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Mahler measure of Pd polynomials

par Mahya MEHRABDOLLAHEI

Résumé. Nous étudions la mesure de Mahler d’une famille de polynômes à
deux variables, désignée par Pd avec d ≥ 1, non bornée en degré et en genre.
En utilisant une formule de forme close de la mesure de Mahler [13], nous
sommes capables de calculer m(Pd), avec d arbitraire, comme une somme des
valeurs du dilogarithme en certaines racines de l’unité. Nous prouvons que
m(Pd) converge et que la limite est un multiple de ζ(3), où ζ est la fonction
zêta de Riemann. La preuve que nous donnons est computationnelle et est
basée sur l’estimation de l’erreur des sommes de Riemann d’une fonction
bivariée. Nous exposons une deuxième preuve possible et plus courte basée
sur une généralisation conjecturée du théorème de Boyd–Lawton et sur un
résultat de D’Andrea et Lalín [11].

Abstract. This article investigates the Mahler measure of a family of 2-
variate polynomials, denoted by Pd, for d ≥ 1, unbounded in both degree
and genus. By using a closed formula for the Mahler measure [13], we are
able to compute m(Pd), for arbitrary d, as a sum of the values of dilogarithm
at special roots of unity. We prove that m(Pd) converges, and the limit is
proportional to ζ(3), where ζ is the Riemann zeta function. The proof we give
is computational and based on the estimation of the error of Riemann sums
of a bivariate function. We describe a second possible shorter proof based on
a conjectural generalization of the theorem of Boyd–Lawton and a result of
D’Andrea and Lalín [11].

1. Introduction

Mahler measure is an interesting notion, used in number theory, analy-
sis, special functions, random walks, etc. To delve deeper into this fascinat-
ing notion, explore the latest developments in Mahler measure theory, and
grasp the essential prerequisite material for this paper, we recommend the
book [10] to the reader. The (logarithmic) Mahler measure of a multi-variate
polynomial, P (x1, . . . , xn) ∈ C[x1, . . . , xn], denoted by m(P ), is defined by
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the following formula :

m(P ) = 1
(2π)n

∫ 2π

0

∫ 2π

0
· · ·
∫ 2π

0
log
∣∣P (eiθ1 , eiθ2 , . . . , eiθn)

∣∣ dθ1 dθ2 · · · dθn.

It is possible to prove that this integral is not singular, and m(P ) always
exists [16], but there is no general closed formula to compute it. More-
over, it is not easy to approximate it with arbitrary precision. Guilloux and
Marché [13] found a closed formula for a specific class of 2-variate poly-
nomials, called regular exact polynomials, which expresses their Mahler
measure as a finite sum. Boyd and Rodriguez-Villegas [7] found a similar
closed formula for the Mahler measure of a specific family of exact 2 variable
polynomials with a different language. Boyd [6], Bertin, and Zudilin [3, 4]
investigated families of curves of genus 2. Furthermore, Bertin [1] computed
the Mahler measure of a family of 3-variate polynomials Qk(x, y, z), defining
K3 surfaces. Lalín [14] developed a new method for expressing Mahler mea-
sures of some families of polynomials in terms of polylogarithms. Also [7]
and [8] give many information about the relation between Mahler measures
of exact polynomials and the values of Dilogarithm function at certain al-
gebraic numbers.

In this article we study a specific family of 2-variate exact polynomials.
We compute their Mahler measures. Furthermore, we compute the limit of
the Mahler measures of this family. In Section 3, we introduce the family
Pd(x, y) :=

∑
0≤i+j≤d xiyj , presented to us by François Brunault. He noted

that Pd is exact. To apply the formula in [13], we need to determine its
terms. To do so, we compute the toric points, a volume function, and a
kind of sign function. Section 4 is devoted to the computation of m(Pd).
In Section 5, to achieve the objective, finding a new explicit formula to
compute m(Pd) in terms of the values of the Dilogarithm at roots of unity,
we introduce vol(θ, α) := D(eiθ) − D(ei(θ+α)) + D(eiα). Using this function
we prove the following theorem;
Theorem 1.1. The Mahler measure m(Pd) is expressed in terms of vol as
follows:

2πm(Pd) = 2
d + 1

∑
0<k<k′≤d+1

vol
( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)

− 2
d + 2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
.

The above theorem asserts that the Mahler measure of Pd for arbitrary
d ≥ 1 can be expressed in terms of the finite sum over the Dilogarithm func-
tion at certain roots of unity. This theorem is the key point for connecting
the values of m(Pd) to special values of L-functions, which is a reminiscence
of the work of Smyth [17] and Boyd [5, 6].
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Moreover, in the above formula, when d goes to infinity, each summation
is proportional to a Riemann sum of vol. Hence, limd→∞ m(Pd) is written as
a subtraction of two expressions; each of them is proportional to a Riemann
sum of vol and both go to infinity. In order to find the limit, we use the
Riemann sum technics and studying the errors. We prove the following
theorem:

Theorem 1.2. The limd→∞ m(Pd) exists and we have:

lim
d→∞

m(Pd) = 9
2π2 ζ(3).(1.1)

After having determined the value of the limit of m(Pd), we noted that
there exists a polynomial in 4 variables defined by D’Andrea and Lalín [11],
called P∞ := (x − 1)(y − 1) − (z − 1)(w − 1) for which they proved that
m(P∞) = 9

2π2 ζ(3). The fact that limd→∞ m(Pd) = m(P∞), then reminds
us of the theorem of Boyd–Lawton. However, we are not allowed to apply
this theorem to Pd for concluding Theorem 1.2, since it is a family of bi-
variate polynomials. We will prove a generalized version of this theorem in a
forthcoming article of Brunault, Guilloux, Mehrabdollahei and Pengo. This
generalization gives another proof of Theorem 1.2. Since this conjectural
proof is more conceptual and shorter, we state a special case of this gener-
alization and explain the alternative proof of Theorem 1.2 in the following
section.

There also exists a family of 3-variable polynomials whose limit of its
Mahler measure is m(P∞), studied by Gu and Lalin [12]. The family has
two parameters, a and b and is defined by Pa,b(x, y, z) := xa+b + 1 +
(xa +1)y+(xb −1)z. In contrast to Pd Gu and Lalin applied the actual form
of the theorem of Boyd–Lawton and proved that lima→∞

b→∞
Pa,b = m(P∞).

2. Conjectural proof of convergence of (m(Pd))d∈N

In this section we explain a conjectural method to prove Theorem 1.2. Be-
fore explaining the short proof, let us explain to you some clues that guide us
toward this method. As we have mentioned in the introduction, D’Andrea
and Lalín [11] defined a 4 variable polynomial P∞ := (x − 1)(y − 1) −
(z − 1)(w − 1) and proved that m(P∞) = 9

2π2 ζ(3). Therefore, according to
the computations done in the previous section limd→∞ m(Pd) = m(P∞).
This circumstance remind us of Boyd–Lawton’s theorem:

Theorem ([5, 15]). For P ∈ C[x1, . . . , xn], we have:

lim
k2→∞

· · · lim
kn→∞

m(P (x, xk2 , . . . , xkn)) = m(P (x1, . . . , xn)).
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After noticing this coincidence, one may link Pd and P∞ as follows:

Pd(x, y) = P∞(xd+2, y, x, yd+2)
(1 − x)(1 − y)(x − y) ,

and since the Mahler measures of the denominator is zero we have:
m(Pd(x, y)) = m(P∞(xd+2, y, x, yd+2)).(2.1)

However, we are not allowed to apply the theorem of Boyd–Lawton to Pd

since it is a sequence of two variable polynomials. In fact, we need to have a
generalization of Boyd–Lawton which explains how to compute the Mahler
measure of a polynomial in n variable, by using certain sequence of polyno-
mials in m variables with m, n ∈ N and m < n. To explain the short proof
for Theorem 1.2, we only announce a special case of this generalization,
for m = 2 and n = 4. The general case and its proof is explained in the
preprint [9]. Since, the proof of the following theorem is not yet officially
published it is called conjectural variant of Boyd–Lawton.

Conjecture 2.1 (Conjectural variant of Boyd–Lawton, [9]). Let P be a
four variable polynomial, then the Mahler measure of P can be computed
by the following limit:

lim
d→∞

m(P (xd, y, x, yd)) = m(P (x, y, z, w)).

From the above explanation and Conjecture 2.1 another proof for The-
orem 1.2 is concluded:

Conjectural proof of Theorem 1.2. Thanks to (2.1) and Conjecture 2.1 we
have limd→∞ m(Pd) = m(P∞). Then by using the result of D’Andrea and
Lalín [11] which is m(P∞) = 9

2π2 ζ(3), the proof is complete. □

This proof is short and without any complicated computation, but it
has some other types of difficulties. For instance, for applying Conjec-
ture 2.1 first, we need to guess a 4 variable polynomial which will be
the limit polynomial for Pd(x, y). Here, we did a kind of reverse engi-
neering, moreover we were lucky that D’Andrea and Lalín had done the
computation for m(P∞). In fact just by looking at Pd without knowing
limd→∞ m(Pd) = 9

2π2 ζ(3) = m(P∞), finding a suitable 4 variables polyno-
mial seems impossible. Therefore, the computational method, though long,
still seems necessary. In the remaining sections of this article we explain
this computational method to obtain explicitly the limit of m(Pd).

3. A family of exact polynomials

In this section, the class of exact polynomial is introduced. The relevance
of exact polynomial is the existence of a closed formula to compute the
Mahler measure. We introduce the family of polynomials, called Pd, which
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are examples of exact polynomials. In the future sections, using the closed
formula of Mahler’s measure of exact polynomials, we compute m(Pd).

Definition 3.1. The real differential 1-form η on C∗2 is defined by η =
log |y| d arg(x) − log |x| d arg(y).

Remark 3.2. Let P ∈ C[x, y] and C be the algebraic curve defined by

C =
{

(x, y) ∈ C∗2
∣∣∣P (x, y) = 0, dP (x, y) ̸= 0

}
;

Then the form η restricted to C is closed.

After the previous remark one may ask about the exactness of η|C . In
general, the answer is that η|C is not always exact, but this question leads
to the definition of exact polynomials.

Definition 3.3. A polynomial P ∈ C[X, Y ] is called exact if the form η
restricted to the algebraic curve C is exact. In this case, any primitive for
η is called a Volume function associated with the exact polynomial P .

To see a simple example of exact polynomials, we need the following
definition.

Definition 3.4. The Bloch–Wigner Dilogarithm function D(z) is defined by:

D(z) = Im(Li2(z)) + arg(1 − z) log |z|,

where arg denotes the branch of the argument, lying between −π and π, and
Li2(z) is the following function:

Li2(z) = −
∫ z

0
log(1 − u)du

u
for z ∈ C \ [1, ∞).

The function D(z) is real analytic on C except at the two points 0 and 1,
where it is continuous but not differentiable. The properties of this function
which we will use in this article are: D(z) = −D(z); If |z| = 1, then
D(z) = D(eiθ) =

∑∞
n=1

sin(nθ)
n2 , in particular we have D(ekπi) = 0. For more

information see [18]. The link between the differential of D and η is a well
known fact and −D(z) is a primitive for η restricted to {(z, 1 − z) ∈ C∗2}.
In other words we have −dD(z) = η(z, 1 − z). For more information and a
proof you can see [2] or [10, Theorem 7.2];

Example 3.5. The polynomial P1(x, y) = x + y + 1, is exact and a volume
function is −D(−x);

See [10, Chapter 7] and [14] for the proof and further information.
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3.1. Pd polynomials. We generalize the first example P1 to a family of
polynomials, called Pd(x, y), with d ≥ 1;

Notation 3.6. For every d ∈ N let:

Pd(x, y) :=
∑

0≤i+j≤d

xiyj .

We now prove that Pd is exact, for all d ∈ N. The best way to prove the
exactness of η restricted to Pd is by an abstract algebraization of η. Consider
the multiplicative group Kd

∗ of the field Kd = Frac Q[X,Y ]
<Pd> , as a Z-module.

The second exterior product of Kd
∗ is Kd

∗ ∧ Kd
∗. Note that the associated

group operation in Kd
∗ and Kd

∗ ∧ Kd
∗ are respectively multiplication and

addition. Consider the alternating bi-linear map ı : Kd
∗ × Kd

∗ → Ω1
C

defined by:
ı : Kd

∗ × Kd
∗ −→ Ω1

C

(f, g) 7−→ log |g|d arg f − log |f |d arg g.

Where, d arg f = Im(d log f) = Im(df/f), C is the curve of Pd, minus the
set of zeros and poles of f and g. Moreover, Ω1

C is the C-vector space of
smooth differential one-forms on C. According to the universal property of
the exterior product, there is a unique morphism of Z-modules, ı : Kd

∗ ∧
Kd

∗ → Ω1
C , such that the following diagram commutes.

Kd
∗ ∧ Kd

∗

Kd
∗ × Kd

∗ Ω1
C

ı

ı

∧

where
∧

is defined by:∧
: Kd

∗ × Kd
∗ −→ Kd

∗ ∧ Kd
∗

(f, g) 7−→ f ∧ g

Note that according to the definitions of ı(f, g) and η we have η(f, g) =
ı(f, g).

The following proposition give us an algorithm to compute a volume
function associated to Pd, and to conclude the exactness.

Proposition 3.7. If x, y ∈ Kd
∗ and x∧y =

∑n
i=1 zi ∧ (1−zi) modulo some

torsion elements in Kd
∗ ∧ Kd

∗, then (−
∑n

i=1 D(zi)) is a primitive form for
η restricted to smooth zeroes of Pd(x, y).

Proof. The above proposition is formula 13 in [8, p. 6]. □

Remark 3.8. We notice that ∧ computation for finding a volume function
does not depend on the torsion elements, so in the sequel of this section
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we use the notation .= which refers to equality up to torsion elements; For
example, for all f, g we have (−f) ∧ (−g) .= f ∧ (−g) .= (−f) ∧ g

.= f ∧ g.
We remind you that P1 is exact and the proof is based on Proposition 3.7.

Smyth [17] proved that m(x + y + 1) = 3
√

3
4π L(χ−3, 2) which illustrates an

important application of Mahler measure in Number theory and special
values. In the following we prove that the whole family is exact;
Theorem 3.9. For all d ≥ 2, Pd is an exact polynomial and a volume
function, denoted by V , is defined as follows:

V (x, y) = 1
(d + 1)(d + 2)[D(yd+1) − D(xd+1) − D((y/x)d+1)]

+ 1
(d + 2)[D(x) − D(y) − D(x/y)].

Proof. For d ≥ 2 we have the following equations:

Pd(x, y) = Pd−1(x, y) + yd

(
1 − (x/y)d+1

1 − (x/y)

)

and Pd(x, y) = yPd−1(x, y) +
(

1 − xd+1

1 − x

)
.

Therefore, at smooth zeros of Pd, we have Pd−1(x, y) = −yd(1−(x/y)d+1

1−(x/y) ) =
−1/y(1−xd+1

1−x ). Hence yd+1 = 1−xd+1

1−x
1−(x/y)

1−(x/y)d+1 , which by replacing it in
1

d+1x ∧ yd+1 = x ∧ y we have :

(3.1) x ∧ y = 1
d + 1

(
x ∧ (1 − xd+1) − x ∧ (1 − x)

+ x ∧ (1 − x/y) − x ∧ (1 − (x/y)d+1)
)
.

Since Pd for d ≥ 1 is a symmetric polynomial, we can switch x and y;
Similarly, we have:

(3.2) y ∧ x = 1
d + 1

(
y ∧ (1 − yd+1) − y ∧ (1 − y)

+ y ∧ (1 − y/x) − y ∧ (1 − (y/x)d+1)
)
.

By subtracting (3.2) from (3.1), and using the following easily verify equa-
tions:
(3.3) x ∧ (1 − x/y) − y ∧ (1 − y/x) .= x/y ∧ (1 − x/y) − x ∧ y,

(3.4) y ∧ (1 − (y/x)d+1) − x ∧ (1 − (x/y)d+1)
.= (y/x) ∧ (1 − (y/x)d+1)) + (d + 1)x ∧ y,
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we have:

(x ∧ y) .= 1
(d + 1)(d + 2)

(
xd+1 ∧ (1 − xd+1) − yd+1 ∧ (1 − yd+1)

+ (y/x)d+1 ∧ (1 − (y/x)d+1)
)

+ 1
d + 2 (y ∧ (1 − y) − x ∧ (1 − x) + x/y ∧ (1 − x/y)) .

Then applying Proposition 3.7 completes the proof. □

4. Computing the Mahler measure of Pd

As already mentioned, there is a closed formula in [13] to compute the
Mahler measure of regular exact polynomials (see Definition 4.3) as follows:

m(P ) = 1
2π

∑
ϵ(x, y)V (x, y).(4.1)

The summation will be on the set of toric points of P (see Definition 4.1);
ϵ(x, y) is the opposite of the sign of the imaginary part of x∂xP

y∂yP at toric point
(x, y) and V is a volume function. Since Pd is exact, we use the formula to
compute m(Pd). To apply the formula we first compute the toric points of
Pd and then the sign of the imaginary part of x∂xPd

y∂yPd
at toric points.

4.1. Toric points of Pd. Let us first, introduce the set of the toric point
of a polynomial, and then we find this set for Pd polynomials.

Definition 4.1. The set of toric points of P ∈ C[X, Y ] is defined by:

{(x, y) ∈ C∗2|P (x, y) = 0, |x| = |y| = 1}.

In fact the necessary condition on the exact polynomial P to apply (4.1)
is that, the value of x∂xP

y∂yP at each toric point of P is not real. This property
leads to the definition of regular polynomials. Here, we briefly explain about
regularity, but for more information see [13].

Definition 4.2. The logarithmic Gauss map γ : C → P1(C) is defined by
γ(x, y) = [x∂xP, y∂yP ].

Using the logarithmic Gauss map we can define regular polynomials:

Definition 4.3. An exact polynomial P (x, y) is called regular if for each
toric point, (x, y), we have γ(x, y) /∈ P1(R).

From the previous definition, γ(x, y) is a point in projective plane. If P is
a regular polynomial, then in particular y∂yP |(x,y) ̸= 0 and x∂xP |(x,y) ̸= 0,
and consequently, [x∂xP, y∂yP ] = [x∂xP

y∂yP , 1] ∈ P1(C) \P1(R). Therefore, for
the regular polynomial P , the value of x∂xP

y∂yP at a toric point (x, y), is a non
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real number, so we can use the mentioned formula to compute m(P ). We
use the two point of views in this article: x∂xP

y∂yP and γ(x, y).
The goal of this section is to prove the following proposition:

Proposition 4.4. The set of toric pints of Pd(x, y) is as follows:{
(x, y) ∈ C∗2

∣∣∣xd+1 = yd+1 = 1, x ̸= 1, y ̸= 1 , x ̸= y
}

∪{
(x, y) ∈ C∗2

∣∣∣xd+2 = yd+2 = 1, x ̸= 1, y ̸= 1, x ̸= y
}

.

For convenience, the first set in Proposition 4.4 is denoted by Ud+1, and
the second one by Ud+2.
Remark 4.5. If P (x, y) ∈ R[X, Y ], then the set of toric points of P (x, y)
and P ∗(x, y) are equal, where P ∗(x, y) = P (1/x, 1/y), with x, y not equal
to zero.

Let (x, y) be a toric point of Pd, using Remark 4.5 we have:
(4.2) Pd(x, y) = P ∗

d (x, y) = 0.

Therefore we have Pd(x, y) + xd+1ydP ∗
d (x, y) = 0. A simple computation

implies the following equation:

(4.3) Pd(x, y) + xd+1ydP ∗
d (x, y) = yd+2 − 1

y − 1
xd+1 − 1

x − 1 .

Using the previous remark we can prove the following lemma;
Lemma 4.6. The toric points of Pd(x, y) are contained in:{

(x, y) ∈ C∗2
∣∣∣xd+1 = yd+1 = 1, x ̸= 1, y ̸= 1

}
∪{

(x, y) ∈ C∗2
∣∣∣xd+2 = yd+2 = 1, x ̸= 1, y ̸= 1

}
.

Proof. If (x, y) is a toric point of Pd, then (4.2) and (4.3) hold, so we have
xd+2−1

x−1 = 0 or yd+1−1
y−1 = 0. Moreover, Pd(x, y) is a symmetric polynomial,

so Pd(x, y) = Pd(y, x). Thus, we switch x and y, and (y, x) is a toric point.
Hence, Pd(y, x) + yd+1xdP ∗

d (y, x) = yd+2−1
y−1

xd+1−1
x−1 = 0, which implies

yd+2−1
y−1 = 0 or xd+1−1

x−1 = 0. Since x ̸= 1 and y ̸= 1 the lemma is proved. □

Lemma 4.7. If (x, y) is a toric point of Pd(x, y), then x ̸= y.
Proof. Let x is a (d + 1) or (d + 2) root of unity. We prove by contradiction
that Pd(x, x) is not equal to zero.

0 = Pd(x, x) =
∑

0≤i+j≤d

xi+j =
∑

0≤k≤d

(k + 1)xk =
(

d
dx

d∑
k=0

xk+1
)

.
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Therefore, x is a root of d
dx

(∑d
k=0 xk+1

)
. The Gauss–Lucas theorem asserts

that the zeroes of the derivative of a polynomial have to lie in the convex
hull of the zeros of the polynomial itself. On the other side,

d∑
k=0

xk+1 = xd+2 − 1
x − 1 .

Since the two polynomials
∑d

k=0 xk+1 and Pd(x, x) are coprime to each
other, x is strictly inside the convex hull of (d+2)-roots of unity. Therefore,
|x| < 1, which contradicts the fact that x is a root of unity. Hence, there is
no symmetric pair (x, x) in the set of toric points of Pd. □

We are ready to prove Proposition 4.4, which asserts that the set of toric
pints of Pd(x, y) is Ud+1 ∪ Ud+2;

Proof. From the two previous lemma, we know that the set of toric points
of Pd is included in Ud+1 ∪ Ud+2. To prove the revers we notice that for
(x, y) ∈ Ud+1 ∪ Ud+2 we have |x| = |y| = 1, so we just prove Pd(x, y) = 0.
To do so, we consider two cases:

Case 1: (x, y) ∈ Ud+1 = {(x, y) ∈ C∗2 |xd+1 = yd+1 = 1, x ̸= 1, y ̸= 1, x ̸= y}.

Pd(x, y) = (xd+1 + yxd + · · · + yd−1x2 + ydx) − (1 + y + · · · + yd)
x − 1 .

Because y is a d + 1 root of unity, so (1 + y + · · · + yd) is equal to zero.
Also, 0 = 1 − 1 = xd+1 − yd+1 = (x − y)(xd + xdy + · · · + yd), but y ̸= x,
so (xd + xdy + · · · + yd) = 0. Hence, Pd(x, y) = 0.

Case 2: (x, y) ∈ Ud+2 = {(x, y) ∈ C∗2 |xd+2 = yd+2 = 1, x ̸= 1, y ̸= 1, x ̸= y}.
Pd(x, y), for d ≥ 1 is symmetric, so we have:

xPd(x, y) + 1 + y + · · · + yd+1 = Pd+1(x, y) = Pd+1(y, x)
= yPd(x, y) + 1 + x + · · · + xd+1.

By subtracting Pd+1(y, x) from Pd+1(x, y), the following equation holds
for any (x, y):

(4.4) (x − y)Pd(x, y) + yd+2 − 1
y − 1 − xd+2 − 1

x − 1 = 0.

For any toric point (x, y) we have yd+2 − 1 = xd+2 − 1 = 0 and since
x ̸= y, so Pd(x, y) = 0. □
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4.2. Sign of Im(x∂xPd
y∂yPd

) at toric points. As we explained before, we
need to compute ϵ at each toric point of Pd, which is the opposite of the
sign of the imaginary part of x∂xPd

y∂yPd
. Let us define Ω, which associates each

toric point with a point in R2. The map is defined by Ω : (xi, yi) 7→ (li, ki),
where (xi, yi) = (ωli , ωki), with ω = e

2π
d+1 i if (xi, yi) ∈ Ud+1, and ω = e

2π
d+2 i

if (xi, yi) ∈ Ud+2. We say Ω : (x, y) 7→ (l, k) is above the diagonal if l < k
and below the diagonal if k < l. Note that by Lemma 4.7, l ̸= k; In the
following proposition we compute the sign of Im(x∂xPd

y∂yPd
) and therefore ϵ at

toric points.

Proposition 4.8. Let d ≥ 1, for the polynomial Pd(x, y) the sign ϵ at each
toric point is determined as follows;

• For (x, y) ∈ Ud+1:
– If Ω(x, y) is above the diagonal ϵ(x, y) < 0.
– If Ω(x, y) is below the diagonal ϵ(x, y) > 0.

• For (x, y) ∈ Ud+2:
– If Ω(x, y) is above the diagonal ϵ(x, y) > 0.
– If Ω(x, y) is below the diagonal ϵ(x, y) < 0.

Proof. We find Sgn(Im(x∂xPd
y∂yPd

))) at each toric point. Recall that ϵ(x, y) is
its opposite! As we saw in the proof of Proposition 4.4, at each point (x, y)
equation (4.4) is satisfied:

0 = (x − y)Pd(x, y) + yd+2 − 1
y − 1 − xd+2 − 1

x − 1 .

Let Q(x, y) = (x−1)(y −1)(x−y). For all (x, y) ∈ C2 we have this equality
of polynomials:

Pd(x, y)Q(x, y) = (xd+2 − 1)(y − 1) − (yd+2 − 1)(x − 1).
We apply ∂x and ∂y to the both sides of the above equality:

(4.5) ∂xPd(x, y)Q(x, y)+∂xQ(x, y)Pd(x, y) = (d+2)(y−1)xd+1−(yd+2−1),

(4.6) ∂yPd(x, y)Q(x, y)+∂yQ(x, y)Pd(x, y) = (xd+2−1)−(d+2)(x−1)yd+1.

We divide (4.5) by (4.6), so for all (x, y) ∈ C2 we have:

(4.7) ∂xPd(x, y)Q(x, y)+∂xQ(x, y)Pd(x, y)
∂yPd(x, y)Q(x, y)+∂yQ(x, y)Pd(x, y) = (d+2)(y−1)xd+1−(yd+2−1)

(xd+2−1)−(d+2)(x−1)yd+1 .

We evaluate the previous equation at toric points and we consider two cases:

Case 1: (x, y) ∈ Ud+1.
∂xPd(x, y)
∂yPd(x, y) = −y − 1

x − 1 , so x∂xPd(x, y)
y∂yPd(x, y) = −x(1 − y)

y(1 − x) .
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Case 2: (x, y) ∈ Ud+2.
∂xPd(x, y)
∂yPd(x, y) = −xd+1(y − 1)

yd+1(x − 1) , so x∂xPd(x, y)
y∂yPd(x, y) = −1 − y

1 − x
.

To compute Sgn(Im(x∂xPd
y∂yPd

))) at toric points, we first write both x and
y in terms of the associated first (d + 1) primitive root of unity. Then, we
write them in terms of the first (d + 2) primitive root of unity.

Figure 4.1. Figure 4.2.

Case 1: (x, y) ∈ Ud+1. Let ω = e
2π

d+1 i, so there exist 0 < a ≤ d and 0 < b ≤ d,
such that x = ωa, y = ωb and a ̸= b. We have two possible cases for Ω(x, y):

(1) If Ω(x, y) is above the diagonal, or equivalently b > a (see Fig-
ure 4.1), we have:

(4.8) x∂xPd(x, y)
y∂yPd(x, y) = −x

y

1 − y

1 − x
= −e−iϕreiθ.

In the last equality in (4.8), we used the suitable polar representa-
tions according to Figure 4.1, where x

y = e−iϕ, with 0 < ϕ < 2π

and 1−y
1−x = reiθ, with r > 0, 0 < θ < π. We notice that ϕ and θ are

respectively central and inscribed angles with the same intercepted
arc in the circle, so ϕ = 2θ. Therefore, we have:

Sgn
(

Im
(

x∂xPd(x, y)
y∂yPd(x, y)

))
= − Sgn(Im(re−iϕ/2)) = Sgn

(
sin
(

ϕ

2

))
,

since 0 < ϕ < 2π, Sgn(Im(x∂xPd
y∂yPd

))) is positive.
(2) If Ω(x, y) is below the diagonal, or equivalently a > b (see Fig-

ure 4.2), we have:

Sgn
(

Im
(

x∂xPd(x, y)
y∂yPd(x, y)

))
= − Sgn(Im(eiϕ/2)) = Sgn

(
− sin

(
ϕ

2

))
,

so Sgn(Im(x∂xPd
y∂yPd

))) is negative.

The case (x, y) ∈ Ud+2 is proved in the similar way as (x, y) ∈ Ud+1. □



Mahler measure of Pd polynomials 807

An immediate result from the previous proposition is that Pd is regular.

4.3. A closed formula for m(Pd). In the previous sections we found a
volume function and the set of the toric points associated to Pd in addition
to ϵ at toric points. We are able to represent a closed formula for m(Pd) in
terms of the values of Dilogarithm.

Proposition 4.9. Let d ∈ N and d ≥ 2, so the closed formula for the
Mahler measure of Pd is as follows:

(4.9) 2πm(Pd) = 2
(d + 1)

∑
(x,y)∈Ud+2

with ϵ(x,y)>0

[D(x) − D(y) − D(x/y)]

− 2
d + 2

∑
(x,y)∈Ud+1

with ϵ(x,y)>0

[D(x) − D(y) − D(x/y)] ,

where Ud+1 or Ud+2 are the set of the d + 1 and d + 2 toric points of Pd,
computed in Proposition 4.8.

Proof. According to (4.1), We have computed the volume function in Theo-
rem 3.9 and it is V (x, y) = 1

(d+1)(d+2) [D(yd+1) − D(xd+1) − D((y/x)d+1)] +
1

(d+2) [D(x) − D(y) − D(x/y)]. The toric points and ϵ evaluated at toric
points are computed respectively in Proposition 4.4 and Proposition 4.8.
Then, thanks to the properties of dilogarithm which D(z) = −D(z) and
D(1) = 0 we have V (x, y) = 1

(d+2) [D(x) − D(y) − D(x/y)] at (x, y) ∈ Ud+1

also V (x, y) = 1
(d+1) [D(x) − D(y) − D(x/y)] at (x, y) ∈ Ud+2. □

We use the closed formula to compute m(Pd), for arbitrary values of
d ≥ 2. The case of P1 was first computed by Smyth [17] and it is m(P1) =
1
π D(e

π
3 i), which is approximately 0.32. By using the above formula for d = 2

we have m(P2) = 1
2π

(3
2D(ei 4π

3 ) + 4D(ei π
2 )
)
, which is approximately 0.421.

These computations may be automated and we get an algorithm to compute
the Mahler measure of any Pd, as a combination of dilogarithm at roots of
unity. This can be computed with arbitrary precision in a very efficient way.
For 1 ≤ d ≤ 1000 the graph of m(Pd), implemented in SageMath, is shown
in Figure 4.3.

The figure hints to the existence of a limit for m(Pd). In the next section
we study the properties of the volume function to compute the limit.

5. Convergence of m(Pd), computational proof

In this section using the Riemann sum technics and error estimation we
prove that m(Pd) converges to 9

2π2 ζ(3) which remind us of the important
examples computed by Smith.
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Figure 4.3. The graph of m(Pd), for 1 ≤ d ≤ 1000.

5.1. Representing m(Pd) in terms of Riemann sums of the func-
tion vol. In the previous section in (4.9) we introduce the closed formula
for m(Pd). However, we can not directly use that formula to compute the
limit of m(Pd). In this section we introduce a new function, called vol and
the values of the volume function at toric points will be replaced by the
values of vol at certain points. The advantage of replacing volume function
by vol is that it is a concave function in a part of its domain and this is the
key point to find the limit of m(Pd).

Definition 5.1. The function vol : [0, 2π] × [0, 2π] 7→ R is defined by
vol(θ, α) := D(eiθ) − D(ei(θ+α)) + D(eiα).

We have the following links between vol and volume function at toric
points:

(1) For (x, y) ∈ Ud+1, with x = e
2kπi
d+1 , y = e

2k′πi
d+1 , where 0 < k < k′ <

d + 1 we have:

V (e
2kπi
d+1 , e

2k′πi
d+1 ) = 1

d + 2 vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
= −V (e

2k′πi
d+1 , e

2kπi
d+1 ).

(2) For (x, y) ∈ Ud+2, with x = e
2kπi
d+2 and y = e

2k′πi
d+2 , where 0 < k <

k′ < d + 2 we have:

V (e
2kπi
d+2 , e

2k′πi
d+2 ) = 1

d + 1 vol
( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)
= −V (e

2k′πi
d+2 , e

2kπi
d+2 ).



Mahler measure of Pd polynomials 809

According too the above equation we can recompute m(Pd) in terms of the
sum of the values of vol;

(5.1) 2πm(Pd) = 2
d + 1

∑
0<k<k′≤d+1

vol
( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)

− 2
d + 2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
.

Let us define Sd := 4π2

d2
∑

0<k<k′≤d−1 vol
(

2kπ
d , 2(k′−k)π

d

)
, which is a Rie-

mann sum of vol over the triangle with vertices {(0, 0), (0, 2π), (2π, 0)},
denoted by T . Thus, the series appear on the R.H.S of (5.1) are respec-
tively (d+2)

(d+1)2 Sd+1 and (d+1)
(d+2)2 Sd+2. Since vol is continues the Riemann sums

Sd+1 and Sd+2 converge to the integral of vol over T and the sequence
E(d) = |

∫∫
T vol −Sd| goes to zero when d goes to infinity. However, the

coefficients of the Riemann sums in (5.1) depend on d and when d goes the
errors (d+2)

(d+1)2 E(d + 1) and (d+1)
(d+2)2 E(d+2) may not converge to zero anymore.

To prove that (m(Pd))d∈N converges we first, introduce the properties of
vol. Then, using these properties we find an upper and a lower bound for
Sd in terms of the integral of vol. Finally by studying the error terms Ed

we will prove that if d goes to infinity, E(d) goes to zero faster than 1/d.
This completes the argument of the convergence of m(Pd). The following
lemma introduces some important properties of vol:

Lemma 5.2. The function, vol(θ, α), is positive inside of T and equals
zero on its boundary. Moreover, it is concave on T .

Proof. Since D(1) = 0 and D(z) = −D(z) it is easy to verify that vol is
equal to zero at each boundary point of T . Moreover, vol is continuous
everywhere and real analytic everywhere except at (θ, α) where eiθ = 1,
eiα = 1 or ei(θ+α) = 1. Thus, we check the sign of vol, at inner points of
T , where the function is differentiable. To do so, first, we find the critical
points of vol. Hence, we search for (θ0, α0), which satisfies ∂ vol

∂θ |(θ0,α0) =
∂ vol
∂α |(θ0,α0) = 0. After using the link between Dilogarithm and η, which is

−dD(z) = η(z, 1 − z) and a simple computation we have:

log |1 − ei(θ+α)| − log |1 − eiα| = log |1 − ei(θ+α)| − log |1 − eiθ| = 0.

We assume that 0 < θ < 2π, 0 < α < 2π and 0 < α + θ < 2π, since we
search for the solutions of the system inside T . Hence, the unique critical
point correspond to θ = α = 2π/3. Note that vol(2π/3, 2π/3) = 3D(e

2π
3 i)

is approximately 2, 03. Hence, vol is positive inside T .
To prove the concavity of vol on T , we compute the Hessian matrix of

vol, then we prove it is negative definite. After computing all the partial
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derivatives the Hessian matrix of vol is:

H =

 ∂2 vol
∂θ2

∂2 vol
∂θ∂α

∂2 vol
∂α∂θ

∂2 vol
∂α2

 =

 1
2 cot( θ+α

2 ) − 1
2 cot( θ

2) 1
2 cot( θ+α

2 )

1
2 cot( θ+α

2 ) 1
2 cot( θ+α

2 ) − 1
2 cot(α

2 )

.

The symmetric (2 × 2) Hessian matrix is negative definite if and only if
D1 < 0 and D2 > 0, where Di, (i = 1, 2) are leading principal minors. Then,
after a computation on the minors (inside T ), we have D1 = 1

2 cot( θ+α
2 ) −

1
2 cot( θ

2) < 0, since cot x is a decreasing function on [0, π]. Moreover, D2 =

Det(H) = 1
4

(
cot( θ

2) cot(α
2 ) − cot( θ

2 ) cot( α
2 )−1

(cot( θ
2 )+cot( α

2 )) .(cot( θ
2) + cot(α

2 ))
)

= 1
4 > 0.

Therefore vol(θ, α) is concave inside T . □

The Figure 5.1 illustrates the properties of vol mentioned in the previous
lemma. In fact, the reason for which we replaced the volume function by
vol in the formula of m(Pd) is to take advantage of these properties of vol.

Figure 5.1. The graph of vol(θ, α).

As we have mentioned, for computing the limit of m(Pd) the second step
is to estimate the error between the Riemann sums and the integral of vol.
In the following lemma we compute the integral and later in Section 5.2 and
Section 5.3, we bound the errors between Riemann sums and this integral.

Lemma 5.3. We have
∫∫

T vol(θ, α)dA = 6πζ(3), where dA is the euclidean
measure on T .
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Proof. In this proof, we use the formula, D(eiθ) =
∑∞

n=1
sin(nθ)

n2 .∫∫
T

vol(θ, α)dA

=
∫ 2π

0

∫ 2π−α

0
vol(θ, α)dθdα

=
∫ 2π

0

∫ 2π−α

0
D(eiθ) − D(ei(θ+α)) + D(eiα)dθdα

=
∫ 2π

0

∫ 2π−α

0

∞∑
n=1

sin(nθ)
n2 +

∞∑
n=1

sin(nα)
n2 −

∞∑
n=1

sin(n(θ + α))
n2 dθdα

[1]
=

∞∑
n=1

∫ 2π

0

∫ 2π−α

0

sin(nθ) + sin(nα) − sin(n(θ + α))
n2 dθdα

= 6π
∞∑

n=1

1
n3 = 6πζ(3).

We notice that in [1] the summation and the integration is commuted, since
the series converges uniformly. □

5.2. A lower bound for Riemann sums of vol. As we mentioned
to compute the limit of m(Pd) we need to study the error between the
Riemann sums of vol and its integral. In this section, using affine functions
we exhibit a lower bound for the Riemann sum of vol in terms of the integral
of vol(θ, α). Then, in the next section we compute an upper bound for the
Riemann sum of vol in terms of the integral. Combining these two results we
have information about the error terms. Before starting the computation,
in the following observation we illustrate the intuition behind the definition
of Sd.

Observation 5.4 (Square subpartition). Consider the set of the points
( 2kπ

d+1 , 2(k′−k)π
d+1 ) with 0 < k < k′ < d + 1 inside T . For (x, y) in the set,

consider the square with side 2π
d+1 such that (x, y) is at the center of the

square. The union of the squares is called (d+1)-square subpartition of T
which does not cover all T . The set difference of T and the (d+1)-square
subpartition is called Blue part. The 8-square subpartition (for d = 7) of T
is shown in Figure 5.2.

As we have already introduced we define

Sd+1 :=
∑

0<k<k′<d+1

4π2

(d + 1)2 vol( 2kπ

d + 1 ,
2(k′ − k)π

d + 1 ),

where 4π2

(d+1)2 is the area of each square in (d + 1)−square subpartition.
We can repeat the same process, by choosing the points ( 2kπ

d+2 , 2(k′−k)π
d+2 ), for
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Figure 5.2. The figure of 8-square subpartition of T.

0 < k < k′ < d+2. Similarly, we have d+2-square subpartition of T , which
leads to Sd+2. The difference between the value of the integral and Sd for a
fixed d, is denoted by E(d).

Since our computation of m(Pd) concern Sd+1 and Sd+2, in the sequel
we do all computations for the case d + 1 and the case d + 2 is concluded in
the same way. Let us introduce another notation, which later gives us the
upper bound for Ed:

E(d + 1) :=
∫∫

Blue part
vol(θ, α)dA.

In the following, using the fact that any tangent plane to the graph of a
concave function is above the graph, we find a lower bound for Sd.

Lemma 5.5. We have E(d + 1) ≤ E(d + 1). Moreover,

(5.2)
∫∫

T
vol(θ, α)dA ≤ E(d+1)+ 4π2

(d +1)2

∑
0<k<k′≤d

vol
( 2kπ

d +1 ,
2(k′ −k)π

d +1

)
.

Proof. According to Observation 5.4, for a fixed d, T is partitioned into
(d−1)(d−2)

2 squares and the blue part. The function vol is concave and dif-
ferentiable inside T , especially on each square. Let us focus on arbitrary
and fixed square and denote its central point by (θ∗, α∗). The tangent plane
to the graph of vol at (θ∗, α∗) denoted by Tangvol(θ∗, α∗), is located above
the graph for all (θ, α) in the square, so we have:

vol(θ, α) ≤ Tangvol(θ∗, α∗).(5.3)

The volume of the rectangular cuboid with the square as its base and
bounded above by the tangent plan of vol(θ, α), at (θ∗, α∗), is greater than∫∫

□ vol(θ, α)dA. Hence, we have:∫∫
□

vol(θ, α)dA ≤
∫∫

□
Tangvol(θ∗, α∗)dA = 4π2

(d + 1)2 vol(θ∗, α∗).
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Therefore, we have:∑
all squares inside T

∫∫
□

vol(θ, α)dA

≤
∑

0<k<k′≤d

4π2

(d + 1)2 vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
,

Thus, E(d + 1) ≤ E(d + 1), moreover, we have:∫∫
T

vol(θ, α)dA(5.4)

≤ E(d + 1) + 4π2

(d + 1)2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
. □

5.3. An upper bound for Riemann sums of vol. In this section, we
define a partition of T , which leads to an upper bound for the Riemann
sum.

Observation 5.6 (Triangular partition). The triangle T is partitioned into
the smaller triangles belong to T1 ∪ T2, where T1 and T2 define as follows:

T1 :=
d+1⋃
i=0

d+1−i⋃
j=0

{[( 2πi

d+1 ,
2πj

d+1

)
,

( 2πi

d+1 ,
2π(j +1)

d+1

)
,

(2π(i+1)
d+1 ,

2πj

d+1

)]}
,

T2 :=
d⋃

i=1

d+1−i⋃
j=1

{[(2π(i−1)
d+1 ,

2πj

d+1

)
,

( 2πi

d+1 ,
2πj

d+1

)
,

( 2πi

d+1 ,
2π(j −1)

d+1

)]}
.

In the definition of T1 and T2, [(i1, j1), (i2, j2), (i3, j3)] denotes the trian-
gle with vertices (i1, j1), (i2, j2), and (i3, j3). The figure for the 2-triangular
partition is shown in Figure 5.3; indeed, the pink and green triangles re-
spectively belong to T1 and T2.

Figure 5.3. The figure of 2-triangular partitions of T.

Definition 5.7. The vertices of small triangles, defined in Observation 5.6,
not located on the boundary of T are called inner vertices. The set of all
these inner vertices is denoted by In(T ).

The following fact leads to an important correspondence between the
triangular partition, and the square subpartition. The proof is elementary.
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Fact 5.8. Each inner vertex of a small triangle, in the d-triangular parti-
tion, is a central point of a unique square in the d-square subpartition.

If we restrict vol to the triangle [a, b, c], since it is concave there exists
a unique affine function called χ, such that vol(a) = χ(a), vol(b) = χ(b),
vol(c) = χ(c) and for any (θ, α) in the triangle we have χ(θ, α) ≤ vol(θ, α).
The following easily verified lemma helps us to compute an upper bound
for the Riemann sums.

Lemma 5.9. Let [a, b, c] be an arbitrary triangle in T1 ∪ T2, introduced
in Observation 5.6 and χ denotes the affine function such that vol(a) =
χ(a), vol(b) = χ(b), vol(c) = χ(c) and for any (θ, α) in the triangle we have
χ(θ, α) ≤ vol(θ, α). Thus we have:

(5.5)
∫∫

[a,b,c]
χ(θ, α)dA = area[a, b, c]

(1
3 vol(a) + 1

3 vol(b) + 1
3 vol(c)

)
≤
∫∫

[a,b,c]
vol(θ, α)dA.

We are able to present an upper bound for the Riemann sum.

Lemma 5.10. We have the following upper bound for the Riemann sum:

4π2

(d + 1)2

∑
0<k<k′<d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
≤
∫∫

T
vol(θ, α)dA.

Proof. Let [a, b, c] and [b, c, d] denotes respectively an arbitrary triangle in
T1 and T2 which both have the area 2π

(d+1)2 , so we have:

∑
[b,c,d]∈T2

∫∫
[b,c,d]

vol(θ, α)dA +
∑

[a,b,c]∈T1

∫∫
[a,b,c]

vol(θ, α)dA =
∫∫

T
vol(θ, α)dA.

By applying Lemma 5.9 to the last equality we have:

∑
[b,c,d]∈T2

area[b, c, d]
(1

3 vol(d) + 1
3 vol(b) + 1

3 vol(c)
)

+
∑

[a,b,c]∈T1

area[a, b, c]
(1

3 vol(a) + 1
3 vol(b) + 1

3 vol(c)
)

≤
∫∫

T
vol(θ, α)dA.

As we already mentioned, for every a on the boundary of T we have vol(a) =
0. Let a ∈ In(T ), so it appears in 6 small triangles, inside T . Therefore, we
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have:∑
[b,c,d] ∈T2

area[b, c, d]
(1

3 vol(d) + 1
3 vol(b) + 1

3 vol(c)
)

+
∑

[a,b,c] ∈T1

area[a, b, c]
(1

3 vol(a) + 1
3 vol(b) + 1

3 vol(c)
)

= 4π2

(d + 1)2

∑
a∈In(T )

6
3 vol(a) = 4π2

(d + 1)2

∑
0<k<k′<d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
.

In the last equality we used Fact 5.8. □

5.4. Computing the limit of (m(Pd))d∈N. In this section we complete
the computational proof for finding the limit of (m(Pd))d∈N, which was an-
nounced in the introduction. The only missed information is the asymptotic
behavior of the error sequence E(d), which is another essential tool to find
the limit. Using the triangular partition, and square subpartition we prove
that when d goes to infinity, E(d) goes to zero faster than 1/d.

Lemma 5.11. E(d) = o(1
d).

Proof. We use the bounds, computed in Lemma 5.5 and Lemma 5.10 and
we conclude that:

0 ≤
∫∫

T
vol(θ, α)dA − 4π2

(d + 1)2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
≤ E(d + 1) ≤ Max . area(Blue part),

where Max is the maximum of vol on the Blue part of the triangle. The
area of the blue part is 2π2 3d+1

(d+1)2 , so by the definition of E(d + 1) we have:

E(d + 1) =
∫∫

T
vol(θ, α)dA − 4π2

(d + 1)2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)

≤ 2π2 3d + 1
(d + 1)2 Max .

If d goes to infinity the points inside the blue part are approaching the
boundary of T , where the values of vol are zero. Hence, the Maximum of vol
in the blue part goes to zero as well. Therefore, we have dE(d + 1) d→∞−−−→ 0.
In other words E(d + 1) = o(1

d). □

We have computed m(Pd) as subtraction of coefficients of two Riemann
sums of vol and estimated the error terms. Thus, we have all the infor-
mation to compute the limit and prove Theorem 1.2, announced in the
introduction.
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Theorem. The limd→∞ m(Pd) exists and it is:

lim
d→∞

m(Pd) = 9
2π2 ζ(3) ≃ 0.548.

Proof. By using (5.1) we have:

2πm(Pd) = 2
d + 1

∑
0<k<k′≤d+1

vol
( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)

− 2
d + 2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
.

In order to find limd→∞ m(Pd) we compute the limit of the R.H.S. We
notice that, for each d we have:∫∫

T
vol(θ, α)dA = 4π2

d2

∑
0<k<k′≤d+1

vol
(2kπ

d
,
2(k′ − k)π

d

)
+ E(d).

We recompute m(Pd) by using the previous information;

2πm(Pd) = 2
d + 1

∑
0<k<k′≤d+1

vol
( 2kπ

d + 2 ,
2(k′ − k)π

k
d + 2

)

− 2
d + 2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)

= 3d2 + 8d + 7
4π3(d2 + 3d + 2)

∫∫
T

vol(θ, α)dA + (d + 1)2

2π2(d + 2)E(d + 1)

− (d + 2)2

2π2(d + 1)E(d + 2).

According to Lemma 5.11, E(d) = o(1
d). Hence,

lim
d→∞

(d + 1)2

2π2(d + 2)E(d + 1) = lim
d→∞

(d + 2)2

2π2(d + 1)E(d + 2) = 0.

Therefore, thanks to Lemma 5.3 we have:

lim
d→∞

m(Pd) = 3
4π3

∫∫
T

vol(θ, α)dA = 9
2π2

∞∑
n=1

1
n3 = 9

2π2 ζ(3). □
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