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A note on weighted simultaneous Diophantine
approximation on manifolds

par Demi ALLEN et Baowei WANG

Résumé. Dans cette note nous présentons une amélioration d’un résultat ré-
cent dû à Beresnevich, Levesley, et Ward (2021) sur l’approximation diophan-
tienne simultanée pondérée sur les variétés.

Abstract. In this note we present an improvement to a recent result due to
Beresnevich, Levesley, and Ward (2021) pertaining to weighted simultaneous
Diophantine approximation on manifolds.

1. Introduction and statement of the result

A fundamental problem in metric Diophantine approximation is to un-
derstand the “size”, specifically the Lebesgue measure, Hausdorff measure,
and Hausdorff dimension, of the classical set of simultaneously ψ-well ap-
proximable points in Rn. For a given approximating function ψ : N → R≥0,
that is the set

Wn(ψ) =

x = (x1, . . . , xn) ∈ Rn :
max

1≤i≤n
|qxi − pi| < ψ(q)

for infinitely many (p, q) ∈ Zn × N

.
For monotonic approximating functions, the Lebesgue measure and Haus-

dorff measure of Wn(ψ) are characterised, respectively, by classical results
due to Khintchine [15, 16] and Jarník [14] from the 1920s and 1930s. In
the 1940s, Duffin and Schaeffer constructed a counter-example demon-
strating that monotonicity of the approximating function is essential in
the one-dimensional version of Khintchine’s Theorem and proferred a con-
jecture concerning the expected result for non-monotonic approximating
functions [12]. A higher-dimensional version of the Duffin–Schaeffer Conjec-
ture, which encapsulates the setting of simultaneous Diophantine approxi-
mation in Rn, was formulated by Sprindžuk in [25, Chapter 1, Section 8].
In 1990, Pollington and Vaughan [20] proved this conjecture of Sprindžuk
for n ≥ 2 and, in a recent breakthrough, the original conjecture of Duffin
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and Schaeffer was proved by Koukoulopoulos and Maynard [19]. Moreover,
in [8] Beresnevich and Velani demonstrated the equivalence of the Duffin–
Schaeffer Conjecture and its appropriate Hausdorff measure counterpart.
This equivalence is a consequence of the celebrated Mass Transference Prin-
ciple proved in [8]. Taking all of the above results together, we have a fairly
complete picture regarding the metric theory of the set Wn(ψ).

In recent years, it has become increasingly popular to study various gen-
eralisations of the set Wn(ψ) and how they interact with other naturally
arising sets such as curves and manifolds. The particular generalisation of
Wn(ψ) which will concern us here will be the weighted simultaneously Ψ-
approximable points in Rn. Moreover, we will be interested in studying the
Hausdorff dimension of the intersection of this set with manifolds for a par-
ticular form of the approximating function Ψ. Throughout, given X ⊂ Rn

and s ≥ 0, we will write Hs(X) to denote the Hausdorff s-measure of X.
We will denote by dimHX the Hausdorff dimension of X and we will write
λn(X) to denote the n-dimensional Lebesgue measure of X. For definitions
and properties of Hausdorff measures and dimension, we refer the reader
to [13].

Let Ψ : N → Rn
≥0 be an approximating function such that

Ψ(q) = (ψ1(q), . . . , ψn(q))

where ψi : N → R≥0 for each 1 ≤ i ≤ n. We define the weighted simultane-
ously Ψ-approximable points in Rn as

Wn(Ψ) = {x ∈ Rn : |qxi − pi| < ψi(q), 1 ≤ i≤ n, for i.m. (p, q) ∈ Zn × N}.

Throughout, we will frequently use the shorthand “i.m.” for “infinitely
many”. When Ψ(q) = (q−τ1 , . . . , q−τn) for some τ = (τ1, . . . , τn) ∈ Rn

>0,
we write Wn(τ) in place of Wn(Ψ).

When considering manifolds, we will look at them locally on some open
subset U ⊂ Rd and will use the following Monge parameterisation without
loss of generality:

M = {(x, f(x)) : x ∈ U} ⊂ Rn,(1.1)

where d is the dimension of the manifold, m is the codimension of the
manifold, i.e. d+m = n, and f : U → Rm.

Considering the Hausdorff dimension of the intersection of Wn(τ) with
a manifold M, we are able to establish the following result.

Theorem 1.1. Let M = {(x, f(x)) : x ∈ U ⊂ Rd} ⊂ Rn where f : U → Rm

is such that f ∈ C(2). Here, d is the dimension of the manifold M and m
is its codimension, so that n = d + m. Suppose τ = (τ1, . . . , τn) ∈ Rn

>0 is
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such that

τ1 ≥ τ2 ≥ · · · ≥ τd ≥ max
d+1≤i≤n

τi and
m∑

j=1
τd+j < 1.

Then,

dimH (Wn(τ) ∩ M) ≥ min
1≤i≤d

{
n+ 1 +

∑n
k=i (τi − τk)

τi + 1 −m

}
.

Theorem 1.1 improves upon a recent result due to Beresnevich, Levesley,
and Ward [6, Theorem 1.9], who established the same lower bound for the
Hausdorff dimension of Wn(τ) ∩ M as in Theorem 1.1 but subject to more
stringent conditions on the weight vector τ . More precisely, they required
that τ = (τ1, . . . , τn) ∈ Rn

>0 satisfies

τ1 ≥ τ2 ≥ · · · ≥ τd ≥ max
d+1≤i≤n

{
τi,

1 −
∑m

j=1 τj+d

d

}
and

m∑
j=1

τd+j < 1.

In the interest of brevity, we refer the reader to [6] and references therein
for a detailed overview regarding the state of the art of this problem.
Nevertheless, it is still worth remarking here that in the classical case of
unweighted simultaneous Diophantine approximation, where the approxi-
mating functions in each co-ordinate direction are equal, establishing re-
sults about Wn(ψ) ∩ M is a well-studied problem. In particular, in this
case, we note that the problem of establishing upper and lower bounds
for the Hausdorff dimension of Wn(ψ) ∩ M for various manifolds and var-
ious forms of the approximating function ψ has been studied in, for ex-
ample, [3, 4, 5, 7, 10, 11, 24, 26]. Indeed, one may think of Theorem 1.1
and [6, Theorem 1.9] as a generalisation of [5, Theorem 1] to the setting of
weighted simultaneous approximation on manifolds. Results relating to the
Lebesgue measure of the set of weighted simultaneously Ψ-approximable
points, Wn(Ψ), not intersected with manifolds, can be traced back to work
of Khintchine [17]. The Hausdorff dimension of sets of weighted simultane-
ously approximable points was studied by Rynne in [22].

Our proof strategy for establishing Theorem 1.1 mirrors that employed
by Beresnevich, Levesley, and Ward in proving [6, Theorem 1.9]. In par-
ticular, we begin by establishing a “Dirichlet-type” theorem for weighted
approximation on manifolds (Theorem 3.1) and we use this result to con-
struct an appropriate full measure set contained in our manifold M. Our
proof is completed via an application of a mass transference principle from
“rectangles to rectangles” proved recently by Wang and Wu in [27] which
allows us to deduce the desired lower bound on the Hausdorff dimension
of Wn(τ) ∩ M. The key differences allowing for the improvement in The-
orem 1.1 compared with [6, Theorem 1.9] are the more general “Dirichlet-
type” theorem and the use of this more recent mass transference principle
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from [27] in the final step of our proof. At the analogous point in the proof
of [6, Theorem 1.9], Beresnevich, Levesley and Ward use an earlier mass
tranference principle from “balls to rectangles” established by Wang, Wu,
and Xu in [28].

2. Mass transference principle from rectangles to rectangles

The original Mass Transference Principle due to Beresnevich and Ve-
lani [8] allows us to infer Hausdorff measure statements for lim sup sets
of balls in Rn from appropriate Lebesgue measure statements. This result
is somewhat surprising since Hausdorff measure is in some sense a refine-
ment of Lebesgue measure. As a result, the Mass Transference Principle
has a number of profound consequences and has come to be an important
tool in the study of metric Diophantine approximation. For example, one
such consequence is the aforementioned example that the Mass Transfer-
ence Principle implies the equivalence of the Duffin–Schaeffer Conjecture
and its Hausdorff measure analogue.

Given a real number s > 0 and a ball B := B(x, r) in Rn of radius r
centred at x, let Bs := B(x, r

s
n ). In particular, note that Bn = B. In its

most simple form, the Mass Transference Principle reads as follows.

Mass Transference Principle (Beresnevich–Velani, [8]). Let {Bj}j∈N be
a sequence of balls in Rn with radii r(Bj) → 0 as j → ∞. Let s > 0 and
let Ω be a ball in Rn. Suppose that, for any ball B in Ω,

Hn(B ∩ lim sup
j→∞

Bs
j

)
= Hn(B) .

Then, for any ball B in Ω,
Hs(B ∩ lim sup

j→∞
Bn

j

)
= Hs(B) .

Remark. The statement above is a simplified form of [8, Theorem 2]. Also
recall that for Borel sets in Rn, the Hausdorff n-measure, Hn, is a constant
multiple times n-dimensional Lebesgue measure, λn (see, for example, [13]).
So the above statement really does allow us to pass between Lebesgue
measure and Hausdorff measure statements.

Since the publication of [8], the original Mass Transference Principle
from “balls to balls” stated above has been extended in a multitude of di-
rections. For example, in [9], Beresnevich and Velani established a mass
transference principle for systems of linear forms which was later improved
in [2]. This result was further extended to a mass transference principle for
sets satisfying a “local scaling property” in locally compact metric spaces
in [1]. A mass transference principle from “balls to rectangles” was estab-
lished in [28] and has subsequently been upgraded to a mass transference
principle from “rectangles to rectangles” in [27]. Results relating to a mass
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transference principle from “balls to arbitrary open sets” have been estab-
lished by Koivusalo and Rams [18] and Zhong [29].

As hinted at earlier, for our current purposes, we are particularly in-
terested in the mass transference principle from “rectangles to rectangles”
established in [27]. To aid readability we will not state the result of [27]
in full generality but rather we will present here a simplified statement
which follows as a corollary of the mass transference principle given by [27,
Theorem 3.4] and which is more directly applicable to the problem at hand.

Since we are only interested in the manifold M locally, then for the
Monge parameterisation (1.1) of the manifold M, we further ask that U =∏d

i=1 Ui ⊂ Rd with Ui being finite intervals in R for each 1 ≤ i ≤ d. Next,
suppose that N is an infinite subset of elements (p, q) in Zd×N with p

q ∈ U .
For a = (a1, . . . , ad) ∈ Rd

>0 and a constant c > 0, let

W c
a =

{
x ∈ U :

∣∣∣∣xi − pi

q

∣∣∣∣ < c

qai
for 1 ≤ i ≤ d, for i.m. (p, q) ∈ N

}
.

For t = (t1, . . . , td) ∈ Rd
≥0 and a constant c′ > 0, define

W c′
a (t) =

{
x ∈ U :

∣∣∣∣xi − pi

q

∣∣∣∣< c′

qai+ti
for 1 ≤ i ≤ d, for i.m. (p, q) ∈ N

}
.

The following statement is a consequence of [27, Theorem 3.4] (taken to-
gether with [27, Remark 3.4]).

Theorem 2.1 (Wang–Wu, [27]). Let W c
a and W c′

a (t) be as defined above
and suppose that

λd(W c
a) = λd(U).

Then,

dimH (W c′
a (t)) ≥ min

A∈A

 ∑
k∈K1∪K2

1 +
∑

k∈K3 ak −
∑

k∈K2 tk

A

 ,
where

A = {ai, ai + ti : 1 ≤ i ≤ d}
and for each A ∈ A, the sets K1,K2,K3 are defined as
K1 ={k : ak ≥ A}, K2 ={k : ak + tk ≤ A}\K1, K3 ={1, . . . , d}\ (K1 ∪K2)
thus giving a partition of {1, . . . , d}.

3. Proof of Theorem 1.1

In this section, we will present our proof of Theorem 1.1. We follow essen-
tially the same strategy as laid out by Beresnevich, Levesley, and Ward in
their proof of [6, Theorem 1.9]. As already alluded to, the main difference is
that we use the mass transference principle from “rectangles to rectangles”
proved in [27], whereas Beresnevich, Levesley and Ward used the earlier
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mass transference principle from “balls to rectangles” established in [28].
Our proof is split into three main parts. In Section 3.1 we prove a Dirichlet-
type theorem (Theorem 3.1) for weighted approximation on manifolds. In
Section 3.2 we use Theorem 3.1 to construct an appropriate full measure
set and make some other preliminary preparations which eventually enable
us to apply the mass tranference principle for rectangles (Theorem 2.1) to
complete the proof in Section 3.3.

3.1. A Dirichlet-type theorem for weighted simultaneous approx-
imation on manifolds. The first step in establishing Theorem 1.1 is to
prove a Dirichlet-type theorem for weighted simultaneous approximation
on manifolds which will eventually help us to “construct” a suitable full
measure set to which we can apply Theorem 2.1. The following statement
provides a suitable Dirichlet-type theorem and is a modification of [6, The-
orem 3.1]. Indeed, we follow the same line of proof as the proof of [6,
Theorem 3.1] with some parts following (almost) verbatim.

Theorem 3.1. Let M = {(x, f(x)) : x ∈ U ⊂ Rd} ⊂ Rn where f : U → Rm

is such that f ∈ C(2). Let τ = (τ1, . . . , τn) ∈ Rn
>0 and a = (a1, . . . , ad) ∈

Rd
>0 be such that

m∑
j=1

τd+j < 1, and min
1≤i≤d

ai > 1.

Suppose also that

(a1 − 1) + · · · + (ad − 1) +
m∑

j=1
τd+j = 1.(3.1)

For any x ∈ U , there exists an integer Q0 such that for any Q > Q0 there
exists (p1, . . . , pn, q) ∈ Zn × N with 1 ≤ q ≤ Q and (p1

q , . . . ,
pd
q ) ∈ U such

that ∣∣∣∣xi − pi

q

∣∣∣∣ < 4m/d

qQai−1 for 1 ≤ i ≤ d,(3.2)

and ∣∣∣∣fj

(
p1
q
, . . . ,

pd

q

)
− pd+j

q

∣∣∣∣ < 1
2qτj+d+1 for 1 ≤ j ≤ m.(3.3)

Furthermore, for any x ∈ U \Qd, there exist infinitely many tuples (p1, . . . ,
pn, q) ∈ Zn × N with (p1

q , . . . ,
pd
q ) ∈ U satisfying (3.3) and∣∣∣∣xi − pi

q

∣∣∣∣ < 4m/d

qai
for 1 ≤ i ≤ d.(3.4)



Weighted Diophantine approximation on manifolds 781

Proof. Since M is constructed via a twice continuously differentiable func-
tion f : U → Rm, we can choose a suitable U such that, without loss of
generality, the following two constants exist:

C = max
1≤i,k≤d
1≤j≤m

sup
x∈U

∣∣∣∣∣ ∂2fj

∂xi∂xk
(x)
∣∣∣∣∣ < ∞,

and

D = max
1≤i≤d
1≤j≤m

sup
x∈U

∣∣∣∣∂fj

∂xi
(x)
∣∣∣∣ < ∞.

For 1 ≤ j ≤ m, define

gj = fj −
d∑

i=1
xi
∂fj

∂xi
.

Consider the system of inequalities,∣∣∣∣∣qgj(x) +
d∑

i=1
pi
∂fj

∂xi
(x) − pd+j

∣∣∣∣∣ < Q−τj+d

4 for 1 ≤ j ≤ m,(3.5)

|qxi − pi| <
4m/d

Qai−1 for 1 ≤ i ≤ d,(3.6)

|q| ≤ Q.(3.7)

It is a consequence of Minkowski’s Theorem for Systems of Linear Forms
(see, for example, [23, Theorem 2C]) that there exists a non-zero integer
solution (p1, . . . , pn, q) ∈ Zn+1 satisfying the inequalities (3.5)–(3.7). More
precisely, consider the matrix

A =



g1
∂f1
∂x1

. . . ∂f1
∂xd

−1 . . . 0
...

...
...

... . . . ...
gm

∂fm

∂x1
. . . ∂fm

∂xd
0 . . . −1

x1 −1 . . . 0 0 . . . 0
...

... . . . ...
... . . . ...

xd 0 . . . −1 0 . . . 0
1 0 . . . . . . . . . . . . 0


.

It is straightforward to verify that |det(A)| = 1. Next we consider the
product of the terms on the right-hand sides of (3.5), (3.6), and (3.7).
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Recalling condition (3.1), we have m∏
j=1

Q−τj+d

4

( d∏
i=1

4m/d

Qai−1

)
×Q

= 4−m · 1
Qτd+1

· · · 1
Qτd+m

· (4m/d)d · 1
Qa1−1 · · · 1

Qad−1 ·Q

= Q

Q
(a1−1)+···+(ad−1)+

∑m

j=1 τd+j

= 1.

Thus, it follows from Minkowski’s Theorem for Systems of Linear Forms
that there exists a non-zero integer solution (p1, . . . , pn, q) ∈ Zn+1 satisfying
the inequalities (3.5)–(3.7), as required.

Now, fix some x ∈ U . Then, since U is open, there exists a ball B(x, r)
for some r > 0 which is contained in U . Define

Q =
{
Q ∈ N : max

1≤i≤d

(
4m/d

Qai−1

)
< min

{
1, r,

( 1
2Cd2

) 1
2
}}

.

Since ai > 1 for all 1 ≤ i ≤ d, we must have

max
1≤i≤d

(
4m/d

Qai−1

)
→ 0 as Q → ∞.

Thus, there exists some integer Q0 such that Q ∈ Q for any integer Q ≥ Q0.
We will show that for any Q ∈ Q, a solution (p1, . . . , pn, q) ∈ Zn+1 satisfying
inequalities (3.5)–(3.7) also satisfies inequalities (3.2) and (3.3).

Let us first deal with the case where q = 0. By the definition of the set
Q, we have

max
1≤i≤d

(
4m/d

Qai−1

)
< 1.

Thus, if q = 0, it follows from (3.6) that |pi| < 1, and hence we must have
pi = 0, for all 1 ≤ i ≤ d. Subsequently, in this case, (3.5) yields

|pd+j | < Q−τj+d

4 < 1 for 1 ≤ j ≤ m.

Hence, in the case when q = 0, our solution must be the zero vector, thus
contradicting Minkowski’s Theorem for Systems of Linear Forms. Hence we
must have |q| ≥ 1 and, without loss of generality, we will suppose from now
on that q ≥ 1.

Dividing (3.6) by q, we obtain∣∣∣∣xi − pi

q

∣∣∣∣ < 4m/d

qQai−1 for 1 ≤ i ≤ d,
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which coincides precisely with (3.2). Moreover, note that it follows from
the definition of Q that (p1

q , . . . ,
pd
q ) ∈ B(x, r) ⊂ U .

Now we need to prove that the solution (p1, . . . , pn, q) ∈ Zn+1 satisfying
inequalities (3.5)–(3.7) also satisfies (3.3). This conclusion follows via Tay-
lor’s Approximation Theorem (see, for example, [21, Chapter 9]). In detail,
since (p1

q , . . . ,
pd
q ) ∈ B(x, r) ⊂ U and f : U → Rm is twice differentiable,

we can use the second order case of Taylor’s Theorem in d dimensions to
conclude that

fj

(
p1
q
, . . . ,

pd

q

)
= fj(x) +

d∑
i=1

∂fj

∂xi
(x)

(
pi

q
− xi

)
+Rj(x, x̂)(3.8)

for some x̂ on the line connecting x and (p1
q , . . . ,

pd
q ) where

Rj(x, x̂) = 1
2

d∑
i=1

d∑
k=1

∂2fj

∂xi∂xk
(x̂)

(
pi

q
− xi

)(
pk

q
− xk

)
.

Combining the above with our definition of gj , we can rewrite the left-
hand side of (3.5) as∣∣∣∣∣qgj(x) +

d∑
i=1

pi
∂fj

∂xi
(x) − pd+j

∣∣∣∣∣
=
∣∣∣∣∣q
(
fj

(
p1
q
,...,

pd

q

)
+

d∑
i=1

∂fj

∂xi
(x)
(
xi − pi

q

)
−Rj(x, x̂)−

d∑
i=1

xi
∂fj

∂xi
(x)
)

+
d∑

i=1
pi
∂fj

∂xi
(x) − pd+j

∣∣∣∣∣
=
∣∣∣∣qfj

(
p1
q
, . . . ,

pd

q

)
− pd+j − qRj(x, x̂)

∣∣∣∣ .(3.9)

Suppose for a moment that

|qRj(x, x̂)| < q−τj+d

4 for 1 ≤ j ≤ m.(3.10)

With this assumption, it follows from the reverse triangle inequality com-
bined with (3.9), (3.5), and (3.7), that∣∣∣∣qfj

(
p1
q
, . . . ,

pd

q

)
− pd+j

∣∣∣∣ ≤
∣∣∣∣∣qgj(x) +

d∑
i=1

pi
∂fj

∂xi
(x) − pd+j

∣∣∣∣∣+ |qRj(x, x̂)|

≤ Q−τj+d

4 + q−τj+d

4

≤ q−τj+d

2 .
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Dividing through by q, we obtain,∣∣∣∣fj

(
p1
q
, . . . ,

pd

q

)
− pd+j

q

∣∣∣∣ ≤ 1
2qτj+d+1 ,

which is precisely the inequality given in (3.3) which we were trying to
establish. Thus, to complete this part of the proof, it remains to verify
that we can indeed assume (3.10). To this end, write a := min1≤i≤d ai. By
hypothesis, we have a > 1. Upon recalling the definition of our constant
C defined on page 781, it follows from the definition of Rj(x, x̂) and (3.6)
that, for each 1 ≤ j ≤ m, we have

|qRj(x, x̂)| =
∣∣∣∣∣q · 1

2

d∑
i=1

d∑
k=1

(
∂2fj

∂xi∂xk
(x̂)

(
pi

q
− xi

)(
pk

q
− xk

))∣∣∣∣∣
≤
∣∣∣∣q2
∣∣∣∣ d∑

i=1

d∑
k=1

(
C

∣∣∣∣pi

q
− xi

∣∣∣∣ ∣∣∣∣pk

q
− xk

∣∣∣∣)

≤ qCd2

2

(
4m/d

qQa−1

)2

= Cd242m/d

2 · 1
q

· 1
Q2(a−1) .

Since τj+d < 1, the inequality (3.10) would follow if we could show

Cd242m/d

2 · 1
Q2(a−1) <

1
4 .(3.11)

Now, since Q ∈ Q, the inequality (3.11) follows immediately from the
definition of Q. Hence this part of the proof is complete.

Finally, it remains to prove the second part of the theorem, that for
any x ∈ U \ Qd, there exist infinitely many tuples (p1, . . . , pn, q) ∈ Zn ×
N with (p1

q , . . . ,
pd
q ) ∈ U which satisfy (3.3) and (3.4). We will argue by

contradiction so let us suppose for a moment that there are only finitely
many solutions and denote by A the set of all solutions (p1, . . . , pn, q) ∈
Zn+1. Since x ∈ U \ Qd, there must be some 1 ≤ k ≤ d such that xk /∈ Q.
For such k, there exists some δ > 0 such that

δ ≤ min
(p1,...,pn,q)∈A

|qxk − pk|.(3.12)

Since each Q ∈ Q corresponds to a solution in A, and Q is infinite while A is
finite, there must exist one solution (p1, . . . , pn, q) ∈ A which corresponds to
infinitely many Q, say {Qℓ}ℓ≥1. Thus, for all ℓ ≥ 1, there exists 1 ≤ q ≤ Qℓ

such that

|qxk − pk| < 4m/d

Qak−1
ℓ

≤ 4m/d

qak−1 .
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Since ak > 1, the middle term above tends to 0 which yields a contradiction
to (3.12). Thus, we conclude that for any x ∈ U \ Qd there are infinitely
many solutions to (3.4) also satisfying (3.3). □

3.2. Preparing to use the mass transference principle for rectan-
gles. We now turn our attention to constructing a suitable full measure
lim sup set to which we will later apply the mass transference principle for
rectangles (Theorem 2.1). Following again the same line of reasoning as
in [6], we begin by defining

N (f, τ)=

(p1, . . . , pd, q)∈Zd+1 :

(
p1
q
, . . . ,

pd

q

)
∈U and∥∥∥∥qfj

(
p1
q
, . . . ,

pd

q

)∥∥∥∥< 1
2qτj+d

, 1≤j≤m

.
Note that from Theorem 3.1 we have that for all x ∈ U \ Qd, that is for

almost all x ∈ U , there are infinitely many different vectors (p1, . . . , pd, q) ∈
N (f, τ) for which ∣∣∣∣xi − pi

q

∣∣∣∣ < 4m/d

qai
, for 1 ≤ i ≤ d,

where

(a1 − 1) + · · · + (ad − 1) +
m∑

j=1
τd+j = 1, and min

1≤i≤d
ai > 1.

Writing

B(p,q)(c) =
{
x ∈ U :

∣∣∣∣xi − pi

q

∣∣∣∣ < c

qai
for 1 ≤ i ≤ d

}
with c = 4m/d, by Theorem 3.1 we have

λd

(
lim sup

(p,q)∈N (f,τ)
B(p,q)(c)

)
= λd(U).

Eventually we will apply the mass transference principle for rectangles
(Theorem 2.1) to the full measure lim sup set

lim sup
(p,q)∈N (f,τ)

B(p,q)(c).

First, however, we will establish some other necessary preliminaries. For
some constant c′ > 0, let us write

W ′ :=

(x, f(x)) ∈ U × Rm :
x ∈

d∏
i=1

B

(
pi

q
,
c′

qτi+1

)
for i.m. (p1, . . . , pd, q) ∈ N (f, τ)

 .
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For c′ sufficiently small such that

Dc′d <
1
4

we will show that

W ′ ⊂ Wn(τ) ∩ M.(3.13)

The consequence of this is that it will be sufficient for us to consider the
Hausdorff dimension of the set

W :=
{
x ∈ U : x ∈

d∏
i=1

B

(
pi

q
,
c′

qτi+1

)
for i.m. (p1, . . . , pd, q) ∈ N (f, τ)

}
.

(3.14)

To see this, suppose for a moment that (3.13) is true. Then, a lower bound
on the Hausdorff dimension of the set W ′ will automatically yield a lower
bound for dimH (Wn(τ) ∩ M), which is what we are actually interested in.
Next, let

πd(W ′) = {x ∈ U : (x, f(x)) ∈ W ′}

=

x ∈ U :

∣∣∣∣xi − pi

q

∣∣∣∣ < c′

qτi+1 , 1 ≤ i ≤ d,

for i.m. (p1, . . . , pd, q) ∈ N (f, τ)


be the orthogonal projection of W ′ onto Rd and note that πd(W ′) = W .
We recall that Hausdorff dimension is preserved under bi-Lipschitz map-
pings (see, for example, [13, Corollary 2.4]). Since πd, being an orthogonal
projection, is such a mapping, we have

dimHW = dimH πd(W ′) = dimHW
′

and so we conclude that it is sufficient for us to find a lower bound for the
Hausdorff dimension of the set W .

In order to show the inclusion in (3.13), let us suppose that (x, f(x)) ∈
W ′ and let (p1, . . . , pd, q) ∈ N (f, τ) be such that

x ∈
d∏

i=1
B

(
pi

q
,
c′

qτi+1

)
.

To prove the containment, we need to show that for such x, we also have

∥qfj(x)∥ < q−τj+d for 1 ≤ j ≤ m.

To do this, we will again use Taylor’s Approximation Theorem. Recalling
our earlier definitions of the constants C and D (see page 781), together
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with the definition of the set N (f, τ), and the assumption that τ1 ≥ · · · ≥
τd, it follows from (3.8) that

∥qfj(x)∥ ≤
∥∥∥∥qfj

(
p1
q
, . . . ,

pd

q

)∥∥∥∥+
∣∣∣∣∣

d∑
i=1

∂fj

∂xi
(x)(qxi − pi)

∣∣∣∣∣
+
∣∣∣∣∣1q 1

2

d∑
i=1

d∑
k=1

∂2fj

∂xi∂xk
(x̂)(pi − qxi)(pk − qxk)

∣∣∣∣∣
≤ 1

2qτj+d
+

d∑
i=1

∣∣∣∣∂fj

∂xi
(x)
∣∣∣∣ |pi − qxi|

+ 1
2q

d∑
i=1

d∑
k=1

∣∣∣∣∣ ∂2fj

∂xi∂xk
(x̂)
∣∣∣∣∣ |pi − qxi||pk − qxk|

≤ 1
2qτj+d

+Dc′
d∑

i=1
q−τi + C(c′)2

2q

d∑
i=1

d∑
k=1

q−τiq−τk

≤ 1
2qτj+d

+Dc′
d∑

i=1
q−τi + C(c′)2

2

d∑
i=1

d∑
k=1

q−1−τi−τk

≤ 1
2qτj+d

+Dc′dq−τd + C(c′)2d2

2 q−1−2τd .

By choosing c′ small and letting q be sufficiently large we have

Dc′d <
1
4 , and C(c′)2d2

2 q−1−τd <
1
4 .

Thus it follows that
1

2qτj+d
+Dc′dq−τd + C(c′)2d2

2 q−1−2τd <
1

2qτj+d
+ 1

4qτd
+ 1

4qτd
≤ 1
qτj+d

where the last inequality follows from the assumption that

τd ≥ max
1≤j≤m

τj+d.

3.3. Completing the proof via an application of the mass trans-
ference principle for rectangles. Recall the Monge parameterisation of
the manifold (1.1). Since U is an open subset of Rd which can be expressed
as a countable union of closed cubes, by the countable stability of Hausdorff
dimension we are free to ask U to be of the form U =

∏d
i=1 Ui with each Ui

being a finite closed interval in R. Then we are in a position to complete
the proof of Theorem 1.1 by applying the mass transference principle for
rectangles (Theorem 2.1) to obtain a lower bound for the Hausdorff dimen-
sion of the set W defined in (3.14). To this end, for some suitably chosen
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a = (a1, a2, . . . , ad) ∈ Rd
>0, we will consider the set

Wa =

x ∈ U :

∣∣∣∣xi − pi

q

∣∣∣∣ < 4m/d

qai
for 1 ≤ i ≤ d

for i.m. (p1, . . . , pd, q) ∈ N (f, τ)

 .
Provided that min1≤i≤d ai > 1 and (3.1) is satisfied, it follows from the
preceding arguments in Section 3.2 that Wa is of full Lebesgue measure in
U . Thus, given t = (t1, . . . , td) ∈ Rd

≥0 we may apply Theorem 2.1 to Wa to
obtain a lower bound for the Hausdorff dimension of the set

Wa(t) =

x ∈ U :

∣∣∣∣xi − pi

q

∣∣∣∣ < c′

qai+ti
for 1 ≤ i ≤ d

for i.m. (p1, . . . , pd, q) ∈ N (f, τ)

 ,
where c′ > 0 is the suitably small constant we chose earlier in Section 3.2.
In what follows, we will always choose ai and ti such that ai + ti = 1 + τi

and so

Wa(t) =

x ∈ U :

∣∣∣∣xi − pi

q

∣∣∣∣ < c′

q1+τi
for 1 ≤ i ≤ d

for i.m. (p1, . . . , pd, q) ∈ N (f, τ)

 ,
which coincides precisely with the set W from (3.14) which we are interested
in. Thus, any lower bound for dimH(Wa(t)) is automatically a lower bound
for dimHW and hence also for dimH (Wn(τ) ∩ M).

We are now ready to apply Theorem 2.1. We split the remainder of the
proof into two cases:

Case 1: τd ≥
1−
∑m

j=1 τj+d

d .
This case has already been addressed in [6]. However, for completeness,

we briefly sketch the argument here. In this case, we let

ai = 1 +
1 −

∑m
j=1 τj+d

d
, and ti = (1 + τi) − ai, for all 1 ≤ i ≤ d.

Note that we have ai > 1 and ai + ti = 1 + τi for each 1 ≤ i ≤ d. Also note
that

(a1 − 1) + · · · + (ad − 1) +
m∑

j=1
τj+d = d×

(
1 −

∑m
j=1 τj+d

d

)
+

m∑
j=1

τj+d = 1.

Hence (3.1) is satisfied.
Next, following the notation of Theorem 2.1, we consider the set

A = {ai, ai + ti : 1 ≤ i ≤ d}.
Arranging the elements of A in descending order, since τ1 ≥ · · · ≥ τd, we
have

a1 + t1 ≥ a2 + t2 ≥ · · · ≥ ad + td ≥ a1 = · · · = ad.
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Subcase (i). Suppose A = ai for some 1 ≤ i ≤ d. In this case, the sets
K1,K2,K3 appearing in Theorem 2.1 corresponding to this A are:

K1 = {k : ak ≥ A} = {1, 2, · · · , d},
K2 = {k : ak + tk ≤ A} \ K1 = ∅,
K3 = {1, . . . , d} \ (K1 ∪ K2) = ∅.

So the corresponding “dimension number” obtained via Theorem 2.1 in this
case is ∑

k∈K1∪K2

1 +
∑

k∈K3 ak −
∑

k∈K2 tk

A
= d.

Subcase (ii). Suppose A = ai + ti for some 1 ≤ i ≤ d. We may suppose that
A > a1, otherwise the conclusion of Subcase (i) holds. Let 1 ≤ i′ ≤ i be the
least index such that ai′ + ti′ = ai + ti. Then the sets K1,K2,K3 appearing
in Theorem 2.1 corresponding to this A are:

K1 = {k : ak ≥ A} = ∅,
K2 = {k : ak + tk ≤ A} \ K1 = {i′, . . . , d},
K3 = {1, . . . , d} \ (K1 ∪ K2) = {1, . . . , i′ − 1}.

The calculation which gives the corresponding “dimension number” ob-
tained via Theorem 2.1 in this case is identical to the calculation in Sub-
case (i) of Case 2, as given on pages 790–791, since these cases yield the
same sets K1,K2,K3.

Case 2: τd <
1−
∑m

j=1 τj+d

d .
In this case, let 1 ≤ K ≤ d be the largest integer such that

τK >
1 −

∑m
j=1 τj+d − (τK+1 + · · · + τd)

K
.(3.15)

We choose

ai = τi + 1 for K + 1 ≤ i ≤ d,

and

ai =
1 −

∑m
j=1 τj+d − (τK+1 + · · · + τd)

K
+ 1 for 1 ≤ i ≤ K.

We set

ti = 1 + τi − ai for 1 ≤ i ≤ d.
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Note that we have ai > 1 and ai + ti = 1 + τi for all 1 ≤ i ≤ d in this case.
We also note that

(a1 − 1) + · · · + (ad − 1) +
m∑

j=1
τj+d

= K

(
1 −

∑m
j=1 τj+d − (τK+1 + · · · + τd)

K

)
+

d∑
k=K+1

τk +
m∑

j=1
τj+d

= 1 −
m∑

j=1
τj+d − (τK+1 + · · · + τd) +

d∑
k=K+1

τk +
m∑

j=1
τj+d

= 1,

so (3.1) holds.
Following again the notation of Theorem 2.1, we consider the set

A = {ai, ai + ti : 1 ≤ i ≤ d}.

Arranging the elements of A in descending order we see that

a1 + t1(= τ1 + 1) ≥ . . . ≥ aK + tK(= τK + 1)
(3.15)
> a1 = · · · = aK

> aK+1 = aK+1 + tK+1

≥ aK+2 = aK+2 + tK+2

...
≥ ad = ad + td.

To establish the “dimension number” obtained via Theorem 2.1, we will
consider three possible subcases. Throughout, we will frequently use the
very useful observation that

ti = 1 + τi − ai = 1 + τi − (1 + τi) = 0 when K + 1 ≤ i ≤ d.(3.16)

Subcase (i): A = ai + ti = 1 + τi for some 1 ≤ i ≤ K. Suppose A ∈ A is
such that A = ai + ti = 1 + τi for some 1 ≤ i ≤ K and let 1 ≤ i′ ≤ i
be the least index such that ai′ + ti′ = A. Then the sets K1,K2,K3 appear-
ing in Theorem 2.1 corresponding to this A are:

K1 = {k : ak ≥ A} = ∅,
K2 = {k : ak + tk ≤ A} \ K1 = {i′, . . . , d},
K3 = {1, . . . , d} \ (K1 ∪ K2) = {1, . . . , i′ − 1}.
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Thus, when A ∈ A is such that A = ai + ti = 1 + τi for some 1 ≤ i ≤ K,
the corresponding “dimension number” obtained by using Theorem 2.1 is

∑
k∈K1∪K2

1 +
∑

k∈K3 ak −
∑

k∈K2 tk

A

= (d− i′ + 1) +
∑i′−1

k=1 ak −
∑d

k=i′ tk
ai + ti

= (d− i′ + 1) +
∑i−1

k=1 ak −
∑d

k=i tk −
∑i−1

k=i′ ak −
∑i−1

k=i′ tk
ai + ti

.

By the definition of i′, it follows that ak + tk = ai + ti for all i′ ≤ k < i.
Thus∑

k∈K1∪K2

1 +
∑

k∈K3 ak −
∑

k∈K2 tk

A

= (d− i′ + 1) +
∑i−1

k=1 ak −
∑d

k=i tk
ai + ti

− (i− i′)

= (d− i+ 1) +
∑i−1

k=1 ak −
∑d

k=i tk
ai + ti

= (d− i+ 1) +
∑d

k=1 ak −
∑d

k=i (tk + ak)
ai + ti

(3.1)= (d− i+ 1) +

(
d+ 1 −

∑m
j=1 τj+d

)
−
∑d

k=i (1 + τk)
1 + τi

= (d− i+ 1) + i−
∑n

k=i τk

1 + τi

= (d− i+ 1)(1 + τi) + i−
∑n

k=i τk

1 + τi

= (d− i+ 1)(1 + τi) +m(1 + τi) −m(1 + τi) + i−
∑n

k=i τk

1 + τi

= (d+ 1 +m) + (d− i+ 1 +m)τi −m(1 + τi) −
∑n

k=i τk

1 + τi

= (n+ 1) + (n− i+ 1)τi −
∑n

k=i τk

1 + τi
−m

= n+ 1 +
∑n

k=i (τi − τk)
1 + τi

−m.

In the penultimate line above we used the assumption that n = d+m.

Subcase (ii): A = ai = ai + ti = 1 + τi for some K + 1 ≤ i ≤ d. Suppose
A ∈ A is such that A = ai = ai + ti = 1 + τi for some K + 1 ≤ i ≤ d
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and let i ≤ i′ ≤ d be the greatest index such that ai′ = A. Then the sets
K1,K2,K3 appearing in Theorem 2.1 corresponding to this A are:

K1 = {k : ak ≥ A} = {1, . . . , i′},
K2 = {k : ak + tk ≤ A} \ K1 = {i′ + 1, . . . , d},
K3 = {1, . . . , d} \ (K1 ∪ K2) = ∅.

Recall (3.16) that tk = 0 for all K+ 1 ≤ k ≤ d. The corresponding “dimen-
sion number” obtained in this case is∑

k∈K1∪K2

1 +
∑

k∈K3 ak −
∑

k∈K2 tk

A
= d−

∑d
k=i′+1 tk
ai + ti

= d.

Subcase (iii): A = ai for some 1 ≤ i ≤ K. If A ∈ A is such that A = ai

for some 1 ≤ i ≤ K, then the sets K1,K2,K3 appearing in Theorem 2.1
corresponding to this A are:

K1 = {k : ak ≥ A} = {1, . . . ,K},
K2 = {k : ak + tk ≤ A} \ K1 = {K + 1, . . . , d},
K3 = {1, . . . , d} \ (K1 ∪ K2) = ∅.

The corresponding “dimension number” in this case is∑
k∈K1∪K2

1 +
∑

k∈K3 ak −
∑

k∈K2 tk

A
= d−

∑d
k=K+1 tk
ai + ti

= d.

Thus, we conclude from these cases that

dimH(Wn(τ) ∩ M) ≥ dimHW = dimH (Wa(t))

≥ min
1≤i≤d

{
n+ 1 +

∑n
k=i (τi − τk)

τi + 1 −m

}
,

and hence our proof of Theorem 1.1 is complete.
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