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An uncountable Mittag-Leffler condition with an
application to non-archimedean locally convex

vector spaces

par Andrea PULITA

To the memory of Jean-Pierre Demailly

Résumé. La condition de Mittag-Leffler assure l’exactitude de la limite in-
verse d’une famille de suites exactes indexée par un ensemble partiellement
ordonné admettant un sous-ensemble cofinal dénombrable. Nous généralisons
la condition de Mittag-Leffler en affaiblissant relativement la condition de dé-
nombrabilité. Comme application nous démontrons une version ultramétrique
d’un résultat de V. P. Palamodov en relation avec l’acyclicité des espaces Fré-
chet par rapport au foncteur de complétion.

Abstract. Mittag-Leffler condition ensures the exactness of the inverse limit
of a family of short exact sequences indexed on a partially ordered set admit-
ting a countable cofinal subset. We extend Mittag-Leffler condition by rela-
tively relaxing the countability assumption. As an application we prove an
ultrametric analogous of a result of V. P. Palamodov in relation with the
acyclicity of Fréchet spaces with respect to the completion functor.

1. Introduction

In several mathematical theories one encounters objects defined as in-
verse limits. Typically this happens in sheaf theory, where the set of global
sections of a sheaf is the inverse limit of the local ones. Analogous struc-
tures actually largely appear in several theories such as topos theory, linear
algebra, algebraic geometry, functional analysis and many others. Limits
contain crucial information of the original systems and it is interesting to
study what properties are lost in the limit process. One of these is the
exactness of short exact sequences. The importance of this property is il-
lustrated again by the example of sheaf theory, where there is an entire
cohomology theory devoted to “measure” the default of exactness of the
global section functor. More specifically, we are interested here in a precise
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criterion, originally due to Mittag-Leffler [3, II.19, No5, Exemple], ensuring
that the exactness of short exact sequences is preserved when passing to
the limit. Here is the classical Mittag-Leffler statement1

Theorem 1 (Classical Mittag-Leffler). Let R be a ring with unit element
and let (I,≤) be a directed2 partially ordered set. Let (ρAi,j : Ai → Aj)i,j∈I ,
(ρBi,j : Bi → Bj)i,j∈I and (ρCi,j : Ci → Cj)i,j∈I be three inverse systems
of left (or right) R-modules indexed on I. For all i ∈ I consider an exact
sequence 0 → Ai

gi−→ Bi
hi−→ Ci → 0 compatible with the transition maps of

the systems3. Assume that
(i) There exists a cofinal4 subset of I which is at most countable;
(ii) For all i ∈ I, there exists j ≥ i such that for all r ≥ j one has

(1.1) ρAj,i(Aj) = ρAr,i(Ar) .
Then, the short sequence of limits

(1.2) 0 −→ lim←−
i∈I

Ai
g−→ lim←−

i∈I
Bi

h−→ lim←−
i∈I

Ci −→ 0

is exact and the first derived functor lim←−
(1)
i∈I of lim←−i∈I vanishes at (Ai)i :

lim←−
(1)
i∈I Ai = 0.

The condition (ii) of the theorem is not a necessary condition for the van-
ishing of lim←−

(1)
i∈I . Actually, if I is the set of natural numbers N = {1, 2, 3, . . .},

then condition (ii) characterizes inverse systems (Ai)i satisfying lim(1)
i∈I Ai⊗

E = 0 for all R-module E (cf. [4]). On the other hand, condition (i) is quite
restrictive. From it, one deduces the existence of a map τ : N→ I respect-
ing the order relation whose image is a cofinal subset of I (cf. Lemma 5.1).
The existence of τ is a strong condition because it implies that for all in-
verse systems (Qi)i∈I of R-modules and for all n ≥ 0 we have a canonical
isomorphism lim←−

(n)
i∈I Qi = lim←−

(n)
j∈NQτ(j) between the n-th derived functors of

lim←− (cf. [10, Theorem B]). Hence, from a cohomological point of view, in-
verse systems over I are indistinguishable from those over N. In particular,
the claim implies lim←−

(n)
i∈I Ai = 0, for all integer n ≥ 2, because this is true

for every inverse system of modules indexed by N (cf. [10], see below).
The proof of Mittag-Leffler Theorem deals with the surjectivity of the

map h by a quite explicit set-theoretical argument. Namely, if x = (xi)i∈N ∈
lim←−i∈NCi, then the inverse images h−1

i (xi) ⊂ Bi form an inverse system of

1Following the tradition, we state it for R-modules. However, it holds more generally for
inverse systems of topological groups and certain Abelian categories as considered in [15].

2The word directed means that for all i, j ∈ I there exists k ∈ I such that k ≥ i and k ≥ j.
3i.e. for all j ≥ i ∈ I one has gi ◦ ρA

j,i = ρB
j,i ◦ gj and hi ◦ ρB

j,i = ρC
j,i ◦ hj

4A subset J ⊆ I is cofinal if for all i ∈ I there exists j ∈ J such that j ≥ i.
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sets, whose inverse limit verifies h−1(x) = lim←−i∈N h
−1
i (xi). The fact that this

limit of sets is not empty follows from the fact that this system is “locally”5

isomorphic to (Ai)i∈N and condition (ii) allows us to replace this system
by a system of sets indexed on N with surjective transition maps, which
obviously has a non empty inverse limit.

In this paper we are interested in extending this statement relaxing the
countability condition (i) of Theorem 1. The situation is indeed more dan-
gerous because, for instance, there are explicit non trivial examples of in-
verse systems of sets indexed on some uncountable poset I with surjective
transition maps whose inverse limit is empty (cf. [1, III.94, Exercice 4-d)]),
so that the last part of the above proof is strongly jeopardized. Indeed,
without the countability assumption (i), there are actually few results in
literature ensuring the non vanishing of an inverse limit of sets. The more
important ones seem due to Bourbaki [1, III.57, §7, N.4, Théorème 1] and [3,
TG.17, §3, N.5, Théorème 1] and impose strong conditions on the sets and
the maps, conditions that we can qualify as being of a nature related to
finiteness. For instance, it applies to inverse systems of finite sets, finite
groups, Artinian modules (cf. [1, III.60, §7, N.4, Examples]) or to compact
topological spaces [3, I.64, §9, N.6, Proposition 8].6

These issues show that without countability assumption on I the first
derived functor lim←−

(1)
i∈I Ai possibly not vanishes for an inverse system with

surjective transition maps. Therefore, several authors addressed the ques-
tion of what can be said about the smallest natural number s ≥ 0 such that
for all m ≥ s and all inverse systems (Mi)i∈I one has lim←−

(m)
i∈I Mi = 0 (this

number is called cohomological dimension of the poset I). Barry Mitchel
proved that if (I,≤) admits a cofinal subset of cardinal ℵn, and if n is
the smallest natural number with this property, then for all k ≥ n + 2,
the k-derived functor lim←−

(k)
i∈I vanishes on every inverse system of R-modules

(cf. [10], extending previous results of J.-E. Roos [12, 13, 14, 15], Goblot [5],
and Jensen [8, Proposition 6.2, p. 53]). On the other hand, it is known that
for any given ring R, one can find a partially ordered set (I,≤) and an
inverse system (Mi)i∈I of R-modules indexed by I such that for all n ≥ 0
the n-th derived limit lim←−

(n)
i∈IMi is not zero [8, Proposition 6.1, p. 51].

In particular, this last result shows that for the vanishing of lim←−
(1)
i∈I Ai in

Theorem 1, some finiteness condition is really needed either on the set I,
or on the objects, or on the transition maps. For instance, the countability

5The word locally here has a precise meaning. It is possible to associate to (I,≤) a topology
on I such that sheaves on I with respect to this topology are exactly inverse systems indexed on
I. In this correspondence, the global sections of a sheaf over I is exactly the inverse limit of the
associated systems (cf. [8, p. 4], see Section 2).

6See also the more general case of linearly compact modules with continuous maps [8,
Théorème 7.1, p. 57].
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condition (i) in Theorem 1 can be seen as a finiteness assumption on the
set I and condition (ii) is a finiteness condition on the transition maps. On
the other hand, the quoted statements of Bourbaki, or their consequence
for Artinian R-modules, can be considered as finiteness conditions on the
nature of the objects Ai.

Surprisingly enough, if I does not contain any cofinal countable subset
and if no condition about on R and the modules Ai are made, then in
our knowledge no statement ensuring the vanishing of lim←−

(1)
i∈I Ai exists in

literature. Nevertheless, in this general context, there are interesting cases of
inverse systems behaving very similarly to Mittag-Leffler ones just because
much part of the restriction maps ρAi,j are isomorphisms and their limit is
then “controlled” by some countable subset of maps. Situations of this type
show up for instance in sheaf theory as pull-back of some sheaf on a Stein
space, which actually inspired our approach to this problem. In Section 6 we
give an interesting example provided by the theory of ultrametric locally
convex topological vector spaces. We prove an ulrametric analogous of a
result of V. P. Palamodov [11], in relation with the acyclicity of Fréchet
spaces with respect to the completion functor. In that case, a direct set-
theoretical attempt as in Bourbaki is unhelpful as one can easily see.

We provide here two generalizations of Theorem 1 to the case of an un-
countable I without countable cofinal subsets that only involve a finiteness
condition on the transition maps of the system (Ai)i∈I and no conditions
on I nor on the objects.

Theorem 2 (cf. Corollary 3.8). Let R be a ring with unit element and let
(I,≤) be a directed partially ordered set. Let (ρAi,j : Ai → Aj)i,j∈I be an
inverse systems of left (or right) R-modules indexed on I.

Assume that there exists another directed partially ordered set (J,≤) to-
gether with an inverse system of R-modules (ρSi,j : Si → Sj)i,j∈J such that

(i) There exists a cofinal directed subset I ′ ⊆ I, a cofinal directed subset
J ′ ⊆ J and a surjective map preserving the order relation

(1.3) p : I ′ −→ J ′ ;

(ii) There exists a system of R-linear isomorphisms (ψi : Ai
∼→ Sp(i))i∈I′

such that for all i, j ∈ I ′ with i ≥ j one has a commutative diagram

(1.4) Ai

⟲ρA
i,j

��

ψi

∼
// Sp(i)

ρS
p(i),p(j)
��

Aj ∼
ψj
// Sp(j)
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Then, for all integer n ≥ 0, we have a canonical isomorphism

(1.5) lim←−
i∈I

(n)Ai
∼−−→ lim←−

j∈J

(n)Sj .

In particular, if the partially ordered set J and the system (Sj)j∈J satisfy
the conditions (i) and (ii) of Theorem 1 respectively, then lim←−

(n)
i∈I Ai = 0 for

all n ≥ 1.

Theorem 3 (cf. Corollary 4.7). Let R be a ring with unit element and let
(I,≤) be a partially ordered set. Let (ρAi,j : Ai → Aj)i,j∈I be an inverse
systems of left (or right) R-modules indexed on I.

Assume that there exists a directed partially ordered set (J,≤) together
with an inverse system of R-modules (ρTi,j : Ti → Tj)i,j∈J such that

(i) There exists a cofinal directed subset I ′ ⊆ I, a cofinal directed subset
J ′ ⊆ J and a map preserving the order relation

(1.6) q : J ′ −→ I ′

such that for all i ∈ I ′, the set Ui := {j ∈ J ′, q(j) ≤ i}, endowed
with the partial order induced by J ′, satisfies at least one of the
following conditions
(a) Ui is empty;
(b) Ui has a unique maximal element r(i);
(c) Ui is directed, it has countable cofinal directed poset J ′i and the

system (ρTj,k : Tj → Tk)j,k∈J ′
i

satisfies (1.1).
(ii) For all i ∈ I ′ there exists an R-linear isomorphisms7 ϕi : Ai

∼→
lim←−j∈Ui

Tj and for all k, i ∈ I ′ with k ≥ i one has a commutative
diagram

(1.7) Ak

⟲ρA
k,i

��

ϕk

∼
// lim←−j∈Uk

Tj

ρq∗T
k,i

��

Ai ∼
ϕi

// lim←−j∈Ui
Tj

where the right hand vertical arrow ρq∗T
k,i is deduced by the universal

properties of the limits.
Then, for all integer n ≥ 0, we have a canonical isomorphism

(1.8) lim←−
i∈I

(n)Ai
∼−−→ lim←−

j∈J

(n)Tj .

7Notice that under condition (a) we have lim←−j∈Ui
Tj = 0, and under condition (b) we have

lim←−j∈Ui
Tj = Tr(i).
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In particular, if the partially ordered set J and the system (Tj)j∈J satisfy
the conditions (i) and (ii) of Theorem 1 respectively, then lim←−

(n)
i∈I Ai = 0 for

all n ≥ 1.

Remark that if J ′ = N the assumptions of Theorem 3 are particularly
easy.

It is not hard to see that the assumptions of Theorem 1 imply those of
Theorems 2 and 3. Therefore, they are both generalizations of Theorem 1.
Indeed, if I ′ ⊆ I is a countable cofinal directed subset in Theorem 1, then
the setting (I ′ = J , p = q = id, Si = Ai = Ti, ρSi,j = ρTi,j = ρAi,j , ψi =
ϕi = id) satisfies the assumptions of Theorems 2 and 3. Besides, it is clear
that Theorems 2 and 3 allow the set (I,≤) to be arbitrarily large, while
Theorem 1 artificially forces it to be relatively small.

The proofs of these results rely on the fact that inverse systems indexed
on (I,≤) can be seen as sheaves on a topological space X(I) canonically as-
sociated to (I,≤). In this correspondence, inverse limits and their cohomol-
ogy functors lim←−

(n)
i∈I(−) coincide with sheaf cohomology groupsHn(X(I),−).

This coincidence of theories permits to apply all sheaf theoretic cohomolog-
ical operations, such as, for instance, pull-back and push-forward. Indeed,
as the reader may recognize, condition (ii) of Theorem 2 expresses the idea
that the system (Ai)i∈I′ , interpreted as a sheaf on X(I ′), is isomorphic
to the pull-back of the system (Sj)j∈J ′ by the map p : X(I ′) → X(J ′).
While in Theorem 3, the system (Ai)i∈I′ is isomorphic to the push-forward
of (Tj)j∈J by the map q : X(J ′) → X(I ′). Actually, Theorem 3 is a spe-
cial case of a more general statement that holds for possibly non directed
partially ordered sets and which does not assume specific conditions on
Uj (cf. Proposition 4.1). The fact that we move the set of indexes I along
pull-back and push-forward is in contrast with Theorem 1, where one fixes
the set of indexes once for all and there is no cohomological distinction
between cohomology over N and over I. We show indeed that there is no
danger in moving I because, in this particular context, the pull-back and the
push-forward operations behave much better than in a general topological
space. Namely, they preserve cohomology under quite mild assumptions.
Informally speaking, even though X(I) is allowed to have an enormous
amount of open subsets, from a cohomological point of view it behaves as
a relatively tiny space.

Finally, we observe that a set-theoretical attempt to the proof of Theo-
rems 2 and 3 in similarity to the quoted claims of Bourbaki is not enough
powerful to imply these results. It is necessary to use Čech cohomolgy of
sheaf theory.

Although certainly possible, an extension of these results to the context
of inverse limit of non abelian groups fits in the context of non abelian co-
homology of sheaves and goes beyond the scopes of this paper. Indeed, since
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this is a result that is used by a wide range of mathematicians, we made
the choice to maintain this paper as self contained and basic as possible.

2. Notations

Everywhere in the paper “countable” set means at most countable (i.e.
finite or in bijection with the set of natural numbers N). We fix once for
all a ring R with unit element and denote by R-Mod the category of left
R-modules. We denote by S the category of sets.

Let ≤ be an partial order relation on a set I. For brevity, we use the
terminology poset for partially ordered set and we may indicate (I,≤) by
I. For all i ∈ I we set

Λ(i) := {j ∈ I, j ≤ i} ,
V (i) := {j ∈ I, j ≥ i} ,

(2.1)

and D(i) = I−V (i) = {j ∈ I, j /∈ V (i)}. We say that the poset I is directed
if for all i, j ∈ I there exists k ∈ I such that k ≥ i and k ≥ j. If I is directed,
we say that a subset I ′ ⊂ I is cofinal if for all i ∈ I we can find i′ ∈ I ′ such
that i′ ≥ i, in particular I ′ is a directed poset too. For the moment, we do
not assume I directed, this condition will be specified when necessary.

Following a classical construction, we now define a topological spaceX(I)
associated to a poset (I,≤) (cf. for instance [8, p. 4]). The points of X(I)
are the elements of I and open subsets are the subsets U ⊆ I with the
property that for all i ∈ U one has Λ(i) ⊆ U (cf. (2.1)). In this topology
arbitrary intersections of open subsets are open and therefore every subset
S of X(I) admits a minimum open subset O(S) =

⋃
i∈S Λ(i) containing it.

In particular, Λ(i) is the smallest open subset containing i. On the other
hand, the closure of a subset S ⊂ X(I) is given by S =

⋃
j∈S V (j). If (J,≤)

is another poset, then a map f : X(I)→ X(J) is continuous if, and only if,
f preserves the order relations, that is, if i ≤ j, then f(i) ≤ f(j). We also
say that f is order preserving. The space X(I) acquires special properties
when I is a directed poset and we will need the following Lemma

Lemma 2.1. Let S ⊆ I be a subset. Then, S is a directed poset with
respect to the order relation induced by I if, and only if, so is O(S).

Inverse systems and inverse limits. We quote [8] and [1, Chapter III,
§7] for the notations and basic facts about inverse systems of sets or R-
modules. We quickly recall some notations that will be constantly used
in the sequel of the paper. An inverse system of sets indexed on a poset
(I,≤) is a covariant functor S : (I,≤) → S, where (I,≤) is interpreted as
a category in the usual way. More concretely, S is a collection (Si)i∈I of
sets indexed by I, together with a family of maps (ρSi,j : Si → Sj)(i,j)∈I2,i≥j
such that for all i ∈ I we have ρSi,i = IdSi , and for all i, j, k ∈ I such that
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i ≥ j ≥ k one has ρSj,k ◦ ρSi,j = ρSi,k. We will use the notation S = (Si)i∈I or
S = (ρSi,j : Si → Sj)(i,j)∈I2,i≥j to indicate an inverse system. A morphism g :
(Si)i∈I → (Ti)i∈I of inverse systems is a collection of maps (gi : Si → Ti)i∈I
such that for all i, j ∈ I with i ≥ j one has ρTi,j ◦ gi = gj ◦ ρSi,j . The inverse
limit Ŝ = lim←−i∈I(ρ

S
i,j : Si → Sj) of an inverse system S = (Si)i∈I is the

set of sequences (xi)i∈I ∈
∏
i∈I Si satisfying for all i ≥ j the compatibility

condition ρSi,j(xi) = xj . The projections (ρŜi : Ŝ → Si)i∈I satisfy for all
i ≥ j the compatibility relation ρSi,j ◦ ρŜi = ρŜj .

If every Si is an R-module and every ρSi,j is an R-module homomorphism,
we say that (Si)i∈I is a inverse system of R-modules. Morphisms between
inverse systems of R-modules are morphisms (gi)i∈I as above where, for all
i ∈ I, gi is an R-module homomorphism. In this case the limit is naturally
an R-module. The category R-ModI of inverse systems of R-modules in-
herits almost all the properties of R-Mod. In particular, it is abelian and
it has enough injective elements. The notion of exactness in R-ModI has a
particular interest for us. A short exact sequence in (R-Mod)I is a collec-
tion of short exact sequences of R-modules (0 → Ai

gi−→ Bi
hi−→ Ci → 0)i∈I

indexed on I, such that for every i, j ∈ I with i ≥ j one has the compati-
bility relation gj ◦ ρAi,j = ρBi,j ◦ gi and hj ◦ ρBi,j = ρCi,j ◦ hi. It is well known [2,
II.89, §6, N.1, Proposition 1] that this gives rise to a left exact sequence of
limits 0 → lim←−i∈I Ai

g−→ lim←−i∈I Bi
h−→ lim←−i∈I Ci. In other words, the inverse

limit functor lim←−i∈I : R-ModI → R-Mod is left exact. In particular, we can
consider its derived functors lim←−

(n)
i∈I , n ≥ 0.

Sheaves and cohomology. We quote [6, 7] for the notions about sheaves
of R-modules, or of sets, on a topological space X. Let us just fix some
quick notations. Let τX be the family of all open subsets of X.8 A pre-sheaf
of sets F on X is a contravariant functor from τX to the category of sets
and morphisms of pre-sheaves are just morphisms of functors. If U ⊂ V
are two opens, we denote by ρFV,U : F (V )→ F (U) the restriction map. The
elements of F (U) are called sections of F over U and are often indicated by
Γ(U,F ) := F (U). We say that a pre-sheaf of sets F is a sheaf if for every
family of open subsets (Vi)i∈I , Vi ∈ τX which is closed by finite intersection
we have F (V ) = lim←−i∈I Vi, where V =

⋃
i∈I Vi.

We denote the category of sheaves on X by Sh(X). For all x ∈ X, we
denote the stalk of F at x by Fx := lim−→x∈U F (U). If every F (U) is an
R-module and every restriction map ρFU,V is an R-linear homomorphism,

8τX is seen as a category whose objects are the opens and the morphisms are the inculsions.



Uncountable Mittag-Leffler and an application to locally convex vector spaces 827

we obtain a sheaf in R-modules. We denote the category of sheaves of R-
modules on X by R-Mod(X). It is an abelian category with enough injective
objects. A sequence of sheaves of R-modules F → G → H is exact if for
every x ∈ X so is the sequence of stalks Fx → Gx → Hx. Typically, this
does not implies the exactness of F (U) → S(U) → H(U) for all open U .
The functor Γ(X,−) : R-Mod(X) → R-Mod is left exact and its right
satellites functors are called the sheaf cohomology groups of F , denoted by
Hn(X,F ) = RnΓ(X,F ) (cf. [6, §4] for the definition). Here is a recipe to
compute them. When Hn(X,A) = 0 for all n ≥ 1, we say that A is an
acyclic sheaf of R-module (cf. [7, Definition 7.4]). Then, if A• : 0 → F →
A0 → A1 → A2 → · · · is an acyclic resolution (i.e. a long exact sequence of
sheaves where every sheaf Ak is acyclic), then Hn(X,F ) can be computed
as the cohomology groups of the complex of R-modules Γ(X,A•) : 0 →
Γ(X,A0) → Γ(X,A1) → · · · . That is, if we set A−1 = 0, then for every
n ≥ 0 the composite map Γ(X,An−1) → Γ(X,An) → Γ(X,An+1) is zero,
and if we call Bn := Bn(Γ(X,A•)) ⊆ Γ(X,An) the image of the first map
and Zn := Zn(Γ(X,A•)) ⊆ Γ(X,An) the kernel of the second map, then
Bn ⊂ Zn and we have

(2.2) Hn(X,F ) = Zn/Bn .

A standard and compact notation to indicate this process consist in writing

(2.3) Hn(X,F ) = RnΓ(X,A•) .

Inverse systems indexed by (I, ≤) and sheaves on X(I). Let (I,≤)
be a poset. In this paragraph we recall the strong link between the notions
of inverse systems indexed on I and sheaves on X(I). Let S := (ρSi,j :
Si → Sj)i,j∈I be a inverse system of sets indexed on I. We can define a
pre-sheaf S on X(I) by associating to every open subset U of X(I) the
set Γ(U, S) := lim←−i∈U Si, where U has the order relation induced by I. For
every inclusion of open subsets V ⊂ U there is an obvious restriction map
ρSU,V : Γ(U, S)→ Γ(V, S) provided by the universal property of the inverse
limit. It is not hard to show that S is automatically a sheaf of sets on X(I)
and that every sheaf on X(I) is of this type (cf. [8, p. 4]). The stalk of a
sheaf S at a point i ∈ X(I) is S(Λ(i)) and it coincides with the value Si
at i of the associated inverse system. In the sequel we do not distinguish
sheaves on X(I) from inverse systems and we will indicate them by the same
symbol S, so that we write S = (Si)i∈I , S(Λ(i)) = Si, or S(U) = Γ(U, S).
In this correspondence, the inverse limit of an inverse system S = (Si)i
corresponds to the global sections of the associated sheaf:

(2.4) Γ(X(I), S) = lim←−
i∈I

Si .
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Moreover, if (Ai)i is an inverse system of R-modules, then the derived
functors lim←−

(n)
i∈I Ai are defined as the sheaf cohomology groups Hn(X(I), A)

(2.5) lim←−
i∈I

(n)Ai := Hn(X(I), A) .

2.1. Pull-back and push-forward operations. Let (I,≤) and (J,≤) be
two poset. Let f : I → J be a map preserving the order. Since f : X(I)→
X(J) is continuous, we may consider usual pull-back f−1 : Sh(X(J)) →
Sh(X(I)) and push-forward f∗ : Sh(X(I)) → Sh(X(J)) operations. We
refer to [6, 7] for their definitions. We bound ourself to describe them for
inverse systems.

Push-forward. Let S := (ρSi,j : Si → Sj)i,j∈I be an inverse system of sets
indexed by I and let k ∈ J . By definition, for all open subset U ⊆ X(J) the
push-forward of S is given by f∗S(U) = S(f−1(U)) with evident transition
maps ρf∗S

U,V = ρSf−1(U),f−1(V ) deduced by those of S. In particular the stalk
at a point k ∈ J is given by (f∗S)k = f∗S(Λ(k)) = lim←−j∈f−1(Λ(k)) Sj with

evident transition maps ρf∗S
k,t , k ≥ t ∈ J , obtained by universal property of

the limits.

Pull-back. Let now T = (ρTi,j : Ti → Tj)i,j∈J be an inverse system of
sets indexed by J . In usual sheaf theory f−1 is the sheaf associated to
the pre-sheaf associating to every open U ⊆ X(I) the set lim−→f(U)⊂V T (V ).
However, in our setting, arbitrary intersections of opens are opens, there-
fore lim−→f(U)⊂V T (V ) = T

(
O(f(U))

)
, where O(f(U)) =

⋃
i∈U Λ(f(i)). It is

indeed easier to define f−1T as an inverse system indexed by I. Namely,
for every i ∈ I, we have (f−1T )i := Tf(i) and for all i, j ∈ I, i ≥ j, we have
ρf

−1T
i,j := ρTf(i),f(j). If I is a subset of J with the order relation induced by
J and if f : I → J is the inclusion, we use the notation T|I := f−1T .9

Lemma 2.2. Let f : I → J be a map of directed posets that preserves the
order relations. Assume that the image f(I) is a cofinal subset of J . Then

Γ(X(J),−) ∼= Γ(X(I),−) ◦ f−1.

In other words, for all inverse system T := (Tj)j∈J the natural map
lim←−j∈J Tj → lim←−i∈I(f

−1T )i is bijective.

9Notice that, when using this notation, the partial order relation of I has to be induced by
that of J . The reason is that the injectivity of f is not enough to ensure good relations between
Γ(X(I), f−1F ) and Γ(X(J), F ). For example, assume that we have the set-theoretic equality
I = {i1, i2} = J but i1 and i2 are not comparable in I while i1 ≤ i2 in J . Then the identity
ι : I → J preserves the order relation and it hence continuous, in this case we do not want to
write F|I = ι−1F .
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Usual properties of f−1 and f∗. By the above descriptions, it is not
hard to see that the functor f−1 : R-Mod(X(J))→ R-Mod(X(I)) is exact
and f∗ : R-Mod(X(I)) → R-Mod(X(J)) is left exact. On the other hand,
it is well known that f−1 is left adjoint to f∗, i.e. for all pair of sheaves
S ∈ R-Mod(X(I)) and T ∈ R-Mod(X(J)) there is a canonical functorial
isomorphism HomR-Mod(X(I))(f−1T, S) ∼→ HomR-Mod(X(J))(T, f∗S). More-
over, we have canonical unit and counit morphisms T → f∗f

−1T and
f−1f∗S → S respectively. In general, if (F,G) is a pair of adjoint func-
tors such that F is exact and left adjoint to G, then G sends injective
into injective. In particular, this is the case of f∗ which preserves injective
objects. It is not hard to see that f∗ also preserve flabbiness (cf. Section 3).

A typical application of this fact is the following interpretation of the
cohomology groups Hn(X(I),−). Let us denote by • the poset with an
individual element. The category of sheafs in sets (resp. R-modules) over
X(•) is identified with the category of sets (resp. R-modules) itself by
the global functor Γ(X(•),−) : R-Mod(X(•)) ∼→ R-Mod. The poset • is
the final object of the category of posets and we denote by πI : X(I) →
X(•) the projection. Then one has an equality of functors Γ(X(I),−) =
Γ(X(•),−)◦(πI)∗. By the above identification, usually we drop the notation
Γ(X(•),−) and we simply write
(2.6) Γ(X(I),−) = πI,∗ .

If F is a sheaf in R-modules over X(I) we can translate (2.3) into the
notation
(2.7) Hn(X(I), F ) = RnπI,∗(F ) ,
where RπI,∗ denotes the derived functor of πI,∗.

3. Some acyclicity results

Unfortunately, in general f−1 does not preserve injectives nor acyclic
objects, for this reason it does not behave well for the computation of the
cohomology of sheaves. Similarly, f∗ is not exact and this makes difficult its
use in the computation of the cohomology because some spectral sequences
are needed. However, we provide in the next sections some interesting sit-
uations where f−1 and f∗ preserve the cohomology groups.

Let (I,≤) be a poset. In this section we introduce several types of acyclic
sheaves that can be used to compute the derived functor of the inverse limit
by means of (2.3), (2.5) and (2.7).

Flabby and skyscraper sheaves. A sheaf F of R-modules on X(I) is
flabby if for every open subset U ⊆ X(I) the restriction F (X(I)) →
F (U) is set theoretically surjective. Flabby sheaves are acyclic (cf. [6,
Théorème 4.7.1]). It follows from the definition that if f : X(I) → X(J)
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is any continuous map, and if F is a flabby sheaf on X(I), then its push-
forward f∗F is flabby. This is a simple way to construct acyclic sheaves.
In particular, assume that I = • is a point and consider the map σj :
X(•) → X(J) whose image is a point j ∈ J , then for all R-module
A ∈ R-Mod = R-Mod(X(•)), the push-forward σj,∗(A) is flabby. The sheaf
σj,∗(A) is called the skyscraper sheaf at j with value A. It is easily seen
that for k ∈ J we have σj,∗(A)k = A, if k ∈ V (j), and σj,∗(A)k = 0
otherwise, and the transition maps ρσj,∗(A)

k,t are either the identity maps if
k ≥ t ∈ V (j), or they equals 0 otherwise. Skyscraper sheaves are acyclic
because σj,∗ preserves flabbiness.

Godement resolution. We now use skyscraper sheaves to define an
acyclic resolution of every sheaf of F of R-modules over X(J) called the
Godement resolution of F (cf. [6, Section 4.2]). For all open U ofX(J) we set
Γ(U,Gode(F )) =

∏
j∈U Fj , endowed with the natural projections as transi-

tion maps. It is a sheaf indicated by Gode(F ) and it is given by Gode(F ) :=∏
j∈J σj,∗σ

−1
j F . The sheaf Gode(F ) is flabby because skyscraper sheaves

are flabby, and a product of flabby sheaves is flabby. By adjunction, for all
j ∈ J , we have a canonical morphism F → σj,∗σ

−1
j F . Therefore, we have a

morphism σF : F → Gode(F ), which is easily seen to be a mono-morphism
(cf. [8, Proposition 1.1]). Now, we may consider the quotient Gode(F )/F
and include it into its Gode(Gode(F )/σF (F )) and repeating inductively
this operation we obtain a flabby resolution 0 → F → G0 → G1 → · · · of
F which is called the Godement resolution of F .

3.1. Directed posets and weak flabbiness. Flabbiness is not really a
common property because, for instance, if we have two disjoint open subsets
U and V of X(I), then F (U ∪ V ) = F (U) × F (V ) and the surjectivity
of F (X(I)) → F (U) × F (V ) tells us that any arbitrary pair of sections
over U and V have to glue to a global section over X(I). In particular, a
constant sheaf is possibly not flabby (cf. Remark 3.4). This problem related
to connectedness is avoided with the introduction of a weaker notion, due to
C. U. Jensen, called weak flabbiness in the context of directed posets which
is satisfied by a larger class of sheaves over X(I) and is more suitable for
our purposes.

Definition 3.1. Let (I,≤) be a poset. We say that a sheaf of R-modules F
is weakly flabby if for every open and directed subset J ⊆ I the restriction
F (X(I))→ F (X(J)) is surjective.

This definition is important when I is a directed poset because of the
following Theorem

Theorem 3.2 ([8, Théorème 1.8, p. 9]). Assume that (I,≤) is a directed
poset. Then any weakly flabby sheaf on X(I) is acyclic.
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Remark 3.3. Let I be a directed poset. It was proved by C. U. Jensen
that, if F is regarded as an inverse system, then F is weakly flabby on
I if, and only if, for any subset J ⊆ I which is directed with respect
to the partial order induced by I, the restriction F (X(I)) = lim←−i∈I Fi →
lim←−j∈J Fj is surjective (cf. [8, Lemme 1.3, p. 6]). That is, the open condition
in Definition 3.1 can be relaxed if needed.
Remark 3.4 (Acyclicity of constant sheaves over directed posets.). Recall
that a constant sheaf on X(I) with value C ∈ R-Mod is by definition the
sheaf π−1

I (C), where πI : X(I)→ X(•) is the constant function considered
in (2.7). For general X(I), constant sheaves are not flabby nor acyclic and
their cohmology groups contain important information about the topologi-
cal space X(I). However, if I is a directed poset, it is easy to check that any
constant sheaf over X(I) is weakly flabby10, hence acyclic by Theorem 3.2.
3.2. Inverse image and weakly flabbiness. For general topological
spaces, the inverse image functor does not preserve flabbiness. However,
in our context, weak flabbiness is preserved when we have directed posets.
Proposition 3.5. Let f : I → J be a map of directed posets that preserves
the order relations. If W is a weakly flabby sheaf on J , then f−1W is weakly
flabby.
Proof. Let I ′ ⊆ I be a directed subset of I. We consider f(I ′) ⊆ f(I) as
subsets of J with the order relation induced by J . They are both directed
poset. They are possibly not open in J . However, with an abuse, let us
set W (X(f(I))) = lim←−j∈f(I)Wj and similarly for W (X(f(I ′))). Since W is
weakly flabby, both restrictions W (X(J))→W (X(f(I))) and W (X(J))→
W (X(f(I ′))) are surjective by Remark 3.3. Hence, so is the restriction
map W (X(f(I))) → W (X(f(I ′))) by composition. Now, by Lemma 2.2
the restriction f−1W (X(I)) → f−1W (X(I ′)) equals the restriction
W (X(f(I)))→W (X(f(I ′))). The claim follows. □

In the proof of Proposition 3.5, a key ingredient is Lemma 2.2 in which
the fact that the posets are directed is a crucial assumption. The following
proposition is a similar statement for J possibly not directed posets.
Proposition 3.6. Let f : I → J be a map of posets that preserves the order
relations. Assume moreover that I is directed. Then the following hold:

(i) Let A be a skyscraper sheaf on X(J), then the inverse image f−1A
of A is weakly flabby.

(ii) Let F be a sheaf of R-modules over J and let Gode(F ) be the
Godement sheaf associated with F . Then, f−1(Gode(F )) is wealkly
flabby.

10Because the value of a constant sheaf with value A on any open which is directed is equal
to the group A, and the restriction maps are the identities.
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(iii) The inverse image of the Godement resolution of F is a weakly
flabby resolution of f−1(F ).

Proof. Let j ∈ X(J) and A ∈ R-Mod. Let us denote by (Ak)k∈J := σj,∗A
the skyscraper sheaf at j ∈ X(J) with value A (cf. Section 3). Since A is
flabby on {j}, so is σj,∗A on X(J). We want to show that F := f−1(σj,∗A)
is weakly flabby over X(I). Let U ⊂ X(I) be any open subset which is
directed as a poset with the order relation induced by X(I). Then, we need
to show that the restriction map F (X(I))→ F (U) is surjective. Now, by the
definition of f−1, this restriction map identifies to the natural restriction
map ρ

σj,∗A
O(f(X(I))),O(f(U)) : σj,∗A(O(f(X(I)))) → σj,∗A(O(f(U))), which is

surjective because σj,∗A is flabby and I is directed (cf. Remark 3.4).
Let us now prove (ii). By definition Gode(F ) =

∏
j∈J σj,∗σ

−1
j F . Since

f−1 commutes with products and since products of weakly flabby is weakly
flabby, it is enough to prove that if S = σj,∗A is a skyscraper sheaf on
X(J), then f−1S is weakly flabby. The claim then follows from (i). The
third statement is also an immediate consequence of the exactness of f−1

and of (ii). □

Theorem 3.7. Let f : I → J be a map of directed posets preserving the
order relations and such that f(I) is a cofinal subset of J . Then for all
sheaves of R-modules F on X(J) one has

(3.1) Hn(X(I), f−1F ) = Hn(X(J), F ) .

In particular, F is acyclic if, and only if, so is f−1F .

Proof. The proof is straightforward. We use (2.2) to compute the coho-
mology of f−1F . Let 0 → F → G0 → G1 → · · · be the Godement res-
olution of F . Its pull-back 0 → f−1F → f−1G0 → f−1G1 → · · · is a
resolution of f−1F because f−1 is an exact functor. Every term of the se-
quence is weakly flabby by Proposition 3.6, hence acyclic by Theorem 3.2.
Therefore, by (2.2), we know that the complex 0 → Γ(X(I), f−1F ) →
Γ(X(I), f−1G0) → Γ(X(I), f−1G1) → · · · computes the cohomology of
f−1F . Now, Lemma 2.2 ensures that this complex equals 0→ Γ(X(J), F )→
Γ(X(J), G0)→ Γ(X(J), G1)→ · · · and the claim follows. □

Theorem 3.7 holds sometimes for non directed posets as we will see in
Proposition 5.2 in the case of Galois connections between posets. Let us
now show that Theorem 3.7 implies Theorem 2 quite directly, which we
translate in term of sheaves.

Corollary 3.8 (Theorem 2). Let I and J be directed posets and I ′ ⊆ I
and J ′ ⊆ J be cofinal directed posets. Let p : I ′ → J ′ be a surjective map
preserving the order relations. Let A and S be sheaves of R-modules over
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X(I) and X(J) respectively. Assume that the restriction A|I′ of A to X(I ′)
is isomorphic to the pull-back p−1(S|J ′) of the restriction S|J ′ of S to X(J ′)

(3.2) ψ : A|I′
∼−−→ p−1(S|J ′) .

Then, for every integer n ≥ 0 one has
(3.3) Hn(X(I), A) ∼= Hn(X(J), S) .

Proof. By Theorem 3.7 applied to the inclusions I ′ → I and J ′ → J we
have Hn(X(I), A) = Hn(X(I ′), A|I′) and Hn(X(J), S) = Hn(X(J ′), S|J ′),
for all integer n ≥ 0. Hence, we can assume I = I ′ and J = J ′. Again,
Theorem 3.7 then ensures Hn(X(J), S) = Hn(X(I), f−1S) and
Hn(X(I), f−1S) ∼= Hn(X(I), A) because A ∼= f−1S. □

4. Direct image and exactness

As mentioned, the direct image functor f∗ is not exact in general. How-
ever, we now provide conditions ensuring that f∗ preserves the cohomology.
Notice that the posets are possibly not directed.

Proposition 4.1. Let f : I → J be an order preserving function be-
tween posets. Let F be a sheaf of R-modules over X(I). Assume that for
all j ∈ J the restriction F|f−1(Λ(j)) is acyclic as a sheaf over the open
Uj := f−1(Λ(j)). That is, for all integer n ≥ 1 one has
(4.1) Hn(Uj , F ) = 0 .
Then

(i) For all injective (resp. flabby) resolution 0 → F → I1 → I2 → · · ·
of F , the push-forward 0 → f∗F → f∗I

1 → f∗I
2 → · · · is an

injective (resp. flabby) resolution of f∗F (i.e. it remains exact).
(ii) For all integer n ≥ 0 one has

(4.2) Hn(X(J), f∗F ) = Hn(X(I), F ) .

Proof. Let 0→ F → I1 → I2 → · · · be an injective (resp. flabby) resolution
of F . Let us set F 0 := F and, for all k ≥ 0, let F k+1 be the cokernel of the
inclusion of F k into Ik. We then have the classical diagram

(4.3)

F 1

""

F 3

""

0 // I0

<<

// I1

""

// I2

<<

// I3 //

""

· · ·

F

==

F 2

<<

F 4

;;

We now apply the functor f∗ to this diagram. We know that f∗Ik remains
injective (resp. flabby), hence acyclic. Now we claim that 0 → f∗F →
f∗I

0 → f∗I
1 → · · · is a resolution of f∗F , i.e. this sequence is exact. This

condition can be checked on the stalks. Hence, we have to prove that for
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all j ∈ J and for all k ≥ 0, the sequence 0 → (f∗F k)j → (f∗Ik)j →
(f∗F k+1)j → 0 is exact. As there is a minimal open subset Λ(j) containing
j, then if we set Uj := f−1(Λ(j)), this sequence coincides with the sequence
0 → F k(Uj) → Ik(Uj) → F k+1(Uj) → 0. In other words we have to show
that, for every k ≥ 0, Γ(Uj ,−) sends the short exact sequence 0 → F k →
Ik → F k+1 → 0 into an exact one. Let us consider the long exact sequence
of cohomology groups

(4.4) 0 −→ H0(Uj , F k) −→ H0(Uj , Ik) −→ H0(Uj , F k+1)
−→ H1(Uj , F k) −→ H1(Uj , Ik) −→ H1(Uj , F k+1) · · ·

Since Ik is acyclic on Uj , we have Hn(Uj , Ik) = 0 for all k ≥ 0 and all
n ≥ 1. Therefore for all k ≥ 0 and all n ≥ 1 we have an isomorphism

(4.5) Hn(Uj , F k+1) ∼−→ Hn+1(Uj , F k) .

Now, for k = 0, our assumption gives Hn(Uj , F 0) = 0 for all n ≥ 1 because
F = F 0 is acyclic on Uj . The isomorphism (4.5) ensures by induction that
F k is acyclic on Uj for all k ≥ 0. Therefore the sequence 0 → f∗F →
f∗I

0 → f∗I
1 → · · · is exact and it is an injective (resp. flabby) resolution

of f∗F .
It follows then by (2.3) that Hn(X(J), f∗F ) = RnΓ(X(J), f∗I•). Fi-

nally, for all k ≥ 0, the definition of push-forward gives Γ(X(J), f∗Ik) =
Γ(X(I), Ik). Hence the sequence 0 → Γ(X(J), f∗F ) → Γ(X(J), f∗I0) →
Γ(X(J), f∗I1) → · · · coincides with 0 → Γ(X(I), F ) → Γ(X(I), I0) →
Γ(X(I), I1) → · · · which computes the cohomology of F by (2.3). The
claim follows. □

Remark 4.2. In Proposition 5.2 we will treat a special situation where f∗
preserves also weakly-flabby resolutions.

An interesting case where Proposition 4.1 applies is the following

Theorem 4.3. Let f : I → J be an order preserving function between
posets. Let F be a sheaf of R-modules over X(I). Assume that for every
j ∈ J the set Uj = f−1(Λ(j)) satisfies at least one among the following
conditions :

(i) Uj is empty;
(ii) Uj has a unique maximal element (i.e. it is of the form Λ(i), for

some i ∈ I);
(iii) Uj is a directed poset admitting a countable cofinal directed poset

I ′j and the system (Ak)k∈I′
j

:= F|I′
j

satisfies Mittag-Leffler condi-
tion (1.1).

Then, the conclusions (i) and (ii) of Proposition 4.1 hold.
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Proof. If (i) or (iii) hold for Uj , we know by Theorem 1 that F|Uj
is acyclic

and the condition of Proposition 4.1 is fulfilled. If (ii) holds for Uj , then
Uj = Λ(i) for some i ∈ I. Now, the functor Γ(Λ(i),−) is the fiber functor
associating to a sheaf F its stalk Fi at i. Therefore, it is an exact functor
and it preserves injective resolutions. Hence, for every sheaf F of R-modules
over X(I) the restriction F|Λ(i) is acyclic on Λ(i). Proposition 4.1 then
applies. □

Remark 4.4. It was proved by O. Laudal [9] that the only posets U over
which every sheaf of R-modules is acyclic are those admitting a maximum
element (i.e. U = Λ(i) for some i ∈ U). Therefore, any generalization of
Theorem 4.3 to more general maps f requires restrictions on the class of
sheaves F that we consider, as we did in condition (i). For instance, let us
assume that for all j ∈ J the poset Uj = f−1(Λ(j)) has only finitely many
maximal elements. This mens that Uj is a finite union of open posets of the
form Λ(i). In this situation it might be interesting to use Mayer–Vietoris
long exact sequence to obtain combinatoric conditions on F ensuring (4.1).

From another angle, if we assume that I is directed, then it might be
interesting to replace it by a cofinal directed subset I ′. This operation pre-
serve the cohomology groups of F and reduces the size of the sets f−1(Λ(j))
(which makes possibly easier to verify (4.1)). However, it should be taken
with some precaution because it does not preserve the push-forward (i.e.
f∗F ̸= f∗(F|I′)). The claim is the following.

Corollary 4.5. Let I be a directed poset and F a sheaf of R-modules over
X(I). Let I ′ ⊆ I be a directed cofinal subset of I and let f : I ′ → J be an
order preserving function between posets such that, for all j ∈ J , the restric-
tion F|f−1(Λ(j)) is acyclic as a sheaf over the open subset U ′j := f−1(Λ(j)) ⊂
X(I ′). That is, for all integer n ≥ 1, one has Hn(U ′j , F|X(I′)) = 0. In par-
ticular, this condition is automatically satisfied if one of the conditions (i),
(ii), or (iii) of Theorem 4.3 holds for F|U ′

j
. Then, for all integer n ≥ 0 one

has

(4.6) Hn(X(J), f∗(F|X(I′))) = Hn(X(I), F ) .

Another interesting case where Corollary 4.5 applies is of course given
by the poset of natural numbers N, where every bounded open subset has
a maximum element. We obtain the following corollary. Notice that no
cofinality condition is required for the inclusion of f(I) in J .

Corollary 4.6 (Case of a totally ordered countable poset). Let I be a poset
and F a sheaf of R-modules over X(I). Assume that I is directed and has a
totally ordered cofinal subset N which is at most countable (i.e. N is finite
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or isomorphic to (N,≤)).11 Let f : N → J be an order preserving function
between posets such that, for all j ∈ J the following condition holds

(i) if Uj := f−1(Λ(j)) = N , then the restriction of F|N satisfies Mittag-
Leffler condition (1.1).

Then, for all integer n ≥ 0 one has
(4.7) Hn(X(J), f∗(F|X(N))) = Hn(X(I), F ) .
In particular, (i) is an empty condition if for every j ∈ J , there exists
η ∈ N such that f(η) ̸≤ j (i.e. f−1(Λ(j)) ̸= N , for all j ∈ J).

For the benefit of the reader we now translate Theorem 3 in the sheaf
language. The role of I and J is reversed with respect to the statement in
the introduction and, even though it is not necessary, we assume the posets
to be directed in order to allow the restriction to a cofinal poset.
Corollary 4.7 (Theorem 3). Let (J,≤) be a directed poset and A a sheaf of
R-modules over X(J). Assume that there exist a directed partially ordered
set (I,≤) and a sheaf of R-modules T over X(I) such that

(i) There exists a cofinal directed subset J ′ ⊆ J , a cofinal directed subset
I ′ ⊆ I and a map q : I ′ → J ′ preserving the order relation such that
for all j ∈ J ′, the set Uj = {i ∈ I ′, q(i) ≤ j} is either empty, or it
has a unique maximal element, or it has a countable cofinal directed
poset I ′j and T|X(I′

j) satisfies Mittag-Leffler condition (1.1).
(ii) We have an R-linear isomorphism of sheaves ϕ : A|J ′ ∼= q∗T|I′.

Then, for all integer n ≥ 0, we have a canonical isomorphism
(4.8) Hn(X(J), A) ∼= Hn(X(I), T ) .
In particular, if T is acyclic then so is A.
Proof. By Theorem 3.7 applied to the inclusions I ′ → I and J ′ → J we
have Hn(X(J), A) = Hn(X(J ′), A|J ′) and Hn(X(I), T ) = Hn(X(I ′), T|J ′),
for all integer n ≥ 0. Hence, we can assume I = I ′ and J = J ′. The claim
then follows from Proposition 4.5. □

5. Galois connections.

In this section we consider Galois connections between posets. This is
a particularly lucky situation, because the operations of push-foward f∗
and the pull-back g−1 coincide and we automatically have the benefits of
both operations (cf. Proposition 5.2 below). We begin by the following
Lemma 5.1 which says that when we have a countable cofinal subset, we
automatically have a Galois connection with a convenient countable totally
ordered subset.

11By Lemma 5.1, this is equivalent to the simple existence of a cofinal subset in I which is at
most countable.
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Lemma 5.1. Let J be a directed poset that admits a countable cofinal sub-
set. Then, there exists a countable cofinal subset N ⊂ J which is directed
and totally ordered. The set N is finite if, and only if, J has a maximum
element (in this case we can chose N equal to the maximum element of J).
Otherwise, N is isomorphic to the poset of natural numbers (N,≤). More-
over, if f : N → J denotes the inclusion, then there exists a map g : J → N
preserving the order relations and such that

(i) The map g ◦ f : N → N is the identity map.
(ii) For all j ∈ J , f−1(Λ(j)) = Λ(g(j)), that is g(j) is the biggest

element of f−1(Λ(j)).

Proof. Let S ⊆ I be a countable cofinal subset and let S = {s1, s2, . . .}
be an enumeration of S. Set η1 := s1 and, for all integer n ≥ 2, chose
inductively an ηn ∈ J such that ηn ≥ ηn−1 and ηn ≥ sn. We now have
an increasing sequence (ηn)n in J . Let N ⊂ J be the set of its values.
Then N is cofinal in J because S is. Clearly N is finite and totally ordered
if, and only if, the sequence is stationary, and in this case its maximum
is also a maximum of J . Otherwise, we may find a subsequence (ηnk

)k∈N
of (ηn)n which is strictly increasing whose underling subset is N and the
map k → ηnk

provides a bijection between N and N preserving the order
relations.

Now, as N is cofinal, we have J =
⋃
η∈N Λ(η). Since N is discrete and

totally ordered, for every j ∈ J there exists a minimum ηj ∈ N such that
j ∈ Λ(ηj). Therefore, we can define a map g : J → N as g(i) = min(η ∈
N, i ∈ Λ(η)). The claim follows. □

Recall that if

(5.1) f : I −→ J and g : J −→ I

are two maps between posets that preserve the order relations, then the
following conditions are equivalent

(1) For all i ∈ I and all j ∈ J one has f(g(j)) ≤ j and g(f(i)) ≥ i;
(2) For all i ∈ I and all j ∈ J we have f(i) ≤ j if, and only if, i ≤ g(j).

In this case, the pair (f, g) is called a Galois connection between I and J .
If I and J are seen as categories, these conditions express the fact that f
is a left adjoint of g and g is a right adjoint of f . It is not hard to prove
that a map f : I → J , respecting the partial order relations, admits a right
adjoint g : J → I if, and only if, the following condition holds

(3) For all j ∈ J , there exists ij ∈ I such that f−1(Λ(j)) = Λ(ij).
In this case, ij is the value of g at j, so that for all j ∈ J we have

(5.2) f−1(Λ(j)) = Λ(g(j)) .



838 Andrea Pulita

In particular, when the right adjoint g exists, it is uniquely determined
by (5.2). Symmetrically, g : J → I admits a left adjoint if, and only if, for
all i ∈ I there exists ji ∈ J such that g−1(V (i)) = V (ji) and in this case
f(i) = ji.

Proposition 5.2. Let (f, g) be a Galois connection as above. Then
(i) The functors f∗ : Sh(X(I)) → Sh(X(J)) and g−1 : Sh(X(I)) →

Sh(X(J)) coincide. In particular, for every sheaf F of R-modules
over X(I) we have

(5.3) f∗F = g−1F .

(ii) The conditions of Theorem 4.3 are fulfilled and for every sheaf F of
R-modules over X(I) the conclusions (i) and (ii) of Proposition 4.1
hold.

(iii) If I and J are both directed posets, then f∗ preserves weakly flab-
biness. In particular, it sends weakly flabby resolutions of F into
weakly flabby resolutions of f∗F .

Proof. Let us see F as an inverse system (ρFi,j : Fi → Fk)i,k∈I . Then, by
definition, for all j ∈ J both f∗F and g−1F verify (f∗F )j = Fg(j) = (g−1F )j
and, for all j′ ≥ j, one has ρf∗F

j′,j = ρFg(j′),g(j) = ρg
−1F
j′,j . Items (i) and (ii) follow

immediately. In particular, f∗ is exact. To prove (iii), it is then enough to
show that if W is a weakly flabby sheaf of R-modules over I, then so is
f∗W on J . Since f∗W = g−1W , this follows from Proposition 3.5. □

Remark 5.3. Lemma 5.1 admits the following generalization which does
not involve any cofinality condition. Let J be a directed poset and f : N→ J
be an order preserving map satisfying the following condition:

• For all j ∈ J , f−1(Λ(j)) ̸= N (i.e. for all j ∈ J there exists n ∈ N
such that f(n) ̸≤ j).

Then, by item (iii) before (5.2), f admits a right adjoint g : J → N and
Proposition 5.2 applies.

6. An application to p-adic locally convex spaces

In this section we give an application to ultrametric locally convex spaces.
It is an ultrametric analogous of a result of V. P. Palamodov [11].

An ultrametric absolute value on a field K is a function | · | : K → R≥0
verifying |0| = 0, |1| = 1, |xy| = |x||y|, and |x + y| ≤ max(|x|, |y|) for all
x, y ∈ K. From now on we assume that the absolute value is non trivial (i.e.
there exists x ̸= 0 such that |x| ̸= 1) and that K is complete with respect
to the topology defined by | · |. We denote by OK = {x ∈ K, |x| ≤ 1} its
ring of integers.
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An ultrametric seminorm on a K-vector space V is a function u : V →
R≥0 such that for all r ∈ K and x, y ∈ V one has u(rx) = |r|u(x) and
u(x+ y) ≤ max(u(x), u(y)). A locally convex space over K is a topological
vector space V whose topology is defined by a family of ultrametric semi-
norms. Recall that V has a basis of open neighborhoods of 0 formed by
OK-submodules, we call them convex opens.

A K-linear continuous map f : V →W between locally convex spaces is
strict if the topology induced by W on the image of f coincides with the
quotient topology of V .

Proposition 6.1. Let f : V →W be a K-linear strict map between Haus-
dorff complete locally convex spaces. If the kernel of f is a Fréchet space,
then the image of f is a Hausdorff complete closed subspace of W .

Proof. Let V ′ be the kernel of f and V ′′ its image. Since f is strict, it
is enough to show that V ′′ is Hausdorff and complete with respect to the
quotient topology induced by V . For this, we prove that the strict short
exact sequence 0 → V ′ → V → V ′′ → 0 remains strict exact after the
Hausdorff-completion operation. Indeed, V ′ and V are already Hausdorff
and complete. Let I be the family of convex neighborhoods of 0 in V .
The set I is naturally partially ordered by the inclusion of subsets. For all
D ∈ I, set D′ := D ∩ V ′ and denote by D′′ the image of D in V ′′. The
Hausdorff completion of the sequence 0 → V ′ → V → V ′′ → 0 is then the
inverse limit of the sequences 0 → V ′/D′ → V/D → V ′′/D′′ → 0 for D
running in I. Let J be the set of open neighborhoods of V ′ of the form
p(D) = D ∩ V ′ with D ∈ I. The map p : I → J is surjective and the
inverse system (V ′/D′)D∈I is the pull-back of (V ′/D′)D′∈J by p : I → J .
The conditions of Corollary 3.8 are fulfilled. It follows that for all n ≥ 0
we have lim←−

(n)
D∈I V

′/D′ = lim←−
(n)
D′∈J V

′/D′. Now, since V ′ is Hausdorff and
Fréchet, then J has a countable cofinal subset N . The transaction maps
being surjective, Theorem 1 applies and lim←−

(n)
D′∈J V

′/D′ = 0 for all n ≥ 1.
The claim follows. □
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