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Unit Reducible Fields and Perfect Unary Forms

par Alar LEIBAK, Christian PORTER et Cong LING

Résumé. Dans cet article, nous introduisons la notion de réductibilité unitaire
pour les corps de nombres, c’est-à-dire les corps de nombres dans lesquels
toutes les formes unaires positives atteignent leur minimum non nul en une
unité. De plus, nous étudions le lien entre la réductibilité unitaire et le nombre
de classes d’homothétie de formes unaires parfaites pour un corps de nombres
donné, et prouvons une conjecture ouverte sur le nombre de classes de formes
unaires parfaites dans des corps quadratiques réels, énoncée par D. Yasaki.

Abstract. In this paper, we introduce the notion of unit reducibility for
number fields, that is, number fields in which all positive unary forms attain
their nonzero minimum at a unit. Furthermore, we investigate the link between
unit reducibility and the number of homothety classes of perfect unary forms
for a given number field, and prove an open conjecture about the number of
classes of perfect unary forms in real quadratic fields, stated by D. Yasaki.

1. Introduction

Let K be a real algebraic number field of degree n over Q with ring of
integers OK . Associate to K the canonical embeddings σ1, . . . , σn into R.
A quadratic form f : Km → K, defined by

f(x1, . . . , xm) =
m∑

k,l=1
fklxkxl, fkl = flk ∈ K,

of rank m is said to be positive definite if

σi(f)(x1, . . . , xm) =
∑
k,l

σi(fkl)xkxl

is positive definite for each i = 1, . . . , n (see [7]). Throughout the paper,
we will simply refer to positive definite quadratic forms as quadratic forms,
unless we need to clarify.

If f is defined by a single variable in K, the corresponding quadratic form
is called a unary quadratic form. If f generates a positive-definite quadratic
form, we say that the element f is totally positive. We denote by K≫0 the
set of totally positive elements of K, i.e. K≫0 = {a ∈ K | σi(a) > 0, i =
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1, . . . , n}. Let ω1 = 1, ω2, . . . , ωn be an integral basis of OK . Note that for
all a ∈ K≫0,
qa : Zn → Q, qa(x1, x2, . . . , xn) = TrK/Q(a(x1ω1 + x2ω2 + . . .+ xnωn)2)

=
n∑

k,l=1
TrK/Q(aωkωl)xkxl

corresponds to an n-dimensional quadratic form with rational coefficients,
known as the trace quadratic form. For a totally positive a ∈ K, we will
denote by

µ(a) = min
x∈OK\{0}

TrK/Q(ax2) = min
(x1,x2,...,xn)∈Zn\{0}

qa(x1, x2, . . . , xn),

and M(a) = {x ∈ OK : TrK/Q(ax2) = µ(a)}.
Let O×

K denote the unit group of OK . We say that a unary form defined
by a ∈ K≫0 is reduced if TrK/Q(a) ≤ TrK/Q(au2), for all u ∈ O×

K . We denote
the set of all a ∈ K≫0 such that a corresponds to a reduced unary form
by FK , and call this set the reduction domain of unary forms in K. Note
that every unary form is equivalent to a reduced unary form, which can
be seen as follows: if TrK/Q(a) > TrK/Q(au2) for some unit u, then clearly
TrK/Q(a′) < TrK/Q(a) and a′ is equivalent to a, where a′ = au2. Since there
are finitely many elements of bounded length in the set TrK/Q(ax2) where
x ∈ OK \ {0}, this can be repeated finitely many times until we arrive at
a totally positive element a′′ whose trace-length can no longer be reduced
by multiplying by a square unit (hence reduced), and it is also equivalent
to a.

Finally, we give the following important definition.

Definition 1.1. Let K be a totally real number field with ring of integers
OK and unit group O×

K . We say that K is unit reducible if, for all a ∈ K≫0,

µ(a) = min
u∈O×

K

TrK/Q(au2).

Unit reducibility is a useful property in the study of lattice-based cryp-
tography [9]. The security of many lattice-based cryptosystems is under-
pinned by the so-called “shortest vector problem” (SVP), which asks the
adversary to find a shortest nonzero vector of a lattice given an arbitrary
lattice basis. Lattices defined over number fields are increasingly used in
lattice-based cryptography due to their efficiency. Lattice reduction over
number fields is a common strategy to find short vectors in such lat-
tices [4, 6]. Some lattices are constructed from principal ideals of number
fields [2], and so the problem translates to finding the shortest nonzero
arithmetical value of a unary quadratic form. When the field is unit re-
ducible, this suggests that finding the smallest arithmetical nonzero value
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of a unary quadratic form corresponds also to finding the shortest generator
of the principal ideal. Although at high dimensions the shortest generator
is unlikely to be a shortest vector of a principal ideal lattice, this can be
true at small dimensions. Finding unit reducible number fields can lead
to algorithms of lattice reduction at high dimensions, the latter being an
ongoing subject of study.

A unary form ax2 is said to be perfect if it is uniquely determined by
µ(a),M(a). It is immediately clear that if ax2 is perfect, then for any
λ > 0 ∈ Q, µ(λa) = λµ(a), M(λa) = M(a), and so perfect unary forms can
be considered by their homothety classes. We denote by nK the number of
GL1(OK)-inequivalent homothety classes of perfect forms of a real number
field K. In this paper, we establish a method of determining the number of
classes of perfect forms by studying unit reducible fields. The main result
of the paper is as follows.

Theorem 1.2. Let K = Q(
√
d) be a real quadratic field for some positive,

square-free integer d not equal to 1. Then nK = 1 if and only if d is of one
of the following types:

• T1: d = m2 + 1, m ∈ N, m odd,
• T2: d = m2 − 1, m ∈ N, m even,
• T3: d = m2 + 4, m ∈ N, m odd,
• T4: d = m2 − 4, m ∈ N, m > 3 odd.

Remark 1.3. Watanabe et. al. asked are there infinitely many real qua-
dratic fields with only one equivalence class of unary perfect forms (see [10])?
Yasaki proved that all real quadratic fields Q(

√
d), d = (2k + 1)2 + 1 is

square-free, has that property [11, Corollary 5.1]. Moreover, his compu-
tations showed that for square-free positive d < 200000 there were four
disjoint families of real quadratic fields with one class of unary perfect
forms [11, Remark at p. 773]: T1, T2, T3 and T4. Our main result (Theo-
rem 1.2) proves Yasaki’s remark.

A real quadratic field Q(
√
d) (d > 0 is square-free) is said to be of

Richaud–Degert type (R-D type) if d = n2 + r, where n, r are integers, n
positive, −n < r ≤ n and 4n ≡ 0 mod r [1]. Using similar methods, we also
ascertain the following results.

Theorem 1.4. Let K = Q(
√
d) be a real quadratic field of R-D type and

let d ≡ 2, 3 mod 4, or d ≡ 1 mod 4 and n odd (where d = n2 + r). If K is
not unit reducible, then nK = 2.

Theorem 1.5. Let K be the totally real cubic number field with defining
polynomial f(x) = x3 − tx2 − (t+ 3)x− 1, where t ≥ 0. Then nK = 2 if the
ring of integers of K is monogenic.
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1.1. Paper organisation. Section 2 is split into two parts. In the first,
we determine all the classes of unit reducible fields for real quadratic fields
using arguments from classical reduction theory. In the second part, we
prove that all simplest cubic fields where the ring of integers is monogenic
is unit reducible by determining the so-called reduction domain of K. In
Section 3, using Minkowski’s first theorem, we determine a condition which,
if satisfied, confirms that a totally general, real number field is not unit
reducible. Finally, in Section 4, we conclude by proving Theorems 1.2 to 1.5.

Acknowledgments. We would like to thank the reviewers for their helpful
comments regarding the paper

2. Families of Unit Reducible Fields

2.1. Real quadratic fields. Let K = Q(
√
d) for some positive square-

free integer d ̸= 1. The discriminant ∆K of the field K is

∆K =
{

4d if d ≡ 2, 3 mod 4,
d if d ≡ 1 mod 4,

and the ring of integers OK has the representation OK = Z[ω], where

ω =
{√

d if d ≡ 2, 3 mod 4,
1+

√
d

2 if d ≡ 1 mod 4.

We associate two embeddings to Q(
√
d), the trivial embedding σ1, and

σ2(x1 + x2
√
d) = x1 − x2

√
d,

where x1, x2 ∈ Q, for any x1 + x2
√
d ∈ K.

Lemma 2.1 ([7, Lemma 10]). Let K be a real quadratic field and denote
by u the fundamental unit of K satisfying u > 1. Let a denote a totally
positive element of K. Then ax2 is reduced if and only if

TrK/Q(a) ≤ TrK/Q(au2),
TrK/Q(a) ≤ TrK/Q(au−2).

Using the notation in Lemma 2.1, set a = a1 + a2
√
d ∈ K≫0, a1, a2 ∈ Q

and let u2 = u1 + u2
√
d where u1, u2 > 0, so u−2 = u1 − u2

√
d. Then the

form ax2 is reduced if and only if
2a1 ≤ 2u1a1 − 2du2|a2|,

and so rearranging gives
|a2|
a1

≤ u1 − 1
du2

.

We are now equipped to prove the following theorem.
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Theorem 2.2. A real quadratic field K = Q(
√
d) is unit reducible if and

only if d is one of the four types listed in Theorem 1.2.

Proof. Let a = a1 + a2
√
d denote a totally positive element. Without loss

of generality, we may assume that a is reduced and that a2 ≥ 0, so
a2
a1

≤ u1 − 1
du2

,(2.1)

where u2 = u1 + u2
√
d, u is the fundamental unit of K satisfying u > 1.

The binary rational quadratic form generated by qa is given by

TrK/Q(a(x1 + x2
√
d)2) = 2(x2

1 + dx2
2)a1 + 4dx1x2a2.

Assume first that K is of the type T1 or T2, i.e. d ≡ 2, 3 mod 4. Then we
have

min
x∈OK\{0}

TrK/Q(ax2)

= min
(0,0)̸=(x1,x2)∈Z2

{
2(x2

1 + dx2
2)a1 + 4dx1x2a2

}
= 2 min

(0,0)̸=(x1,x2)∈Z2
g(x1, x2),

where

g(x1, x2) = 1
2 TrK/Q(a(x1 + x2

√
d)2).

Now, set h(x1, x2) = g(x1 − kx2, x2) where k is the nearest rational integer
to da2/a1. Then

h(x1, x2) = a1x
2
1 + 2(da2 − ka1)x1x2 + ((k2 + d)a1 − 2dka2)x2

2.

Recall that a binary rational quadratic form f(x1, x2) = f11x
2
1 + f12x1x2 +

f22x
2
2 is reduced (in the sense of rational forms) if and only if |f12| ≤

min{f11, f22}. Since 2|da2 − ka1| ≤ a1 by the definition of k, the form h is
reduced if and only if

2|da2 − ka1| ≤ (k2 + d)a1 − 2dka2.(2.2)

In turn, proving that h is a reduced binary rational quadratic form for any
values of a1, a2 (assuming that a1 +

√
da2 ∈ FK) will verify that K is unit

reducible, since the minimum of a reduced binary rational quadratic form
f(x1, x2) is attained at f(1, 0), and since h(1, 0) = g(1, 0) = 1

2 TrK/Q(a),
TrK/Q(a) = µ(a) for any reduced unary form ax2.

Suppose first that d is of the type T1, so d = m2 + 1 where m is an odd
positive integer. Then the fundamental unit u of K satisfying u > 1 is given
by u = m+

√
d (see appendix for proof), so according to inequality (2.1),

a2
a1

≤ (2m2 + 1) − 1
2m(m2 + 1) = m

m2 + 1 ,
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and so

(k2 + d)a1 − 2dka2 − 2(da2 − ka1)
= (k2 + 2k +m2 + 1)a1 − 2(m2 + 1)(k + 1)a2

≥
(
k2 + 2k +m2 − 2km

)
a1 = ((k −m)2 + 2k)a1 ≥ 0,

since k must necessarily be greater than or equal to zero by the assumption
that a2 ≥ 0, which verifies that inequality (2.2) holds, and so h is a reduced
rational binary quadratic form when d is of the type T1.

Suppose that d is of the type T2, so d = m2 − 1 for some positive even
integer m. Then the fundamental unit u of K satisfying u > 1 is given by
u = m+

√
d (see appendix for proof), so according to inequality (2.1),

a2
a1

≤ (2m2 − 1) − 1
2m(m2 − 1) = 1

m
,

and so

(k2 + d)a1 − 2dka2 − 2(da2 − ka1)
= (k2 +m2 + 2k − 1)a1 − 2(m2 − 1)(k + 1)a2

≥
(
k2 +m2 + 2k − 1 − 2(m2 − 1)k + 1

m

)
a1

=
(

(k −m+ 1)2 + 2
m

(k −m+ 1)
)
a1 ≥ 0.

This verifies that inequality (2.2) holds, and so h is a reduced rational
binary quadratic form when d is of the type T2.

When d is of type T3, T4, we have d ≡ 1 mod 4, and so OK = Z
[

1+
√

d
2

]
.

Then

min
x∈OK

TrK/Q(ax2)

= 2 min
(0,0)̸=(x1,x2)∈Z2

{
a1x

2
1 + (a1 + da2)x1x2 +

(1 + d

4 a1 + d

2a2

)
x2

2

}
= 2 min

(0,0)̸=(x1,x2)∈Z2
g(x1, x2),

where

g(x1, x2) = 1
2 TrK/Q

a(x1 + x2
1 +

√
d

2

)2
 .
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Then, setting h(x1, x2) = g(x1 − kx2, x2) where k is the nearest integer to
(a1 + da2)/2a1,

h(x1, x2) = a1x
2
1 + (a1 + da2 − 2ka1)x1x2

+
((1 + d

4 + k2
)
a1 + d

2a2 − k(a1 + da2)
)
x2

2.

Following a similar argument to before, h is a reduced rational binary qua-
dratic form if and only if

a1 + da2 − 2ka1 ≤
(1 + d

4 + k2
)
a1 + d

2a2 − k(a1 + da2),(2.3)

and showing that h is a reduced binary quadratic form for any a ∈ FK

corresponds to proving the field is unit reducible.
Suppose that d is of the type T3, so d = m2 + 4 for some positive odd

integer m. Then if m = 2p + 1 for some p ≥ 0, the fundamental unit u
of K must be u = p + 1+

√
d

2 (see appendix for proof), so according to
inequality (2.1),

a2
a1

≤

(
2p2 + 2p+ 3

2

)
− 1

(4p2 + 4p+ 5)
(

1
2 + p

) = 2p+ 1
4p2 + 4p+ 5 ,

and so(1 + d

4 + k2
)
a1 + d

2a2 − k(a1 + da2) − (a1 + da2 − 2ka1)

=
(1 + d

4 + k2 + k − 1
)
a1 −

(
−d

2 + kd+ d

)
a2

≥
(

4p2 + 4p+ 6
4 + k2 + k − 1 − 4p2 + 4p+ 5

2
2p+ 1

4p2 + 4p+ 5(2k + 1)
)
a1

=
(

4p2 + 4p+ 6
4 + k2 + k − 1 − 2p+ 1

2 (2k + 1)
)
a1 = (p− k)2a1 ≥ 0.

This verifies that inequality (2.3) holds, and so h is a reduced binary qua-
dratic form when d is of the type T3.

Suppose that d is of the type T4, so d = m2 − 4 for some positive odd
integer, m > 3. Then if m = 2p + 1 for some p ≥ 2, the fundamental unit
of K must be u = p + 1+

√
d

2 (see appendix for proof), and so according to
inequality (2.1),

a2
a1

≤
1
2(4p2 + 4p− 1) − 1

(4p2 + 4p− 3)1
2(2p+ 1)

= 1
2p+ 1 ,
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and so(1 + d

4 + k2
)
a1 + d

2a2 − k(a1 + da2) − (a1 + da2 − 2ka1)

=
(1 + d

4 + k2 + k − 1
)
a1 −

(
−d

2 + kd+ d

)
a2

≥
(

4p2 + 4p− 2
4 + k2 + k − 1 − 4p2 + 4p− 3

2
1

2p+ 1 (2k + 1)
)
a1

=
(

(k − p)2 + 4
2p+ 1(k − p)

)
a1 ≥ 0,

since p > 1. This verifies that inequality (2.3) holds, and so h is a reduced
binary quadratic form when d is of type T4.

It finally remains to show that K is not unit reducible if d is none of
these types. Denote by RK the regulator of the field K. We claim that if

√
∆K

2 cosh(RK) <
π

4 ,(2.4)

then the field is not unit reducible. In order to show this claim holds, we
will make use of the following lemma.

Lemma 2.3. Let a = a1 + a2
√
d ∈ K≫0 be an arbitrary totally positive

element. Then a ∈ FK if and only if the inequality

|a2|
a1

≤ tanh(RK)√
d

(2.5)

holds.

Proof. By Lemma 2.1 and the definition of the regulator of a real quadratic
number field, a is reduced if and only if

(a1 + a2
√
d)e2RK + (a1 − a2

√
d)e−2RK ≥ a1 + a2

√
d+ a1 − a2

√
d = 2a1,

(a1 + a2
√
d)e−2RK + (a1 − a2

√
d)e2RK ≥ a1 + a2

√
d+ a1 − a2

√
d = 2a1.

These inequalities imply

a1(cosh(2RK) − 1) + a2
√
d sinh(2RK) ≥ 0,

a1(cosh(2RK) − 1) − a2
√
d sinh(2RK) ≥ 0,

and so

a1(cosh(2RK) − 1) ≥ |a2|
√
d sinh(2RK).

The inequality in the statement of the lemma immediately follows. □
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Suppose first that K = Q(
√
d) for d ≡ 2, 3 mod 4. Then the associated

rational quadratic form g to the unary form generated by a = a1 + a2
√
d

can be given by

g(x1, x2) ≜ 1
2 TrK/Q(ax2) = a1(x2

1 + dx2
2) + 2da2x1x2.

If K were not unit reducible, then there would exist a totally positive
element a satisfying

TrK/Q(ax2) < TrK/Q(a),
for some nonzero x ∈ OK . In terms of the rational form g, this means that

a1(x2
1 + dx2

2) + 2da2x1x2 < a1,

for some nonzero integer lattice point (x1, x2) ∈ Z2. This can be rewritten as

x2
1 + dx2

2 + 2da2
a1
x1x2 < 1.(2.6)

Define the convex body S by

S =
{

(y1, y2) ∈ R2 : y2
1 + dy2

2 + 2a2d

a1
y1y2 < 1

}
.

It is clear that the set S is bounded, convex and symmetric about the ori-
gin. By Minkowski’s convex body theorem, S contains a non-trivial integer
solution if

Vol(S) > 22 disc(Z2),(2.7)

where disc(Z2) denotes the volume or discriminant of the integer lattice Z2.
Since

Vol(S) = π√
d
(
1 − a2

2d

a2
1

) ,
and disc(Z2) = 1, we can write (2.7) as

π√
d
(
1 − a2

2d

a2
1

) > 4.

This yields

π

4 >

√√√√d(1 − a2
2d

a2
1

)
.

If a ∈ FK , then
a2

2
a2

1
≤ tanh(RK)2

d
,
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and√√√√d(1 − a2
2d

a2
1

)
≥

√
d
√

1 − tanh(RK)2 =
√
d

cosh(RK) =
√

∆K

2 cosh(RK) .

Now, suppose that d ≡ 1 mod 4. Let a = a1 +a2
√
d ∈ K≫0 denote a totally

positive element of K = Q(
√
d) as before. Then the associated rational

quadratic form g to the unary form generated by a can be given by

g(x1, x2) ≜ 1
2 TrK/Q(ax2) = a1

[(
x1 + a1 + a2d

2a1
x2

)2
+ d

4

(
1 − a2

2d

a2
1

)
x2

2

]
.

Once again, we define the convex body

S = {(y1, y2) ∈ R2 : g(y1, y2) < a1}.

Again, it is clear that the set S is bounded, convex and symmetric about
the origin, and hence it contains a nontrivial lattice point in Z2 if

Vol(S) > 22 disc(Z2) = 4.(2.8)

The volume of S is given by

Vol(S) = π√
d
4

(
1 − a2

2d

a2
1

) ,
and so if a ∈ FK , then√√√√d

4

(
1 − a2

2d

a2
1

)
≥

√
d

2

√
1 − tanh(RK)2 =

√
∆K

2 cosh(RK) ,

and so if inequality (2.8) holds,

π

4 >

√
∆K

2 cosh(RK) ,

as required.
We have therefore verified that if inequality (2.4) holds, then the field

K = Q(
√
d) is not unit reducible, for any square-free positive integer d. Let

u = v1 + v2
√
d > 1 denote the fundamental unit of K. Then

2 cosh(RK) = eRK + e−RK = v1 + v2
√
d+ 1

v1 + v2
√
d

=
{

2v1, if NmK/Q(u) = 1,
2v2

√
d if NmK/Q(u) = −1

,
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so that inequality (2.4) can be rewritten as

π

4 >



√
d

2v1
, if d ≡ 1 mod 4, NmK/Q(u) = 1;

√
d

2v2
√

d
= 1

2v2
, if d ≡ 1 mod 4, NmK/Q(u) = −1;

2
√

d
2v1

=
√

d
v1
, if d ≡ 2, 3 mod 4, NmK/Q(u) = 1;

2
√

d
2v2

√
d

= 1
v2
, if d ≡ 2, 3 mod 4, NmK/Q(u) = −1.

(2.9)

Suppose first that d ≡ 2, 3 mod 4. If NmK/Q(u) = v2
1 − dv2

2 = −1 and
v2 = 1, then d = v2

1 + 1 for some integer v1. Clearly then d ≡ 2 mod 4, but
this would imply that d is of the type T1, for which we have already shown
Q(

√
d) is unit reducible, hence we must have v2 > 1. Then

1
v2

≤ 1
2 <

π

4 ,

which verifies inequality (2.9), and so K must not be unit reducible. Now,
assume that NmK/Q(u) = v2

1 −dv2
2 = 1. Similarly, if v2 = 1 then d = v2

1 −1,
and so d ≡ 3 mod 4 which implies that d is of type T2, for which we have
already shown that Q(

√
d) is unit reducible, hence we must have v2 > 1.

Then

v2
1 = 1 + v2

2d > 4d,

and so
√
d

u1
<

√
d

2
√
d

= 1
2 <

π

4 ,

which verifies inequality (2.9), and so K must not be unit reducible, which
covers all cases for d ≡ 2, 3 mod 4.

Now suppose that d ≡ 1 mod 4. Note that we must have v1, v2 ∈ 1
2Z, so

we may express v1 = V1
2 , v2 = V2

2 for some V1, V2 ∈ Z. If we assume that
NmK/Q(u) = −1, then

V 2
1 − dV 2

2 = −4.

If V2 = 1, then d = V 2
1 + 4 which would imply that d is of type T3, for

which we have already shown Q(
√
d) is unit reducible, and so we assume

that V2 > 1. Then
1

2v2
= 1
V2

≤ 1
2 <

π

4 ,

which verifies inequality (2.9), and so K must not be unit reducible. Now,
assume that NmK/Q(u) = 1 so that

V 2
1 − dV 2

2 = 4.
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If V2 = 1, then d = V 2
1 − 4 which would imply that d is of type T4, for

which we have already shown Q(
√
d) is unit reducible, and so we assume

that V2 > 1. Then

V 2
1 = 4 + dV 2

2 > 4d,

and so
√
d

2v1
=

√
d

V1
<

√
d

2
√
d

= 1
2 <

π

4 ,

which verifies inequality (2.9), and so K must not be unit reducible. This
covers every case, which verifies the statement of the theorem. □

2.2. Simplest cubic fields. Let K be a cubic number field with defining
polynomial P (x). K is said to be a simplest cubic field if P (x) has the form

P (x) = Pt(x) = x3 − tx2 − (t+ 3)x− 1,

where t is some integer, and we denote by Kt = Q(θt). where θt satisfies
Pt(θt) = 0. Without loss of generality, we may assume that t ≥ −1, since
Kt = K−(t+3). The following facts are well-known:

• Kt/Q is a cyclic cubic extension.
• θt is a unit, satisfying σ1(θt) = θt, σ2(θt) = −1+θt

θt
, σ3(θt) = σ2

2(θt) =
−1

1+θt
, where σi ∈ Gal(Kt/Q), which is a cyclic Galois group.

Denote by
√

∆t ≜ t2 +3t+9 and OKt the ring of integers of Kt. It is known
that OKt = Z[θt] if and only if ∆t is equal to the discriminant of Kt [3].
From now on, we will denote by K = Kt, θ = θt where the context is clear,
unless we need to clarify the value of t for brevity. We will also only be
focusing on the case where OK = Z[θt]. We will now prove the following
theorem.

Theorem 2.4. Suppose that K is a simplest cubic field, and that OK =
Z[θ]. Then K is unit reducible.

Proof. First, we will prove the following useful lemma.

Lemma 2.5. Let a denote an arbitrary totally positive element in K. Then
a ∈ FK if and only if

TrK/Q(a) ≤ TrK/Q(aσi
2(θ)±2),(2.10)

for i ∈ {0, 1, 2}.

Proof. Since ±1, θ, σ2(θ) generate the unit group, and unit may be rewritten
as u = ±θkσ2(θl) for some k, l ∈ Z. First, let’s assume that l = 0. If k = 2,
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then

TrK/Q(u2a) = TrK/Q(θ4a)
= (t2 + t+ 3) TrK/Q(θ2a) + (t2 + 3t+ 1) TrK/Q(θa) + tTrK/Q(a)

= 1
2(t2 + 3t+ 1) TrK/Q((1 + θ)2a)

+ 1
2(t2 − t+ 5) TrK/Q(θ2a) − 1

2(t2 + t+ 1) TrK/Q(a)

= 1
2(t2 + 3t+ 1) TrK/Q(θ2σ2(θ)2a)

+ 1
2(t2 − t+ 5) TrK/Q(θ2a) − 1

2(t2 + t+ 1) TrK/Q(a)

≥ TrK/Q(θ2a),

given the assumption that t is positive, and assuming inequality (2.10)
holds. Now, assume that we have TrK/Q(θ2(k−1)a) ≤ TrK/Q(θ2ka) for some
k ≥ 2. Then

TrK/Q(θ2k+2a) = TrK/Q(θ2k−1(tθ2 + (t+ 3)θ + 1)a)
= tTrK/Q(θ2k+1a) + (t+ 3) TrK/Q(θ2ka) + TrK/Q(θ2k−1a)

= 1
2 tTrK/Q(θ2k(1 + θ)2a) − 1

2 tTrK/Q(θ2(k+1)a) + 1
2(t+ 5) TrK/Q(θ2ka)

− 1
2 TrK/Q(θ2(k−1)a) + 1

2 TrK/Q(θ2(k−1)(1 + θ)2a)

≥ 1
2 tTrK/Q(θ2k(1 + θ)2a) − 1

2 tTrK/Q(θ2(k+1)a) + 1
2(t+ 4) TrK/Q(θ2ka)

+ 1
2 TrK/Q(θ2(k−1)(1 + θ)2a),

and so

1
2(t+ 2) TrK/Q(θ2k+2a)

≥ 1
2 tTrK/Q(θ2k(1 + θ)2a)

+ 1
2(t+ 4) TrK/Q(θ2ka) + 1

2 TrK/Q(θ2(k−1)(1 + θ)2a)

≥ 1
2(t+ 4) TrK/Q(θ2ka),

hence TrK/Q(θ2k+2a) ≥ TrK/Q(θ2ka) for all k ≥ 0. Now, suppose that
u = θkσ2(θl) for nonzero k, l. We may assume without loss of generality
that k ̸= l, as otherwise θ2kσ2(θ)2l = σ3(θ−1)2k, and treating this case is
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identical to before. First, note that
TrK/Q(θ4σ2(θ)2a) = TrK/Q((θ2 + 2θ3 + θ4)a)
= (t2 + 3t+ 4) TrK/Q(θ2a) + (t2 + 4t+ 4) TrK/Q(θa) + (t+ 2) TrK/Q(a)

= 1
2(t2 + 4t+ 4) TrK/Q((1 + θ)2a)

+ 1
2(t2 + 2t+ 4) TrK/Q(θ2a) − 1

2(t2 + 2t) TrK/Q(a)

≥ 1
2(t2 + 4t+ 4) TrK/Q((1 + θ)2a)

= 1
2(t2 + 4t+ 4) TrK/Q(θ2σ2(θ)2a) ≥ 2 TrK/Q(θ2σ2(θ)2a),

given the assumption that t is positive and TrK/Q(θ2a) ≥ TrK/Q(a). Now,
assume that k > l ≥ 1, and that

TrK/Q(θ2kσ2(θ)2la) ≥ TrK/Q(θ2(k−1)σ2(θ)2la).
Then

TrK/Q(θ2(k+1)σ2(θ)2la)

= · · · = 1
2 tTrK/Q(θ2k(1 + θ)2σ2(θ)2la)

− 1
2 tTrK/Q(θ2(k+1)σ2(θ)2la) + 1

2(t+ 5) TrK/Q(θ2kσ2(θ)2la)

− 1
2 TrK/Q(θ2(k−1)σ2(θ)2la) + 1

2 TrK/Q(θ2(k−1)(1 + θ)2σ2(θ)2la)

≥ 1
2 tTrK/Q(θ2k(1 + θ)2σ2(θ)2la) − 1

2 tTrK/Q(θ2(k+1)σ2(θ)2la)

+ 1
2(t+ 4) TrK/Q(θ2kσ2(θ)2la) + 1

2 TrK/Q(θ2(k−1)(1 + θ)2σ2(θ)2la),

and so
1
2(t+ 2) TrK/Q(θ2k+2σ2(θ)2la)

≥ 1
2 tTrK/Q(θ2k(1 + θ)2σ2(θ)2la)

+ 1
2(t+ 4) TrK/Q(θ2kσ2(θ)2la) + 1

2 TrK/Q(θ2(k−1)(1 + θ)2σ2(θ)2la)

≥ 1
2(t+ 4) TrK/Q(θ2kσ2(θ)2la),

so TrK/Q(θ2k+2σ2(θ)2la) ≥ TrK/Q(θ2kσ2(θ)2la). We are now ready to prove
that our system of inequalities is sufficient to show that TrK/Q(u2a) ≥
TrK/Q(a) for all u ∈ O×

K . Suppose that u = θkσ2(θ)l for some integers k, l.
It clearly holds that our method may be replicated for σ2(u) and u−1 by a
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switch of variables. Therefore, by using the table below, we show that our
system of inequalities (2.10) fully defines the reduction domain.

Values of (k, l) Inequality

k positive, l = 0 TrK/Q(θ2kθ2la) ≥ TrK/Q(θ2(k−1)σ2(θ)2la)
k positive, l positive, k = l TrK/Q(θ2kσ2(θ)2la) ≥ TrK/Q(θ2(k−1)σ2(θ)2(l−1)a)
k positive, l positive, k > l TrK/Q(θ2kσ2(θ)2la) ≥ TrK/Q(θ2(k−1)σ2(θ)2la)

k positive, l positive, k < l
TrK/Q(θ2kσ2(θ)2la) = TrK/Q(θ−2(l−k)σ3(θ)−2la)

≥ TrK/Q(θ−2(l−k)σ3(θ)−2(l−1)a)

k positive, l negative TrK/Q(θ2kσ2(θ)2la) = TrK/Q(σ2(θ)−2(k+|l|)σ3(θ)−2ka)
≥ TrK/Q(σ2(θ)−2(k+|l|−1)σ3(θ)−2ka)

□

We have therefore shown that the system of inequalities (2.10) is suffi-
cient to fully define the reduction domain FK of any simplest cubic field
with ring of integers Z[θ]. Let a = a0 + a1θ + a2σ2(θ) ∈ K≫0 denote an
arbitrary totally positive element of K. Then if a ∈ FK , it must hold that

(t2 + 2t+ 3)a0 + (t3 + 3t2 + 8t+ 3)a1 − (t2 + 4t+ 6)a2 ≥ 0,
(t2 + 2t+ 3)a0 + (3 − t)a1 + (t3 + 3t2 + 8t+ 3)a2 ≥ 0,
(t2 + 2t+ 3)a0 − (t2 + 4t+ 6)a1 + (3 − t)a2 ≥ 0,
(t2 + 4t+ 6)a0 + (t3 + 5t2 + 13t+ 15)a1 − (t2 + 5t+ 12)a2 ≥ 0,
(t2 + 4t+ 6)a0 − (2t+ 3)a1 + (t3 + 5t2 + 13t+ 15)a2 ≥ 0,
(t2 + 4t+ 6)a0 − (t2 + 5t+ 12)a1 − (2t+ 3)a2 ≥ 0.

The rays representing this region are given by

r1 = 3 + θ + (t+ 2)σ2(θ),
r2 = t2 + 2t+ 3 − (t+ 2)θ − (t+ 1)σ2(θ),
r3 = t+ 3 + (t+ 1)θ − σ2(θ),
s1 = t2 + t+ 6 − tθ + 3σ2(θ),
s2 = t2 + 4t+ 6 − 3θ − (t+ 3)σ2(θ),
s3 = t+ 6 + (t+ 3)θ + tσ2(θ).

It is clear that the sets R = {r1, r2, r3}, S = {s1, s2, s3} are invariant under
the action of the Galois group. For any x = x0 + x1θ + x2σ(θ) ∈ Z[θ], we
have

TrK/Q(r1x
2)

= (t2 + 3t+ 9)
(
x2

0 + x2
1 + (t2 + 2t+ 3)x2

2 + 2(t+ 1)x0x2 − 2x1x2
)
,
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for which the nonzero minimum value of the quadratic form above is clearly
t2 +3t+9, which occurs at the points (1, 0, 0), (0, 1, 0) and (−t, 1, 1), which
all correspond to units.

Likewise, we have

TrK/Q(s1x
2) = (t2 + 3t+ 9)(2x2

0 + 2x2
1 + (t2 + 3t+ 5)x2

2

− 2x0x1 + 2(t+ 2)x0x2 − 2x1x2)
= (t2 + 3t+ 9)((x0 − x1 + x2)2

+ (x0 + (t+ 1)x2)2 + x2
1 + (t+ 3)x2

2),

for which we can deduce that the nonzero minimum of the quadratic form
is 2(t2 + 3t+ 9), which occurs at the points (1, 0, 0), (0, 1, 0), and the third
successive minimum value is (t2+3t+9)(t2+t+5), which occurs at the point
(−t, 1, 1). All of these vectors correspond to units in the ring of integers.

In what follows is that TrK/Q(r1x
2) and TrK/Q

( s1
2 x

2) have the same non-
zero minimum. Obviously the unary forms r1x

2 and s1
2 x

2 are not equivalent,
because

s1
2 = −3θ2 + 2tθ + t2 + 4t+ 12

2 ̸∈ Z[θ]

but r1 ∈ Z[θ] and r1u
2 ∈ Z[θ] for all u ∈ Z[θ]×.

Now, since the groups R,S are invariant under the action of the Galois
group, it is immediately clear that the minima of the forms induced by
r2, r3, s2, s3 also occur at units. Moreover, since every element in FK can
be represented by

λ1r1 + λ2r2 + λ3r3 + λ4s4 + λ5s5 + λ6s6,

for λi ≥ 0,
∑6

i=1 λi > 0, every element in FK must attain their minima at
unit values. Since every element in K≫0 is equivalent to an element in FK ,
the proof of the theorem follows. □

3. Unit Reducibility in General Totally Real Number Fields

Throughout this section, for any totally real number field K, we will
denote by KR = K ⊗ R. It is easy to see that KR ∼= Rn, if [K : Q] = n.
Though we have so far focused on specific families of number fields, we may
also ascertain some results for arbitrary number fields.

Definition 3.1. A lattice Λ in Rn is a discrete subgroup of Rn. If

Λ =
m⊕

i=1
Zbi,

for some bi ∈ Rn, m ≤ n. We say that Λ is full-rank if m = n, and we
will assume that all lattices are full-rank from now on. We will denote by
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det(Λ) the absolute value of the determinant of the matrix composed of the
basis vectors of Λ. Denote by

Jp ≜ {x ∈ Rn : ∥x∥p ≤ 1},
where ∥ · ∥p denotes the lp norm of an element in Rn. Then we define the
ith successive minima with respect to the lp-norm of a lattice Λ by

λ
(p)
i (Λ) ≜ argminλ>0{λJp contains i linearly independent lattice vectors}.

When considering the l2 norm, we will simply write λi(Λ) instead of λ(2)
i (Λ).

From Hadamard’s inequality one can show the following lemma:

Lemma 3.2. For all full-rank lattices Λ in Rn,
λn(Λ) ≥ det(Λ)1/n.

Proof. Let b1,b2, . . . ,bn denote the basis for Λ, and denote by bi(i) the
vector bi after being orthogonalised with respect to the space generated by
b1, . . . ,bi−1, for all 1 < i ≤ n. Then

det(Λ) =
n∏

i=1
∥bi(i)∥,

where b1(1) = b1. Assume that

vi =
n∑

j=1
x

(i)
j bj ,

for some x(i)
j ∈ Z, where ∥vi∥ = λi(Λ), for all 1 ≤ i ≤ n. We may assume

without loss of generality that the bi are arranged so that the largest j such
that x(i)

j is nonzero is greater than or equal to i, otherwise we may readjust
the order until this holds, since v1,v2, . . . ,vn must be linearly independent
(e.g. we cannot have three vi expressible as the nonzero integer sum of
only two bi, or else they would not be linearly independent, which is a
contradiction). Now, suppose that for some i we have

vi =
k∑

j=1
x

(i)
j bj ,

where i < k ≤ n and x
(i)
k ̸= 0. Let γi = gcd(x(i)

i , x
(i)
i+1, . . . , x

(i)
k ). Then it

is possible to construct a new basis containing b1, . . . ,bi−1,
1
γi

∑k
j=1 x

(i)
j bj .

This argument can be recursively applied until we have a basis b1, . . . ,bn

satisfying

vi =
i∑

j=1
x

(i)
j bj ,
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where x(i)
i is nonzero for all 1 ≤ i ≤ n. In this way, it is easy to see that

∥vi∥2 = λi(Λ)2 ≥ x
(i)
i

2
∥bi(i)∥2 ≥ ∥bi(i)∥2,

and so letting maxi ∥bi(i)∥ = ∥bl(l)∥, we have

λn(Λ)n ≥ λl(Λ)n ≥ ∥bl(l)∥n ≥
n∏

i=1
∥bi(i)∥ = det(Λ). □

Lemma 3.3. Let UK denote the set of units such that
TrK/Q(a) ≤ TrK/Q(u2a)

defines a non-redundant boundary of FK for all u ∈ FK . Then the multi-
plicative group using the elements of UK as generators generates the entire
unit group of K.

Proof. It is easily seen that minx∈OK\{0} TrK/Q(x2) = TrK/Q(1) = [K : Q],
for any totally real number field K, and that minx∈OK\{0,±1} TrK/Q(x2) >
[K : Q]. Then, if some unit v cannot be generated by the elements of UK

under multiplication, we must have TrK/Q(v2u2) > TrK/Q(1) for all u in
the multiplicative group generated by UK , which is a contradiction, since
then TrK/Q(v2u2) is not reduced for any u. □

Lemma 3.4. Define UK as before. Then for all u ∈ UK , there exists an a
in FK such that TrK/Q(a) = TrK/Q(u2a).

Proof. Obviously 1 satisfies TrK/Q(1) ≤ TrK/Q(u2) for all u ∈ UK . Since
FK is a convex cone with finitely many facets, UK is a finite set. Obviously
there exists a nonzero integer k such that TrK/Q(u2k) > TrK/Q(u2k · u2).
Let

a = u2k TrK/Q(1 − u2) + TrK/Q(u2k(u2 − 1)).
Then

TrK/Q(a) = nTrK/Q(u2k+2) − TrK/Q(u2) TrK/Q(u2k),
TrK/Q(au2) = nTrK/Q(u2k+2) − TrK/Q(u2) TrK/Q(u2k)

as desired. □

Finally, we are able to prove the following theorem.

Theorem 3.5. Suppose that K is a totally real number field of degree n
over Q. Denote respectively by RK and ∆K the regulator and discriminant
of K. Then K is not unit reducible if

|∆K |

1 + 1
2e

2√
n

R
1

n−1
K

≤
(

nπ
4
)n

Γ
(

n
2 + 1

)2 ,
where Γ denotes the gamma function.
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Proof. Suppose that a is a totally positive element of K. We may assume
without loss of generality that a ∈ FK . Then, consider the sphere of radius√

TrK/Q(a) and dimension n, given by Bn TrK/Q(a)
n
2 , where Bn denotes the

ball of unit radius. By Minkowski’s theorem, since the volume of the lattice
generated by TrK/Q(ax2) is

√
|∆K | NmK/Q(a), K is not unit reducible if

we can find an a ∈ FK satisfying

Vol(Bn TrK/Q(a)
n
2 ) = π

n
2

Γ
(

n
2 + 1

) TrK/Q(a)
n
2 > 2n

√
|∆K | NmK/Q(a),

and so we need

TrK/Q(a) > 4
π

|∆K |
1
n NmK/Q(a)

1
n Γ
(
n

2 + 1
) 2

n

,(3.1)

for some a ∈ FK . Now, if Lemma 3.4 holds, by Lemma 3.3, there must
exist at least n−1 nontrivial units u1, u2, . . . , un−1 such that {u1, . . . , un−1}
constitute a multiplicative basis for the unit group, and that there exists
a1, a2, . . . , an−1 ∈ FK such that

TrK/Q(ai) = TrK/Q(u2
i ai),

for each 1 ≤ i ≤ n− 1. Then, for each i, using the AGM inequality,

2 TrK/Q(ai) = TrK/Q((1 + u2
i )ai) ≥ nNmK/Q((1 + u2

i ))
1
n NmK/Q(ai)

1
n .

Note that

NmK/Q((1 + u2
i ))

=
∏
j

σj(1 + u2
i ) = 2 + TrK/Q(u2

i ) + (other positive terms)

≥ 2 + TrK/Q(u2
i ) > 2 + max

j
σj(u2

i ).

Denote by L = {(log(|σ1(v)|), log(|σ2(v)|), . . . , log(|σn(v)|)),∀ v ∈ O×
K} the

log-unit lattice (clearly this satisfies the axioms of a lattice by our previous
definition), whose covolume is Vol(L) =

√
nRK . Then for some 1 ≤ i ≤ n,

it must hold that

∥(log(|σ1(ui)|), log(|σ2(ui)|), . . . , log(|σn(ui)|))∥∞

≥ 1√
n

∥(log(|σ1(ui)|), log(|σ2(ui)|), . . . , log(|σn(ui)|))∥ ≥ 1√
n
λn−1(L),
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so
2 TrK/Q(ai) > n(2 + max

σ
σ(u2

i ))
1
n NmK/Q(ai)

1
n

= n
(
2 + e2 log(maxσ |σ(ui)|)

) 1
n NmK/Q(ai)

1
n

≥ n

(
2 + e

2√
n

λn−1(L)
) 1

n

NmK/Q(ai)
1
n

≥ n

(
2 + e

2√
n

R
1

n−1
K

) 1
n

NmK/Q(ai)
1
n ,

which yields the required result. □

4. Perfect Unary Forms

We will now demonstrate how the study of unit reducible fields has direct
application to the study of perfect unary forms.

Proof of Theorem 1.2. Let K = Q(
√
d) denote a real quadratic field. As in

Section 2, we will use the notation σ2 to denote the field automorphism that
sends x1 + x2

√
d to x1 − x2

√
d, for any x1 + x2

√
d ∈ K. For any a ∈ K≫0,

av2 + σ2(av2) > 0,(4.1)

for all v ∈ OK \ {0}.
Suppose that K is unit reducible. Consider the quadratic form x2. This

form is clearly not perfect, since M(1) = {±1} and inequality (4.1) has rank
1. Hence, there exists a perfect unary form ax2 such that µ(a) = µ(1) = 2
and {±1} ⊂ M(a). Let v ∈ M(a) \ {±1}. Since K is unit reducible, we
may assume that v is a unit. Therefore the system of linear equations

z · 12 + w · 12 = t,(4.2)
z · v2 + w · σ2(v2) = t(4.3)

has a unique solution (z, w). Without loss of generality, one can assume
that t ∈ Q, so this yields a solution w = σ2(z) (i.e. w is a field conjugate
of z).

Now, if NmK/Q(v) = 1, an immediate calculation shows that z = rv−1

for some positive rational r. If u is the fundamental generator of the unit
group of K modulo roots of unity, then we must have v = uk for some
integer k. Given that the form rv−1 is necessarily reduced, it holds that
v ∈ {u, u−1}.

If NmK/Q(v) = −1, an immediate calculation shows that z =
√
dsv−1 for

some positive rational s. Similarly to before, we deduce that v ∈ {u, u−1}.
Now, given that the system of linear equations (4.2) is invariant under

the replacement of v by σ2(v), if the unary form v−1x2 (resp.
√
dv−1x2)
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is perfect, then so is σ2(v−1)x2 (resp. σ2(
√
dv−1)x2. However, v−1x2 =

v(v−1x)2, so the forms vx2, v−1x2 are equivalent (resp. v−1√
dx2, v

√
dx2

are equivalent forms).
Recall that two unary forms ax2, bx2 are called neighbouring forms if

a ̸= b, µ(a) = µ(b) and M(a) ∩ M(b) ̸= ∅. It is known that the graph
of neighbouring forms is connected [8]. First, we consider the neighbour-
ing forms of u−1x2, when u is totally positive and u > 1. We have shown
that M(u−1) = {±1,±u}. Since σ2(u−1) = u, M(u) = {±1,±u−1}. But
the intersection of M(u) and M(u−1) is non-empty (equal to {±1}), so
ux2, u−1x2 are neighbouring forms. Moreover, we have already shown they
are also equivalent. Next, we will multiply both forms by u−2 to obtain
the forms u−1x2 and u−3x2. Obviously, M(u−3) ∩ M(u−1) = {±1}, so the
forms are neighbours, and moreover they are equivalent. Thus, all neigh-
bouring forms of the perfect form u−1x2 are equivalent to u−1x2. From this,
we conclude that there exists only one class of unary perfect forms up to
equivalence and scaling.

To complete the proof, we need to consider the case if K is not unit
reducible. Then, there exist a ∈ K≫0 and v ∈ OK such that

0 < TrK/Q(av2) < TrK/Q(a),

and v is not a unit. It follows from the work of Koecher [5] that there
exists a b ∈ K≫0 such that µ(a) = µ(b) and bx2 is a perfect unary form. If
1 ̸∈ M(b) then there exists a perfect form b′x2 such that µ(b) = µ(b′) and
1 ∈ M(b′). Obviously b′x2 is not equivalent to bx2. If 1 ∈ M(b), then it is
straightforward to check that bx2 and b̄x2 are not equivalent. Hence, there
are two classes of perfect forms, which completes the proof. □

Proof of Theorem 1.4. Throughout, we will assume that K is not unit re-
ducible, as we have already treated this case. First, we consider the case
d ≡ 2, 3 mod 4. Consider the set {±1,±(n −

√
d)}. The system of linear

equations

z + w = 1,

z(n−
√
d)2 + w(n+

√
d)2 = 1

has a unique solution

z = (n+
√
d)2 − 1

4n
√
d

, w = σ2(z).

Let

a = 2nd+ (n2 + d− 1)
√
d.
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It is totally positive since

NmK/Q(a) = 4n2d2 − (n2 + d− 1)2d

= 4n4 + (6r − r2 − 1)n2 + (2r2 − r3 − 1) > 0,

if n ≥ 2.
We will now consider the minimum of ax2. Let

f(x1, x2) = TrK/Q(a(x1 + x2
√
d)2)

= 4d(nx2
1 + (n2 + d− 1)x1x2 + ndx2

2) ≜ 4dg(x1, x2).

Now

g(x1 − nx2, x2) = n(x1 − nx2)2 + (2n2 + r − 1)(x1 − nx2)x2 + n(n2 + r)x2
2

= nx2
1 + (r − 1)x1x2 + nx2

2 ≜ h(x1, x2).

The real quadratic field K is of R–D type, so −n ≤ r − 1 < n and
thus the binary quadratic form h(x1, x2) is reduced, so the minimum of
f is 4nd. Moreover, the minimal vectors of g (and of f) are ±(1, 0) and
±(n,−1). From this, we have that ax2 attains its (trace) minimum at ±1
and ±(n−

√
d). Hence, ax2 is a perfect unary form.

Now, consider when d ≡ 1 mod 4 and n odd. Consider the set{
±1,±n−

√
d

2

}
. As before, the system of linear equations

z + w = 1,

z

(
n−

√
d

2

)2

+ w

(
n+

√
d

2

)2

= 1

has a unique solution

z =
1
4(n+

√
d)2 − 1

n
√
d

, w = σ2(z).

Let

a = 2nd+ (n2 + d− 4)
√
d.

a is totally positive, since

NmK/Q(a) = d(4n4 + 4n2r + 16n2 + 8r − 4n4 − 4n2r − r2 − 16)
= d(16n2 + 8r − r2 − 16) > 0,

if n ≥ 2.
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Consider the minimum of ax2. Let

f(x1, x2) = TrK/Q

a(x1 + x2
1 +

√
d

2

)2


= d
(
4nx2

1 + 2(2n+ n2 + d− 4)x1x2

+ (n+ nd+ n2 + d− 4)x2
2
)
≜ dg(x1, x2).

Now, letting p = n+1
2 ,

g(x1 − px2, x2) = 4n(x1 − px2)2 + (2n2 + n+ d(n+ 2) − 8)x2
2

+ 2(n2 + 2n+ d− 4)(x1 − px2)x2

= 4nx2
1 + 2(n2 + 2n+ d− 4 − 4np)x1x2

+
(
2n2 + n+ d(n+ 2) − 8 + 4np2

− 2p(n2 + 2n+ d− 4))
)
x2

2

= 4nx2
1 + 2(r − 4)x1x2 + (2n2 + (4 − r)n+ (5r − 8))x2

2,

and again it is easy to see that this form is reduced for all n ≥ 2. Given
that n−

√
d

2 is a rational scalar multiplied by n−
√
d, all further arguments

throughout the proof can be easily extended to this case too, and so we
omit treating the case d ≡ 1 mod 4 throughout the rest of the proof.

Now, if ax2 is perfect, then σ2(a)x2 is perfect too. Moreover, the minimal
vectors of σ2(a)x2 are M(σ2(a)) = {±1,±(n+

√
d)}.

Again, if bx2 is a perfect neighbour of ax2, then σ2(b)x2 is a perfect
neighbour of σ2(a)x2 by the symmetry of the action of the Galois group.
Since 1 is invariant under the Galois action, ax2, σ2(a)x2 share the common
minimum ±1. Thus, ax2, σ2(a)x2 are perfect neighbours. To find another
neighbour, we consider the action of the unit group on {±(n−

√
d)}. It is

known that if |r| ≠ 1, 4 then the fundamental unit is (see [12])

u0 = n2 + d+ 2n
√
d

r
.

Immediate calculations yield that

(n−
√
d)u0 = n+

√
d = σ2(n−

√
d).

However, (σ2(a)u2
0)x2 attains its minimum at ±u−1

0 and ±u−1
0 (n +

√
d) =

(n−
√
d), so the corresponding perfect neighbour is equivalent to σ2(a)x2.

From this, we conclude that all perfect neighbours of ax2 are equivalent to
σ2(a)x2.

Since K is not unit reducible, the perfect unary forms ax2, σ2(a)x2 are
not equivalent. □
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For the proof of Theorem 1.5, we will continue to use notations as in
Section 2.2. First note that r2 = r1σ2(θt)−2 and r3 = r1θ

2
t , hence r1 ∼ r2 ∼

r3. Also s3 = s1θ
2
t σ2(θt)2 and s2 = s1θ

2
t .

Proof of Theorem 1.5. The simplest cubic field is a vector space over Q
equipped with a non-degenerate bilinear form a.b = TrK/Q(ab).

Since there are only two equivalence classes of perfect ray forms, so we
apply the Voronoï algorithm for enumerating perfect neighbouring form to
r1 and s1 (because equivalent perfect forms have equivalent perfect neigh-
bours).

Perfect neighbours of r1. Recall that the trace minimum of

r1 =
(
(−t− 2)θ2

t + (t2 + 2t+ 1)θt + (t2 + 4t+ 7)
)
x2

= (3 + θt + (t+ 2)σ2(θt))x2.

is attained at v1 = −(t + 1) + θt + σ2(θt), v2 = 1 and v3 = θt. Denote by
Πr1 the convex cone generated by v2

1, v2
2 and v2

3. The hyperplane generated
by v2

i and v2
j will be denoted by L(vi, vj).

∗ Perfect neighbour along the facet L(v2, v3) ∩ Πr1. After solving the sys-
tem of linear equations

TrK/Q(ψ1(v2
2)) = 0,(4.4)

TrK/Q(ψ1(v2
3)) = 0(4.5)

subject to TrK/Q(ψ1(v2
3)) > 0 we obtain

ψ1(x) =
(
(−t3 − 5t2 − 12t− 11)θ2

t − (t4 + 5t3 + 13t2 + 14t+ 4)θt

− (t4 + 7t3 + 24t2 + 42t+ 31)
)
x2

=
(
(2t2 + 7t+ 9) + (t2 + 3t+ 4)θt + (t3 + 5t2 + 12t+ 11)σ2(θt)

)
x2.

With respect to the integral basis 1, θt, σ2(θt) the facet vector ψ1(x) = (p0+
p1θt +p2σ2(θt))x2 is a solution to the following system of linear inequalities(

t2 + 2t+ 6 t3 + 3t2 + 9t+ 3 −t2 − 3t− 6
t2 + 4t+ 9 −t2 − 4t− 12 −t− 3

)p0
p1
p2

 = 0.

Since
TrK/Q(ψ1(v3)) = t4 + 6t3 + 21t2 + 36t+ 27 > 0,

for all t ≥ −1, so ψ1 is a facet vector. But

N1 = r1 + 1
2ψ1 = 1

2s1σ2(θt)2 ∼ 1
2s1

hence the perfect neighbour N1 is homothetic to already known perfect
form s1.
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∗ Perfect neighbour along the facet L(v1, v3) ∩ Πr1. The facet vector ψ2
must satisfy the following conditions

TrK/Q(ψ2(v2
1)) = 0,(4.6)

TrK/Q(ψ2(v2
3)) = 0,(4.7)

TrK/Q(ψ2(v2
2)) > 0(4.8)

(see [8, Proposition 7.1.10]). From

(4.9)
(

3 t t
t2 + 4t+ 9 −t2 − 4t− 12 −t− 3

)p0
p1
p2

 = 0,

where ψ2(x) = (p0 + p1θt + p2σ2(θt))x2, we obtain

ψ2(x) =
(
(t+ 4)θ2

t + (−t2 − 3t+ 1)θt + (−t2 − 5t− 8)
)
x2

= (t+ (t+ 1)θ − (t+ 4)σ2(θ))x2.

(The matrix equation (4.9) was a matrix form of the equations (4.6) and
(4.7)). It is straightforward to check

TrK/Q(ψ2(v2)) = t4 + 6t3 + 21t2 + 36t+ 27 > 0 for all t ≥ −1.

Direct calculations show that

N2 = r1 + 1
2ψ2 = 1

2s3.

∗ Perfect neighbour along the facet L(v1, v2) ∩ Πr1. The facet vector ψ3 is
a solution to the system of linear equations

TrK/Q(ψ3(v2
1)) = 0,(4.10)

TrK/Q(ψ3(v2
2)) = 0(4.11)

subject to TrK/Q(ψ3(v2
3)) > 0. Let ψ3(x) = (p0 + p1θt + p2σ2(θt))x2. Then

(
3 t t

t2 + 2t+ 6 t3 + 3t2 + 9t+ 3 −t2 − 3t− 6

)p0
p1
p2

 = 0

and

ψ3(x) =
(
(2t+ 1)θ2

t − (2t2 + 2t+ 2)θt − (t2 + 4t+ 2)
)
x2

=
(
t2 + t− (t+ 2)θt − (2t+ 1)σ2(θt)

)
x2.

But ψ3 is a facet vector, because

TrK/Q(ψ3(v3)) = t4 + 6t3 + 21t2 + 36t+ 27 > 0.
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The corresponding perfect neighbour of r1 is

N3 = r1 + 1
2ψ3 = 1

2s1.

Perfect neighbours of s1. Recall that the trace minimum of

s1(x) = (−3θ2
t + 2tθt + (t2 + 4t+ 12))x2 = (t2 + t+ 6 − tθt + 3σ2(θt))x2

is attained at v1, v2 and v4 = 1 + θt.

∗ Perfect neighbour along the facet L(v1, v4) ∩ Πs1. Again, the conditions
for the facet vector ψ4(x) are (see [8, Proposition 7.1.10])

TrK/Q(ψ2(v2
1)) = 0,(4.12)

TrK/Q(ψ2(v2
3)) = 0,(4.13)

TrK/Q(ψ2(v2
2)) > 0.(4.14)

With respect to the indeterminants p0, p1 and p3, where ψ4(x) = (p0 +
p1θt + p2σ2(θt))x2, we get the matrix equation(

3 t t
t2 + 4t+ 9 t3 + 5t2 + 14t+ 15 −t2 − 4t− 12

)p0
p1
p2

 = 0.

From this we obtain

ψ4(x) =
(
(2t+ 5)θ2

t − (2t2 + 6t+ 4)θt − (t2 + 12t+ 10)
)
x2

=
(
(t2 + 3t) − (t+ 4)θt − (2t+ 5)σ2(θt)

)
x2.

Since
TrK/Q(ψ4(v2)) = 2(t2 + 3t+ 9) > 0,

we have that ψ4 is a facet vector. Moreover,

N4 = s1 + ψ4 = 2r1σ2(θt)−2 ∼ 2r1.

∗ Perfect neighbour along the facet L(v2, v4) ∩ Πs1. The facet vector ψ5
must satisfy

TrK/Q(ψ5(v2
2)) = 0,(4.15)

TrK/Q(ψ5(v2
4)) = 0,(4.16)

TrK/Q(ψ5(v2
1)) > 0.(4.17)

Let ψ5(x) = (p0 + p1θt + p2σ2(θt))x2. After solving((
t2 + 2t+ 6

) (
t3 + 3t2 + 9t+ 3

) (
−t2 − 3t− 6

)(
t2 + 4t+ 9

) (
t3 + 5t2 + 14t+ 15

) (
−t2 − 4t− 12

))p0
p1
p2

 = 0
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with respect to p0, p1, p2, we obtain

ψ5(x) =
(
−7θ2

t + (6t+ 2)θt + (t2 + 6t+ 20)
)
x2

=
(
(t2 − t+ 6) + (−t+ 2)θt + 7σ2(θt)

)
x2.

The unary form ψ5(x) is a facet vector because

TrK/Q(ψ5(v2
1)) = 2(t2 + 3t+ 9) > 0.

We finally have

N5 = s1 + ψ5 = θ−2
t σ2(θt)−22r1 ∼ 2r1.

∗ Perfect neighbour along the facet L(v1, v2)∩Πs1. Since Πs1∩L(v1, v2) =
Πr1 ∩ L(v1, v2) so 2r1 and s1 are perfect neighbours along the facet
L(v1, v2) ∩ Πs1 .

Since all perfect neighbours N1, N2, . . . , N5 are equivalent to (up to ho-
mothety) perfect forms r1 or s1. □

Corollary 4.1. Let K = Q(θt) be a simplest cubic field. If ax2 is a positive
definite unary quadratic over K, then M(a) ⊂ Z[θt]×.

Appendix

We will now prove that the fundamental unit for the field K = Q(
√
d) is:

(1) n+
√
d, if K is of type T1 or T2 (d = n2 ± 1),

(2) p+ 1+
√

d
2 , if K is of type T3 or T4 and d = n2 ± 4 where n = 2p+ 1.

Let u = u1 +u2
√
d denote the fundamental unit of a real quadratic field K,

where u1, u2 ∈ Q. We may assume without loss of generality that u1, u2 >
0 (clearly neither can be zero, and we can flip the signs accordingly by
taking u → u−1 = u1 − u2

√
d and/or u → −u). Then clearly u satisfies

u = min{|v| : v ∈ O∗
K , |v| > 1} (since u multiplicatively generates the unit

group, along with −1).
First, suppose that K is of the type T1 or T2. Then we assume that we

have a pair of integers a, b > 0 satisfying

a+ b
√
d < n+

√
d,

a2 − db2 = ±1 ⇐⇒ a2 = db2 ± 1.

Then

a+ b
√
d =

√
db2 ± 1 + b

√
d > n+

√
d

for all b > 1 and n > 1, so the only possible solution that does not yield a
contradiction to our construction of a, b is when b = 1, but this gives a = n,
so we cannot construct an (a, b) satisfying our hypothesis when n > 1. The
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only other case is when n = 1, for which we get K = Q(
√

2), and it is
well-known that the fundamental unit of this field is 1 +

√
2.

Now suppose that K is of the type T3 or T4. Again, we assume that we
have a pair of integers a, b with a > −b/2, b > 0 satisfying

a+ b
1 +

√
d

2 < p+ 1 +
√
d

2 ,(
a+ b

2

)2
− d

4b
2 = ±1 ⇐⇒ a =

√
d

4b
2 ± 1 − b

2 .

Then

a+ b
1 +

√
d

2 =

√
d

4b
2 ± 1 + b

√
d

2 ≥
√
d− 1 +

√
d

for all b ≥ 2. However,
√

(2p+ 1)2 + 3+
√

(2p+ 1)2 + 4 > p+ 1+
√

(2p+1)2+1
2

for all p ≥ 0 and
√

(2p+ 1)2 − 5 +
√

(2p+ 1)2 − 4 > p+ 1+
√

(2p+1)2−4
2 for

all values p ≥ 1 (here we have respectively set d = n2 + 4, n2 − 4), so the
only possible solution to our hypothesis is when b = 1, for which we have
already ascertained we need a = 2p + 1 for a + b1+

√
d

2 to be a unit, so we
cannot construct an (a, b) satisfying our hypothesis for any positive n.
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