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The size function for imaginary cyclic sextic fields

par Ha Thanh Nguyen TRAN, Peng TIAN et Amy FEAVER

Résumé. Dans cet article, nous étudions la fonction de taille h0 pour les corps
de nombres. Cette fonction est analogue à la fonction donnant la dimension
de l’espace de Riemann–Roch d’un diviseur sur une courbe algébrique. Van
der Geer et Schoof ont conjecturé que h0 atteint son maximum sur la classe
triviale des diviseurs d’Arakelov. Cette conjecture a été prouvée pour tous les
corps de nombres dont le groupe des unités est de rang 0 et 1, ainsi que pour
les corps cubiques cycliques dont le groupe des unités est de rang 2. Nous
prouvons que cette conjecture est également valable pour les corps sextiques
cycliques totalement imaginaires, une autre classe de corps de nombres dont
le groupe des unités est de rang 2.

Abstract. In this paper, we investigate the size function h0 for number fields.
This size function is analogous to the dimension of the Riemann–Roch spaces
of divisors on an algebraic curve. Van der Geer and Schoof conjectured that h0

attains its maximum at the trivial class of Arakelov divisors. This conjecture
was proved for all number fields with the unit group of rank 0 and 1, and
also for cyclic cubic fields which have unit group of rank two. We prove the
conjecture also holds for totally imaginary cyclic sextic fields, another class
of number fields with unit group of rank two.

1. Introduction

The size function h0 for a number field F is well-defined on the Arakelov
class group Pic0

F of F (see [13]). This function was first introduced by van
der Geer and Schoof [5] and also by Groenwegen [6, 7]. Van der Geer and
Schoof conjectured that h0 assumes its maximum on the trivial class OF ,
the ring of integers of F , whenever F/Q is Galois or F is Galois over an
imaginary quadratic field [5]. Experiments supported this conjecture [14].

By 2004 Francini proved the conjecture for all imaginary and real qua-
dratic fields [3] and showed that the conclusion of the conjecture holds
for certain pure cubic fields which are not Galois [4]. This establishes the
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conjecture for fields with unit group of rank zero and some with the unit
group of rank one. Tran proved the conjecture for any quadratic extension
of a complex quadratic field [15] and, along with Tian, for all cyclic cubic
fields [16]. In these cases, the fields have unit group of rank one and two
respectively.

In this paper, we consider another class of number fields with unit group
of rank two: totally imaginary cyclic sextic fields. This class of number fields
poses its own set of challenges. To prove our main result we develop new
techniques which are presented in Sections 3 and 4. Using these methods
we are able to prove:

Theorem 1.1. Let F be an imaginary cyclic sextic field. Then the function
h0 on Pic0

F obtains its unique global maximum at the trivial class [D0] =
[(OF , 1)].

To prove Theorem 1.1, we prove the equivalent statement
h0(OF , 1) > h0(I, u) whenever [(I, u)] ̸= [(OF , 1)].

The proof strategy is outlined in Section 5. We consider two cases:
(1) Section 6 proves the case where I is not principal and is the shorter

of the proofs.
(2) Sections 7 and 8 provide the proof for principal I. The reason this

is split over two sections is that the proof differs depending on the
value of ∥log u∥.

The size function h0 is given by the logarithm of the sum

k0(I, u) :=
∑
f∈I

e−π∥uf∥2
.

To more fully understand this definition and its context, see Sections 2.4,
2.5, and 2.6. In order to prove Theorem 1.1 it is sufficient to show

k0(OF , 1) > k0(I, u) whenever [(I, u)] ̸= [(OF , 1)].
To procure an upper bound on k0(I, u) in Sections 6 and 7, we split it

into four summands:
k0(I, u) = 1 + Σ1(I, u) + Σ2(I, u) + Σ3(I, u)

where each sum Σi, i ∈ {1, 2, 3} is taken over a set Si with I\{0} = S1 ∪
S2 ∪ S3. Specifically,

Σi(I, u) :=
∑

f∈Si

e−π∥uf∥2
,

with the sets Si being chosen strategically in a way that groups the elements
of I\{0} based on the size of ∥uf∥2 as defined in Section 4. The set S1 is
chosen with the smallest values, ∥uf∥2 < 6 · 21/3, and the set S3 has the
largest values, with ∥uf∥ ≥ 6·31/3. Theorem 1.1 is then proved in Sections 6
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and 7 by finding a sufficiently small upper bound for each summand by
applying the results in Section 4 and Corollary 2.17.

Seeing this outline at this stage, while it is not fully explained, serves to
help the reader understand why we prove results that depend on the value
∥uf∥2.

To this end, we also highlight the use of the bound ∥f∥2 < 22 which
appears in Corollary 2.17 and at the beginning in Section 3 as an assumed
condition on the size of f in several propositions and lemmas. These results
are applied to the proof of Theorem 1.1 in Section 8. This is the case where I
is a principal ideal and ∥log u∥ < 0.24163. As a very high-level explanation,
one may suspect that this case is more difficult because the class [(I, u)]
bears a lot of similarities to the trivial class [(OF , 1)] in that I and OF are
both principal and u and 1 are, geometrically speaking, sufficiently close to
one another.

To prove that k0(OF , 1) > k0(I, u) in Section 8 we show that k0(I, u) −
k0(OF , 1) < 0. As this difference may be very small, we instead prove

k0(I, u) − k0(OF , 1)
∥log u∥2 < 0,

since this fraction is larger in absolute value and easier to work with. If
all nonzero elements f ∈ OF which are not roots of unity have the prop-
erty that ∥f∥2 ≥ 22, we can prove that this quotient is negative by Corol-
lary 2.17. Otherwise, we compute this quotient case by case using the results
in Section 3 (see the proof of Proposition 8.6 and Table 8.1).

Through trying different bounds on ∥f∥2 we were able to determine
that ∥f∥2 < 22 was the smallest bound necessary in order to make the
mathematics work out. We also remark that the assumption that F is cyclic
is vital. The Galois property allows us to make use of several invariance
properties (see Lemmas 2.1 and 2.14) which are crucial in our proofs of
Lemma 8.2 and Propositions 8.1 and 8.3. Moreover, as F is cyclic we can
obtain an explicit description of the discriminant of F (Lemma 3.1) and
the unit group O×

F (Lemma 2.6). The cyclic property also implies that the
log unit lattice of F is hexagonal and allows for the efficient calculation of
lower bounds on the lengths of elements of OF , when viewed as a lattice in
R6 (see Propositions 2.4, 3.2, 3.3, 3.6 and 3.7).

All of the computer-aided computations in this paper are straightfor-
ward; we only need to call a function either in Mathematica or in Pari/gp
to obtain the results. We use Mathematica [17] for the approximations in
Section 2.7 and for calculating the upper and lower bounds in Sections 7.1,
7.2, and Proposition 8.4. We apply the LLL algorithm [11] and the function
qfminim() in Pari/gp [12], which utilizes the Fincke–Pohst algorithm [2]
and enumerates all vectors of length bounded in a given lattice. These enu-
merations are used in the proofs of Propositions 4.3, 4.4, and 8.6.
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2. Preliminaries

2.1. Notation. Let F be an imaginary cyclic sextic field with maximal
real subfield K and imaginary quadratic subfield k. Then K is a cyclic
cubic field with the form K = Q(θ) for some integral element θ. Further,
k = Q(

√
−d) for some squarefree positive integer d, and F = K(

√
−d).

Thus we have the following setup:

F = Q
(
θ,

√
−d
)

K = Q(θ)

k = Q
(√

−d
)

Q

OF

OK

Ok

Z

{1}

Gk = ⟨φ⟩

GK = ⟨σ⟩

G = GF = ⟨τ⟩

Here, OF , OK and Ok are the rings of integers and G = ⟨τ⟩, GK = ⟨σ⟩
and Gk = ⟨φ⟩ the Galois groups of F, K and k respectively. Then Ok = Z[δ]
where

δ =
{√

−d if d ≡ 1, 2 mod 4
1+

√
−d

2 otherwise.
Observe that τ(θ) = σ(θ) and τ(δ) = φ(δ). We have the six embeddings

F ↪→ C:
τ1 = 1 = τ0, τ2 = τ1, τ3 = τ2,

τ1 = 1 = τ3, τ2 = τ4, τ3 = τ5.

In this paper, we use the map Φ : F −→ C3 defined by
Φ(f) = (τi(f))1≤i≤3 = (τ1(f), τ2(f), τ3(f)) for all f ∈ F.

The length function on each f ∈ F is given by

∥f∥2 := ∥Φ(f)∥2 = 2
3∑

i=1
|τi(f)|2.
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For each g ∈ K, we also define

∥g∥2
K := ∥(σi(g)i)∥2 =

3∑
i=1

|σi(g)|2,

thus ∥g∥2 = 2∥g∥2
K .

Lemma 2.1. Let f ∈ F . Then ∥τ1(f)∥ = ∥τ2(f)∥ = ∥τ3(f)∥.

The image Φ(I) of a fractional ideal I of F is a lattice in C3 and thus
maps to a lattice in R6 via z 7→ (ℜ(z), ℑ(z)) where ℜ(z) and ℑ(z) are the
real and imaginary parts of z.

Let p be the conductor of K and t = gcd(p, d). The discriminant of K is
∆K = p2 and the discriminant of k is

∆k =
{

−4d if d ≡ 1, 2 mod 4
−d otherwise.

Remark 2.2. By [8], the conductor p of K has the form p = p1p2 · · · pr,
where r ∈ Z>0 and p1, . . . , pr are distinct integers from the set

{9} ∪ {q | q is prime, q ≡ 1 mod 3} = {7, 9, 13, 19, 31, 37, . . .}.

2.2. The ring of integers OK . We recall the following result from [16].

Proposition 2.3. There exists an element g ∈ OK such that Tr(g) =
g + σ(g) + σ2(g) = 0 and one of the following holds:

(i) OK = Z ⊕ Z[σ] · g or
(ii) OK ⊃ Z ⊕ Z[σ] · g and [OK : (Z ⊕ Z[σ] · g)] = 3.

Using the proof from [16, Proposition 2.3] in combination with the equa-
tion ∥g∥2 = 2∥g∥2

K for g ∈ K we obtain the following result.

Proposition 2.4. We have ∥g∥2
K ≥ 2p

3 and ∥g∥2 ≥ 4p
3 for all g ∈ OK\Z.

Another structural observation of OK is described in the next lemma.

Lemma 2.5. For any f ∈ OK\Z, the set {1, f, σ(f)} is R-linearly inde-
pendent.

2.3. The unit lattice. We define the map log : F × −→ R3, the plane H
and the log unit lattice Λ as follows:

log(f) := (log |τi(f)|)1≤i≤3 ∈ R3 for all f ∈ F ×,

H = {(v1, v2, v3) ∈ R3 : v1 + v2 + v3 = 0},

Λ = log(O×
F ) = {(log |τi(ε)|)3

i=1 : ε ∈ O×
F }.

Here Λ is a full-rank lattice contained in H by Dirichlet’s unit theorem. Let
µF be the set of roots of unity of F , and let O×

K and O×
k be the unit groups

of K and k respectively.
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Lemma 2.6. The unit group of OF is O×
F = µF O×

K .

Proof. The Hasse unit index of F is QF = [O×
F : µF O×

K ] by [9]. Since k
is an imaginary quadratic field, its unit index Qk = 1. Both k and F are
totally complex and abelian with [F : k] = 3. Thus by [10, Lemma 2],
QF = Qk = 1. Therefore O×

F = µF O×
K . □

A lattice is called hexagonal if it is isometric to the lattice M · Z[ζ3] for
some M ∈ R+ and a primitive cube root of unity ζ3.

Corollary 2.7. The lattice Λ is hexagonal.

Proof. By Lemma 2.6, we have that Λ = log(O×
F ) = log(µF × O×

K) =
log(O×

K). The result follows since log(O×
K) is hexagonal by [16, Proposi-

tion 2.1]. □

Corollary 2.7 implies that Λ has a Z-basis given by two shortest vectors
b1 = log ε1 and b2 = log ε2 for some ε1, ε2 ∈ O×

F and with ∥b1∥ = ∥b2∥ =
∥b2 − b1∥ (Figure 2.1). Let F be the fundamental domain of Λ given by

F =
{

α1 · b1 + α2 · b2 : α1, α2 ∈
(

−1
2 ,

1
2

]}
.

b1

b2

Figure 2.1. The lattice Λ and F (the shaded area).

Remark 2.8. We could also choose a different fundamental domain, such
as the Voronoi domain. This would make the proof in Section 7.1 slightly
different but the proofs in Sections 7.2 and 8 would remain the same.

We further define λ to be the length of the shortest vectors of Λ, and
B(w) = {x ∈ O×

F : ∥log x − w∥ < λ} for each w ∈ F .

Lemma 2.9. Let w ∈ F . Then #B(w) ≤ 4 · (#µF ). Moreover,
B(w) ⊂ {1, x1, x2, x3} · µF ⊂ O×

F where

∥log x1 − w∥ ≥
√

3λ/4, ∥log x2 − w∥ ≥ λ/2 and ∥log x3 − w∥ ≥
√

3λ/2.

Proof. See the proof of [16, Lemma 2.2], replacing ±1 with µF . □
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Lemma 2.10. If p = 7 then λ ≈ 1.44975. Moreover, λ > 1.83336 when
p ≥ 9.

Proof. This lemma follows from the argument in the proof of [16, Lem-
ma 2.3], combined with Lemma 2.6 and the fact that ∥g∥2 = 2∥g∥2

K for
g ∈ K. □

2.4. Arakelov divisors.

Definition 2.11. An Arakelov divisor of F is a pair D = (I, u) where I is
a fractional ideal of F and u is any element in R3

+.

The Arakelov divisors of F form the additive group DivF . The degree
of a divisor D = (I, u) is deg(D) := − log(N(u)N(I)), where the norm of
u = (u1, u2, u3) ∈ R3 is N(u) := u1u2u3. Define

uf := u · Φ(f) = (ui · τi(f)) ∈ C3 for all f ∈ I.

Then

∥uf∥2 = ∥u · Φ(f)∥2 = 2
3∑

i=1
u2

i · |τi(f)|2.

Further, uI := {uf : f ∈ I} is a lattice in C3. We call uI the lattice
associated to D. Each element f ∈ F × is attached to a principal Arakelov
divisor (f) := (f−1OF , |f |). Here, f−1OF is the principal ideal generated
by f−1, and

|f | := |Φ(f)| = (|τ i(f)|)0≤i≤2 ∈ R3
+.

This divisor has degree 0 by the product formula [5, 13].

2.5. The Arakelov class group. The Arakelov divisors of degree 0 form
a group Div0

F .

Definition 2.12. The Arakelov class group Pic0
F is the quotient of Div0

F

by its subgroup of principal divisors.

This class group is similar to the Picard group of an algebraic curve. De-
fine T0 = H/Λ, a real torus of dimension 2. Each class v = (v1, v2, v3) ∈ T0

can be embedded into Pic0
F by v 7→ Dv = (OF , u) with u = (e−vi)i. There-

fore, T0 can be viewed as a subgroup of Pic0
F , and, by [13, Proposition 2.2]

we know:

Proposition 2.13. The map that sends the Arakelov class represented by
a divisor D = (I, u) to the ideal class of I is a homomorphism from Pic0

F

to the class group ClF of F . It induces the exact sequence

0 −→ T0 −→ Pic0
F −→ ClF −→ 0.
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The group T0 is the connected component of the identity of the topo-
logical group Pic0

F . Each class of Arakelov divisors in T0 is represented by
a divisor D = (OF , u) for some u ∈ R3

+, N(u) = 1. Here u is unique up to
multiplication by a unit in O×

F ; see [13, Section 6] for more details.

2.6. The function h0. Let D = (I, u) be an Arakelov divisor of F . Define

h0(D) := log(k0(D)),

k0(D) :=
∑
f∈I

e−π∥uf∥2 =
∑

x∈uI

e−π∥x∥2
.

The function h0 is well-defined on Pic0
F and analogous to the dimension of

the Riemann–Roch space H0(D) of a divisor D on an algebraic curve[5, 13].
From [16] we have:

Lemma 2.14. The function h0 on T0 is invariant under the action of τ .
That is,

h0(D) = h0(τ(D)) for all D ∈ T0 .

Remark 2.15. Let I be the principal ideal I = fOF for some f ∈ F ×.
Then

D = (I, u) = (fOF , u) = (fOF , |f |−1) + (OF , u|f |) = (f−1) + (OF , u′).

Here (f−1) is the principal Arakelov divisor generated by f−1 and

u′ = u|f | = (ui|σi(f)|)i ∈ R3
+.

Thus D and D′ = (OF , u′) are in the same class of divisors in Pic0
F , and

hence k0(D) = k0(D′). Therefore, without loss of generality, we can assume
that D has the form (OF , u) for some u ∈ R3

+ and N(u) = 1. In other words,
[D] ∈ T0.

2.7. Some estimates. Let L be a lattice in R6 and λ the length of its
shortest vectors. Using an argument similar to the proof of [15, Lemma 3.2],
replacing π with ξ, we have:

Lemma 2.16. For M ≥ λ2 ≥ a2 > 0 and ξ > 0,

∑
x∈L

∥x∥2≥M

e−ξ∥x∥2 ≤ ξ

∫ ∞

M

(2
√

t

a
+ 1

)6

−
(

2
√

M

a
− 1

)6
 e−ξt dt.

The next result can be obtained by applying Lemma 2.16 with a =
√

6
and ξ = π.
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Corollary 2.17. If λ2 ≥ 6, then∑
x∈L

∥x∥2≥6·31/3

e−π∥x∥2
< 2.6049 · 10−9,

∑
x∈L

∥x∥2≥22

e−(π−2/7)∥x∥2
< 10−23,

∑
x∈L

∥x∥2≥22

e−(π−2
√

2·0.170856 π−2/7)∥x∥2
< 2.19277 · 10−9.

3. Upper bounds for p and d

In this section, we find upper bounds for p and d if there exists a nonzero
element f ∈ OF \µF such that ∥f∥2

F < 22. We restrict to this case, as these
are the results needed for the proof of Theorem 1.1 in Section 8.

Lemma 3.1. The discriminant of F is ∆F = p4∆3
k

gcd(p,d)2 . Consequently, the
index

[OF : OK [δ]] = gcd(p, d) = t.

Proof. Observe that OK [δ] = Ok × OK since Ok = Z[δ]. The discriminant
of the tensor product Ok × OK is (p2)[k:Q](∆k)[K:Q] = p4∆3

k.
By the conductor-discriminant formula [1], the discriminant of F is equal

to the product of the conductors of the characters of F . The trivial charac-
ter, the quadratic character, and the two cubic characters have conductors
1, ∆k, p, and p respectively. The two characters of order 6 have conductor
lcm(p, ∆k). Hence ∆F = ∆kp2(lcm(p, ∆k))2 = p4∆3

k
gcd(p,∆k)2 = p4∆3

k
gcd(p,d)2 . The

last equality is because ∆k ∈ {d, 4d} and p is odd by Remark 2.2. Thus the

index of Ok × OK inside OF is
√

p4∆3
k

∆F
= gcd(p, d). □

Further, since t = [OF : OK [δ]], for every f ∈ OF , we have tf ∈ OK [δ].
Hence,

f = 1
t
(γ + βδ) for some γ, β ∈ OK .

Proposition 3.2. Let d ≡ 1, 2 mod 4. Assume that f = 1
t (γ + βδ) ∈

OF \(OK ∪ Ok ∪ µF ) where γ, β ∈ OK such that ∥f∥2 < 22. Then we have
the following.

(i) If β ∈ OK\Z, then p ≤ 19 and d ≤ 22.
(ii) If β ∈ Z\{0}, then p ≤ 61 and d ≤ 14.

Proof. Assume that f satisfies the criterion in the statement of the propo-
sition. Then

(3.1) 22 > ∥f∥2 = 2∥γ∥2
K

t2 + 2∥β∥2
Kd

t2 .
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Let α ∈ OK\Z be a shortest element. By the proof of [16, Proposition 2.3],

(3.2) ∥α∥2
K ≤ 2p + 1

3 .

Recall that δ =
√

−d. We consider two cases:

Case i: β ∈ OK\Z. Note that τ i|K = ℜ(τ i) = σi, i = 1, 2, 3 and τ3 = 1.
The discriminant of the set S = {1, α, τ(α), δ, f, τ(f)} ⊂ OF is det(S),
which is computed as follows:

det(S) =
(
det(τ i(g))g∈S,0≤i≤5

)2

=
26
(√

d
)6

t4

∣∣∣∣∣∣
1 α σ(α)
1 σ(α) σ2(α)
1 σ2(α) α

∣∣∣∣∣∣
2

·

∣∣∣∣∣∣
1 β σ(β)
1 σ(β) σ2(β)
1 σ2(β) β

∣∣∣∣∣∣
2

.

Since α, β ∈ OK\Z, the two sets {1, α, σ(α)} and {1, β, σ(β)} are R-
linearly independent (Lemma 2.5), so det(S) ̸= 0. Thus S is a set of inde-
pendent elements in OF , and, by Lemma 3.1,

(3.3) det(S) ≥ |∆F | = p4 · (4d)3

t2 .

Combining this with Hadamard’s inequality leads to

det(S) ≤ 26 · d3

t4 · ∥1∥2
K · ∥α∥2

K · ∥σ(α)∥2
K · ∥1∥2

K · ∥β∥2
K · ∥σ(β)∥2

K

= 26 · d · 32 · ∥α∥4
K ·

(
∥β∥2

K · d

t2

)2

.

From (3.1) and (3.2) we have

(3.4) det(S) < 26 · d · 32 ·
(2p + 1

3

)2
· 112 = 26 · d · 112 · (2p + 1)2.

Applying (3.3) and (3.4) gives:

(3.5) p2 · d

t
< 11 · (2p + 1).

Since t ≤ d, this bound implies p2 < 11 · (2p + 1), which gives p ≤ 19. We
also have t ≤ p, then by (3.5), p · d < 11 · (2p + 1). As p ≤ 19, it follows
that d ≤ 22.

Case ii: β ∈ Z. Since f /∈ Ok, it follows that γ /∈ Z. Consequently, γ ∈
OK\Z and

2γ

t
= f + 1(f) ∈ OF ∩ K,
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which implies 2γ
t ∈ OK\Z. By Proposition 2.4, ∥2γ

t ∥2 ≥ 4p/3, and therefore

4p

3 ≤
∥∥∥∥2γ

t

∥∥∥∥2
≤ ∥f∥2 + ∥1(f)∥2 < 22 + 22 = 44.

Thust p ≤ 61.
Now since 2β

√
−d

t = f − 1(f) ∈ OF ∩ k, we have 2β
√

−d
t ∈ Ok = Z[

√
−d].

Hence 2β
t = a ∈ Z. Note that β ̸= 0 since f /∈ OK . By (3.1),

22 > 2∥β∥2
Kd

t2 ≥ 6a2d

4 ≥ 3d

2 .

As a result, d ≤ 14. □

Proposition 3.3. Let d ≡ 3 mod 4. Assume that there exists

f = 1
t
(α + βδ) ∈ OF \(OK ∪ Ok ∪ µF )

where α, β ∈ OK and ∥f∥2 < 22. Then:
(i) If β ∈ OK\Z, then p ≤ 61 and d ≤ 59.
(ii) If β ∈ Z\{0}, then p ≤ 61 and d ≤ 11.

Proof. This is similar to the proof of Proposition 3.2, with δ = 1+
√

−d
2 ,

∆F = p4d3

t2 , and

(3.6) 22 > ∥f∥2 = ∥2γ + β∥2
K

2t2 + ∥β∥2
Kd

2t2 .

When β ∈ OK\Z, we obtain the inequality

(3.7) p2 · d

t
< 22

√
2 · (2p + 1).

It leads to p ≤ 61 and d ≤ 59.
When β ∈ Z, we have that (2γ + β)/t = f + 1(f) ∈ OF ∩ K = OK , and

this element is not in Z. Thus Proposition 2.4 gives

4p/3 ≤ ∥(2γ + β)/t∥2 ≤ ∥f∥2 + ∥1(f)∥2 < 44.

Therefore p ≤ 61. Now since

β
√

−d/t = f − 1(f) ∈ OF ∩ k = Ok = Z
[

1 +
√

−d

2

]
,

we have β/t = a ∈ Z. Hence (3.6) provides that 22 > d
2∥β

t ∥2
K = 3a2d

2 ≥ 3d
2 ,

and thus d ≤ 11. □

Proposition 3.4. Assume there exists f ∈ Ok\Z with ∥f∥2 < 22. Then
d ∈ {1, 2, 3, 7, 11}.
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Proof. Since f ∈ Ok\Z, f = m + nδ for some m, n ∈ Z, n ̸= 0. If d ≡ 1, 2
mod 4, ∥f∥2 = 6(m2 + n2d) < 22, then d ∈ {1, 2}. When d ≡ 3 mod 4, we
have ∥f∥2 = 6

(
(m + n/2)2 + n2d/4

)
< 22, which implies d ∈ {3, 7, 11}. □

Proposition 3.5. Assume there exists f ∈ OK\Z with ∥f∥2 < 22. Then
p ∈ {7, 9, 13}.

Proof. If f ∈ OK\Z, ∥f∥2 ≥ 4p/3 by Proposition 2.4. The result follows.
□

Proposition 3.6. Let p ≤ 61 and d ≡ 1, 2 mod 4 with d ≤ 22. Assume
that there exists f ∈ OF \(OK ∪ Ok ∪ µF ) such that ∥f∥2 < 22. Then
(p, d) ∈

{
(7, 1), (9, 1), (13, 1), (19, 1), (7, 2), (9, 2), (9, 6), (13, 13), (7, 14),

(7, 21), (9, 21)
}
.

Proof. We consider two cases and use a similar idea to the proof of Proposi-
tion 3.2. In the first case, when β ∈ OK\Z, we have that p2d/t ≤ 11(2p+1).
In the second case, β ∈ Z. Since 2∥γ∥2

K/t2 + 2∥β∥2
Kd/t2 = ∥f∥2 < 22, we

have the bound 1/t2(4p/3 + 6d) < 22. Using these inequalities, we obtain
the values for (p, d). □

Proposition 3.7. Let p ≤ 61 and d ≡ 3 mod 4, d ≤ 59. Assume there
exists f ∈ OF \ (OK ∪ Ok ∪ µF ) such that ∥f∥2 < 22. Then the possible
values for (p, d) are:

• (p, 3) with p ∈ {7, 9, 13, 19, 31, 37, 43},
• (p, 7) with p ∈ {7, 9, 13, 19, 31}, and
• (7, 11), (9, 11), (13, 11), (9, 15), (19, 19), (31, 31), (7, 35), (9, 39),

(13, 39), (43, 43), (9, 51).

Proof. Either p2d/t ≤ 22
√

2(2p + 1) or 1/t2(2p/3 + 3d) < 22, yielding the
result. □

4. Counting short elements

Given u, I and an Arakelov divisor D = (I, u) of degree 0, we split the
set I \ {0} into three disjoint subsets, since each subset will be counted
using different techniques:

S1(I, u) = {f ∈ I \ {0} : ∥uf∥2 < 6 · 21/3},

S2(I, u) = {f ∈ I \ {0} : 6 · 21/3 ≤ ∥uf∥2 < 6 · 31/3}, and

S3(I, u) = {f ∈ I \ {0} : ∥uf∥2 ≥ 6 · 31/3}.

In this section, we determine an upper bound for the cardinality of the
set of “short” elements in S2(I, u).

For any f ∈ S2(I, u), we have |N(uf)| < 3 since ∥uf∥2 ≥ 6 · |N(uf)|1/3.
As the degree of D is 0, N(u) · N(I) = 1. Therefore |N(f)|/N(I) =
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|N(uf)| < 3 and |N(f)|/N(I) ∈ {1, 2}. We split S2(I, u) into two disjoint
subsets according to whether |N(f)|/N(I) is 1 or 2:

(4.1) S2,i(I, u) =
{

f ∈I : 6·21/3 ≤ ∥uf∥2 < 6·31/3 and |N(f)|/N(I) = i
}

.

Then,
S2(I, u) = S2,1(I, u) ∪ S2,2(I, u).

Lemma 4.1. If OK has a prime ideal of norm 2 and there exists ϵ ∈ O×
F

with ∥ϵ∥2 < 81, then ϵ ∈ µF .

Proof. For the sake of contradiction, assume ϵ /∈ µF . By Lemma 2.6, ϵ = ζ ·ϵ′

for some ζ ∈ µF and some ϵ′ ∈ O×
K . Now 81 > ∥ϵ∥2 = ∥ϵ′∥2 ≥ 4p/3 by

Proposition 2.4. Thus p ∈ {7, 9, 13, 19, 31, 37, 43}. If OK has an ideal of
norm 2 then p ∈ {31, 43}. If p = 31, the regulator of K is RK ≈ 12.196.
Since Λ is hexagonal (Remark 2.7), ∥log(ϵ)∥2 ≥ 2RK ≈ 24.392. This leads to
∥ϵ∥2 ≥ 225.615, contradicting the condition ∥ϵ∥2 < 81. Similarly, if p = 43,
RK ≈ 18.9218. This leads to a contradiction, as ∥ϵ∥2 ≥ 607.392. □

Proposition 4.2. Assume that N(u) = 1/N(I).
(i) If p < 31, then #S2,2(I, u) = 0.
(ii) If p ≥ 31, then #S2,2(I, u) ≤ 6 · (#µF ).

Proof. Let m2 = #S2,2(I, u). Since |N(f)|/N(I) = |N(uf)| = 2 for all
f ∈ S2,2, fOF = PI for some ideal P in OF with N(P ) = 2. That is, each
f ∈ S2,2 corresponds to a prime ideal of norm 2 of OF . If m2 > 0, then OF

has a prime ideal of norm 2 and so does OK .

(i). If p ∈ {7, 9, 13, 19}, OK has no ideals of norm 2. Thus m2 = 0.

(ii). If p ≥ 31 then we have at most 6 distinct ideals of norm 2. Hence there
are m2/6 elements of S2,2 which correspond to the same ideal of norm 2.
Each of these elements must differ (pairwise) by a multiple of a unit. Thus
there are m2/6 distinct units; denote one of them by ϵ. Then ϵ = fg−1 for
some f, g ∈ S2,2, and

∥ϵ∥2 = ∥fg−1∥2 = 2
(

|u1f |2

|u1g|2
+ |u2τ2(f)|2

|u2τ2(g)|2 + |u3τ3(f)|2

|u3τ3(g)|2

)

≤ 2
(
|u1f |2+|u2τ2(f)|2+|u3τ3(f)|2

)( 1
|u1g|2

+ 1
|u2τ2(g)|2 + 1

|u3τ3(g)|2
)

≤ ∥uf∥2 · ∥ug∥4

4 · |N(ug)| < 6 · 31/3 · (6 · 31/3)2

8 = 81.

If m2 > 0, the above bound implies that those units are roots of unity by
Lemma 4.1. Hence m2/6 ≤ #µF and the result follows. □

Proposition 4.3. Assume that N(u) = 1 and m1 = #S2,1(OF , u). Then:
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(i) if p < 31, then m1 ≤ 19 · (#µF ) and
(ii) if p ≥ 31, then m1 ≤ #µF .

Proof. For all f ∈ S2,1(OF , u), f ∈ OF and |N(f)| = N(OF ) = 1. Thus all
elements in S2,1(OF , u) are units. Let ϵ = fg−1 for two distinct elements
f, g ∈ S2,1. Then

∥ϵ∥2 = ∥fg−1∥2 = 2
(

|u1f |2

|u1g|2
+ |u2τ2(f)|2

|u2τ2(g)|2 + |u3τ3(f)|2

|u3τ3(g)|2

)

= ∥uf∥2 ·
( 1

|u1g|2
+ 1

|u2τ3(g)|2 + 1
|u3τ3(g)|2

)
≤ 6 · 31/3 · 5.15519 ≈ 44.61.

The last inequality is obtained because, if x1 · x2 · x3 = 1 and
6 · 21/3 ≤ 2 · (x2

1 + x2
2 + x2

3) < 6 · 31/3, then
1
x2

1
+ 1

x2
2

+ 1
x2

3
< 5.15519.

Hence there are m1 distinct units ϵ with ∥ϵ∥2 ≤ 44.61. Assume that there
exists such an ϵ where ϵ /∈ µF . By Lemma 2.6, ϵ = ζ ·ϵ′ for some ζ ∈ µF and
some ϵ′ ∈ O×

K\{±1}. Using Proposition 2.4, 44.61 > ∥ϵ∥2 = ∥ϵ′∥2 ≥ 4p/3.
Thus p ∈ {7, 9, 13, 19, 31}, and:

• If p ≥ 37, then all m1 units ϵ belong to µF . It follows that m1 ≤
#µF .

• If p ∈ {7, 9, 13, 19, 31}, denote by m′
1 the number of ϵ′ up to sign,

then m1 = (the number of such ϵ ∈ µF ) + (the number of such ϵ /∈
µF ). Therefore an upper bound for m1 is

(4.2) m1 ≤ #µF + (#µF ) · m′
1 = (#µF ) · (m′

1 + 1).

We can find all ϵ′ ∈ OK\{±1} up to sign for which ∥ϵ′∥2
K < 44.61/2

(equivalently ∥ϵ′∥2 < 44.61), and |NK(ϵ′)| = 1 using an LLL-
reduced basis [11, Section 12] of the lattice OK or by applying the
Fincke–Pohst algorithm [2, Algorithm 2.12]:

p 7 9 13 19 31
m′

1 ≤ 18 12 6 6 0

The result then follows by the bound for m1 in (4.2). □

Proposition 4.4. Assume that N(u) = 1, m1 = #S2,1(OF , u) and ∥u∥2 ≤
6.4653.

(i) If p < 31 then m1 ≤ 12 · (#µF ).
(ii) If p ≥ 31 then m1 = 0.
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Proof. First, we see that S2,1(OF , u) ∩ µF = ∅. This is because if there
exists f ∈ S2,1(OF , u) ∩ µF , then ∥uf∥2 = ∥u∥2 ≤ 6.4653 < 6 · 21/3 which
is a contradiction.

As every f ∈ S2,1(OF , u) is a unit, we bound ∥f−1∥ as in the proof of
Proposition 4.3:

∥f−1∥2 = ∥u/uf∥2 = 2
(

|u1|2

|u1f |2
+ |u2|2

|u2τ2(f)|2 + |u3|2

|u3τ3(f)|2

)

= ∥u∥2 ·
( 1

|u1f |2
+ 1

|u2τ2(f)|2 + 1
|u3τ3(f)|2

)
≤ 6.4653 · 5.15519 ≈ 33.33.

Thus there are m1 units with squared length at most 33.33. Similar to the
proof of Proposition 4.3, and using the fact that S2,1(OF , u) ∩ µF = ∅, we
have m1 = (#µF ) · m′

1 where
m′

1 = #{ϵ′ ∈ O×
K\{±1} : ∥ϵ′∥2

K ≤ 33.33/2}.

When p ≥ 31, then m′
1 = 0 by Proposition 2.4. When p < 31, we compute

the numbers m′
1 and find

p 7 9 13 19
m′

1 ≤ 12 6 6 3 .

In these cases, m′
1 ≤ 12. Hence m1 ≤ 12 · (#µF ). □

5. Road map for the proof of Theorem 1.1

In this section, we give a road map for the proof of Theorem 1.1. This
proof requires us to consider several cases which we outline below. We seek
to prove:

h0(OF , 1) > h0(I, u) whenever [(I, u)] ̸= [(OF , 1)].
The case where I is not principal is proved in Section 6 and is the shorter
of the proofs. Sections 7 and 8 prove the theorem in the case where I is
principal.

For an (Arakelov) divisor D = (I, u), recall that k0(D) =
∑

f∈I e−π∥uf∥2 .
Also recall D0 := (OF , 1). Since h0(D) = log(k0(D)), it is sufficient to
prove:

k0(D) < k0(D0) whenever [D] ̸= [D0].
We split k0(D) into four summands:

k0(D) = 1 + Σ1(I, u) + Σ2(I, u) + Σ3(I, u), where

Σi(I, u) =
∑

f∈Si(I,u)
e−π∥uf∥2

, i ∈ {1, 2, 3}.(5.1)
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In previous papers on the size function for number fields [3, 4, 15, 16],
k0(D) was split into three summands which were then bounded to conclude
k0(D) < k0(D0). The proof in this paper is more technical and requires four
summands to find a sufficiently tight upper bound on k0(D). We bound
them as follows:

• Σ1(I, u): We bound this sum twice, in Sections 6 and 7, obtaining
different results depending whether I is principal.

• Σ2(I, u): This is bounded using results from Section 4. Establishing
this bound is very different than techniques used in previous papers.

• Σ3(I, u): Bounding Σ3(I, u) is accomplished by applying Corol-
lary 2.17.

5.1. Strategy for Section 6: I is not principal. We prove that
Σ1(I, u) = 0, thus getting a small upper bound on k0(D). The result follows
quickly.

5.2. Strategy for Sections 7 and 8: I is principal. By Remark 2.15,
when I is principal, we can assume that the class of divisors [D] has the
form [(OF , u)] for some u ∈ R3

+ and N(u) = 1. With the notation from
Section 2, the vector u can be chosen such that w = − log u ∈ F . Therefore
w = α1 · b1 + α2 · b2 for some α1, α2 ∈

(
−1

2 , 1
2

]
.

To establish Theorem 1.1 we divide this case into subcases depending
on ∥w∥. When ∥w∥ is sufficiently large we can bound Σ1(OF , u) to obtain
the result k0(D) < k0(D0) via Proposition 7.1. We use this method in
Section 7, which considers the case where ∥w∥ ≥ 0.24163. This is divided
into two separate subcases in Sections 7.1 and 7.2 depending on the value
of ∥w∥, but the strategy remains similar for both cases.

Finally, in Section 8 we consider values of w with 0 < ∥w∥ < 0.24163.
Geometrically speaking, this is the case where u is close to 1, so that k0(D)
and k0(D0) are very close in value, which makes this case more difficult than
the others. We cannot obtain a useful bound on Σ1(OF , u) and we must
approach this case differently than the others. Here we use a technique
called “amplification”1. Instead of proving that k0(D) − k0(D0) < 0, we
consider the quantity

[k0(D) − k0(D0)]/∥w∥2

and prove it is negative. We divide by ∥w∥2 because k0(D) − k0(D0) may
be extremely small, and this division scales it up to a value that is more
tractable to bound. We split this quantity into three separate sums,

[k0(D) − k0(D0)]/∥w∥2 = T1(u) + T2(u) + T3(u)

1We thank René Schoof for introducing this technique to us.



The size function for imaginary cyclic sextic fields 857

where Ti(u), i ∈ {1, 2, 3} are defined at the beginning of Section 8, and we
prove that T1(u) + T2(u) + T3(u) < 0. The definition of these Ti(u) values
takes several lines to develop, hence we will not define them here. We will
only note that these are defined differently than the Σi(I, u) values used
in the previous two sections. Thus the proofs in Section 8 rely on different
techniques to establish, including the Galois properties of the fields. The
bound for T3(u) uses the most innovative techniques and relies on Section 3.
We prove Theorem 1.1 directly by applying Propositions 8.1 and 8.4–8.6.

6. Proof of Theorem 1.1 when I is not principal

When I is not principal, |N(f)|/N(I) ≥ 2 for all f ∈ I\{0}. Recall that
N(I)N(u) = 1 since deg(D) = 0. As a consequence,

∥uf∥2 ≥ 6|N(uf)|2/6 = 6|N(u)N(f)|1/3 = 6
( |N(f)|

N(I)

)1/3
≥ 6 · 21/3.

This inequality holds for any nonzero f ∈ I. Therefore, the squared length
of the shortest vectors of the lattice uI is λ2 ≥ 6 · 21/3. This implies that
Σ1(I, u) = 0 since S1(I, u) = ∅, and that Σ3(I, u) < 2.6049 · 10−9 by
Corollary 2.17.

We now show that Σ2(I, u) ≤ 6 · (#µF ) · e−6·21/3π. It is sufficient to find
an upper bound for #S2(I, u). First, we show that S2,1(I, u) = ∅. This is
because if S2,1(I, u) were to contain some f ∈ I, then fOF = I, which
contradicts the fact that I is not principal. Hence #S2(I, u) = #S2,2(I, u)
by (4.1). By Proposition 4.2, one has #S2,2(I, u) ≤ 6 · (#µF ). The upper
bound for Σ2(I, u) is implied. It follows that

k0(D) = 1 + Σ1(I, u) + Σ2(I, u) + Σ3(I, u)

< 1 + 6 · (#µF ) · e−6·21/3π + 2.6049 · 10−9.

It is obvious that k0(D0) > 1 + (#µF ) · e−6π. Therefore k0(D) < k0(D0)
and Theorem 1.1 is proved when I is not principal.

7. Proof of Theorem 1.1 when I is principal and ∥w∥ ≥ 0.24163

Proposition 7.1. Let D = (OF , u) be a divisor of degree 0. Then k0(D0) >
k0(D) if one of the following conditions holds:

(i) Σ1(OF , u) < (#µF ) · 4.28 · 10−9, or
(ii) ∥u∥2 ≤ 6.4653 and Σ1(OF , u) < (#µF ) · 4.62 · 10−9.

Proof. As deg(D) = 0, one has N(u) = 1. For f ∈ OF \ {0}, one has
|N(f)| ≥ N(OF ) = 1, hence

∥uf∥2 ≥ 6|N(uf)|1/3 ≥ 6|N(u)N(f)|1/3 = 6N(u)1/3|N(f)|1/3 ≥ 6.
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Therefore, the length of the shortest vectors of the lattice uOF is λ ≥
√

6.
By Corollary 2.17, Σ3(OF , u) < 2.6049 · 10−9.

We have #S2(OF , u) = #S2,1(OF , u)+#S2,2(OF , u). By Propositions 4.2
and 4.3, #S2(OF , u) ≤ 19 · (#µF ). As a consequence,

Σ2(OF , u) ≤ (#S2(OF , u)) · e−6·21/3π ≤ 19 · (#µF ) · e−6·21/3π.

Substituting this into k0(D) = 1 + Σ1(OF , u) + Σ2(OF , u) + Σ3(OF , u),
we have

k0(D) < 1 + Σ1(OF , u) + 19 · (#µF ) · e−6·21/3π + 2.6049 · 10−9.

Since k0(D0) > 1 + (#µF ) · e−6π, to show k0(D0) > k0(D), it is sufficient
to prove

Σ1(OF , u) < (#µF ) ·
(
e−6π − 19 · e−6·21/3π

)
− 2.6049 · 10−9.

The right hand side is greater than (#µF ) · 4.28 · 10−9 because #µF ≥ 2.
Thus, the first statement (i) is proved. If ∥u∥2 ≤ 6.4653, then Proposi-
tions 4.2 and 4.4 imply that #S2(OF , u) ≤ 12 · (#µF ). Statement (ii) is
then proved by using a similar argument. □

Proposition 7.1 is essential in proving the main theorem as shown below.

Remark 7.2. To prove Theorem 1.1, it is sufficient to show that
Σ1(OF , u) < (#µF ) · 4.28 · 10−9 for all w = (x, y, z) ̸= (0, 0, 0).

Lemma 7.3. Recall S1(OF , u) = {f ∈ O×
F : ∥uf∥2 < 6 · 21/3}. For each

f ∈ OF \ {0}, define vf = log f . Then vf ∈ Λ for each f ∈ S1(OF , u).

Proof. Assume f ∈ OF \{0} and ∥uf∥2 < 6·21/3. Since N(u) = 1, N(uf) =
N(f). Thus

6 · 21/3 > ∥uf∥2 ≥ 6|N(uf)|1/3 = 6|N(f)|1/3.

This implies that |N(f)| = 1. That is, f ∈ O×
F . □

Let w ∈ F . We consider two subcases in the next two subsections. As
w ∈ F ∥w∥ ≤

√
3λ/2, where, from Lemma 2.10, one has λ ≥ 1.44975.

7.1. Case 0.324096 ·
√

2 < ∥w∥ ≤
√

3λ1/2. As 0.324096
√

2 < ∥w∥ =
∥− log u∥, one obtains that ∥u∥2 ≥ 6.38985. Let f ∈ S1(OF , u). Then by
Lemma 7.3, vf ∈ Λ. It follows that

∥log(uf)∥ = ∥log f + log u∥ = ∥vf − w∥,

and ∥vf − w∥ < λ1 since otherwise ∥uf∥2 > 6 · 21/3. Hence f ∈ B(w).
Therefore S1(OF , u) ⊂ B(w). By Lemma 2.9,

S1(OF , u) ⊂ {1, x1, x2, x3} · µF ⊂ O×
F ,
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where

∥log x1−w∥ ≥ 0.62776, ∥log x2−w∥ ≥ 0.72487 and ∥log x3−w∥ ≥ 1.25552.

Since log xi − w = log(uxi) for 1 ≤ i ≤ 3, we have that

∥ux1∥2 ≥ 6.71608, ∥ux2∥2 ≥ 6.94478 and ∥ux3∥2 ≥ 8.72718.

Thus ∥ux3∥2 > 6 · 21/3, which implies x3 /∈ S1(OF , u) and S1(OF , u) ⊂
{1, x1, x2} · µF .

Then Theorem 1.1 is proved by Proposition 7.1(i) and the inequality:

Σ1(OF , u) ≤
∑

f∈{1,x1,x2}·µF

e−π∥uf∥2

= (#µF ) ·
(
e−π∥u∥2 + e−π∥ux1∥2 + e−π∥ux2∥2)

≤ (#µF ) ·
(
e−6.38985π + e−6.71608π + e−6.94478π

)
≈ (#µF ) · 2.5 · 10−9.

7.2. Case 0.24163 ≤ ∥w∥ ≤ 0.324096 ·
√

2. The bounds on ∥w∥ give
6.11188 ≤ ∥u∥2 ≤ 6.4653. For f ∈ S1(OF , u)\µF , one has 0 ̸= vf ∈ Λ by
Lemma 7.3 and

∥log(uf)∥ = ∥log f + log u∥ = ∥vf − w∥ ≥ |∥vf ∥ − ∥w∥|

≥ λ1 − 0.324096 ·
√

2 ≥ 0.9914.

It follows that ∥uf∥2 ≥ 7.7265 > 6 · 21/3. Thus, S1(OF , u) ⊂ µF and

Σ1(OF , u) ≤
∑

f∈µF

e−π∥uf∥2 = (#µF ) · e−π∥u∥2 ≤ (#µF ) · e−6.11188π

≈ (#µF ) · 4.582 · 10−9.

Theorem 1.1 is then established in this case using Proposition 7.1(ii).

8. Proof of Theorem 1.1 when I is principal and
0 < ∥w∥ < 0.24163

We first fix the following notation, which will be used but not re-stated
in lemmas and propositions throughout this section: Given any u ∈ R3

+, let
x, y, z ∈ R be such that u = (ex, ey, ez). Then w = − log u = (−x, −y, −z) ∈
R3 and x + y + z = 0.

For any f ∈ OF , we define fi = |τi(f)|, i ∈ {1, 2, 3}. Then

∥uf∥2 = 2
(
e2x|τ1(f)|2 + e2y|τ2(f)|2 + e2z|τ3(f)|2

)
= 2

(
f2

1 e2x + f2
2 e2y + f2

3 e2z
)

.
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For f ∈ OF we now define

G(u, f) = e−π∥f∥2
G2(f, u)/∥w∥2,

where
G1(u, f) = e−π[∥uf∥2−∥f∥2] − 1 = e−2π[(e2x−1)f2

1 +(e2y−1)f2
2 +(e2z−1)f2

3 ] − 1,

G2(u, f) = G1(u, τ1(f)) + G1(u, τ2(f)) + G1(u, τ3(f)).
We then use G(u, f) to define

T1(u) =
∑

f∈µF

G(u, f) = (#µF ) · G(u, 1),

T2(u) =
∑

f∈OF , ∥f∥2≥22
G(u, f),

T3(u) =
∑

f∈OF \µF , ∥f∥2<22
G(u, f).

Proposition 8.1. Theorem 1.1 holds if and only if T1(u)+T2(u)+T3(u) <
0 for all u = (ex, ey, ez) ̸= (1, 1, 1).
Proof. Since 3[k0(D) − k0(D0)]/∥w∥2 =

∑
f∈OF

G(u, f) = T1(u) + T2(u) +
T3(u) by [16, Proposition 4.1], the result follows. □

We now establish Theorem 1.1 in this case by proving several results
which are achieved using the Galois property of F , the Taylor expansion of
et, and the symmetry of G2(u, f).
Lemma 8.2. For all u ∈ R3

+ and f ∈ OF ,
G(u, τ1(f)) = G(u, τ2(f)) = G(u, τ3(f)).

Proof. This can be seen from the formulas of G(u, τi(f)), i ∈ {1, 2, 3} and
the fact that ∥τ1(f)∥ = ∥τ2(f)∥ = ∥τ3(f)∥ for all f ∈ OF . □

Proposition 8.3. Let ∥w∥2 = 2(x2 + y2 + z2) > 0. Then for all f ∈ OF ,

G(u, f) ≤ 4π2∥f2∥2e−π∥f∥2
(

1 + 1
2e2π∥w∥∥f2∥

)
.

In particular, if f ∈ OF with ∥f∥2 ≥ 22 then

G(u, f) ≤ 2π2
(

e−(π−2/7)∥f∥2 + 1
2e−(π−2π∥w∥−2/7)∥f∥2

)
.

Proof. The first inequality is from [16, Proposition 4.2]. The second is ob-
tained from the first combined with

∥f2∥2 ≤ 1
2∥f∥4 ≤ 1

2e2∥f∥2/7 and ∥f2∥ ≤ ∥f∥2 for all ∥f∥2 ≥ 22. □

Proposition 8.4. If ∥w∥2 ∈ (0, 0.241632), then
T1(u) < −98.4664 · 10−9 · (#µF ).
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Proof. As T1(u) = (#µF ) · G(u, 1), it is sufficient to prove G(u, 1) <
−98.4664 · 10−9. Since 0 < ∥w∥ < 0.24163,

2(e2x + e2y + e2z − 3) ≥ 1.9 · 2(x2 + y2 + z2) = 1.9∥w∥2.

Consequently,

G1(u, 1) = e−2π[e2x+e2y+e2z−3] − 1 ≤ e−1.9π∥w∥2 − 1.

The bounds on ∥w∥ also imply

G2(u, 1)/∥w∥2 = 3G1(u, 1)/∥w∥2 ≤ 3[e−1.9π∥w∥2 − 1]/∥w∥2 < −15.1198.

Therefore G(u, 1) = e−6πG2(u, 1)/∥w∥2 < −98.4664 · 10−9. □

Proposition 8.5. If ∥w∥2 ∈ (0, 0.241632) then T2(u) < 2.19278 · 10−9.

Proof. By Proposition 8.3, one has

T2(u) ≤ 2π2 ∑
f∈OF , ∥f∥2≥22

e−(π−2/7)∥f∥2 +π2 ∑
f∈OF , ∥f∥2≥22

e−(π−2π∥w∥−2/7)∥f∥2
.

The first sum is at most 10−23 by Corollary 2.17. Further, since ∥w∥ <
0.24163, one has

π − 2π∥w∥ − 2/7 ≥ π − 2 · 0.24163 π − 2/7.

The second sum is then bounded by 2.19277 · 10−9 by Corollary 2.17. Thus
T2(u) ≤ 2.19278 · 10−9. □

Bounding T3(u) is more technical than bounding T1(u) and T2(u). We
bound T3(u) in the following proposition.

Proposition 8.6. If ∥w∥2 ∈ (0, 0.241632) then
T3(u) < 98.4664 · 10−9 · (#µF ) − 2.19278 · 10−9.

Proof. Since #µF ≥ 2, we have
98.4664 · 10−9 · (#µF ) − 2.19278 · 10−9 > 1.9474 · 10−7.

Therefore it is sufficient prove T3(u) < 1.9474 · 10−7. For f ∈ OF define the
lengths l1 and l2 by l1 = ∥f∥2 and l2 = ∥f2∥2. For ∥w∥ ∈ (0, 0.24163) apply
Proposition 8.3 to bound G(u, f) as a function of l1 and l2:

(8.1) G(u, f) ≤ G(l1, l2) := 4π2l2e−πl1

(
1 + 1

2e2π·0.24163
√

l2

)
.

Based on the results of Section 3, we divide our proof into four cases.

Case (1). p > 61 and either
• d ≡ 1, 2 mod 4 and d > 22, or
• d ≡ 3 mod 4 and d > 59.

Using the result in Section 3, one can show that T3(u) = 0 for these values.
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Case (2). p > 61 and either
• d ≡ 1, 2 mod 4 and d ≤ 22, or
• d ≡ 3 mod 4 and d ≤ 59.

If d > 11, then T3(u) = 0. If d ≤ 11, d ∈ {1, 2, 3, 7, 11}. If d ∈ {1, 2},
then any f ∈ Ok has the form m + n

√
−d, and ∥f∥2 = 6(m2 + n2d). When

d = 1, f ∈ {±1 ± i}, f2 ∈ {±2i}, and ∥f∥2 = 12, ∥f2∥2 = 24. As a
result, one has T3(u) ≤ 4 · G(12, 24) ≈ 1.4 · 10−10. Similarly, if d = 2, then
either f = ±1 ±

√
−2 or f = ±

√
−2. When f = ±1 ±

√
−2 we have f2 =

−1 ± 2
√

−2, ∥f∥2 = 18 and ∥f2∥2 = 54. When f = ±
√

−2, then f2 = 2.
Thus ∥f∥2 = 12 and ∥f2∥2 = 24. As a consequence, T3(u) ≤ 4 · G(18, 54) +
2 · G(12, 24) < 10−10. For d ∈ {3, 7, 11}, we do the same computation. If
d = 3: f ∈ {±3/2 ±

√
−3/2, ±

√
−3} and T3(u) ≤ 6 · G(18, 54) < 10−10.

If d = 7: f ∈ {±1/2 ±
√

−7/2} and T3(u) ≤ 4 · G(12, 24) < 1.4 · 10−10. If
d = 11: f ∈ {±1/2 ±

√
−11/2} and T3(u) ≤ 4 · G(18, 54) < 10−10.

Case (3). p ≤ 61 and either
• d > 22 with d ≡ 1, 2 mod 4 or
• d > 59 with d ≡ 3 mod 4.

Section 3 implies T3(u) = 0 for p > 13. Therefore, we only consider p ∈
{7, 9, 13}. For each of these values for p there is exactly one cyclic cubic
field K with conductor p. We can find all vectors f ∈ OK\{0} for which
∥f∥2

K < 11, equivalently, ∥f∥2 < 22 using an LLL-reduced basis of the
lattice OK [11, Section 12] or by applying the Fincke–Pohst algorithm [2,
Algorithm 2.12]). We first consider p = 7. There are 18 elements f ∈
OK\{0} such that ∥f∥2 < 22:

∥f∥2 ∥f2∥ Number of elements f
10 26 6
12 52 6
20 132 6

Therefore,

T3(u) ≤ 6 · G(10, 26) + 6 · G(12, 52) + 6 · G(20, 132) < 1.76 · 10−7.

For p = 9, we do a similar computation and obtain,

T3(u) ≤ 6 · G(12, 36) + 6 · G(18, 98) + 6 · G(18, 138) < 1.64 · 10−9.

When p = 13, one has T3(u) ≤ 6 · G(18, 106) + 6 · G(84, 120) < 3 · 10−14.

Case (4). p ≤ 61 and either
• d ≡ 1, 2 mod 4 and d ≤ 22, or
• d ≡ 3 mod 4 and d ≤ 59.
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Let L1 = {(7, 1), (9, 1), (13, 1), (19, 1), (7, 2), (9, 2), (9, 6), (13, 13), (7, 14),
(7, 21), (9, 21)}, and L2 = {(7, 3), (9, 3), (13, 3), (19, 3), (31, 3), (37, 3),
(43, 3), (7, 7), (9, 7), (13, 7), (19, 7), (31, 7), (7, 11), (9, 11), (13, 11), (9, 15),
(19, 19), (31, 31), (7, 35), (9, 39), (13, 39), (43, 43), (9, 51)}.

By Proposition 3.6, if (p, d) is not in L1 ∪ L2, then

T3(u) ≤
∑

f∈Ok\µF , ∥f∥2<22
G(u, f) +

∑
f∈OK\µF , ∥f∥2<22

G(u, f).

The first sum is nonzero when d ∈ {1, 2, 3, 7, 11} by Proposition 3.4 and the
second is nonzero when p ∈ {7, 9, 13} by Proposition 3.5. These sums are at
most 1.4 · 10−10 (see Case (2)) and 1.76 · 10−7 (see Case (3)), respectively.
Thus T3(u) < 1.9474 · 10−7. We now consider the cases in which (p, d) ∈
L1 ∪L2. Using an LLL-reduced basis of the lattice OF viewed as a lattice in
R6 [11, Section 12] or by applying the Fincke–Pohst algorithm [2, Algorithm
2.12]), we first list all elements f ∈ OF such that ∥f∥2 < 22. After that,
we compute the function G(l1, l2) to find an upper bound for T3(u) using
Proposition 8.3 as done in Case (2). The results are shown in Table 8.1.
When (p, d) ∈ {(7, 7), (7, 3), (7, 1)}, the number of roots of unity of F is
#µF ∈ {14, 6, 4} respectively. Therefore, in these cases we still have that
T3(u) < 98.4664 · 10−9 · (#µF ) − 2.19278 · 10−9 as desired. For other values
of (p, d) in Table 8.1, T3(u) < 1.9474 · 10−7. □

9. A comparison to previous work

Compared to previous papers [3, 4, 15, 16], many of the details of our
proofs are more technical and required us to develop new techniques, though
the overall structure of our proof is similar to previous work. In terms of
structural similarity, we considered the case where I is principal separately
from the case where it is not. When I is principal, we subdivide further
based on the length of w = − log(u).

The techniques that are unique to this paper are:
• We split h0(D) into three summations instead of two as in previous

papers. The reason is that the upper bound for∑
f∈I,∥uf∥2>6·21/3

e−π∥uf∥2

obtained by Lemma 2.16 is too large to be useful for imaginary cyclic
sextic fields. To solve this problem, we split this sum into Σ2 + Σ3
(see 5.1) and find an efficient bound for Σ2. We compute this bound
in Section 6 and the proof of Lemma 7.1. The bound is a multiple
of #µF . To bound Σ2, we find an upper bound for #S2, which is the
primary goal of Section 4 (see Propositions 4.2, 4.3, 4.4). These bounds
are not given in previous work. Further, when I is principal, Σ1 can
be bounded by a multiple of #µF , minus a constant (see Lemma 7.1).
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Table 8.1. Computing an upper bound for T3(u) for (p, d) ∈ L1 ∪ L2

(p, d) ∥f∥2 ∥f2∥ # elements f T3(u) ≤ (p, d) ∥f∥2 ∥f2∥ # elements f T3(u) ≤
(7, 1) 10 26 12 3.5200 · 10−7 (7, 3) 10 26 18 5.2784 · 10−7

12 24 4 12 52 18
12 52 12 14 42 36
16 52 24 16 52 36
18 82 24 18 54 6
20 76 24 18 82 36
20 104 12 20 132 18
20 132 12

(9, 1) 12 24 4 3.4064 · 10−9 (9, 3) 12 36 108 2.9425 · 10−8

12 36 12 18 54 18
18 66 24 18 66 108
18 90 12 18 90 54
18 138 12 18 138 54

(13, 1) 12 24 4 1.3672 · 10−9 (13, 3) 18 54 6 6.4034 · 10−14

18 106 12 18 106 18
20 84 12 20 84 18

(19, 1) 12 24 4 1.3668 · 10−10 (19, 3), (31, 3), 18 54 6 1.2367 · 10−16

(37, 3) or (43, 3)
(7, 2) 10 26 6 1.7600 · 10−7 (7, 7) 10 26 42 1.2326 · 10−6

12 24 2 12 24 28
12 52 6 12 52 42
18 54 4 14 42 42
20 104 6 20 76 84
20 132 6 20 104 84

20 132 42
(9, 2) 12 24 2 1.7032 · 10−9 (9, 7) 12 24 4 1.7716 · 10−9

12 36 6 12 36 6
18 54 4 18 90 6
18 90 6 18 138 6
18 138 6

(9, 6) 12 36 6 1.6349 · 10−9 (13, 7) 12 24 4 1.3670 · 10−10

and 18 90 6 18 106 6
(9, 21) 18 138 6 20 84 6
(13, 13) 18 106 6 2.1304 · 10−14 (7, 14) 10 26 6 1.7593 · 10−7

20 84 6 and 12 52 6
(7, 21) 20 132 6
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• In this paper T1(u) (Proposition 8.4) and T3(u) (Proposition 8.6),
depend on a multiple of #µF , in contrast to the cyclic cubic case [16].
Using #µF is necessary to show that T1(u) + T2(u) + T3(u) < 0.

• To compute an efficient upper bound for T3(u), we bound the discrim-
inant ∆F of F . Previous papers have used two different approaches to
achieve this goal:
(1) The complex quartic case: This case uses a short fundamental
unit ε to bound ∆F , where ∥ε∥2 < 1 +

√
2 [15, Lemma 6.3]. In the

imaginary cyclic sextic case, we cannot take this approach because the
unit group of F depends on p but not d (see Lemma 2.6) and hence
does not depend on ∆F . Therefore we cannot bound for ∆F based on
the size of the units of F . When p is fixed, the fundamental units are
fixed, yet we can make ∆F as large as we want by choosing a large
value for d (Lemma 3.1).
(2) The cyclic cubic case: This case uses the existence of short elements
f ∈ OF \µF with ∥f∥2 < 10 [16, Proposition 2.3]. For imaginary cyclic
sextic fields there was no existing result to bound the length of an
element in OF in terms of ∆F , so we develop this in Section 3. We
show that if F has short elements f ∈ OF \µF , where short means
that ∥f∥2 < 22, then one of three things holds: (i) p ≤ 61 and d ≤ 59,
(ii) f is in the quadratic subfield k = Q(

√
−d) with d ≤ 11, or (iii) f

is in the cubic subfield K with conductor p ≤ 13. Using upper bounds
for p and d, we can list all imaginary cyclic sextic fields in which there
exist elements f ∈ OF \µF with ∥f∥2 < 22. For each such field, we
compute these short elements and make use of the function G in (8.1)
to find an upper bound for T3(u) (see Table 8.1).
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