖi+1

D is
C + φi,x1(yi) + φi,y1(xi).

Here, C ∈ kD is a constant only depending on x1, . . . , xi−1 and y1, . . . , yi−1.
We achieve this for all i rather than those in the lemma by absorbing error
terms in Ide+1 = Ip

1 into zp. The idea will be to show that we can modify
xi and yi in this formula to match coefficients [αi] in α = 1 +

∑
i≥1[αi]ϖi

D
one by one.
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By Lemma 10, we know {C + φi,x1(yi) + φi,y1(xi) : xi, yi ∈ kD} ⊂ kD is
a sum of two codimension one subspaces, shifted by C. This is all of kD if
and only if the two subspaces are distinct, which will depend on the choice
of x1 and y1. By Lemma 10, im(φi,x1) = im(φi,y1) if and only if∏

0≤j≤i

σj(x1/y1) ∈ kF ,

since c · ker(TrkD/kF
) = ker(TrkD/kF

) if and only if c ∈ kF due to the non-
degeneracy of the trace pairing. A calculation shows that this condition on
x1/y1 holds if and only if x1/y1 is in the degree gcd(i+1, d) extension of kF .
Because x1/y1 does not lie in a proper subfield of kD, we may obtain any
Teichmüller lift of kD as the coefficient of ϖi+1

D of [x, y]zp when d ∤ (i+ 1).
When d | (i+ 1), the values obtained for this coefficient are in the coset

C + im(φi,x1) = C + im(φi,y1),
which has codimension one in kD by Lemma 10.

Thus, we see already that we can obtain many distinct α ∈ [I1, I1]Ip
1

as [x, y]zp by inductively choosing [xi] and [yi] to produce the desired co-
efficient of ϖi+1

D in the commutator, up to a change in z (given by the
error terms in the calculation). This works unless in α = [x, y]zp the coeffi-
cients [αi+1] for d | (i+ 1) lie outside the codimension one subspace we can
construct. There is also the constraint that q2([x, y]) ∈ k×

D.
We claim this actually produces all α ∈ [I1, I1]Ip

1 with q2(α) ̸= 0. We
can explicitly count the number of elements in [I1, I1]Ip

1 modulo Ide+1 with
q2(α) ̸= 0. One uses [I1, I1]Ip

1 = I1,Nrd=1Ide+1 ∩ I2 to see the result. Modulo
Ide+1, we can then equivalently count elements in α ∈ I2,Nrd=1 with q2(α) ̸=
0. Using I1 = (1+πF OF )×I1,Nrd=1 we see that we get everything in I2/Ide+1
with q2(α) ̸= 0 with the restriction that coefficients of ϖj

D when d|j lie in
a codimension one subspace (this comes from 1 +πF OF ). Our commutator
construction then produces exactly the same number of distinct elements
in the Frattini subgroup modulo Ide+1, so we get all of them.

Since Ide+1 = Ip
1 , we have now seen the construction produces repre-

sentatives for all cosets in ([I1, I1]pIp
1 )/Ip

1 where q2 is nonzero. However,
because we can vary zp in [x, y]zp, we actually produce the entire cosets
from a representative. We therefore produce all elements of [I1, I1]Ip

1 where
q2 is nonzero. □

Following through the same arguments by inspecting the values from
Proposition 12 and comparing to |µq+1(kD)| qd/2+1−1

q−1 , we can get results for
d = 2, 3, 4 as well. For d = 2, 3 we can get the same final result, but for
d = 4 Proposition 12 does not hold since the exact number of points on
Cα(kD) need not exceed the bound |µq+1(kD)| qd/2+1−1

q−1 . However, it does
hold for q

q+1 |k×
D| values in k×

D.
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4.3. Computing cohomology. With our understanding of the Frattini
subgroup, we can now compute the structure of H1(I1, π) as a representation
of D×

a /I1. Assume p > de + 1 in the p-adic case and gcd(p, d) = 1 in the
local function field case throughout this section, as we will be applying
Theorem 11.

For most of this section, we focus on computing theD×/I1-representation
structure where π is a smooth irreducible representation of D× because,
as shown after the proof of Proposition 17, we can obtain the D×

a /I1-
representation structure from this simply by restricting.

First we review why we have a D×/I1 representation structure on the
group H1(I1, π) for an irreducible smooth representation π. Being the pro-
p Iwahori subgroup of D×, there is the structure of a module over the
Hecke algebra HI1 ≃ Fp[I1 \ D×/I1] on πI1 . Since I1 is normal, this has
the structure of a representation of D×/I1. The derived functors of this
are the continuous cohomology groups Hi(I1, π), hence there is a structure
of a representation of D×/I1 on H1(I1, π). As H1(I1, π) ≃ H1(I1,Fp) ⊗ π,
we will only need to compute this structure for the trivial representation.
For H1(I1,Fp), the structure as a representation can be described very
explicitly as the conjugation action of D×/I1 on homomorphisms. Namely,
g ∈ D×/I1 sends a homomorphism φ(x) to φ(g−1xg).

Theorem 15. We have a decomposition
H1(I1,Fp) ≃ H1(I1,Nrd=1,Fp) ⊕ H1(1 + πF OF ,Fp),

where H1(I1,Nrd=1,Fp) ≃ Hom(kD,Fp) ≃ Fdf
p and H1(1 + πF OF ,Fp) is

isomorphic to Fef
p in the p-adic case and

⊕
i∈N Fp in the local function

field case.

Proof. Due to Lemma 9, the decomposition into these cohomology groups
follows immediately. This is for the first cohomology group so we do not
need more advanced methods, but it is worth noting this is a subcase of
the Künneth theorem for profinite groups.

By Theorem 11, the Frattini subgroup of I1,Nrd=1 is I1,Nrd=1 ∩ I2 =
I2,Nrd=1. We then have

H1(I1,Nrd=1,Fp) ≃ Hom(I1,Nrd=1/I2,Nrd=1,Fp).
The quotient I1,Nrd=1/I2,Nrd=1 is isomorphic to kD: we know it is a finite
dimensional Fp-vector space since it is finite, abelian, and p-torsion. In the
decomposition of Lemma 9, upon taking the elements 1+[x]ϖD over x ∈ kD,
the I1,Nrd=1 components yield coset representatives of I1,Nrd=1/I2,Nrd=1 ⊂
kD for any element of kD. This is because d ≥ 2, so division by an element
of 1 + πF OF cannot affect the coefficient of ϖD. Thus, we have

H1(I1,Nrd=1,Fp) ≃ Hom(kD,Fp),
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where this last space is isomorphic to Fdf
p because the additive group of kD

is Fdf
p . Now we turn to 1 + πF OF , which is isomorphic to Z[F :Qp]

p in the p-
adic case, and ZN

p in the local function field case. As Homcont(Zp,Fp) ≃ Fp,
in the p-adic case the claim follows. In the local function field case

Homcont(1 + πF OF ,Fp) ≃ Homcont(ZN
p ,Fp) ≃

⊕
i∈N

Homcont(Zp,Fp),

which is what we wanted. □

For 0 ≤ i < df and ηi := (x 7→ xpi) ∈ AutFp(kD), define the homomor-
phisms ϕηi : I1 → Fp by the compositions

I1 −→ I1/I2
≃−→ kD

ηi−→ kD −→ Fp

where the last map is the inclusion that we have fixed.
For homomorphisms η : 1 + πF OF → Fp, define homomorphisms ψη :

I1 → Fp by
I1

Nrd−−→ 1 + πF OF
η−→ Fp.

Corollary 16. The maps ϕηi form a basis of the Fp-vector space
H1(I1,Nrd=1,Fp) ⊂ H1(I1,Fp).

Taking a basis {ηj} of Homcont(1+πF OF ,Fp), the maps {ψηj } form a basis
of H1(1 + πF OF ,Fp) ⊂ H1(I1,Fp).

Proof. We note that ϕηi |1+πF OF
= 0 and that ψηj |I1,Nrd=1 = 0, so the

proposed basis elements lie in the correct components of the decomposition
in Theorem 15, and we would like to show that they indeed form bases of
these components.

We do this for the ϕηi first. We already computed the dimension of
H1(I1,Nrd=1,Fp) ⊂ H1(I1,Fp), so it suffices to show that the ϕηi are linearly
independent. By surjectivity of the quotient map I1 → I1/I2, it suffices to
show that the ηi ∈ Hom(kD,Fp) are linearly independent. Viewing these as
polynomials x 7→ xpi ∈ Fp[x], any linear combination that is equal to zero
corresponds to a degree < pdf polynomial having pdf roots, which means
the coefficients must all be zero. It follows that these homomorphisms are
linearly independent.

Now consider the ψηj . The reduced norm Nrd restricts to x 7→ xd on
F , so as in Lemma 9 we see Nrd : I1 → 1 + πF OF is a surjection since
1 + πF OF ⊂ I1. The maps ηj are a basis of Homcont(1 + πF OF ,Fp) =
H1(1 + πF OF ,Fp), and so by surjectivity of the reduced norm the maps
ψηj form a basis of H1(1 + πF OF ,Fp) ⊂ H1(I1,Fp). □

We may now compute the structure of H1(I1,Fp) as a representation of
D×/I1.
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Proposition 17. As a representation of D×/I1 via the conjugation action,
we have

H1(I1,Fp) ≃ H1(1 + πF OF ,Fp) ⊕
⊕

i∈Z/fZ
IndD×/I1

D×
d

/I1
χηi

where the action on H1(1 + πF OF ,Fp) is trivial and χηi is extended triv-

ially from the order d character k×
D → F×

p given by x 7→
(

σ(x)
x

)pi

. Up to
isomorphism, the choice of a coset representative of i does not matter.

Proof. By Corollary 16, we see that every map contained in the component
H1(1 + πF OF ,Fp) ⊂ H1(I1,Fp) factors through Nrd. As a result, the con-
jugation action of D×/I1 is trivial on this component and it is a direct sum
of copies of the trivial representation.

We now turn to the action on H1(I1,Nrd=1,Fp). To do this, we will use
the basis ϕηi provided by Corollary 16. As D×/I1 ≃ ϖZ

D ⋉ k×
D, it suffices to

study the k×
D and ϖZ

D actions. For any y = 1+
∑

n>0[yn]ϖn
D ∈ I1, as we are

given that ϖD[yn]ϖ−1
D = [σ(yn)] and σ sends yn 7→ yqr

n , we can compute
that

ϖD · ϕηi(y) = ϕηi

(
1 +

∑
n>0

ϖ−1
D [yn]ϖn+1

D

)

= ηi(σ−1(y1)) = ypi−rf

1 = ϕηi−rf (y),

hence the conjugation action of ϖD is by

ϖD · ϕηi = ϕηi−rf .

Similarly, for any y as above and any x ∈ k×
D, we have

[x] · ϕηi(y) = ϕηi

(
1 +

∑
n>0

[x−1yn]ϖn
D[x]

)

= ηi(x−1y1σ(x)) =
(
σ(x)
x

)pi

ϕηi(y),

from which we obtain [x] · ϕηi =
(

σ(x)
x

)pi

ϕηi . Defining Vi to be the span of
the ϕηi′ where i′ ≡ i (mod f), each is a subrepresentation so we obtain

H1(I1,Nrd=1,Fp) =
⊕

i∈Z/fZ
Vi.

Each Vi is a dimension d representation. We have

ResD×/I1
D×

d
/I1

Vi ≃
⊕

i′≡i (modf)
χηi′
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where we define χηi′ for i′ ∈ Z/(df)Z as sending x ∈ k×
D to

(
σ(x)

x

)pi′

and
extend trivially to D×

d /I1. It follows that

HomD×
d

/I1

(
χηi ,ResD×/I1

D×
d

/I1
Vi

)
̸= 0,

which by Frobenius reciprocity means that HomD×/I1

(
IndD×/I1

D×
d

/I1
χηi , Vi

)
̸=

0. However, by the classification of irreducible representations, the induced
representation is irreducible of dimension d. As dimVi = d, it follows that
Vi is isomorphic to IndD×/I1

D×
d

/I1
χηi . □

For any smooth irreducible representation π of D×, this immediately
gives us

H1(I1, π) ≃ (H1(1 + πF OF ,Fp) ⊗ π) ⊕
⊕

i∈Z/fZ
IndD×/I1

D×
d

/I1

(
χηi ⊗ ResD×/I1

D×
d

/I1
π
)
.

We have already determined how to compute the restriction of a character
of D× in general in Corollary 3, so when π is a character it is easy to write
this down explicitly.

We can now derive the D×
a -representation structure for other values of

a|d. For the trivial representation, this is

ResD×/I1
D×

a /I1
H1(I1,Fp) ≃ H1(1 + πF OF ,Fp) ⊕

⊕
i∈Z/fZ

ResD×/I1
D×

a /I1
IndD×/I1

D×
d

/I1
χηi .

The Mackey formula decomposes each term in the direct sum as

ResD×/I1
D×

a /I1
IndD×/I1

D×
d

/I1
χηi ≃

⊕
s∈D×

a \D×/D×
d

IndD×
a /I1

D×
d

/I1
χs

ηi
.

We can similarly compute the tensor product with a smooth irreducible
representation π of D×

a .

Remark. In [3], for a split reductive p-adic group G and for a pro-p Iwahori
subgroup I1 of G, the group H1(I1,Fp) is computed as a module over the
Hecke algebra HI1 . Our result is somewhat analogous to Theorem 6.4 in
that paper in how H1(I1,Fp) splits into two components, but the fact that
D× is anisotropic modulo its center makes its structure far more interesting
than that of GL1(F ). Notably, our decomposition as a module over HI1
similarly does not involve supersingular modules, but computing the same
cohomology group for GL2(D) using Theorem 11 does actually produce
supersingular modules if we assume d > 1, as would be expected from the
main theorem of [3].
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5. Extensions of irreducibles
Having computed the D×

a /I1-representation structure of H1(I1, π), we
are now ready to use this to compute extensions.

5.1. Ext1
D× for all irreducible representations. Let χ be any smooth

character of D×
a . To use the exact sequence of low degree terms at the end of

Section 3 to compute Ext1
D×

a
(1, χ), and ultimately to compute Ext1

D×(π, π′)
for any π and π′, we will also need to compute the structure of Hi(D×

a /I1, χ).

Proposition 18. We have Hi(D×
a /I1, χ) = 0 unless the action by χ : D×

a →
F×

p is trivial, in which case H1(D×
a /I1, χ) ≃ Fp and Hi(D×

a /I1, χ) = 0 for
i > 1.

Proof. Because we have a semidirect product D×
a /I1 ≃ ϖaZ

D ⋉ k×
D, we have

a normal subgroup k×
D and a quotient ϖaZ

D making an exact sequence

0 −→ k×
D −→ D×

a /I1 −→ ϖaZ
D −→ 0.

The group in question is discrete, and hence without requiring cochains to
be continuous the cohomology is the same as taking all cochains. We may
therefore use the Hochschild–Serre spectral sequence in ordinary cohomol-
ogy.

We first show Hi(k×
D, χ) = 0 for any χ and i > 0. Observe that the

composition
Hi(k×

D, χ) res−→ Hi(1, χ) cores−−−→ Hi(k×
D, χ)

is multiplication by |k×
D|, and hence an isomorphism as we work in char-

acteristic p. But the middle group is 0, so this is also the zero map. It
follows the cohomology group Hi(k×

D, χ) is trivial. One can also see this by
observing that Ĥ0(k×

D, χ) and Ĥ0(k×
D, χ) are both 0 since |k×

D| is prime to
p, and then using Tate periodicity.

Because Hi(k×
D, χ) = 0 is trivial for i > 0, we have Hi(ϖaZ

D , χk×
D ) ≃

Hi(ϖaZ
D ⋉ k×

D, χ) via the inflation map in the higher inflation-restriction
exact sequences arising from the Hochschild–Serre spectral sequence. The
cohomological dimension of ϖaZ

D ≃ Z is 1, so for i > 1 we have now shown
the claim. For i = 1, H1(ϖaZ

D , χk×
D ) = 0 unless χk×

D is trivial, in which case
we get Fp. We only get χk×

D as the trivial ϖaZ
D -character when χ itself is

trivial. □

With this, we can now determine Ext1
D×

a
(1, χ) via the spectral sequence

Proposition 7. We also obtain the following corollary:

Corollary 19. There is an exact sequence

0 −→ H1(D×
a /I1,Hi−1(I1, χ)) −→ Exti

D×
a

(1, χ) −→ Hi(I1, χ)D×
a /I1 −→ 0.
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Proof. Proposition 18 shows that Hi(D×
a /I1, V ) = 0 for i ≥ 2 for any rep-

resentation V of D×
a /I1. Indeed, the previous argument can be adapted di-

rectly for i ≥ 2 because Z still has cohomological dimension 1 and Rep(k×
D)

is semisimple as |k×
D| is prime to p, and so we can decompose V =

⊕
j χj

as a representation of k×
D to get Hi(k×

D, V ) =
⊕

j Hi(k×
D, χj) = 0. We have

a spectral sequence

Ei,j
2 = Hi(D×

a /I1,Hj(I1, χ)) =⇒ Exti+j

D×
a

(1, χ)

via Proposition 7 which we now know consists of two columns on the E2
page, from which we get the above exact sequence as the E2 page equals
the E∞ page. □

We now compute Ext1
D×

a
(1, χ).

Theorem 20. Let D be a degree d division algebra over F where p > de+1
in the p-adic case, and gcd(p, d) = 1 in the local function field case. Let χ
be a character of D×

a where a|d. There are two cases where the extensions
Ext1

D×
a

(1, χ) can be nontrivial:
• When χ is trivial, there is an exact sequence

0 −→ Fp −→ Ext1
D×

a
(1, χ) −→ H1(1 + πF OF ,Fp) −→ 0

where H1(1+πF OF ,Fp) ≃ Hom(I1,Fp)D×
a /I1 is as in Theorem 15.

• When a = d, and χ is extended trivially from a character x 7→(
x

σ(x)

)pi

of k×
D for some i, we have Ext1

D×
a

(1, χ) ≃ Fp.

Otherwise, Ext1
D×

a
(1, χ) = 0.

Proof. Due to Proposition 18, in the exact sequence of low degree terms
arising from Proposition 7, we obtain

0 −→ H1(D×
a /I1, χ) −→ Ext1

D×
a

(1, χ) −→ (Hom(I1,Fp) ⊗ χ)D×
a /I1 −→ 0.

When χ = 1, by Proposition 17 we see that

Hom(I1,Fp)D×
a /I1 ≃ H1(1 + πF OF ,Fp)

since this is the trivial component of the representation. Additionally,
Proposition 18 tells us that H1(D×

a /I1,Fp) ≃ Fp. We then recover the
first case of the theorem statement.

When χ is nontrivial, H1(D×
a /I1, χ) = 0 so we have Ext1

D×
a

(1, χ) ≃
(Hom(I1,Fp)⊗χ)D×

a /I1 via the restriction map. We know Hom(I1,Fp)⊗χ ≃
H1(I1, χ) as a D×

a /I1-representation, so we just need to compute the trivial
component.



Extensions of mod p representations of division algebras 69

Recall that as a D×
a /I1-representation, we have already shown

H1(I1, χ) ≃ (H1(1 + πF OF ,Fp) ⊗ χ) ⊕
⊕

i∈Z/fZ

(
ResD×

D×
a

IndD×

D×
d

χηi

)
⊗ χ.

As H1(1 + πF OF ,Fp) has a trivial action and χ is nontrivial, we know the
(H1(1 + πF OF ,Fp) ⊗ χ) component is nontrivial. By the Mackey formula,
the remaining component before tensoring with χ is⊕

i∈Z/fZ
ResD×

D×
a

IndD×

D×
d

χηi ≃
⊕

i∈Z/fZ

⊕
s∈D×

a \D×/D×
d

IndD×
a

D×
d

χs
ηi
.

By the Mackey irreducibility criterion, IndD×
a

D×
d

χs
ηi

is irreducible as it breaks
down as a direct sum of distinct characters upon restriction to D×

d .
When we tensor with χ, we can further pull χ into the induction via the

push-pull formula to obtain a direct sum of inductions of the form

IndD×
a

D×
d

(χs
ηi

⊗ ResD×
a

D×
d

χ) =: IndD×
a

D×
d

χ′.

This remains irreducible since we have tensored with a character. Now the
trivial representation is irreducible as well, so if IndD×

a

D×
d

χ′ contains a copy
of the trivial representation then it must itself be trivial. It follows that we
must have a = d in this case, and also that χs

ηi
⊗ ResD×

a

D×
d

χ ≃ 1. As a = d,
this just says that χ must be dual to some χs

ηi
, which can only be the case

for at most one i and s.
We are now left with determining what exactly the characters χs

ηi
are

when a = d. We see they are trivially extended from x 7→ σ−n
(

σ(x)
x

)pi

over i ∈ Z/fZ. Here, we take coset representatives s = ϖn
D for n = 0 to

d− 1 for D×
d \D×/D×

d . In particular, the resulting characters are precisely

x 7→
(

σ(x)
x

)pi

for i ∈ Z/(df)Z, which is what was claimed. □

This gives a way to compute any particular extension group.

Theorem 21. Assume p > de+1 when F is a p-adic field, and gcd(p, d) = 1
in the local function field case. Let χ, χ′, π and π′ be as in Theorem 6, and
define the set S = {χs : s = ϖi

D, 0 ≤ i < gcd(a, a′)}, so that the elements s
form a set of coset representatives for D×

a′ \D×/D×
a .

There are two types of direct summands in Ext1
D×(π, π′). If Res

D×
a′

D×
lcm(a,a′)

χ′

is equal to some χs ∈ S, we have a nonzero direct summand Aχs fitting into
an exact sequence

0 −→ Fp −→ Aχs −→ H1(1 + πF OF ,Fp) −→ 0.
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We also get a nonzero direct summand Aχs ≃ Fp for each χs ∈ S for which

Res
D×

a′

D×
lcm(a,a′)

χ′ ⊗ (χs)∗ is extended trivially from a character x 7→
(

x
σ(x)

)pi

.

Set Aχs = 0 otherwise. Then

Ext1
D×(π, π′) ≃

⊕
χs∈S

Aχs .

Proof. We get this result simply by applying the result of Theorem 20 in
Theorem 6. □

If lcm(a, a′) < d, only the first type of direct summand occurs a single
time; it is only in the case that lcm(a, a′) = d that the situation can be
more complicated.

We illustrate the example of d = 2 below.

Example 22. Let D be a quaternion algebra over a p-adic field F . We will
consider the case where π = IndD×

D×
2

(χ⊗ κ) and π′ = IndD×

D×
2

(χ′ ⊗ κ′) (in the
notation of Theorem 4), since this is the case where the most interesting
types of extensions occur.

Explicitly, these characters of D×
2 are of the form χ2,α,m, where q+1 ∤ m

so that the characters have order 2. There are four different possibilities for
dim Ext1

D×(π, π′) : 0, 1, ef + 1, and ef + 2.
We obtain dimension ef+1 when κ = κ′ and χ⊗(χ′)∗ is trivial, or κ = κ′

and χ ⊗ (χ′ϖD )∗ is trivial. The character χ′ϖD , when we set χ′ = χ2,1,m′ ,
is χ2,1,qm′ . These conditions cannot both occur at the same time, which is
why dimension 2ef + 2 is not possible.

Dimension ef + 2 can occur when one of the above conditions holds,
for example κ = κ′ and χ ⊗ (χ′)∗ is trivial. We then additionally require
χ⊗ (χ′ϖD )∗ to be some character x 7→ (x1−q)pi when restricted to k×

D. This
situation can occur, as well as the opposite situation where κ = κ′ and
χ⊗ (χ′ϖD )∗ is trivial and χ⊗ (χ′)∗ is some character x 7→ (x1−q)pi on k×

D.
We can obtain dimension 1 when χ ⊗ (χ′)∗ is x 7→ (x1−q)pi on k×

D, but
χ⊗ (χ′ϖD )∗ is nontrivial and vice versa. Finally, we get dimension 0 in all
other cases.

5.2. Higher degree extensions in the p-adic case. In [5], many fun-
damental results about p-adic analytic pro-p groups are shown which will
be helpful in understanding the structure of the higher cohomology groups
in the case where F is a p-adic field. Here, by a p-adic analytic group we
mean a topological group with the structure of a p-adic analytic manifold
over Qp such that the group multiplication and inversion operations are
analytic.

Throughout this section, we will need to assume p > de+ 1 to make sure
that I1 has no p-torsion to apply the following result.
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Theorem ([5, §2.5.8]). Let G be a p-adic analytic pro-p group and with
no p-torsion, and let r = dimQp G. Then G is a Poincaré duality group of
dimension r over Fp. That is,

• Hn(G,Fp) is finite dimensional for all n ∈ N.
• dimFp Hr(G,Fp) = 1.
• The cup product

Hn(G,Fp) × Hr−n(G,Fp) −→ Hr(G,Fp)
is a non-degenerate bilinear form.

Here, as always, all cohomology taken is continuous.
We will be interested in the case of I1 = G, and we will also want to

understand how the cup product interacts with the D×
a /I1-representation

structure on the cohomology group. We note that I1 is a p-adic analytic
group as it is an open subgroup of D×, and since p > de + 1 it has no
p-torsion. Thus, I1 is a Poincaré duality group.

The most difficult part of the following result is that the action of D×
a /I1

on the top cohomology is trivial. This is the main result of [4] for general
connected reductive groups. Using the method of Theorem 7.2 in [3], we
can alternatively show this by finding the uniform pro-p subgroup Ide+1 and
computing explicitly the action on its first cohomology, which determines
the action on its top cohomology as the cohomology ring is an exterior
algebra. We can then show that this action is trivial, and that it must
agree with the action on the top cohomology of I1 using the corestriction
map.
Proposition 23 ([4]). Let r = d2ef . As D×

a /I1-representations, we have
that Hn(I1,Fp)∗ ≃ Hr−n(I1,Fp). Here, V ∗ denotes the dual representation.
Proof. As representations of D×/I1 are equivalent to modules over HI1 and
dimQp I1 = d2ef , the structure on Hr(I1,Fp) as a D×/I1-representation,
and hence as a D×

a /I1-representation, is trivial by [4]. The cup product
Hn(I1,Fp) × Hr−n(I1,Fp) −→ Hr(I1,Fp) ≃ Fp

is a non-degenerate bilinear form, which behaves well with respect to the
D×

a /I1-action. Let d be an element of D×
a /I1. Then we have for α ∈

Hn(I1,Fp) and β ∈ Hr−n(I1,Fp) that
d · (α ⌣ β) = (d · α) ⌣ (d · β).

It follows from the triviality of the top cohomology that Poincaré duality
yields an isomorphism Hn(I1,Fp)∗ ≃ Hr−n(I1,Fp). Tensoring with Fp gives
the desired isomorphism. □

We will now again use the spectral sequence
Ei,j

2 = Hi(D×
a /I1,Hj(I1, χ)) =⇒ Exti+j

D×
a

(1, χ)
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from Proposition 7. The work has already been done in Corollary 19 and
the previous proposition.

Lemma 24. Let r = d2ef and let χ be a smooth character of D×
a . There

is an exact sequence

0 −→ H1(D×
a /I1,Hr−i+1(I1, χ)∗) −→ Exti

D×
a

(1, χ∗)

−→ (Hr−i(I1, χ)∗)D×
a /I1 −→ 0.

Proof. This follows from Corollary 19 combined with the previous proposi-
tion. □

For i = r + 1, we get Extr+1
D×

a
(1, χ∗) ≃ H1(D×

a /I1, χ
∗), which is trivial

unless χ = 1 in which case we get Fp. After r + 1, the extensions are all
trivial.

We can make use of this lemma when i = r as well, since we have results
about the surrounding terms in the exact sequence. We have

0 −→ H1(D×
a /I1,H1(I1, χ)∗) −→ Extr

D×
a

(1, χ∗) −→ (χ∗)D×
a /I1 −→ 0.

We may determine the first group via Proposition 18, the dimension is
the multiplicity of the trivial representation. This is precisely what was
determined in Theorem 20.

In the case of d = 2 and F = Qp, this is enough to determine all exten-
sion groups because r = d2ef = 4. For a smooth character χ of D×, we
can compute all Hi(I1, χ) to do this. It is worth noting that this cohomol-
ogy computation is known and of independent interest in stable homotopy
theory, for example see [2, Prop. 7]. The group I1 appears as the Morava
stabilizer group attached to a formal group law, and H•(I1,Fp) controls
certain localization functors LK(n) in Morava K-theory. Here, we provide
an alternative proof using our results.

We have H0(I1, χ) ≃ χ, so H4(I1, χ) ≃ χ. As for H1, it becomes

H1(I1, χ) ≃
(
Fp ⊕ IndD×

D×
2
χη

)
⊗ χ,

where χη is extended from the character of F×
p2 sending x 7→ xp−1. The

representation H3(I1, χ) is the dual of H1(I1,Fp) tensored with χ, so it is
given by

H3(I1, χ) ≃
(
Fp ⊕ IndD×

D×
2
χ∗

η

)
⊗ χ.

What remains is to compute H2(I1,Fp). In this case, the Euler charac-
teristic of I1 will be 0 using the main result of [13], so we can deduce that
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dim H2(I1,Fp) = 4. Via Lemma 9 and the Künneth formula for profinite
groups,

H2(I1,Fp) ≃
⊕

i+j=2
Hi(1 + pZp,Fp) ⊗ Hj(I1,Nrd=1,Fp).

The isomorphism is via the cross product, which makes this an isomor-
phism on the level of representations as well because 1 + pZp and I1,Nrd=1
are normal. As 1 + pZp ≃ Zp, its second cohomology is trivial, so there
are only two nontrivial terms in the Künneth formula. The first term is
H1(1 + pZp,Fp) ⊗ H1(I1,Nrd=1,Fp), which we already know is IndD×

D×
2
χη via

the decomposition of H1(I1,Fp) in Theorem 15. The other nontrivial com-
ponent is H0(1 + pZp,Fp) ⊗ H2(I1,Nrd=1,Fp). We can in general produce
some of this as the image of the Bockstein

βp : H1(I1,Nrd=1,Fp) −→ H2(I1,Nrd=1,Fp),
after noting that the elements in H1(I1,Nrd=1,Z/p2Z) ≃ Hom(kD,Z/p2Z)
are sent to 0 so that the map becomes an injection. Note that the isomor-
phism

H1(I1,Nrd=1,Z/p2Z) ≃ Hom(kD,Z/p2Z)
still follows from the commutator calculation: we have [I1,Nrd=1, I1,Nrd=1] =
I2,Nrd=1. Tensoring with Fp, we see that

H2(I1, χ) ⊇
(
IndD×

D×
2
χη

)⊕2
⊗ χ.

This has dimension four, so it must be the entire cohomology group. Via
Corollary 19 we can determine all extension groups as well. Note that the
fact that we have accounted for the entire cohomology group in the above
calculation implies that the injective Bockstein map βp is actually an iso-
morphism in this case.
Remark. When F is a more general p-adic field or we consider a gen-
eral division algebra, this method only provides partial information about
H2(I1, χ). The Künneth decomposition can provide a subrepresentation of
H2(I1,Fp) by considering the image of the Bockstein in H2(I1,Nrd=1,Fp)
isomorphic to H1(I1,Nrd=1,Fp). The other two components are completely
determined, as H1(I1,Fp) is known and all cohomology groups of 1+πF OF

are easy to find since it is isomorphic to a direct product of ef copies of Zp

as a topological group. We can thus use another Künneth decomposition
on it to show that Hi(1 + πF OF ,Fp) ≃ F(ef

i )
p . In summary, we have

H1(I1,Nrd=1,Fp)⊕2 ⊕ F(ef
2 )

p ⊂ H2(I1,Fp),

where each summand is also as representations of D×/I1, with F(ef
2 )

p having
the trivial action.



74 Andrew Keisling, Dylan Pentland

References
[1] C. Breuil, “The emerging p-adic Langlands programme”, in Proceedings of the international

congress of mathematicians (ICM 2010), Hyderabad, India, August 19–27, 2010. Vol. II:
Invited lectures, Hindustan Book Agency, 2010, p. 203-230.

[2] H.-W. Henn, “On finite resolutions of K(n)-local spheres”, in Elliptic cohomology. Geom-
etry, applications, and higher chromatic analogues. Selected papers of the workshop, Cam-
bridge, UK, December 9–20, 2002, London Mathematical Society Lecture Note Series, vol.
342, Cambridge University Press, 2007, p. 122-169.

[3] K. Kozioł, “Hecke module structure on first and top pro-p-Iwahori cohomology”, Acta
Arith. 186 (2018), no. 4, p. 349-376.

[4] K. Kozioł & D. Schwein, “On mod p orientation characters”, 2021, https://karolkoziol.
github.io/orientation.pdf.

[5] M. Lazard, “Groupes analytiques p-adiques”, Publ. Math., Inst. Hautes Étud. Sci. 26
(1965), p. 389-603.

[6] T. Ly, “Représentations modulo p de GL(m, D), D algèbre à division sur un corps local”,
PhD Thesis, Université Paris Diderot 7, 2013.

[7] V. Paškūnas, “Extensions for supersingular representations of GL2(Qp)”, in p-adic repre-
sentations of p-adic groups III: Global and geometric methods, Astérisque, vol. 331, Société
Mathématique de France, 2010, p. 317-353.

[8] V. Platonov & A. Rapinchuk, Algebraic groups and number theory, Pure and Applied
Mathematics, vol. 139, Academic Press Inc., 1994, xi+614 pages.

[9] C. Riehm, “The norm 1 group of p-adic division algebra”, Am. J. Math. 92 (1970), no. 2,
p. 499-523.

[10] P. Scholze, “On the p-adic cohomology of the Lubin-Tate tower”, Ann. Sci. Éc. Norm.
Supér. 51 (2018), no. 4, p. 811-863, with an appendix by Michael Rapoport.

[11] J.-P. Serre, Linear representations of finite groups, Graduate Texts in Mathematics,
vol. 42, Springer, 1977.

[12] T. Shioda & T. Katsura, “On Fermat varieties”, Tôhoku Math. J. 31 (1979), no. 1, p. 97-
115.

[13] B. Totaro, “Euler characteristics for p-adic Lie groups”, Publ. Math., Inst. Hautes Étud.
Sci. 90 (1999), p. 169-225.

[14] S. Wang, “On the commutator group of a simple algebra”, Am. J. Math. 72 (1950), p. 323-
334.

[15] A. Weil, “Numbers of solutions of equations in finite fields”, Bull. Am. Math. Soc. 55
(1949), p. 497-508.

Andrew Keisling
University of California, Berkeley, USA
E-mail: keisling@berkeley.edu

Dylan Pentland
Harvard University, USA
E-mail: dpentland@math.harvard.edu

https://karolkoziol.github.io/orientation.pdf
https://karolkoziol.github.io/orientation.pdf
mailto:keisling@berkeley.edu
mailto:dpentland@math.harvard.edu

	1. Introduction
	1.1. Notation

	2. Preliminaries
	2.1. Structure of division algebras
	2.2. Representations of Dx

	3. Reduction to cohomology
	4. Cohomology of I1
	4.1. The Frattini subgroup
	4.2. A commutator construction
	4.3. Computing cohomology

	5. Extensions of irreducibles
	5.1. Ext1 for all irreducible representations
	5.2. Higher degree extensions in the p-adic case

	References

