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Explicit Reciprocity Laws for Formal Drinfeld
Modules

par Marwa ALA EDDINE

Résumé. Dans cet article, nous prouvons des lois de réciprocité explicites
pour une classe de modules de Drinfeld formels ayant une réduction stable de
hauteur 1, dans l’esprit de celles existant en caractéristique zéro (cf. le travail
de Wiles [13]). Nous commençons par définir l’accouplement de Kummer dans
le langage des modules de Drinfeld formels définis sur des corps locaux de
caractéristique positive. Nous prouvons ensuite des formules explicites pour
cet accouplement en termes du logarithme du module de Drinfeld formel,
d’une certaine série de Coleman, de points de torsion et de la trace. Nos
résultats étendent les formules explicites déjà prouvées par Anglès [1] pour les
modules de Carlitz, et par Bars et Longhi [4] pour les modules de Drinfeld de
rang un signe-normalisés. L’approche suivie est similaire à celle des articles
précédemment mentionnés [1, 4, 13], en tenant compte des subtilités découlant
du fait que les modules de Drinfeld formels considérés sont des séries formelles,
et ne sont plus des polynômes.

Abstract. In this paper, we prove explicit reciprocity laws for a class of
formal Drinfeld modules having stable reduction of height one, in the spirit
of those existing in characteristic zero (cf. the work of Wiles [13]). We begin
by defining the Kummer pairing in the language of formal Drinfeld modules
defined over local fields of positive characteristic. We then prove explicit for-
mulas for this pairing in terms of the logarithm of the formal Drinfeld module,
a certain Coleman power series, torsion points and the trace. Our results ex-
tend the explicit formulas already proved by Anglès [1] for Carlitz modules,
and by Bars and Longhi [4] for sign-normalized rank one Drinfeld modules.
The approach followed is similar to the ones followed in the previously men-
tioned papers [1, 4, 13], taking into account the subtleties derived from the
fact that the formal Drinfeld modules considered are formal power series, and
are no longer polynomials.

1. Introduction

Explicit reciprocity laws have a long history. In 1928, Artin and Hasse [2]
proved explicit formulas in characteristic zero for the multiplicative group.
These formulas were completed by Iwasawa [8] in 1968. In 1978, Wiles [13]
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proved an important generalization to the case of general Lubin–Tate for-
mal groups. Soon after, Kolyvagin [10] extended all these results to formal
groups of finite height. In the present paper, we place ourselves in posi-
tive characteristic, and we consider formal Drinfeld modules as defined by
Rosen in [12]. Let K be a local field of positive characteristic. We know
that formal Drinfeld modules can be seen as homomorphisms from the val-
uation ring of K to the endomorphism ring of the formal additive group.
Moreover, torsion points of such modules generate abelian towers of K.
The maximal abelian extension of K is equal to the compositum of the
maximal unramified extension of K and the union of these abelian tow-
ers. Therefore, there should be an analogue of the reciprocity laws in our
settings. In [1], Bruno Anglès considered a special class of formal Drinfeld
modules, which he called Carlitz polynomials, and for which he proved ex-
plicit reciprocity laws in the spirit of those proved in characteristic zero.
Later in 2009, Francesc Bars and Ignacio Longhi [4] proved similar formulas
for formal Drinfeld modules obtained from sign-normalized rank 1 Drinfeld
modules.

Let p be the characteristic of the local field K, and let µK be its nor-
malized discrete valuation. We denote O the valuation ring of K and p its
maximal ideal. Let q be the order of the residue field O/p. Then q is a power
of p. Fix an algebraic closure Ω of K, and let µ be the unique extension
of µK to Ω. Let (Ω, µ) be the completion of (Ω, µ). All the extensions F of
K considered in this paper are supposed to be such that F ⊂ Ω. We also
denote OF the valuation ring of F and pF its maximal ideal. Let π be a
fixed prime of K.

Let B be an O- algebra and let γ : O → B be the structure map. Let
B{{τ}} be the twisted power series ring where τ is the q-Frobenius element
satisfying

(1.1) τx = xqτ, ∀ x ∈ B.

Let D : B{{τ}} → B be the ring homomorphism that assigns to a
power series

∑
n≥0 bnτ

n its constant term b0. In [12], Rosen defined a formal
Drinfeld O-module over B to be a ring homomorphism

ρ : O −→ B{{τ}}
a 7→ ρa

satisfying
(i) ∀ a ∈ O, D(ρa) = γ(a).
(ii) ρ(O) ̸⊂ B.
(iii) ρπ ̸= 0.
This definition is a special case of formal O-modules over B defined by

Drinfeld in Section 1 of [5]. Let f =
∑

n≥0 bnτ
n ∈ B{{τ}}. We set ordτ (f)
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to be the least integer n such that bn ̸= 0. The height of ρ is defined by
ht(ρ) = ordτ (ρπ). Clearly, the height is independent of the choice of the
prime π.

For any extension K ⊂ L ⊂ Ω, the rings OL and OL/pL are naturally
O-algebras. The structure map γ : O → OL is the inclusion map. Let ρ be
a formal Drinfeld O- module over OL as defined above. We say that ρ has
stable reduction if the ring homomorphism ρ : O → OL/pL{{τ}}, obtained
by reducing modulo pL the coefficients of ρa, for a ∈ O, is also a formal
Drinfeld module.

Let Kur ⊂ Ω be the maximal unramified extension of K in Ω, and
H ⊂ Kur be a finite unramified extension of K. Let ρ be a formal Drinfeld
O-module over OH , having stable reduction, and such that ht(ρ) = 1, then
Ω is an O-module for the following action of ρ

(1.2) a ·ρ x = ρa(x) ∀ x ∈ Ω.

For an integer n ≥ 0, let

V n
ρ = {α ∈ Ω; ρa(α) = 0 ∀ a ∈ pn}

be the pn torsion submodule of Ω for the action (1.2). Using the Weierstrass
preparation theorem, we can see that V n

ρ \ V n−1
ρ is the set of roots of

a separable Eisenstein polynomial in OH [X] of degree qn−1(q − 1), whose
constant term is a prime of H. Therefore, for an element v0 ∈ V n

ρ \V n−1
ρ , the

extension H(v0)|H is totally ramified of degree qn−1(q − 1). Furthermore,
the kernel of a 7→ ρa(v0) is pn. Thus it induces an isomorphism of O-
modules

(1.3) O/pn ∼= V n
ρ .

This implies that any element v0 ∈ V n
ρ \ V n−1

ρ is a generator of V n
ρ

as O-module. This also implies that the extension Hn
ρ = H(V n

ρ ) is equal
to H(v0). For more details see [9, 11]. Now let m0 be an integer dividing
[H : K], and η ∈ K of valuation µ(η) = m0. Let

Wn
ρ = V nm0

ρ = {α ∈ pΩ; ρηn(α) = 0}, and Wρ =
⋃
n

V n
ρ =

⋃
n

Wn
ρ .

Let
En

ρ = H(Wn
ρ ) = Hnm0

ρ .

Let On be the valuation ring of En
ρ and pn be its maximal ideal. If L is a

finite extension of En
ρ , then we denote by

ΦL : L× −→ Gal(Lab|L)

the norm residue map. For an α ∈ pL we will show in Section 2 that there
exists ξ ∈ Lab such that ρηn(ξ) = α. Therefore we can define the map
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( · , · )ρ,L,n : pL × L× →Wn
ρ such that

(1.4) (α, β)ρ,L,n = ΦL(β)(ξ)− ξ; ρηn(ξ) = α.

for α ∈ pL and β ∈ L×. It is clear that ( · , · )ρ,L,n is a bilinear from.
The main objective of this paper is to prove explicit reciprocity laws

for formal Drinfeld modules having stable reduction of height 1. In other
words, we prove explicit formulas for the map ( · , · )ρ,L,n. Now we can state
our main results.
Proposition 1.1 (Proposition 3.3). Fix a generator vn of Wn

ρ as an O-
module and suppose L|K is separable. There exists a unique map ψL,vn :
Ln → XL/η

n+1XL such that
(1.5) (α, β)ρ,L,n = TL|K(λρ(α)ψL,vn(β)) ·ρ vn

for all α ∈ pL and β ∈ Ln, where λρ is the logarithm of ρ, Ln = {β ∈
L×; (α, β)ρ,L,n = 0 ∀ α ∈ L ∩ Wρ} and XL = {y ∈ L; TL|K(xy) ∈ O
∀ x ∈ λρ(pL)}.

Proposition 1.1 is the analogue of Proposition 14 of [8]. The map ψL,vn is
the so-called Iwasawa map introduced in loc. cit. In the case where L = En

ρ

and ρ is such that ρη ≡ τm0 mod pH , we can give an explicit form of ψL,vn

in the following theorem.
Theorem 1.2 (Theorem 5.9). Suppose that L = En

ρ and that ρη ≡ τm0

mod pH . This means that if ρη =
∑
biτ

i, all the coefficients bi are in pH

except for bm0 . Let α ∈ pL such that µ(α) ≥ nm0
q + 1

q−1 + 1
qnm0 (q−1) . Then

for all β ∈ L×, we have

(1.6) (α, β)ρ,L,n = 1
ηn
TL|K(λρ(α)δvn(β)) ·ρ vn,

where δvn : L× → pL/Dn is a group homomorphism defined as follows: for
β ∈ L×, choose a power series f(X) ∈ OH((X))× such that f(vn) = β, and
set

(1.7) δvn(β) := f ′(vn)
β

mod Dn.

Here, Dn denotes the different of the extension En
ρ |K. For more details, see

Lemma 4.8 and Lemma 4.9.
Let m ≥ n, let α ∈ pn and αm = ρηm−n(α). Let βm ∈ Em

ρ and β =
Nm,n(βm), where Nm,n is the norm of the extension Em

ρ |En
ρ , then

(1.8)
(αm, βm)ρ,Em

ρ ,m = ΦEm
ρ

(βm)(ξ)− ξ
= ΦEn

ρ
(Nm,n(βm))(ξ)− ξ = (α, β)ρ,En

ρ ,n,

where ξ is a root of ρηn(X) = α, hence a root of ρηm(X) = αm. As a
consequence of this equality, we deduce that (1.6) is also valid for all α ∈ pn



Explicit Reciprocity Laws for Formal Drinfeld Modules 679

and all β ∈ Nm,n(Em
ρ ) for m ≥ q

q−1(2n+ 1
2m0

). This recalls both Theorem 19
of Wiles [13] and Theorem 3.12 of Anglès [1]. This also implies (1.6) for
all α ∈ pn if β is a universal norm in (En

ρ )×, which is the analogue of
Theorem 1 of Wiles [13]. Let us consider the inverse limit lim←−(En

ρ )× with
respect to the norm maps, and the direct limit lim−→ pn with respect to the
maps

pn −→ pm(1.9)
αn 7−→ ρηm−n(αn).

We can define a limit form of ( · , · )ρ,L,n as follows
(1.10) (α, β)ρ = (αn, βn)ρ,En

ρ ,n

for sufficiently large n, where α = (αn)n ∈ lim−→ pn and β = (βn)n ∈ lim←−E
n
ρ .

The limit form (1.10) is well defined due to (1.8). Moreover, we deduce
from the discussion above that for all α = (αn)n ∈ lim−→ pn and β = (βn)n ∈
lim←−E

n
ρ , we have

(1.11) (α, β)ρ = (αn, βn)ρ,En
ρ ,n = 1

ηn
TL|K(λρ(αn)δvn(βn)) ·ρ vn

for sufficiently large n. Here, δvn(βn) can be expressed using the Cole-
man power series associated to β ∈ lim←−E

n
ρ . The existence of such power

series was proved by Oukhaba in [11]. This gives a generalization of The-
orem 23 of Longhi–Bars [4] proved for formal Drinfeld modules obtained
from sign-normalized rank 1 Drinfeld modules. To go further, one may ask
if any explicit reciprocity laws can be proved for all formal Drinfeld mod-
ules having stable reduction of height 1. We plan to address this question
in a future work. In another request, we are interested in considering local
fields of higher dimension in the vein of the work of Jorge Florez [6, 7] and
Bars–Longhi [3].

2. The Kummer pairing and first properties

In this section, we fix a positive integer n and a finite extension L of En
ρ .

In particular, we have Wn
ρ ⊂ L.

Lemma 2.1. Let α ∈ pL. There exists an element ξ in pΩ such that
ρηn(ξ) = α. Moreover, the extension L(ξ)|L is abelian, of degree ≤ qnm0 ,
and independent of the choice of ξ satisfying ρηn(ξ) = α.

Proof. By Section 2 of [11], we can write ρπnm0 as
(2.1) ρπnm0 = U1Unm0Qnm0Qnm0−1 · · ·Q1,

where Ui are invertible elements of OH{{τ}} and Qi = τ+πi, each πi being
a prime of H. Let
(2.2) Pnm0 = Qnm0Qnm0−1 · · ·Q1
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then Wn
ρ is the set of roots of Pnm0(X). Let u be the unit of K such that

η = uπm0 . We denote Vn = ρunU1Unm0 . Since Vn is invertible in OH{{τ}},
we have

ρηn(X) = α ⇐⇒ Vn(Pnm0(X)) = α

⇐⇒ Pnm0(X) = V −1
n (α)

⇐⇒ Pnm0(X)− V −1
n (α) = 0.

However, V −1
n (α) ∈ pL, hence, Pnm0(X)−V −1

n (α) is a polynomial with co-
efficients in L. Therefore there exists an element ξ in Ω such that Pnm0(ξ)−
V −1

n (α) = 0. Furthermore, since 0 ≡ Pnm0(ξ) ≡ ξqnm0 mod pΩ, we have
ξ ∈ pΩ. Moreover, the polynomial Pnm0(X)−V −1

n (α) is of degree qnm0 , and
all the elements of the set ξ+Wn

ρ , which we recall is a set of qnm0 elements,
are roots of this polynomial. Hence, it is separable and L(ξ)|L is a Galois
extension of degree ≤ qnm0 depending only on α. Finally, to prove that it
is an abelian extension, it suffices to notice that the group homomorphism
Gal(L(ξ)|L)→Wn

ρ defined by σ 7→ σ(ξ)− ξ is injective. □

By this Lemma, we see that the map ( · , · )ρ,L,n : pL×L× →Wn
ρ in (1.4)

is well defined. We omit ρ in the index when there is no risk of confusion.
Exactly as in [10, 13] we have

Proposition 2.2. The map ( · , · )L,n satisfies the following properties
(i) The map ( · , · )L,n is bilinear and O-linear in the first coordinate for

the action (1.2).
(ii) We have

(α, β)L,n = 0 ⇐⇒ β is a norm from L(ξ), where ρηn(ξ) = α.

(iii) Let M be a finite separable extension of L, let α ∈ pL and β ∈M×.
Then (α, β)M,n = (α,NM |L(β))L,n.

(iv) Let M be a finite separable extension of L of degree d, let α ∈ pM

and β ∈ L×. Then (α, β)M,n = (TM |L(α), β)L,n.
(v) Suppose L ⊃ Em

ρ for m ≥ n. Then

(α, β)L,n = ρηm−n((α, β)L,m) = (ρηm−n(α), β)L,m.

(vi) Let ρ′ be a formal Drinfeld O-module isomorphic to ρ, i.e. there
exists a power series t invertible in OH{{τ}} such that ρ′

a = t−1 ◦
ρa ◦ t for all a ∈ O. Then we have (α, β)ρ′,L,n = t−1((t(α), β)ρ,L,n).

Proof. The properties (i), (ii), (iii), (v) and (vi) are straightforward. The
property (iv) can be proved as in [10, Section 3.3]. □
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3. The Iwasawa map

In this section, we will study the so-called Iwasawa map, first introduced
by Iwasawa in [8, Proposition 14] in the cyclotomic case. This map was
generalized by Wiles [13, Proposition 7] in the case of Lubin–Tate formal
groups, and by Kolyvagin [10, Proposition 3.2] in the case of formal groups
of finite height. As in Section 2 above, we fix a positive integer n and a finite
extension L of En

ρ . We also fix a generator vn of the O-module Wn
ρ and we

suppose that L|K is separable. First, we need to introduce the logarithm
λρ of ρ, defined by Rosen in [12, Section 2].

Lemma 3.1. There exists a unique power series λρ ∈ H{{τ}}, called the
logarithm of ρ, such that λρ(X) ≡ X mod deg 2 and λρρa = aλρ for all
a ∈ O. Moreover, we have

(i) If λρ =
∑

i≥0 ciτ
i, then µ(ci) ≥ −i for all i ≥ 0. Thus the element

λρ(x) =
∑

i≥0 cix
qi is well defined in L for any x ∈ pL.

(ii) If x ∈ pΩ, then λρ(X) = 0 if and only if x ∈Wρ. Put WL = L∩Wρ ⊂
pL. Then the map λρ : pL/WL → λρ(pL) is an isomorphism of O-
modules.

(iii) Let pΩ,1 denote the set of all the elements x of pΩ such that µ(x) >
1/(q − 1). The logarithm λρ gives an isomorphism of O-modules
from pΩ,1, viewed as an O-module under the action (1.2), to itself,
viewed as an O-module under the multiplication in Ω. If we denote
pL,1 = pL∩pΩ,1, the logarithm λρ also induces an isomorphism from
pL,1 to itself.

(iv) The O-module λρ(pL) is free of rank [L : K] and we have L =
Kλρ(pL).

Proof. The first three properties are proved by M. Rosen in [12]. For in-
stance, the property (i) is a part of the proof of Proposition 2.1 of loc.
cit. The property (ii) is exactly Proposition 2.4 of [12]. Finally, (iii) corre-
sponds to Proposition 2.3 of [12]. Let us give a sketch of the proof of (iii).
Let x ∈ pΩ such that µ(x) > 1

q−1 . By (i), we have

µ(cix
qi) = µ(ci) + qiµ(x) ≥ −i+ qiµ(x) > µ(x)

for all i ≥ 1. Hence µ(λρ(x)) = µ(x) so that λρ(x) ∈ pΩ,1. Now we consider
the inverse eρ of λρ in H{{τ}}. This series is called the exponential of
ρ and satisfies eρ(X) ≡ X mod deg 2 and eρa = ρaeρ for all a ∈ O.
By [12, Proposition 2.2], if we write eρ(x) = x+

∑
i≥1 dix

qi , we have µ(di) ≥
−(1 + q + · · ·+ qi−1). Thus,

µ(dix
qi) = µ(di)+qiµ(x) ≥ −q

i − 1
q − 1 +qiµ(x) > −(qi−1)µ(x)+µ(x) = µ(x)
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for all i ≥ 1. Hence we have µ(eρ(x)) = µ(x). This completes the proof
since eρ is the formal inverse of λρ.

As for the proof of (iv), let x ∈ pL and eL be the ramification index of
L|K, then µ(x) ≥ 1

eL
. By (i), we have

µ(λρ(x)) ≥ min(µ(x),−i+ qiµ(x))

≥ min(1
e
,−i+ qi

e
).

Thus, for a sufficiently large integer l, we have λρ(pL) ⊂ 1
πlOL. Therefore

λρ(pL) is free for it is a O-submodule of the free O-module 1
πlOL. Now let

us prove that L = Kλρ(pL). Clearly, we have Kλρ(pL) ⊂ L. Let x ∈ L, then
we can write x = uπj

L, where u is a unit of L and πL is a prime of L. Then,
for a sufficiently large integer i, we have uπj

Lπ
i ∈ pL,1 = λρ(pL,1) ⊂ λρ(pL).

Therefore x = 1
πiuπ

j
Lπ

i ∈ Kλρ(pL). □

Since the extension L|K is supposed to be separable, the bilinear map
⟨ · , · ⟩L : L × L → K defined by < x, y >L= TL|K(xy) is non degenerate.
This gives us the classical isomorphism from L to the space of K-linear
forms from L to K. The pairing ⟨ · , · ⟩L also induces the following O-linear
map

(3.1)
L −→ HomO(λρ(pL),K/O)

y 7−→
{
λρ(pL) −→ K/O

x 7−→ ⟨x, y⟩L mod O

Lemma 3.2. The map (3.1) is a surjective homomorphism of O-modules,
with kernel
(3.2) XL := {y ∈ L; ⟨x, y⟩L ∈ O ∀ x ∈ λρ(pL)}.

Proof. It is clear that XL is the kernel of this map. Let us prove that the
map is surjective. To do so, let γ : λρ(pL)→ K/O be an O-linear map.

Let {e1, . . . , ed} be a basis of L as a K-vector space. Since L = Kλρ(pL)
by Lemma 3.1 (iv), we can choose the ei to be in λρ(pL). Choose elements
γ̃(ei) in K such that γ(ei) is the class of γ̃(ei) modulo O. Define the K-
linear map γ̃ : L → K by γ̃(

∑
aiei) =

∑
aiγ̃(ei) where ai ∈ K. Thus we

obtain the following commutative diagram

L K

λρ(pL) K/O

γ̃

γ

the right hand arrow being the canonical projection and the left hand ar-
row being the inclusion. However, the K-linear form γ̃ is induced by some
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element y ∈ L satisfying γ̃(x) = TL|K(xy) for all x ∈ λρ(pL). Therefore we
have γ(x) ≡ γ̃(x) =< x, y >L mod O. □

Now, we give the construction of the so-called Iwasawa map. As men-
tioned in the introduction (1.3), the map

O/ηnO −→Wn
ρ(3.3)

a 7−→ ρa(vn)
is an isomorphism ofO-modules because vn is a generator of Wn

ρ . We denote
by ι1 its inverse. We define the O-linear map

ι : Wn
ρ O/ηnO K/O

ρa(vn) a a
ηn

ι1

Let
(3.4) Ln = {β ∈ L×; (α, β)L,n = 0 ∀ α ∈WL},
where we recall WL = L ∩Wρ. Any β ∈ Ln defines an O-linear map

hβ :
{
pL/WL −→ K/O

α 7−→ ι((α, β)L,n)

where the action of O on pL/WL is given by (1.2). The map β 7→ hβ gives a
group homomorphism from Ln to HomO(pL/WL,K/O). The isomorphism
of Lemma 3.1 (ii) induces the following isomorphism of O-modules
(3.5) HomO(pL/WL,K/O) ∼= HomO(λρ(pL),K/O).

Let β ∈ Ln and let gβ be the image of hβ by the isomorphism (3.5). Then
gβ is defined by gβ(λρ(α)) = ι((α, β)L,n). However gβ is an O-linear map
from λρ(pL) to K/O. Thus, by Lemma 3.2, there exists a unique y ∈ L/XL

satisfying gβ(λρ(α)) = TL|K(λρ(α)y) mod O for all α ∈ pL. It is easy to
see that y ∈ η−nXL/XL. We set
(3.6) ψL,vn(β) = ηny mod ηnXL.

Proposition 3.3. We have
(3.7) (α, β)L,n = TL|K(λρ(α)ψL,vn(β)) ·ρ vn

for all α ∈ pL and β ∈ Ln. Furthermore, the map ψL,vn : Ln → XL/η
nXL

is a group homomorphism.

Proof. The Proposition follows immediately from the construction. □

Exactly as in [10, Section 3.5], our ψL,vn satisfies the properties φ1, φ2,
φ3, φ4, φ5 and φ6 of loc. cit.
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4. More properties of the pairing ( · , · )L,n

As above, we continue to fix a positive integer n, a finite extension L of
En

ρ and a generator vn of Wn
ρ .

Lemma 4.1. There exists a constant cL,n, dependant only on L and n,
such that for α ∈ pL, if we set αm = ρηm−n(α) for m ≥ n, we get µ(αm) ≥
mm0−cL,n. Furthermore, the map ( · , · )L,n is continuous, and (α, ·)L,n = 0
for all α ∈ pL such that µ(α) > nm0 + 1

q−1 .

Proof. We follow [4, Lemma 15]. Let α ∈ pL and set µj := 1
qj−1(q−1) for j ≥ 1

and µ0 := ∞. Choose ξ a root of ρηn(X) = α of maximal valuation. This
is possible because the equation ρηn(X) = α has a finite set of solutions:
ξ +Wn

ρ . We have
α = ρηn(ξ) = Vn(Pnm0(ξ)),

where Vn(X) and Pnm0(X) = Πw∈W n
ρ

(X − w) are defined in the proof of
Lemma 2.1. Therefore, we get

µ(α) = µ(Pnm0(ξ)) =
∑

w∈W n
ρ

µ(ξ − w)

because Vn is invertible in OH{{τ}}. Let w ∈ Wn
ρ . If µ(ξ) ̸= µ(w), then

µ(ξ − w) = min{µ(ξ), µ(w)}. If µ(ξ) = µ(w), then

µ(ξ) = min{µ(ξ), µ(w)} ≤ µ(ξ − w) ≤ µ(ξ),

the last inequality being a consequence of the maximality hypothesis on
µ(ξ). Hence we have µ(ξ − w) = min{µ(ξ), µ(w)} for all w ∈Wn

ρ and

(4.1) µ(α) =
∑

w∈W n
ρ

min{µ(ξ), µ(w)}.

Let j ≥ 0 be such that µj+1 < µ(ξ) ≤ µj . If 0 ≤ j ≤ nm0, the equality (4.1)
yields

µ(α) =
∑

w∈V j
ρ

µ(ξ) +
∑

w∈W n
ρ \V j

ρ

µ(w) = qjµ(ξ) + nm0 − j

so that nm0 − j + 1
q−1 < µ(α) ≤ nm0 − j + 1 + 1

q−1 . Now if j > nm0,
by (4.1) we get µ(α) = qnm0µ(ξ) so that

nm0 − j + 1
q − 1 ≤ 0 < 1

qj−nm0(q − 1) < µ(α) ≤ 1
qj−nm0−1(q − 1) .

Since ξ is also a root of ρηm(X) = αm for all m ≥ n, we deduce by the
same arguments that µ(αm) ≥ mm0 − j + 1

q−1 . Considering the degree
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of the extension L(ξ)|K, we see that j ≤ 2nm0 + logq(e), where e is the
ramification index of L|En

ρ . Hence, we get

µ(αm) ≥ mm0 − 2nm0 − logq(e) + 1
q − 1 .

Finally, if we suppose µ(α) > nm0 + 1
q−1 , we get j = 0, which implies

that µ((α, β)L,n) ≥ µ(ξ) > 1
q−1 for all β ∈ L×. It follows that (α, β)L,n =

0 for all β ∈ L×, because (α, β)L,n belongs to Wn
ρ , and the elements of

Wn
ρ \ {0} are of valuation less or equal to 1

q−1 . The fact that the map
( · , · )L,n is continuous follows immediately since the reciprocity map ΦL is
continuous. □

Remark 4.2. Let e be the ramification index of L|En
ρ , then the constant

cL,n from Lemma 4.1 is bounded as follows

(4.2) −1
q − 1 ≤ cL,n ≤ 2nm0 + logq(e)− 1

q − 1 .

Proposition 4.3. There exists a unique power series r = rn ∈ OH{{τ}}
such that ∏

ω∈W n
ρ

(X − ω) = r ◦ ρηn(X).

Furthermore, the power series r is invertible in OH{{τ}} and satisfies

(x, r(x))L,n = 0, ∀ x ∈ pL \ {0}.

Proof. As in the proof of Lemma 2.1, we can write

ρηn(X) = ρun ◦ U1 ◦ Unm0 ◦ Pnm0(X).

Thus for r = (ρun ◦ U1 ◦ Unm0)−1 we get Pnm0(X) =
∏

ω∈W n
ρ

(X − ω) =
r ◦ ρηn(X). It remains to show that (x, r(x))L,n = 0 for all x ∈ pL \ {0}.
Take x ∈ pL \ {0} and ξ such that ρηn(ξ) = x. Then,

r(x) = (r ◦ ρηn)(ξ) =
∏

ω∈W n
ρ

(ξ − ω) =
∏

i

NL(ξ)|L(ξi)

where ξi are the pairwise distinct roots of ρηn(X) = x. It follows that
(x, r(x))L,n = 0 by Proposition 2.2 (ii). □

Lemma 4.4. Let r = rn be the power series defined in Proposition 4.3.
Let ρ′ be defined by

(4.3) ρ′
a = r ◦ ρa ◦ r−1

for all a ∈ O. Then ρ′ is a formal Drinfeld module having a stable reduction
of height 1, and we have (x, x)ρ′,L,n = 0 for all x ∈ pL \ {0}.
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Proof. That ρ′ is a formal Drinfeld module having a stable reduction of
height 1 follows from the fact that ρ itself is supposed to be a formal Drinfeld
module having a stable reduction of height 1. It follows from Proposition 2.2
(vi) that (x, x)ρ′,L,n = r((r−1(x), x)ρ,L,n) = r(0) = 0. □

Lemma 4.5. If ρ is such that (x, x)ρ,L,n = 0 for all x ∈ pL \ {0}, then we
have

(c, 1− b)L,n = ( bc

1− b , b
−1)L,n

for all b ∈ pL \ {0} and c ∈ pL.

Proof. See [4, Lemma 18]. □

For a finite extension F ′|F of local fields, let mF ′|F be the fractional ideal
of OF ′ defined by

mF ′|F = {x ∈ F ′; TF ′|F (xOF ′) ⊂ OF } ⊃ OF ′

As usual, the different DF ′|F of F ′|F is the inverse ideal of mF ′|F

DF ′|F := m−1
F ′|F .

If F ′|F is unramified, then DF ′|F = OF ′ , and if F ′|F is totally ramified,
then DF ′|F = h′(w)OF ′ , where w is a prime element of F ′ and h(X) is the
minimal polynomial of w over F . Moreover, if F ′′|F is a finite extension of
local fields such that F ⊂ F ′ ⊂ F ′′, we have

DF ′′|F = DF ′′|F ′DF ′|F .

For more details, the reader may check [9, Section 2.4].

Lemma 4.6. Let Dn be the different of the extension En
ρ |K, then Dn is

generated by an element of valuation nm0 − 1
q−1 .

Proof. The proof of [4, Lemma 3] is suitable for our case. □

Lemma 4.7. Let x ∈ En
ρ and denote by Tn the trace of the extension

En
ρ |K. Then,

µ(Tn(x)) ≥ ⌊µ(x) + nm0 −
1

q − 1⌋,

where ⌊a⌋ is the integral part of a ∈ R. Furthermore, for m ≤ n, we have

µ(Tn,m(x)) > µ(x) + (n−m)m0 − µ(vm),

where Tn,m is the trace of the extension En
ρ |Em

ρ .

Proof. See [4, Lemma 4]. □

For the rest of the paper, we suppose L = En
ρ .
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Lemma 4.8. (i) The map δvn : L× → p−1
L /Dn defined by

(4.4) δvn(β) := f ′(vn)
β

mod Dn,

where f ∈ OH((X))× is such that f(vn) = β, is a group homomor-
phism.

(ii) For m ≥ n, let vm be a generator of Wm
ρ such that vm = ρηm−n(vn)

and let β ∈ L×. If we define δvm(β) as in (4.4), we get

δvm(β) ≡ ηm−nδvn(β) mod Dm.

Proof. This lemma is easy to prove, the interested reader may check [13,
Lemma 10]. □

Lemma 4.9. The map

[α, β]ρ,L,n := 1
ηn

TL|K(λρ(α)δvn(β)) ·ρ vn

is well defined for all α ∈ pL of valuation µ(α) ≥ 2
q−1 , and all β ∈ L×. We

drop ρ in the index when there is no risk of confusion.

Proof. We need to show that 1
ηn TL|K(λρ(α)b) ∈ O for every b ∈ p−1

L and
that

µ( 1
ηn

TL|K(λρ(α)d)) ≥ nm0

for all d ∈ Dn. Using (i) of Lemma 3.1, we can deduce that µ(λρ(α)) = µ(α).
Thus the result follows from Lemma 4.7. □

Proposition 4.10. The map [ · , · ]L,n satisfies the following properties
(i) The map [ · , · ]L,n is bilinear and O-linear in the first coordinate for

the action (1.2).
(ii) Let ρ′ be a formal Drinfeld O-module isomorphic to ρ, i.e. there

exists a power series t invertible in OH{{τ}} such that ρ′
a = t−1 ◦

ρa ◦ t for all a ∈ O. Then we have [α, β]ρ′,L,n = t−1([t(α), β]ρ,L,n).

Proof. The property (i) is clear, so we will only prove (ii). To do so, let
v′

n = t−1(vn) be a generator of the O-module Wn
ρ′ . Then, if f ∈ OH((X))×

is such that f(vn) = β, we have f ◦ t(v′
n) = f(vn) = β so that

δ′
vn

(β) = t′(v′
n)f ′(vn)
β

= t′(0)δvn(β),

where δ′
vn

is the map defined in Lemma 4.8 corresponding to ρ′. Further-
more, we have λρ′ ◦ t−1 = (t−1)′(0)λρ. The result follows immediately since
(t−1)′(0) = 1

t′(0) . □
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Lemma 4.11. Let α ∈ pL such that µ(α) ≥ nm0
q + 1

q−1 + 1
qnm0 (q−1) and let

β ∈ L×. We have

[α, β]L,n = 1
ηn

TL|K(αδvn(β)) ·ρ vn.

Proof. We need to prove that
1
ηn

TL|K(λρ(α)δvn(β)) ·ρ vn = 1
ηn

TL|K(αδvn(β)) ·ρ vn,

i.e. that
µ(TLK

(λρ(α)− α)δvn(β)) ≥ 2nm0.

We have

µ((λρ(α)− α)δvn(β)) ≥ min
i
{qiµ(α)− i} − 1

qnm0−1(q − 1) .

The hypothesis implies that mini{qiµ(α) − i} = qµ(α) − 1 so that
µ(λρ(α)−α)δvn(β))≥nm0+ 1

q−1 . Finally, we conclude using Lemma 4.7. □

Lemma 4.12. Let β ∈ En
ρ and β′ ∈ Em

ρ such that Nm,n(β′) = β. We have

Tm,n(δvm(β′)) = ηm−nδvn(β).

Proof. This lemma is the analogue of Lemma 8.9 in [9], whose proof is
adaptable to our case. The main ingredient used is the Coleman norm
operator associated to ρ, defined by Oukhaba in [11, Section 5]. □

5. Explicit reciprocity laws

In this section, we assume that ρη ≡ τm0 mod pH . We fix a positive
integer n and a generator vn of Wn

ρ , and we set L = En
ρ .

As in the classical case of Lubin–Tate formal groups, we have

Proposition 5.1. For every unit u of K, we have
(5.1) ΦK(u)(ω) = ρu−1(ω)
for all ω ∈Wρ.

Proof. Let f(X) = πX +Xq. As
f(X) ≡ πX mod deg 2 and f(X) ≡ Xq mod pH ,

then by Lubin–Tate theory (see for instance [9, Proposition 4.2]), there
exists a unique formal group Ff (X,Y ) such that

(5.2) f ◦ Ff = F ϕ
f ◦ f.

It is easy to see that Ff (X,Y ) = X+Y . Consider the rinf of endomorphsims
of Ff

End(Ff ) := {g ∈ OH [[X]]; g(Ff (X,Y )) = Ff (g(X), g(Y ))}.
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By [9, Proposition 4.4], there exists an injective ring homomorphism O →
End(Ga) which associates for each a ∈ O, the unique power series [a]f
satisfying

[a]f (X) ≡ aX mod deg 2 and f ◦ [a]f = [a]ϕf ◦ f,

where ϕ is the Frobenius automorphism of Kur|K. Clearly, we have f(X) =
[π]f (X). Let d ∈ N be such that [H : K] = dm0. Since

ρηd(X) ≡ ηdX, [πdm0 ]f (X) ≡ πdm0X mod deg 2

and ρηd(X) ≡ [πdm0 ]f (X) ≡ Xqdm0 mod pH ,

then by [11, Proposition 3.1], there exists a unique power series θ∈OKur
[[X]]

such that

θ(X) ≡ u0X mod deg 2 and ρηd ◦ θ = θϕdm0 ◦ [πdm0 ]f

where Kur is the completion of Kur and u0 is a unit of Kur. We deduce
that for all m ≥ 1, we have

ρηmd ◦ θ = θϕdm0 ◦ [πdmm0 ]f ,

and therefore we have an isomorphism of Fq-vector spaces

θ : Wf −→Wρ.

Here Wf =
⋃
Wm

f , where Wm
f is the set of roots of [πm]f . Now let u be a

unit of K and consider ΦK(u) ∈ Gal(Kab|Kur). By [9, Chapter 6], we have

ΦK(u)(ω′) = [u−1]f (ω′) ∀ ω′ ∈Wf .

However, since ΦK(u)|H(Wρ) ∈ Gal(H(Wρ)|H), then by [11, Proposition 2.5],
there exists a unit v ∈ K such that

ΦK(u)(ω) = ρv−1(ω), ∀ ω ∈Wρ.

Let ω′ ∈ Wf and ω = θ(ω′) ∈ Wρ, then ρv−1 ◦ θ(ω′) = ΦK(u)(θ(ω′)).
However, ΦK(u) is an automorphism of Kab = Kur(Wρ) over Kur. Hence,
we can extend it to an automorphism of Kab(Wρ) over Kur so that

ΦK(u)(θ(ω′)) = θ(ΦK(u)(ω′))
= θ ◦ [u−1]f (ω′).

Therefore we have ρv−1 ◦ θ(ω′) = θ ◦ [u−1]f (ω′) for all ω′ ∈ Wf . Then,
reasoning as in [9, Lemma 8.1], we can prove that

ρv−1 ◦ θ = θ ◦ [u−1]f .

We deduce by identification that u = v. This concludes the proof. □
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Lemma 5.2. Let α ∈ pL. For m ≥ n, we set αm = ρηm−n(α) and bm =
αmv

−1
m . Then, there exists an integer N(ρ, α) ∈ N such that for all m ≥

N(ρ, α), we have
(5.3) (α,Nm,n(1 + bm))L,n = 0
and
(5.4) Nm(1 + bm)−1 ≡ 1− Tm(bm) mod p2mm0

K ,

where Tm and Nm denote respectively the trace and the norm of the ex-
tension Em

ρ |K and Nm,n denotes the norm of the extension Em
ρ |En

ρ .

Proof. We first prove (5.3). Let m ≥ n. By Lemma 4.1, there exists a
constant c depending only on n such that µ(bm) ≥ mm0 − c. Thus 1 + bm

tends to 1 as m tends to ∞. Moreover,

(5.5) Nm,n(1 + bm) =
∏

(1 + σ(bm)) = 1 + y,

where σ varies among the automorphisms in Gal(Em
ρ |En

ρ ) and µ(y) ≥
µ(bm). Thus, Nm,n(1 + bm) also tends to 1 as m tends to ∞. Furthermore,
(5.6) (α,Nm,n(1 + bm))L,n = ΦL(Nm,n(1 + bm))(ξ)− ξ,
where ρηn(ξ) = α. But ΦL is continuous. Hence, for the neighborhood
Gal(Lab|L(ξ)) of ΦL(1), there exists N1 ∈ N such that if m ≥ N1, then
ΦL(Nm,n(1 + bm)) ∈ Gal(Lab|L(ξ)). Thus, for all m ≥ N1, we have (5.3).
Now let us prove (5.4). Let k ≤ m be an integer. Let x = Tm,m−k(bm), then
it is easy to check that Nm,m−k(1+bm)−1 = 1−x+y, where µ(y) ≥ 2µ(bm).
Therefore, we have
(5.7) Nm(1 + bm)−1 = Nm−k(1− x+ y) = 1− Tm−k(x− y) + z,

µ(z) ≥ µ(x − y). If k and m are such that km0 ≥ c + 1 and mm0 ≥
km0 + 2c+ 1

(q−1) , then, by Lemma 4.7 we get µ(Tm−k(x− y)) ≥ 2mm0 and
µ(z) ≥ µ(x − y) ≥ 2mm0. Thus, (5.4) follows. Finally, we set N(ρ, α) =
max{N1, ⌊k + 2c

m0
+ 1

m0(q−1)⌋+ 1}. □

Remark 5.3. Let α ∈ pL and let ρ′ be a formal Drinfeld OK-module
isomorphic to ρ, i.e. there exists a power series t invertible in OH{{τ}} such
that ρ′

a = t−1◦ρa◦t for all a ∈ OK . It is easy to prove that Em
ρ = Em

ρ′ for all
m ≥ 0. Moreover, by Proposition 2.2 (vi) we have N(ρ, α) = N(ρ′, t−1(α)).

Lemma 5.4. Let α ∈ pL and suppose that there exists m ≥ max{N(ρ, α),
q

q−1(2n + 1
2m0

)} such that (x, x)Em
ρ ,m = 0 for all x ∈ pEm

ρ
\ {0}, where

N(ρ, α) is defined in Lemma 5.2. Then, there exists a prime πn of L such
that

(5.8) (α, πn)L,n = [α, πn]L,n = 1
ηn

TL|K(λρ(α)δvn(πn)) ·ρ vn.
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Proof. We prove the Lemma following the steps of [4, Proposition 23], which
were essentially used by Wiles [13, Lemma 8]. Let α ∈ pL.

Step 1. For m ≥ n, let αm = ρηm−n(α) and bm = αmv
−1
m . If we suppose

(x, x)Em
ρ ,m = 0 for all x ∈ pEm

ρ
\ {0}, we have

0 = (αm + vm, (1 + bm)vm)Em
ρ ,m

= (αm, vm)Em
ρ ,m + (αm, 1 + bm)Em

ρ ,m + (vm, 1 + bm)Em
ρ ,m,

because αm + vm = (1 + bm)vm.

Step 2. For m≥N(ρ, α), we have (αm, 1+bm)Em
ρ ,m = (α,Nm,n(1+bm))L,n =

0 by Lemma 5.2.

Step 3. Let m ≥ N(ρ, α) so that (αm, 1 + bm)Em
ρ ,m = 0 and suppose that

(x, x)Em
ρ ,m = 0 for all x ∈ pEm

ρ
\{0}. Let πn = Nm,n(vm), then πn is a prime

of L because Em
ρ |L is a totally ramified extension. Let v2m be a generator

of W 2m
ρ such that ρηm(v2m) = vm. We have

(α, πn)L,n = v2m − ρNm(1+bm)−1(v2m).

Indeed,

(α, πn)L,n = (αm, vm)Em
ρ ,m = −(vm, 1 + bm)Em

ρ ,m (by Step 1 and 2)
= −(ΦEm

ρ
(1 + bm)(v2m)− v2m)

= −(ΦK(Nm(1 + bm))(v2m)− v2m).

By Proposition 5.1 we have ΦK(Nm(1+bm))(v2m) = ρNm(1+bm)−1(v2m) and
hence (α, πn)n = v2m − ρNm(1+bm)−1(v2m).

Step 4. For m ≥ N(ρ, α), we have Nm(1+bm)−1 ≡ 1−Tm(bm) mod p2mm0
K

by Lemma 5.2.

Step 5. Choose m ≥ max{N(ρ, α), q
q−1(2n + 1

2m0
)}, then m is sufficiently

large to satisfy Step 2 and Step 4. If in addition we have (x, x)Em
ρ ,m = 0

for all x ∈ pEm
ρ
\ {0}, then (α, πn)L,n = [α, πn]L,n, where πn = Nm,n(vm) as

in Step 3. Indeed, by the previous steps we get

(5.9) (α, πn)L,n = Tm(αmv
−1
m ) ·ρ v2m = 1

ηm
Tm(αmv

−1
m ) ·ρ vm.

We draw the attention of the reader to the fact that m is sufficiently large so
that µ(αm) ≥ mm0

q + 1
q−1 + 1

qmm0 (q−1) . This is a consequence of Lemma 4.1
and Remark 4.2. This implies that 1

ηm Tm(αmv
−1
m ) ∈ OK . Moreover, by
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Lemma 4.11 and Lemma 4.12, we get

(α, πn)L,n = 1
ηm

Tm(αmv
−1
m ) ·ρ vm

= [αm, vm]Em
ρ ,m (Lemma 4.11)

= [α, πn]L,n. (Lemma 4.12) □

Remark 5.5. If ρη(X) is a polynomial (as in [1, 4, 13]), the condition
(x, x)ρ,Em

ρ ,m = 0 is satisfied for all m ≥ 1, and following the same steps as
in the proof of Lemma 5.4, one can prove that

(5.10) (α, vn)L,n = 1
ηn

TL|K(λρ(α) 1
vn

) ·ρ vn

for all α ∈ pL.

Lemma 5.6. Suppose ρ is such that (x, x)L,n = 0 for all x ∈ pL \ {0}. Let
α ∈ pL such that µ(α) ≥ nm0

q + 1
q−1 + 1

qnm0 (q−1) and β a unit in L×. Then

(5.11) (α, β)L,n = [α, β]L,n = 1
ηn

TL|K(λρ(α)δvn(β)) ·ρ vn.

Proof. We first notice that a unit β ∈ L is of the form ζu1, where ζ is a
(q − 1)th root of unity and u1 is a principle unit in L. It is obvious that
both sides of (5.11) are zero for β = ζ. Hence, it is sufficient to prove the
Lemma for the principal units β = 1 − ζπL

j , where πL is a prime of L,
ζ is any (q − 1)th root of unity, and j is any integer greater than 1. This
goes back to the structure of the principal units as a Zp-module and to the
continuity of the pairings. By Lemma 4.5, we have

(α, 1− ζπL
j)ρ,L,n =

(
ζπL

j

1− ζπL
j
α, (ζπL

j)−1
)

ρ,L,n

(5.12)

= −j
(

ζπL
j

1− ζπL
j
α, πL

)
ρ,L,n

.(5.13)

Let m ≥ max
{
N
(
ρ, ζπL

j

1−ζπL
jα
)
, q

q−1
(
2n + 1

2m0

)}
and let rm ∈ OH{{τ}} be

the invertible power series defined in Proposition 4.3. Let ρ′ be the formal
Drinfeld module defined by ρ′

a = rm ◦ ρa ◦ r−1
m for all a ∈ OK . Hence, by

Proposition 2.2(vi), we have

(5.14)
(

ζπL
j

1− ζπL
j
α, πL

)
ρ,L,n

= r−1
m

(rm

(
ζπL

j

1− ζπL
j
α

)
, πL

)
ρ′,L,n

 .
Moreover, by Remark 5.3, we have

N

(
ρ,

ζπL
j

1− ζπL
j
α

)
= N

(
ρ′, rm

(
ζπL

j

1− ζπL
j
α

))
.
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Hence, since ρ′ satisfies (x, x)ρ′,Em
ρ ,m = 0, then by Lemma 5.4, there exists

a prime πn of L such that

(5.15)
(
rm

(
ζπn

j

1− ζπn
j
α

)
, πn

)
ρ′,L,n

=
[
rm

(
ζπn

j

1− ζπn
j
α

)
, πn

]
ρ′,L,n

.

Hence, if we put πL = πn, we get

(5.16) (α, 1− ζπn
j)ρ,L,n = −jr−1

m

[rm

(
ζπn

j

1− ζπn
j
α

)
, πn

]
ρ′,L,n

 .
By Proposition 4.10(ii), (5.16) is equal to

−j
[

ζπn
j

1− ζπn
j
α, πn

]
ρ,L,n

= −j
ηn

TL|K

(
ζπn

j

1− ζπn
j
× α× δvn(πn)

)
·ρ vn

(5.17)

= 1
ηn

TL|K

(
−jζπn

j

1− ζπn
j
× α× t′(vn)

πn

)
·ρ vn,(5.18)

where (5.17) is deduced from Lemma 4.11, and t(X) ∈ OH((X)) satisfies
t(vn) = πn. Since 1− ζ(t(vn))j = 1− ζπn

j , we have

(5.19) δvn(1− ζπn
j) = −jζπn

j−1t′(vn)
1− ζπn

j
,

and thus, (5.18) is equal to 1
ηn TL|K(αδvn(1− ζπn

j)) ·ρ vn which is equal to
1

ηn TL|K(λρ(α)δvn(1− ζπn
j)) ·ρ vn by Lemma 4.11. Hence,

□(5.20) (α, 1− ζπn
j)ρ,L,n = [α, 1− ζπn

j ]ρ,L,n.

Proposition 5.7. Let α ∈ pL such that µ(α) ≥ nm0
q + 1

q−1 + 1
qnm0 (q−1) and

β a unit in L×. Then

(α, β)L,n = [α, β]L,n = 1
ηn

TL|K(λρ(α)δvn(β)) ·ρ vn.

Proof. By Proposition 4.3, there exists an invertible power series r ∈
OH{{τ}} such that ∏

ω∈W n
ρ

(X − ω) = r ◦ ρηn(X).

Let ρ′ be the formal Drinfeld module defined by ρ′
a = r ◦ ρa ◦ r−1 for all

a ∈ O. Then, by Lemma 4.4 we have (x, x)ρ′,En
ρ ,n = 0. Hence, by Lemma 5.6

for ρ′, we have

(α, β)ρ,L,n = r−1((r(α), β)ρ′,L,n) = r−1([r(α), β]ρ′,L,n) = [α, β]ρ,L,n. □
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Proposition 5.8. Let α ∈ pL such that µ(α) ≥ nm0
q + 1

q−1 + 1
qnm0 (q−1) and

let β be a prime of L, then

(α, β)L,n = [α, β]L,n = 1
ηn

TL|K(λρ(α)δvn(β)) ·ρ vn.

Proof. Let m ≥ max{N(ρ, α), q
q−1(2n + 1

2m0
)} and let rm ∈ OH{{τ}} be

the invertible power series defined in Proposition 4.3. Let ρ′ be the formal
Drinfeld module defined by ρ′

a = rm ◦ ρa ◦ r−1
m for all a ∈ OK . Thus by

Lemma 4.4, we have (x, x)ρ′,Em
ρ ,m = 0. Hence, by Lemma 5.4, there exists a

prime πn of L satisfying (rm(α), πn)ρ′,L,n = [rm(α), πn]ρ′,L,n. Then we can
write β = uπn for a unit u ∈ L. Hence,
(5.21) (α, β)ρ,L,n = (α, uπn)ρ,L,n = (α, u)ρ,L,n + (α, πn)ρ,L,n.

By Proposition 5.7, we have (α, u)ρ,L,n = [α, u]ρ,L,n. On the other hand, by
Proposition 2.2(vi), we have
(5.22) (α, πn)ρ,L,n = r−1

m ((rm(α), πn)ρ′,L,n) = r−1
m ([rm(α), πn]ρ′,L,n),

the last equality being deduced from Remark 5.3 and Lemma 5.4. Hence,
by Proposition 4.10(ii), we have
(5.23) (α, β)ρ,L,n = [α, u]ρ,L,n + [α, πn]ρ,L,n = [α, β]ρ,L,n.

□

Combining Proposition 5.7 and Proposition 5.8, we obtain

Theorem 5.9. Let α ∈ pL such that µ(α) ≥ nm0
q + 1

q−1 + 1
qnm0 (q−1) and

β ∈ L×. We have

(α, β)ρ,L,n = [α, β]ρ,L,n = 1
ηn
TEn

ρ |K(λρ(α)δvn(β)) ·ρ vn.
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