OURNAL de Théorie des Nombres de Bordeaux

Jiali YAN
Computing the Cassels-Tate Pairing on the Selmer group of a Richelot Isogeny
Tome 35, no 3 (2023), p. 659-674.
https://doi.org/10.5802/jtnb. 1259
© Les auteurs, 2023.
(cc) BY-ND Cet article est mis à disposition selon les termes de la licence Creative Commons attribution - pas de modification 4.0 France. http://creativecommons.org/licenses/by-nd/4.0/fr/

MERSENNE

Le Journal de Théorie des Nombres de Bordeaux est membre du
Centre Mersenne pour l'édition scientifique ouverte
http://www.centre-mersenne.org/

Computing the Cassels-Tate Pairing on the Selmer group of a Richelot Isogeny

par Jiali YAN

Abstract

Résumé. Dans cet article, nous étudions l'accouplement de Cassels-Tate sur les jacobiennes des courbes de genre 2 possédant une isogénie dite de Richelot. Soit $\phi: J \rightarrow \widehat{J}$ une isogénie de Richelot entre les jacobiennes de deux courbes de genre 2 . Nous donnons une formule explicite et un algorithme pratique pour calculer l'accouplement de Cassels-Tate sur $\operatorname{Sel}^{\hat{\phi}}(\widehat{J}) \times \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$ où $\widehat{\phi}$ est l'isogénie duale de ϕ. Ces résultats sont obtenus sous l'hypothèse simplificatrice que tous les points de 2-torsion sur J sont définis sur K. Nous donnons un exemple explicite qui montre que nous pouvons transformer la descente par l'isogénie de Richelot en 2-descente en calculant l'accouplement de Cassels-Tate.

Abstract. In this paper, we study the Cassels-Tate pairing on Jacobians of genus two curves admitting a special type of isogenies called Richelot isogenies. Let $\phi: J \rightarrow \widehat{J}$ be a Richelot isogeny between two Jacobians of genus two curves. We give an explicit formula as well as a practical algorithm to compute the Cassels-Tate pairing on $\operatorname{Sel}^{\hat{\phi}}(\widehat{J}) \times \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$ where $\widehat{\phi}$ is the dual isogeny of ϕ. The formula and algorithm are under the simplifying assumption that all two-torsion points on J are defined over K. We also include a worked example demonstrating we can turn the descent by Richelot isogeny into a 2-descent via computing the Cassels-Tate pairing.

1. Introduction

For any principally polarized abelian variety A defined over a number field K, Cassels and Tate [6], [7] and [23] constructed a pairing

$$
\amalg(A) \times \amalg(A) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

that is nondegenerate after quotienting out the maximal divisible subgroup of $\amalg(A)$. This pairing is called the Cassels-Tate pairing and it naturally lifts to a pairing on Selmer groups. One application of this pairing is in improving the bound on the Mordell-Weil rank $r(A)$ obtained by performing a standard descent calculation. Suppose $\amalg(A)$ is finite, then carrying out an n-descent and computing the Cassels-Tate pairing on $\operatorname{Sel}^{n}(A) \times \operatorname{Sel}^{n}(A)$

[^0]gives the same bound as obtained from the n^{2}-descent where $\operatorname{Sel}^{n^{2}}(A)$ needs to be computed. Since the kernel of the pairing equals the image of the n^{2} Selmer group in the n-Selmer group, the rank bound one gets is the same as that obtained by n^{2}-descent (as shown in [24, Proposition 1.9.3]).

There have been many results on computing the Cassels-Tate pairing in the case of elliptic curves. For example, in addition to defining the pairing, Cassels also described a method for computing the pairing on $\operatorname{Sel}^{2}(E) \times$ $\mathrm{Sel}^{2}(E)$ in [8] by solving conics over the field of definition of a two-torsion point. Donnelly [10] then described a method that only requires solving conics over K and Fisher [12] used the invariant theory of binary quartics to give a new formula for the Cassels-Tate pairing on $\operatorname{Sel}^{2}(E) \times \operatorname{Sel}^{2}(E)$ without solving any conics. In [2, 3], van Beek and Fisher computed the Cassels-Tate pairing on the 3 -isogeny Selmer group of an elliptic curve. For $p=3$ or 5 , Fisher computed the Cassels-Tate pairing on the p-isogeny Selmer group of an elliptic curve in a special case in [11]. In [13], Fisher and Newton computed the Cassels-Tate pairing on $\operatorname{Sel}^{3}(E) \times \operatorname{Sel}^{3}(E)$. We are interested in the natural problem of generalizing the different algorithms for computing the Cassels-Tate pairing for elliptic curves to computing the pairing for abelian varieties of higher dimensions.

In this paper, we study the Cassels-Tate pairing on Jacobians of genus two curves admitting a special type of isogeny called a Richelot isogeny. Let $\phi: J \rightarrow \widehat{J}$ be a Richelot isogeny between Jacobians of two genus two curves. We will be working under the assumption that all two-torsion points on J are defined over K. This simplifies the computation. Because computing the 2-Selmer group is cheap, the goal of this paper is not to improve the rank bound. Instead, the goal of this paper is to illustrate a method that explicitly computes the CT pairing in higher dimensions, which has not been done before. Consider the following long exact sequence

$$
\begin{equation*}
0 \rightarrow J[\phi](\mathbb{Q}) \rightarrow J[2](\mathbb{Q}) \rightarrow \widehat{J}[\hat{\phi}](\mathbb{Q}) \rightarrow \operatorname{Sel}^{\phi}(J) \rightarrow \operatorname{Sel}^{2}(J) \xrightarrow{\alpha} \operatorname{Sel}^{\hat{\phi}}(\widehat{J}) . \tag{1.1}
\end{equation*}
$$

Let $\langle\cdot, \cdot\rangle_{C T}$ denote the Cassels-Tate pairing on $\operatorname{Sel}{ }^{\hat{\phi}}(\widehat{J})$. It is shown in Remark 3.4 that we can replace $\operatorname{Sel}^{\hat{\phi}}(\widehat{J})$ with $\operatorname{ker}\langle\cdot, \cdot\rangle_{C T}$ and (1.1) remains exact. Although it is not the goal of the paper, this shows computing the pairing $\langle\cdot, \cdot\rangle_{C T}$ potentially improves the rank bound given by carrying out a descent by Richelot isogeny. Then later in the paper, we describe an explicit algorithm to compute the pairing $\langle\cdot, \cdot\rangle_{C T}$.

In Section 2, we give some background results needed for the later sections and we define a pairing on $\operatorname{Sel}^{\phi}(J) \times \operatorname{Sel}^{\phi}(J)$ following the Weil pairing definition of the Cassels-Tate pairing for the Richelot isogeny ϕ. In Section 3 , we then give an explicit formula as well as a practical algorithm to compute the Cassels-Tate pairing on $\operatorname{Sel}^{\hat{\phi}}(\widehat{J}) \times \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$ where $\widehat{\phi}$ is the dual
isogeny of ϕ and also a Richelot isogeny. In Section 4, we give some details of the explicit computation and show directly that the formula for the Cassels-Tate pairing is always a finite product with a computable bound. In Section 5, we include a worked example demonstrating we can turn the descent by Richelot isogeny into a 2 -descent via computing the Cassels-Tate pairing. The content of this paper is based on Chapter 2 of the thesis of the author [24].

2. Preliminary Results

2.1. The set-up. In this paper, we are working over a number field K. For any field k, we let \bar{k} denote its algebraic closure and let $\mu_{n} \subset \bar{k}$ denote the $n^{t h}$ roots of unity in \bar{k}. We let G_{k} denote the absolute Galois group $\operatorname{Gal}(\bar{k} / k)$.

Let \mathcal{C} be a general genus two curve defined over K with all Weierstrass points defined over K, which is a smooth projective curve and it can be given in the following hyperelliptic form:

$$
\begin{equation*}
C: y^{2}=f(x)=G_{1}(x) G_{2}(x) G_{3}(x) \tag{2.1}
\end{equation*}
$$

where $G_{1}(x)=\lambda\left(x-\omega_{1}\right) ; G_{2}(x)=\left(x-\omega_{2}\right)\left(x-\omega_{3}\right) ; G_{3}(x)=\left(x-\omega_{4}\right)\left(x-\omega_{5}\right)$ with $\lambda, \omega_{i} \in K, \omega_{i}$ pairwise distinct and $\lambda \neq 0$.

We let J denote the Jacobian variety of \mathcal{C}, which is an abelian variety of dimension 2 defined over K that can be identified with $\operatorname{Pic}^{0}(\mathcal{C})$. We denote the identity element of J by \mathcal{O}_{J} and the point at infinity by ∞. Via the natural isomorphism $\operatorname{Pic}^{2}(\mathcal{C}) \rightarrow \operatorname{Pic}^{0}(\mathcal{C})$ sending $\left[P_{1}+P_{2}\right] \mapsto\left[P_{1}+P_{2}-2 \infty\right]$, a point $P \in J$ can be identified with an unordered pair of points of \mathcal{C}, $\left\{P_{1}, P_{2}\right\}$. This identification is unique unless $P=\mathcal{O}_{J}$, in which case it can be represented by any pair of points on \mathcal{C} in the form $\{(x, y),(x,-y)\}$ or $\{\infty, \infty\}$. Moreover, $J[2]=\left\{\mathcal{O}_{J},\left\{\left(\omega_{i}, 0\right),\left(\omega_{j}, 0\right)\right\}\right.$ for $\left.i \neq j,\left\{\left(\omega_{i}, 0\right), \infty\right\}\right\}$. Let $e_{2}: J[2] \times J[2] \rightarrow \mu_{2}$ denote the Weil pairing on $J[2]$. As described in [9, Chapter 3, Section 3], suppose $\left\{P_{1}, P_{2}\right\}$ and $\left\{Q_{1}, Q_{2}\right\}$ represent $P, Q \in J[2]$ where $P_{1}, P_{2}, Q_{1}, Q_{2}$ are Weierstrass points, then

$$
\begin{equation*}
e_{2}(P, Q)=(-1)^{\left|\left\{P_{1}, P_{2}\right\} \cap\left\{Q_{1}, Q_{2}\right\}\right|} \tag{2.2}
\end{equation*}
$$

2.2. Richelot isogenies. A Richelot isogeny is a polarized (2,2)-isogeny between Jacobians of genus 2 curves. In particular, it is an isogeny $\phi: J \rightarrow$ \widehat{J} such that $J[\phi] \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and J, \widehat{J} are Jacobians of genus two curves.

A special case of [16, Proposition 16.8] and [5, Lemma 2.4] shows that the kernel of a Richelot isogeny is actually a maximal isotropic subgroup of $J[2]$ with respect to the Weil pairing e_{2} on $J[2] \times J[2]$. We have the following general proposition on Richelot isogenies from [9, Chapter 9 Section 2] and [14, Section 3]. In Remark 2.2, we give the extra details for the case where the hyperelliptic form of the underlying curve is of degree 5 .

Proposition 2.1. Suppose the curve \mathcal{C} is of the form

$$
\mathcal{C}: y^{2}=f(x)=G_{1}(x) G_{2}(x) G_{3}(x),
$$

where $G_{j}(x)=g_{j 2} x^{2}+g_{j 1} x+g_{j 0}$, with $g_{j i} \in K$. Let $\Delta=\operatorname{det}\left(g_{i j}\right)$, which we assume to be non-zero. Then there is a Richelot isogeny ϕ from J, the Jacobian of \mathcal{C}, to \widehat{J}, the Jacobian of the following genus two curve:

$$
\begin{equation*}
\widehat{\mathcal{C}}: \Delta y^{2}=L_{1}(x) L_{2}(x) L_{3}(x) \tag{2.3}
\end{equation*}
$$

where each $L_{i}(x)=G_{j}^{\prime}(x) G_{k}(x)-G_{j}(x) G_{k}^{\prime}(x)$, for $[i, j, k]=[1,2,3],[2,3,1]$, [3, 1, 2].

In addition, the kernel of ϕ consists of the identity \mathcal{O}_{J} and the 3 divisors of order 2 given by $G_{i}=0$. We have a similar result for the dual isogeny $\widehat{\phi}$.

Moreover, any genus two curve \mathcal{C} that admits a Richelot isogeny with all the elements of the kernel K-rational is of the form $y^{2}=f(x)=$ $G_{1}(x) G_{2}(x) G_{3}(x)$ as above.

Remark 2.2. We exclude the case $\Delta=0$ in the above proposition. In fact, by [9, Chapter 14], $\Delta=0$ implies that the Jacobian of \mathcal{C} is isogenous (via the Richelot isogeny) to a product of elliptic curves. It can be checked that the analogue of Δ for \widehat{C} is $2 \Delta^{2}$, so the corresponding condition for \widehat{C} is automatically satisfied. Also, in the case where G_{i} is linear, say $G_{i}=$ $a(x-b)$, then we say $\{(b, 0), \infty\}$ is the divisor given by $G_{i}=0$ which gives an element in ker ϕ.

We use the notation in Proposition 2.1 and denote the nontrivial elements in the kernel of ϕ by P_{i} corresponding to the divisors of order 2 given by $G_{i}=0$ as well as denote the nontrivial elements in the kernel of $\widehat{\phi}$ by P_{i}^{\prime}. From [9, Chapter 9, Section 2] and [22, Section 3.2], we have the following description of the Richelot isogeny ϕ. Associated with a Weierstrass point $P=\left(\omega_{1}, 0\right)$ with $G_{1}\left(\omega_{1}\right)=0$, for a generic $(x, y) \in \mathcal{C}, \phi: J \rightarrow \widehat{J}$ is given explicitly as

$$
\{(x, y), P\} \mapsto\left\{\left(z_{1}, t_{1}\right),\left(z_{2}, t_{2}\right)\right\}
$$

where z_{1}, z_{2} satisfy

$$
G_{2}(x) L_{2}(z)+G_{3}(x) L_{3}(z)=0
$$

and $\left(z_{i}, t_{i}\right)$ satisfies

$$
y t_{i}=G_{2}(x) L_{2}\left(z_{i}\right)\left(x-z_{i}\right) .
$$

Denote the set of two points on \mathcal{C} given by $G_{i}=0$ by S_{i} for $i=1,2,3$. From the explicit description above, we know that the preimages of P_{1}^{\prime} under ϕ are precisely $\left\{\left\{Q_{1}, Q_{2}\right\} \in J[2]\right.$ such that $\left.Q_{1} \in S_{2}, Q_{2} \in S_{3}\right\}$. Similarly we know the preimages of P_{2}^{\prime} and P_{3}^{\prime}.
2.3. The Weil pairing for the Richelot isogeny. Let J and \widehat{J} be Jacobian varieties of genus two curves defined over K. Assume there is a Richelot isogeny $\phi: J \rightarrow \widehat{J}$ with $\widehat{\phi}$ being its dual, i.e. $\phi \circ \widehat{\phi}=[2]$. Then we have the Weil pairing

$$
e_{\phi}: J[\phi] \times \widehat{J}[\widehat{\phi}] \rightarrow \bar{K}^{*}
$$

where $e_{\phi}(P, Q)=e_{2, J}\left(P, Q^{\prime}\right)$ for any $Q^{\prime} \in J[2]$ such that $\phi\left(Q^{\prime}\right)=Q$. The image of e_{ϕ} is in fact $\mu_{2}\left(\bar{K}^{*}\right) \subset \bar{K}^{*}$. Recall $J[\phi]$ is isotropic with respect to $e_{2, J}$ as discussed in Section 2.2. This implies that $e_{2, J}\left(P, Q^{\prime}\right)=e_{2, J}\left(P, Q^{\prime \prime}\right)$ if $\phi\left(Q^{\prime}\right)=\phi\left(Q^{\prime \prime}\right)$ and hence e_{ϕ} is well-defined. By (2.2) and the end of Section 2.2, $e_{\phi}\left(P_{i}, P_{i}^{\prime}\right)=1$ for any $i=1,2,3$ and $e_{\phi}\left(P_{i}, P_{j}^{\prime}\right)=-1$ for any $i \neq j$. Furthermore, given any $P \in J[2], Q \in \widehat{J}[2]$, we know $e_{2, J}(P, \widehat{\phi}(Q))=$ $e_{2, \hat{J}}(\phi(P), Q)$ by [18, Proposition 13.2(a)], which implies that $e_{\phi}(P, Q)=$ $e_{\hat{\phi}}(Q, P)$ for any $P \in J[\phi], Q \in \widehat{J}[\widehat{\phi}]$.

2.4. Definition of the Cassels-Tate pairing in the case of a Richelot

 isogeny. In this section, we give the definition of the Cassels-Tate pairing in the case of a Richelot isogeny. There are four equivalent definitions of the Cassels-Tate pairing stated and proved in [19]. The compatibility of the definition below with the Weil Pairing definition of the Cassels-Tate pairing on $\operatorname{Sel}^{2}(J) \times \operatorname{Sel}^{2}(J)$ is shown in [24, Proposition 2.1.6].Let J and \widehat{J} be Jacobian varieties of genus two curves defined over a number field K such that there exists a Richelot isogeny $\phi: J \rightarrow \widehat{J}$ with $\widehat{\phi}: \widehat{J} \rightarrow J$ being its dual isogeny and all points in $J[\phi]$ are defined over K. The following lemma shows that for any $b \in \operatorname{Sel}^{\phi}(J)$, there exists $b_{1} \in$ $H^{1}\left(G_{K}, \widehat{J}[2]\right)$ mapping to b under the map induced by $\widehat{J}[2] \xrightarrow{\hat{\phi}} J[\phi]$.

Lemma 2.3. Let J and \widehat{J} be Jacobian varieties of genus two curves such that there exists a Richelot isogeny $\phi: J \rightarrow \widehat{J}$ with $\widehat{\phi}: \widehat{J} \rightarrow J$ being its dual isogeny. Suppose all points in $J[\phi]$ are defined over K, We have the following:
(i) The map $H^{2}\left(G_{K}, J[\phi]\right) \xrightarrow{\text { res }} \prod_{v} H^{2}\left(G_{K_{v}}, J[\phi]\right)$ is injective.
(ii) For any $b \in \operatorname{Sel}^{\phi}(J)$, there exists $b_{1} \in H^{1}\left(G_{K}, \widehat{J}[2]\right)$ mapping to b.

Proof. Since $J[\phi] \cong\left(\mu_{2}\right)^{2}$ over K and $\operatorname{Br}(K)[2] \cong H^{2}\left(G_{K}, \mu_{2}\right)$, we have $H^{2}\left(G_{K}, J[\phi]\right) \cong\left(H^{2}\left(G_{K}, \mu_{2}\right)\right)^{2} \cong(\operatorname{Br}(K)[2])^{2}$ and similarly $H^{2}\left(G_{K_{v}}, J[\phi]\right) \cong\left(\operatorname{Br}\left(K_{v}\right)[2]\right)^{2}$. Hence, via the injection of $\operatorname{Br}(K) \rightarrow$ $\bigoplus_{v} \operatorname{Br}\left(K_{v}\right)$, we have $H^{2}\left(G_{K}, J[\phi]\right) \xrightarrow{\text { res }} \prod_{v} H^{2}\left(G_{K_{v}}, J[\phi]\right)$ is injective, which is (i). Note that by the formula in Proposition 2.1, all points in $\widehat{J}[\widehat{\phi}]$ are also defined over K, therefore $H^{2}\left(G_{K}, \widehat{J}[\widehat{\phi}]\right) \rightarrow \prod_{v} H^{2}\left(G_{K_{v}}, \widehat{J}[\widehat{\phi}]\right)$, is also injective.

Now, consider the following commutative diagram of short exact sequences.

We then obtain the following commutative diagram of long exact sequences along the rows by taking Galois cohomology.

Since $b \in \operatorname{Sel}^{\phi}(J)$, its image $c \in H^{1}\left(G_{K}, \widehat{J}\right)$ is locally trivial. Hence, its image is also trivial in $\prod_{v} H^{2}\left(G_{K_{v}}, \widehat{J}[\widehat{\phi}]\right)$. Via the injectivity of the map $H^{2}\left(G_{K}, \widehat{J}[\widehat{\phi}]\right) \rightarrow \prod_{v} H^{2}\left(G_{K_{v}}, \widehat{J}[\widehat{\phi}]\right)$, we get that $b \mapsto 0 \in H^{2}\left(G_{K}, \widehat{J}[\widehat{\phi}]\right)$. Thus b has a lift $b_{1} \in H^{1}\left(G_{K}, \widehat{J}[2]\right)$. Hence (ii) holds.

The definition of the pairing

Let $a, a^{\prime} \in \operatorname{Sel}^{\phi}(J)$. Let $a_{1} \in H^{1}\left(G_{K}, \widehat{J}[2]\right)$ be an element that maps to $a \in \operatorname{Sel}^{\phi}(J) \subset H^{1}\left(G_{K}, J[\phi]\right)$ under the map induced by $\widehat{J}[2] \xrightarrow{\hat{\phi}} J[\phi]$, which exists by Lemma 2.3.

Let v be a place of K. Let $P_{v} \in \widehat{J}\left(K_{v}\right)$ be a lift of $a_{v} \in H^{1}\left(G_{K_{v}}, J[\phi]\right)$. Consider the commutative diagram below.

$$
\begin{aligned}
& \widehat{J}\left(K_{v}\right) \xrightarrow[\hat{\phi}]{\longrightarrow} J\left(K_{v}\right) \xrightarrow[\delta_{\hat{\phi}}]{\longrightarrow} H^{1}\left(G_{K_{v}}, \widehat{J}[\hat{\phi}]\right) \\
& =\downarrow \quad{ }^{\hat{\phi}} \quad \begin{array}{llll}
\delta_{\hat{\phi}} & \iota \downarrow \rho_{v} \mapsto \delta_{2}\left(P_{v}\right)-a_{1, v}
\end{array} \\
& \widehat{J}\left(K_{v}\right) \longrightarrow \underset{2}{ } \widehat{J}\left(K_{v}\right) \xrightarrow[\delta_{2}]{\longrightarrow} H^{1}\left(G_{K_{v}}, \widehat{J}[2]\right) \\
& \hat{\phi} \downarrow \quad=\downarrow \quad \hat{\phi} \downarrow \delta_{2}\left(P_{v}\right) \mapsto a_{v} \quad a_{1, v} \mapsto a_{v} \\
& J\left(K_{v}\right) \xrightarrow[\phi]{\downarrow} \widehat{J}\left(K_{v}\right) \xrightarrow[\delta_{\phi}]{P_{v} \mapsto a_{v}} H^{1}\left(G_{K_{v}}, J[\phi]\right)
\end{aligned}
$$

Then $\delta_{2}\left(P_{v}\right)$ and $a_{1, v}$ in $H^{1}\left(G_{K_{v}}, \widehat{J}[2]\right)$ both map to a_{v}. Hence, we choose $\rho_{v} \in H^{1}\left(G_{K_{v}}, \widehat{J}[\widehat{\phi}]\right)$ a lift of $\delta_{2}\left(P_{v}\right)-a_{1, v}$ and define $\eta_{v}=\rho_{v} \cup_{\hat{\phi}, v} a_{v}^{\prime} \in$ $H^{2}\left(G_{K_{v}}, \overline{K_{v}}{ }^{*}\right)$. Here $\cup_{\hat{\phi}, v}$ denotes the cup product $H^{1}\left(G_{K_{v}}, \widehat{J}[\widehat{\phi}]\right) \times$
$H^{1}\left(G_{K_{v}}, J[\phi]\right) \rightarrow H^{2}\left(G_{K_{v}}, \bar{K}^{*}\right)$ associated to $e_{\hat{\phi}}$. The Cassels-Tate pairing is defined by

$$
\left\langle a, a^{\prime}\right\rangle_{C T}:=\sum_{v} \operatorname{inv}_{v}\left(\eta_{v}\right)
$$

We sometimes refer to $\operatorname{inv}_{v}\left(\eta_{v}\right)$ above as the local Cassels-Tate pairing between $a, a^{\prime} \in \operatorname{Sel}^{\phi}(J)$ for a place v of K, noting that this depends on the choice of the global lift a_{1}.

Remark 2.4. The Weil pairing definition of the Cassels-Tate pairing is proved to be independent of the choices made in the definition in [19] and more details are given in [24, Proposition 1.8.4]. Since the above pairing is compatible with the Weil pairing definition as in [24, Proposition 2.1.6], we know it is also independent of the choices we make.

3. Computation of the Cassels-Tate Pairing

Recall that we are working with a genus two curve \mathcal{C} in the form (2.1) and we fix a choice of Richelot isogeny $\phi: J \rightarrow \widehat{J}$ where J is the Jacobian of \mathcal{C} and \widehat{J} is the Jacobian of the genus two curve defined by (2.3). We write $\widehat{\phi}$ for the dual of ϕ. This implies that all points in $J[2]$ are defined over K and all points in $\widehat{J}[\widehat{\phi}]$ are defined over K by Proposition 2.1. Recall, we denote the nontrivial elements in $J[\phi]$ by P_{1}, P_{2}, P_{3} where P_{i} corresponds to the divisor given by $G_{i}=0$ and the nontrivial elements in $\widehat{J}[\widehat{\phi}]$ by $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ where P_{i}^{\prime} corresponds to the divisor given by $L_{i}=0$ as in the same Proposition. In this section, we will give a practical formula for the explicit computation for the Cassels-Tate pairing in the case of Richelot isogenies.
3.1. Explicit embeddings of $\mathbf{H}^{\mathbf{1}}\left(\mathrm{G}_{\mathrm{K}}, \mathbf{J}[\phi]\right)$ and $\mathbf{H}^{\mathbf{1}}\left(\mathrm{G}_{\mathrm{K}}, \mathrm{J}[2]\right)$. In order to give the formula for the Cassels-Tate pairing, we first describe some well-known embeddings that are useful for the explicit computation.

Recall all points in $J[2]$ and $\widehat{J}[\widehat{\phi}]$ are defined over K. From the exact sequence

$$
0 \rightarrow J[\phi] \xrightarrow{w_{\phi}}\left(\mu_{2}\right)^{3} \xrightarrow{N} \mu_{2} \rightarrow 0
$$

where $w_{\phi}: P \mapsto\left(e_{\phi}\left(P, P_{1}^{\prime}\right), e_{\phi}\left(P, P_{2}^{\prime}\right), e_{\phi}\left(P, P_{3}^{\prime}\right)\right)$ and $N:(a, b, c) \mapsto a b c$, we get

$$
\begin{aligned}
& H^{1}\left(G_{K}, J[\phi]\right) \xrightarrow{i n j} H^{1}\left(G_{K},\left(\mu_{2}\right)^{3}\right) \cong\left(K^{*} /\left(K^{*}\right)^{2}\right)^{3} \\
& \xrightarrow{N_{*}} H^{1}\left(G_{K}, \mu_{2}\right) \cong K^{*} /\left(K^{*}\right)^{2}
\end{aligned}
$$

where \cong denotes the Kummer isomorphism derived from Hilbert's Theorem 90 and N_{*} is induced by N. The induced map $H^{1}\left(G_{K}, J[\phi]\right) \rightarrow$ $H^{1}\left(G_{K},\left(\mu_{2}\right)^{3}\right)$ is injective as the map $\left(\mu_{2}\right)^{3} \xrightarrow{N} \mu_{2}$ is surjective. Furthermore, the image of this injection contains precisely all the elements with norm a square by the exactness of the sequence above, i.e. $H^{1}\left(G_{K}, J[\phi]\right) \cong$
$\operatorname{ker}\left(\left(K^{*} /\left(K^{*}\right)^{2}\right)^{3} \xrightarrow{N_{*}} K^{*} /\left(K^{*}\right)^{2}\right)$. We have a similar embedding for $H^{1}\left(G_{K}, \widehat{J}[\widehat{\phi}]\right)$.

Also, from the exact sequence

$$
0 \rightarrow J[2] \xrightarrow{w_{2}}\left(\mu_{2}\right)^{5} \xrightarrow{N} \mu_{2} \rightarrow 0,
$$

where $w_{2}: P \mapsto\left(e_{2}\left(P,\left\{\left(\omega_{1}, 0\right), \infty\right\}\right), \ldots, e_{2}\left(P,\left\{\left(\omega_{5}, 0\right), \infty\right\}\right)\right)$ and N : $(a, b, c, d, e) \mapsto a b c d e$, we get

$$
\begin{aligned}
& H^{1}\left(G_{K}, J[2]\right) \xrightarrow{i n j} H^{1}\left(G_{K},\left(\mu_{2}\right)^{5}\right) \cong\left(K^{*} /\left(K^{*}\right)^{2}\right)^{5} \\
& \xrightarrow{N_{*}} H^{1}\left(G_{K}, \mu_{2}\right) \cong K^{*} /\left(K^{*}\right)^{2},
\end{aligned}
$$

where \cong denotes the Kummer isomorphism derived from Hilbert's Theorem 90 and N_{*} is induced by N. Again the induced map $H^{1}\left(G_{K}, J[2]\right) \rightarrow$ $H^{1}\left(G_{K},\left(\mu_{2}\right)^{5}\right)$ is injective as the map $\left(\mu_{2}\right)^{5} \xrightarrow{N} \mu_{2}$ is surjective. Furthermore, the image of this injection also contains precisely all the elements with norm a square from the exact sequence above. In particular, we have

$$
H^{1}\left(G_{K}, J[2]\right) \cong \operatorname{ker}\left(\left(K^{*} /\left(K^{*}\right)^{2}\right)^{5} \xrightarrow{N} K^{*} /\left(K^{*}\right)^{2}\right)
$$

3.2. Explicit Formula. Using the embeddings described in Section 3.1, we can now state and prove the explicit formula for the Cassels-Tate pairing in the case of a Richelot isogeny.
Proposition 3.1. Under the embeddings of $H^{1}\left(G_{K}, J[\phi]\right)$ and $H^{1}\left(G_{K}, \widehat{J}[\widehat{\phi}]\right)$ in $\left(K^{*} /\left(K^{*}\right)^{2}\right)^{3}$ as described in Section 3.1, we get that the cup product \cup_{ϕ} induced by e_{ϕ} is

$$
\begin{gathered}
H^{1}\left(G_{K}, J[\phi]\right) \times H^{1}\left(G_{K}, \widehat{J}[\widehat{\phi}]\right) \rightarrow \operatorname{Br}(K)[2] \\
\left(\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right)\right) \mapsto\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)+\left(c_{1}, c_{2}\right)
\end{gathered}
$$

where (\cdot, \cdot) represents the quaternion algebra and also its equivalence class in $\operatorname{Br}(K)[2]$.
Proof. Recall that the embedding $J[\phi] \rightarrow\left(\mu_{2}\right)^{3}$ is given by sending $P \in J[\phi]$ to

$$
\left(e_{\phi}\left(P, P_{1}^{\prime}\right), e_{\phi}\left(P, P_{2}^{\prime}\right), e_{\phi}\left(P, P_{3}^{\prime}\right)\right)
$$

and the embedding $\widehat{J}[\widehat{\phi}] \rightarrow\left(\mu_{2}\right)^{3}$ is given by sending $Q \in \widehat{J}[\widehat{\phi}]$ to

$$
\left(e_{\phi}\left(P_{1}, Q\right), e_{\phi}\left(P_{2}, Q\right), e_{\phi}\left(P_{3}, Q\right)\right)
$$

It can be checked, via the end of the discussion of Section 2.2, that we have the following commutative diagram:

where f sends $\left((-1)^{a},(-1)^{b},(-1)^{c}\right),\left((-1)^{a^{\prime}},(-1)^{b^{\prime}},(-1)^{c^{\prime}}\right)$ to $(-1)^{a a^{\prime}+b b^{\prime}+c c^{\prime}}$ with $a, b, c \in\{0,1\}$.

Consider the natural pairing $\phi: \mu_{2} \times \mu_{2} \rightarrow \mu_{2}$ sending $\left((-1)^{a},(-1)^{b}\right)$ to $(-1)^{a b}$. This gives a cup product pairing

$$
\begin{aligned}
H^{1}\left(G_{K}, \mu_{2}\right) \times H^{1}\left(G_{K}, \mu_{2}\right) & \longrightarrow H^{2}\left(G_{K}, \mu_{2}\right) \cong \operatorname{Br}(K)[2] \\
\left(\left[\sigma \mapsto a_{\sigma}\right],\left[\tau \mapsto b_{\tau}\right]\right) & \longmapsto\left[(\sigma, \tau) \mapsto \phi\left(a_{\sigma}, b_{\tau}\right)\right] .
\end{aligned}
$$

By Hilbert's Theorem 90, we can identify $H^{1}\left(G_{K}, \mu_{2}\right)$ with $K^{*} /\left(K^{*}\right)^{2}$. Under this identification, the image of $(a, b) \in K^{*} /\left(K^{*}\right)^{2} \times K^{*} /\left(K^{*}\right)^{2}$ is precisely the equivalence class of the quaternion algebra (a, b) by [21, Chapter XIV, Section 2, Proposition 5] and [15, Corollary 2.5.5(1), Proposition 4.7.3].

Therefore, we get that the induced cup product is

$$
\begin{aligned}
H^{1}(K, J[\phi]) \times H^{1}(K, \widehat{J}(\widehat{\phi})) & \longrightarrow \operatorname{Br}(K)[2] \\
\quad\left(\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right)\right) & \longmapsto\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)+\left(c_{1}, c_{2}\right)
\end{aligned}
$$

Proposition 3.2. Under the embeddings of $H^{1}\left(G_{K}, J[\phi]\right)$ and $H^{1}\left(G_{K}, J[2]\right)$ in $\left(K^{*} /\left(K^{*}\right)^{2}\right)^{3}$ and $\left(K^{*} /\left(K^{*}\right)^{2}\right)^{5}$ as described in Section 3.1, the map Ψ : $H^{1}\left(G_{K}, J[\phi]\right) \rightarrow H^{1}\left(G_{K}, J[2]\right)$ induced from the inclusion $J[\phi] \rightarrow J[2]$ is given by

$$
(a, b, c) \longmapsto(1, c, c, b, b)
$$

Proof. Recall the embedding of $H^{1}\left(G_{K}, J[2]\right)$ in $\left(K^{*} /\left(K^{*}\right)^{2}\right)^{5}$, and the embedding of $H^{1}\left(G_{K}, J[\phi]\right)$ in $\left(K^{*} /\left(K^{*}\right)^{2}\right)^{3}$ are induced from the short exact sequences in the following commutative diagram:

Suppose $P \in J[\phi]$ maps to (α, β, γ) via w_{ϕ}. Then $e_{\phi}\left(P, P_{1}^{\prime}\right)=\alpha$, $e_{\phi}\left(P, P_{2}^{\prime}\right)=\beta, e_{\phi}\left(P, P_{3}^{\prime}\right)=\gamma$. By definition, $e_{\phi}(P, \phi(Q))=e_{2}(P, Q)$ for any $Q \in J[2]$. From the explicit description of ϕ in Section 2.2, we know $\alpha=e_{2}\left(P,\left\{\left(\omega_{2}, 0\right),\left(\omega_{4}, 0\right)\right\}\right), \beta=e_{2}\left(P,\left\{\left(\omega_{1}, 0\right),\left(\omega_{5}, 0\right)\right\}\right)$ and $\gamma=$ $e_{2}\left(P,\left\{\infty,\left(\omega_{3}, 0\right)\right\}\right)$. Recall that $J[\phi]$ is isotropic with respect to e_{2}. This implies that $w_{2}(P)=(1, \gamma, \gamma, \beta, \beta)$. Therefore, we define $\psi(\alpha, \beta, \gamma)=$ $(1, \gamma, \gamma, \beta, \beta)$, which makes the above diagram commute.

Now consider $\Psi: H^{1}\left(G_{K}, J[\phi]\right) \rightarrow H^{1}\left(G_{K}, J[2]\right)$ which, via the embedding in Section 3.1, is the map $H^{1}\left(G_{K},\left(\mu_{2}\right)^{3}\right) \rightarrow H^{1}\left(G_{K},\left(\mu_{2}\right)^{5}\right)$ induced by ψ. Therefore, we can verify that $\Psi(a, b, c)=(1, c, c, b, b)$.

Proposition 3.3. Under the embeddings of $H^{1}\left(G_{K}, \widehat{J}[\widehat{\phi}]\right)$ and $H^{1}\left(G_{K}, J[2]\right)$ in $\left(K^{*} /\left(K^{*}\right)^{2}\right)^{3}$ and $\left(K^{*} /\left(K^{*}\right)^{2}\right)^{5}$ as described in Section 3.1, the map Φ : $H^{1}\left(G_{K}, J[2]\right) \rightarrow H^{1}\left(G_{K}, \widehat{J}[\widehat{\phi}]\right)$ induced from $J[2] \xrightarrow{\phi} \widehat{J}[\widehat{\phi}]$ is given by

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \longmapsto\left(a_{1}, a_{2} a_{3}, a_{4} a_{5}\right) .
$$

Proof. Consider the following commutative diagram whose rows are exact sequences

Suppose $P \in J[2]$ maps to $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)$ via w_{2}. Then $\alpha_{i}=$ $e_{2}\left(P,\left\{\left(\omega_{i}, 0\right), \infty\right\}\right)$. Recall that $e_{\hat{\phi}}\left(\phi(P), P_{i}\right)=e_{2}\left(P, P_{i}\right)$ by the discussion at the end of Section 2.3. This implies that $\phi(P)$ maps to $\left(\alpha_{1}, \alpha_{2} \alpha_{3}, \alpha_{4} \alpha_{5}\right)$ via $w_{\hat{\phi}}$. Therefore, we can verify that the induced map $\Phi: H^{1}\left(G_{K}, J[2]\right) \rightarrow$ $H^{1}\left(G_{K}, \widehat{J}[\widehat{\phi}]\right)$ under the embeddings in Section 3.1 is given by

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \longmapsto\left(a_{1}, a_{2} a_{3}, a_{4} a_{5}\right) .
$$

Remark 3.4. We observe that, under the assumption of this section, we have the following short exact sequence:

$$
0 \longrightarrow H^{1}\left(G_{K}, J[\phi]\right) \longrightarrow H^{1}\left(G_{K}, J[2]\right) \longrightarrow H^{1}\left(G_{K}, \widehat{J}[\widehat{\phi}]\right) \longrightarrow 0
$$

Since the Galois action on $J[2]$ is trivial, all linear subspaces are submodules. This implies that the short exact sequence of Galois modules splits (every linear subspace has a complement), which directly implies that all connecting maps are zero. More explicitly the injectivity of the $\operatorname{map} H^{1}\left(G_{K}, J[\phi]\right) \rightarrow H^{1}\left(G_{K}, J[2]\right)$ is due to the surjectivity of $J(K)[2] \xrightarrow{\phi}$ $\widehat{J}(K)[\widehat{\phi}]$. For surjectivity of $H^{1}\left(G_{K}, J[2]\right) \rightarrow H^{1}\left(G_{K}, \widehat{J}[\widehat{\phi}]\right)$, observe that the element in $H^{1}\left(G_{K}, \widehat{J}[\widehat{\phi}]\right)$ represented by (a, b, c) has a preimage in $H^{1}\left(G_{K}, J[2]\right)$ represented by $(a, 1, b, 1, c)$ by Proposition 3.3.

Remark 3.5. Let v be a place of K. We also have the explicit embeddings of $H^{1}\left(G_{K}, J[\phi]\right)$ and $H^{1}\left(G_{K}, J[2]\right)$ described in Section 3.1 as well as the explicit maps given in this section if we replace K with K_{v} or $K_{v}^{n r}$.

Using the above three propositions, we now have the explicit formula for the Cassels-Tate pairing in the case of a Richelot isogeny.

Theorem 3.6. Let J be the Jacobian variety of a genus two curve defined over a number field K. Suppose all points in J[2] are defined over K and there exists a Richelot isogeny $\phi: J \rightarrow \widehat{J}$ where \widehat{J} is the Jacobian variety of another genus two curve. Let $\widehat{\phi}$ be the dual isogeny of ϕ. Consider $a, a^{\prime} \in$
$\operatorname{Sel}^{\hat{\phi}}(\widehat{J})$. Suppose $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right) \in\left(K^{*} /\left(K^{*}\right)^{2}\right)^{3}$ represents a^{\prime}. For any place v, we let $P_{v} \in J\left(K_{v}\right)$ denote a lift of $a_{v} \in H^{1}\left(G_{K_{v}}, \widehat{J}[\hat{\phi}]\right)$ and suppose $\delta_{2}\left(P_{v}\right) \in$ $H^{1}\left(G_{K_{v}}, J[2]\right)$ is represented by $\left(x_{1, v}, x_{2, v}, x_{3, v}, x_{4, v}, x_{5, v}\right) \in\left(K_{v}^{*} /\left(K_{v}^{*}\right)^{2}\right)^{5}$. Then we have

$$
\left\langle a, a^{\prime}\right\rangle_{C T}=\prod_{v}\left(x_{2, v} x_{4, v}, \alpha_{1}^{\prime}\right)_{v}\left(x_{4, v}, \alpha_{2}^{\prime}\right)_{v}\left(x_{2, v}, \alpha_{3}^{\prime}\right)_{v}
$$

where $(\cdot, \cdot)_{v}$ represents the Hilbert symbol. Note that here we identify $\frac{1}{2} \mathbb{Z} / \mathbb{Z}$ with μ_{2}.

Proof. Suppose a is represented by $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\left(K^{*} /\left(K^{*}\right)^{2}\right)^{3}$. Then it has a preimage $a_{1} \in H^{1}\left(G_{K}, J[2]\right)$ represented by $\left(\alpha_{1}, 1, \alpha_{2}, 1, \alpha_{3}\right)$ by Proposition 3.3. So following the definition of $\left\langle a, a^{\prime}\right\rangle_{C T}$, we need to compute $\rho_{v} \cup_{\phi, v} a_{v}^{\prime} \in H^{2}\left(G_{K_{v}},{\overline{K_{v}}}^{*}\right)$ where $\rho_{v} \in H^{1}\left(G_{K_{v}}, J[\phi]\right)$ is a lift of $\delta_{2}\left(P_{v}\right)-a_{1, v}$ and $\cup_{\phi, v}$ is the cup product induced by e_{ϕ}. We know that $\delta_{2}\left(P_{v}\right)-a_{1, v}$ is in the image of $H^{1}\left(G_{K_{v}}, J[\phi]\right)$, which implies (by Proposition 3.2) that $x_{1, v} / \alpha_{1}=1, x_{2, v}=x_{3, v} / \alpha_{2}$ and $x_{4, v}=x_{5, v} / \alpha_{3}$. Since $\delta_{2}\left(P_{v}\right)-a_{1, v}$ is represented by $\left(x_{1, v} / \alpha_{1}, x_{2, v}, x_{3, v} / \alpha_{2}, x_{4, v}, x_{5, v} / \alpha_{3}\right)=\left(1, x_{2, v}, x_{2, v}, x_{4, v}, x_{4, v}\right)$, by Proposition 3.2, ρ_{v} is represented by $\left(x_{2, v} x_{4, v}, x_{4, v}, x_{2, v}\right)$. Hence, by Proposition 3.1, we know $\left\langle a, a^{\prime}\right\rangle_{C T}=\sum_{v} \operatorname{inv}_{v}\left(\left(x_{2, v} x_{4, v}, \alpha_{1}^{\prime}\right)+\left(x_{4, v}, \alpha_{2}^{\prime}\right)+\right.$ $\left.\left(x_{2, v}, \alpha_{3}^{\prime}\right)\right)=\prod_{v}\left(x_{2, v} x_{4, v}, \alpha_{1}^{\prime}\right)_{v}\left(x_{4, v}, \alpha_{2}^{\prime}\right)_{v}\left(x_{2, v}, \alpha_{3}^{\prime}\right)_{v}$.

4. Computational details

In this section, we will describe some further details for the explicit computation of the Cassels-Tate pairing using the formula in Theorem 3.6.
4.1. Embedding of $\widehat{\mathbf{J}}(\mathbf{K}) / \phi(\mathbf{J}(\mathbf{K}))$ and $\mathbf{J}(\mathbf{K}) / \mathbf{2 J}(\mathbf{K})$. As discussed in [14, Section 3] [9, Chapter 10 Section 2], the composition of the connecting map $\delta_{\phi}: \widehat{J}(K) / \phi(J(K)) \rightarrow H^{1}\left(G_{K}, J[\phi]\right)$ and the embedding described above $H^{1}\left(G_{K}, J[\phi]\right) \rightarrow\left(K^{*} /\left(K^{*}\right)^{2}\right)^{3}$ can be given explicitly as follows. We have

$$
\begin{array}{cc}
\mu^{\phi}: \quad \widehat{J}(K) / \phi(J(K)) & \longrightarrow K^{*} /\left(K^{*}\right)^{2} \times K^{*} /\left(K^{*}\right)^{2} \times K^{*} /\left(K^{*}\right)^{2} \\
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} & \longmapsto\left(L_{1}\left(x_{1}\right) L_{1}\left(x_{2}\right), L_{2}\left(x_{1}\right) L_{2}\left(x_{2}\right), L_{3}\left(x_{1}\right) L_{3}\left(x_{2}\right)\right)
\end{array} .
$$

Similarly we have the injection:

$$
\begin{align*}
\mu^{\hat{\phi}}: \quad J(K) / \widehat{\phi}(\widehat{J}(K)) & \longrightarrow K^{*} /\left(K^{*}\right)^{2} \times K^{*} /\left(K^{*}\right)^{2} \times K^{*} /\left(K^{*}\right)^{2} \tag{4.1}\\
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} & \longmapsto\left(G_{1}\left(x_{1}\right) G_{1}\left(x_{2}\right), G_{2}\left(x_{1}\right) G_{2}\left(x_{2}\right), G_{3}\left(x_{1}\right) G_{3}\left(x_{2}\right)\right)
\end{align*}
$$

Note the following special cases. When x_{j} is a root of G_{i}, then $G_{i}\left(x_{j}\right)$ should be taken to be $\prod_{l \in\{1,2,3\} \backslash\{i\}} G_{l}\left(x_{j}\right)$. We have a similar solution when x_{j} is a root of L_{i}, which is replacing $L_{i}\left(x_{j}\right)$ with $\Delta \prod_{l \in\{1,2,3\} \backslash\{i\}} L_{l}\left(x_{j}\right)$. When $\left(x_{j}, y_{j}\right)=\infty$, then $G_{i}\left(x_{j}\right)$ is taken to be 1 . In the case where one of L_{i} is linear and $\left(x_{j}, y_{j}\right)=\infty$, then $L_{i}\left(x_{j}\right)$ is taken to be 1 .

On the other hand, we have a standard injection, which is the composition of the connecting map $\delta_{2}: J(K) / 2 J(K) \rightarrow H^{1}\left(G_{K}, J[2]\right)$ and the embedding described above $H^{1}\left(G_{K}, J[2]\right) \rightarrow\left(K^{*} /\left(K^{*}\right)^{2}\right)^{5}$. This can also be found in [14, Section 3] [9, Chapter 10 Section 2].

$$
\begin{aligned}
\mu: \quad J(K) / 2 J(K) & \longrightarrow\left(K^{*} /\left(K^{*}\right)^{2}\right)^{5} \\
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} & \longmapsto\left(\left(x_{1}-\omega_{1}\right)\left(x_{2}-\omega_{1}\right), \ldots,\left(x_{1}-\omega_{5}\right)\left(x_{2}-\omega_{5}\right)\right)
\end{aligned}
$$

Note the following special cases. When $\left(x_{j}, y_{j}\right)=\left(\omega_{i}, 0\right)$, then $x_{j}-\omega_{i}$ should be taken to be $\lambda \prod_{l \in 1,2,3,4,5 \backslash\{i\}}\left(\omega_{i}-\omega_{l}\right)$. When $\left(x_{j}, y_{j}\right)=\infty$, then $x_{j}-\omega_{i}$ is taken to be λ.

Observe the images of the maps μ^{ϕ} and $\mu^{\hat{\phi}}$ are both contained in the kernel of $\left(K^{*} /\left(K^{*}\right)^{2}\right)^{3} \xrightarrow{N} K^{*} /\left(K^{*}\right)^{2}$. Similarly, the image of μ is contained in the kernel of $\left(K^{*} /\left(K^{*}\right)^{2}\right)^{5} \xrightarrow{N} K^{*} /\left(K^{*}\right)^{2}$.
4.2. Bounding the set of bad primes. The contribution to the formula coming from places outside the finite set of places S for the local Cassels-Tate pairing of $a, a^{\prime} \in \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$ in Theorem 3.6 vanishes, where $S=$ $\{$ places of bad reduction for $\mathcal{C}\} \cup\{$ places dividing 2$\} \cup$ \{infinite places $\}$. This is explained as follows.

By [17, Chapter I, Section 6] [20, Section 3], we have
$\operatorname{Sel}^{\phi}(J) \subset H^{1}\left(G_{K}, J[\phi] ; S\right)=\operatorname{ker}\left(H^{1}\left(G_{K}, J[\phi]\right) \rightarrow \prod_{v \notin S} H^{1}\left(G_{K_{v}^{n r}}, J[\phi]\right)\right)$.
Similarly, $\operatorname{Sel}^{\hat{\phi}}(\widehat{J}) \subset H^{1}\left(G_{K}, \widehat{J}[\widehat{\phi}] ; S\right)$ and $\operatorname{Sel}^{2}(J) \subset H^{1}\left(G_{K}, J[2] ; S\right)$. It can be shown that $\operatorname{ker}\left(K^{*} /\left(K^{*}\right)^{2} \rightarrow \prod_{v \notin S} K_{v}^{n r *} /\left(K_{v}^{n r *}\right)^{2}\right)=K(S, 2)$, where $K(S, 2)$ is defined to be $\left\{x \in K^{*} /\left(K^{*}\right)^{2}: \operatorname{ord}_{v}(x)\right.$ is even for all $\left.v \notin S\right\}$. So $\alpha_{i}, \alpha_{i}^{\prime} \in K(S, 2)$ for all i, where $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right),\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right) \in\left(K^{*} /\left(K^{*}\right)^{2}\right)^{3}$ represent a, a^{\prime} respectively. Suppose $v \notin S$. Since $a \in H^{1}\left(G_{K}, J[\phi]\right)$ is a global Selmer element, it has a representation where valuation outside S is even, therefore from the explicit formula given in Proposition 3.3, we know there exists a representation of the image of $a_{1, v}$ in $\left(K_{v}^{*} /\left(K_{v}^{*}\right)^{2}\right)^{5}$ such that all its coordinates have valuation 0 . Since $J\left(K_{v}^{n r}\right) \xrightarrow{2} J\left(K_{v}^{n r}\right)$ is surjective by [1, Lemma 3.4], the map $H^{0}\left(G_{K_{v}^{n r}}, J\right) \rightarrow H^{1}\left(G_{K_{v}^{n r}}, J[2]\right)$ is the zero map and hence the image of P_{v} is trivial in $H^{1}\left(G_{K_{v}^{n r}}, J[2]\right)$. This implies that $\delta_{2}\left(P_{v}\right) \in H^{1}\left(G_{K_{v}}, J[2]\right) \subset\left(K_{v}^{*} /\left(K_{v}^{*}\right)^{2}\right)^{5}$ has a representation such that all its coordinates have valuation 0 . This implies that $\delta_{2}\left(P_{v}\right)-$ $a_{1, v} \in H^{1}\left(G_{K_{v}}, J[2]\right) \subset\left(K_{v}^{*} /\left(K_{v}^{*}\right)^{2}\right)^{5}$ has a representation such that all its coordinates have valuation 0 . Then, by the formula in Proposition 3.2, $\rho_{v} \in H^{1}\left(G_{K_{v}}, \widehat{J}[\widehat{\phi}]\right) \subset\left(K_{v}^{*} /\left(K_{v}^{*}\right)^{2}\right)^{3}$ also has a representation such that all its coordinates have valuation 0 . From the first part of the theorem, we know computing $\left\langle a, a^{\prime}\right\rangle_{C T}$ requires computing the Hilbert symbol. It is
well-known that the Hilbert symbol between x and y is trivial when the valuations of x, y are both 0 and the local field has odd residue characteristic (for a detailed proof see [24, Lemma 1.4.18]). Hence, the local Cassels-Tate pairing is trivial for all but finitely many places contained in the set S.

5. Worked Example

We explicitly compute the Cassels-Tate pairing in an example where this improves the rank bound obtained via descent by Richelot isogeny. We will be using the same notation as in Section 2.4 to compute $\langle\cdot, \cdot\rangle_{C T}$ on $\operatorname{Sel}^{\hat{\phi}}(\widehat{J}) \times \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$. Our base field K is the field of the rationals, \mathbb{Q}.

Let us consider the following genus two curve which is obtained by taking $k=113$ in [14, Theorem 1]

$$
\mathcal{C}: y^{2}=(x+2 \cdot 113) x(x-6 \cdot 113)(x+113)(x-7 \cdot 113),
$$

with $G_{1}=(x+2 \cdot 113), G_{2}=x(x-6 \cdot 113), G_{3}=(x+113)(x-7 \cdot 113)$ and

$$
\begin{gathered}
\Delta=\left[\begin{array}{ccc}
2 \cdot 113 & 1 & 0 \\
0 & -6 \cdot 113 & 1 \\
-7 \cdot 113^{2} & -6 \cdot 113 & 1
\end{array}\right]=-7 \cdot 113^{2} \\
L_{1}=G_{2}^{\prime} G_{3}-G_{3}^{\prime} G_{2}=-14 \cdot 113^{2}(x-3 \cdot 113), \\
L_{2}=G_{3}^{\prime} G_{1}-G_{1}^{\prime} G_{3}=(x+5 \cdot 113)(x-113), \\
L_{3}=G_{1}^{\prime} G_{2}-G_{2}^{\prime} G_{1}=-(x+6 \cdot 113)(x-2 \cdot 113)
\end{gathered}
$$

So we have a Richelot isogeny ϕ from J, the Jacobian variety of \mathcal{C}, to \widehat{J}, the Jacobian variety of the following curve.

$$
\widehat{\mathcal{C}}: y^{2}=-2(x-3 \cdot 113)(x+5 \cdot 113)(x-113)(x+6 \cdot 113)(x-2 \cdot 113)
$$

It can be shown, using MAGMA [4], that:
Sel ${ }^{\hat{\phi}}(\widehat{J})$
$(5.1)=\langle(2 \cdot 113,-14 \cdot 113,-7),(113,7,7 \cdot 113),(113,113,1),(2,2,1),(1,7,7)\rangle$

$$
\subset\left(\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}\right)^{3}
$$

$\mathrm{Sel}^{\phi}(J)$
$(5.2)=\langle(113,-7 \cdot 113,-7),(2 \cdot 113,7,14 \cdot 113),(113,1,113)\rangle$
$\subset\left(\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}\right)^{3}$.
Now we will compute the Cassels-Tate pairing matrix on $\operatorname{Sel}^{\hat{\phi}}(\widehat{J}) \times$ $\operatorname{Sel}^{\hat{\phi}}(\widehat{J})$. Since $(2 \cdot 113,-14 \cdot 113,-7),(113,7,7 \cdot 113)$ are images of elements $\{(0,0),(-2 \cdot 113,0)\}$ and $\{(-2 \cdot 113,0),(-113,0)\}$ in $J(\mathbb{Q}) / \widehat{\phi}(\widehat{J}(\mathbb{Q}))$ via $\mu^{\hat{\phi}}$ in (4.1), they are in the kernel of the Cassels-Tate pairing. So
it is sufficient to look at the pairing on $\langle(113,113,1),(2,2,1),(1,7,7)\rangle \times$ $\langle(113,113,1),(2,2,1),(1,7,7)\rangle$.

Since the primes of bad reduction are $\{2,3,7,113\}$, by Section 4.2, we know these are the only primes which we need to consider in the formula for the Cassels-Tate pairing as in Theorem 3.6. The tables below give details of the local computations at these primes.

Let $a=(113,113,1) \in \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$. By the formula given in Proposition 3.3, it has a lift $a_{1}=(113,1,113,1,1) \in H^{1}\left(G_{K}, J[2]\right)$. Then for the local calculation, we have the following table:

place v	∞	2	3	7	113
P_{v}	id	id	$\{(0,0),(-113,0)\}$	id	$\{(0,0),(-2 \cdot 113,0)\}$
$\delta_{2}\left(P_{v}\right)$	id	id	$(-1,3,-3,-1,-1)$	id	$(113,3 \cdot 113,3,1,1)$
$a_{1, v}$	id	id	$(-1,1,-1,1,1)$	id	$(113,1,113,1,1)$
$\delta_{2}\left(P_{v}\right)-a_{1, v}$	id	id	$(1,3,3,-1,-1)$	id	$(1,3 \cdot 113,3 \cdot 113,1,1)$
ρ_{v}	id	id	$(-3,-1,3)$	id	$(3 \cdot 113,1,3 \cdot 113)$

Now let $a=(2,2,1) \in \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$. By the formula given in Proposition 3.3, it has a lift $a_{1}=(2,1,2,1,1) \in H^{1}\left(G_{K}, J[2]\right)$. Then for the local calculation, we have the following table:

place v	∞	2	3	7	113
P_{v}	id	$\{(0,0),(-2 \cdot 113,0)\}$	$\{(0,0),(-113,0)\}$	id	id
$\delta_{2}\left(P_{v}\right)$	id	$(2,6,3,-1,-1)$	$(-1,3,-3,-1,-1)$	id	id
$a_{1, v}$	id	$(2,1,2,1,1)$	$(-1,1,-1,1,1)$	id	id
$\delta_{2}\left(P_{v}\right)-a_{1, v}$	id	$(1,6,6,-1,-1)$	$(1,3,3,-1,-1)$	id	id
ρ_{v}	id	$(-6,-1,6)$	$(-3,-1,3)$	id	id

Lastly let $a=(1,7,7) \in \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$. By the formula given in Proposition 3.3, it has a lift $a_{1}=(1,1,7,1,7) \in H^{1}\left(G_{K}, J[2]\right)$. Then for the local calculation, we have the following table:

place v	∞	2	3	7	113
P_{v}	id	$\{(-2 \cdot 113,0),(-113,0)\}$	id	$\{(-2 \cdot 113,0),(-113,0)\}$	id
$\delta_{2}\left(P_{v}\right)$	id	$(1,2,-2,-2,2)$	id	$(1,1,7,7,1)$	id
$a_{1, v}$	id	$(1,1,-1,1,-1)$	id	$(1,1,7,1,7)$	id
$\delta_{2}\left(P_{v}\right)-a_{1, v}$	id	$(1,2,2,-2,-2)$	id	$(1,1,1,7,7)$	id
ρ_{v}	id	$(-1,-2,2)$	id	$(7,7,1)$	id

Following the explicit algorithm for computing the Cassels-Tate pairing, we get that the Cassels-Tate pairing between $(113,113,1)$ and $(2,2,1)$ is the only nontrivial one.

Therefore, we get the 5×5 Cassels-Tate pairing matrix from the 5 generators of $\operatorname{Sel}^{\hat{\phi}}(\widehat{J})$. More specifically, the $i j^{t h}$ entry of the matrix is the Cassels-Tate pairing between the $i^{\text {th }}$ and the $j^{\text {th }}$ generators of $\operatorname{Sel}{ }^{\hat{\phi}}(\widehat{J})$,
where the generators are in the same order as listed in the Selmer group $\operatorname{Sel}^{\hat{\phi}}(\widehat{J})(5.1)$.

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Remark 5.1. From the computation above, we have shown that the kernel of the Cassels-Tate pairing has dimension 3. We make the following observations:

- Let $r=\operatorname{rank}(J(\mathbb{Q}))$. We know

$$
2^{r}=\frac{|\widehat{J}(\mathbb{Q}) / \phi(J(\mathbb{Q}))| \times|J(\mathbb{Q}) / \widehat{\phi}(\widehat{J}(\mathbb{Q}))|}{|J(\mathbb{Q})[\phi]| \times|\widehat{J}(\mathbb{Q})[\widehat{\phi}]|}
$$

In a standard descent by Richelot isogeny, we have $|\widehat{J}(\mathbb{Q}) / \phi(J(\mathbb{Q}))| \leq$ $\left|\operatorname{Sel}^{\phi}(J)\right|$ and $|J(\mathbb{Q}) / \widehat{\phi}(\widehat{J}(\mathbb{Q}))| \leq\left|\operatorname{Sel}^{\hat{\phi}}(\widehat{J})\right|$. Therefore, we get $r \leq 4$. However, after computing the Cassels-Tate pairing, we can bound r via bounding $|J(\mathbb{Q}) / \widehat{\phi}(\widehat{J}(\mathbb{Q}))|$ by $\left|\operatorname{ker}\langle\cdot, \cdot\rangle_{C T}\right|=2^{3}$ instead of $\left|\operatorname{Sel}^{\hat{\phi}}(\widehat{J})\right|=2^{5}$. This improves the rank bound of $J(\mathbb{Q})$ from 4 to 2 .

- Consider the exact sequence (1.1). It can be shown that $\operatorname{Im} \alpha$ is contained inside $\operatorname{ker}\langle\cdot, \cdot\rangle_{C T}$, the kernel of the Cassels-Tate pairing on $\operatorname{Sel}^{\hat{\phi}}(\widehat{J}) \times \operatorname{Sel}{ }^{\hat{\phi}}(\widehat{J})$. Indeed, if $a \in \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$ is equal to $\alpha(b)$, where $b \in \operatorname{Sel}^{2}(J)$, then following the earlier notations, we can let $a_{1}=b$. Then we can pick $P_{v} \in J\left(\mathbb{Q}_{v}\right)$ to be the lift of $a_{1, v}$. Therefore, $\delta_{2}\left(P_{v}\right)-a_{1, v}=0 \in H^{1}\left(G_{\mathbb{Q}_{v}}, J[2]\right)$ which implies, $a \in \operatorname{ker}\langle\cdot, \cdot\rangle_{C T}$. Hence, we can always bound $\left|\operatorname{Sel}^{2}(J)\right|$ using $\operatorname{ker}\langle\cdot, \cdot\rangle_{C T}$, and this bound will be sharp when $\operatorname{Im} \alpha=\operatorname{ker}\langle\cdot, \cdot\rangle_{C T}$.

We used MAGMA to compute the size of $\operatorname{Sel}^{2}(J)$, which is equal to 2^{6}, and we have the exact sequence:

$$
\begin{gathered}
0 \rightarrow J[\phi](\mathbb{Q}) \rightarrow J[2](\mathbb{Q}) \rightarrow \widehat{J}[\widehat{\phi}](\mathbb{Q}) \rightarrow \operatorname{Sel}^{\phi}(J) \rightarrow \operatorname{Sel}^{2}(J) \xrightarrow{\alpha} \operatorname{ker}\langle\cdot, \cdot\rangle_{C T} \rightarrow 0 . \\
\text { size }=2^{2} \quad \text { size }=2^{4} \quad \text { size }=2^{2} \quad \text { size }=2^{3} \quad \text { size }=\mathbf{2}^{\mathbf{6}} \quad \text { size }=2^{3}
\end{gathered}
$$

So for this example, we have turned the descent by Richelot isogeny into a 2 -descent via computing the Cassels-Tate pairing.

Acknowledgments. I express my sincere and deepest gratitude to my PhD supervisor, Tom Fisher, for his patient guidance and insightful comments at every stage during my research.

References

[1] A. Agashe \& W. Stein, "Visibility of Shafarevich-Tate Groups of Abelian Varieties", J. Number Theory 97 (2002), no. 1, p. 171-185.
[2] M. van Beek, "Computing the Cassels-Tate Pairing", PhD Thesis, University of Cambridge, 2015.
[3] M. van Beek \& T. A. Fisher, "Computing the Cassels-Tate pairing on 3-isogeny Selmer groups via cubic norm equations", Acta Arith. 185 (2018), no. 4, p. 367-396.
[4] W. Bosma, J. Cannon \& C. Playoust, "The Magma algebra system. I. The user language", J. Symb. Comput. 24 (1997), no. 3-4, p. 235-265.
[5] N. Bruin \& K. Doerksen, "The Arithmetic of Genus Two Curves with (4, 4)-Split Jacobians", Can. J. Math. 63 (2011), no. 5, p. 992-1024.
[6] J. W. S. Cassels, "Arithmetic on Curves of Genus 1. I. On a conjecture of Selmer", J. Reine Angew. Math. 202 (1959), p. 52-99.
[7] , "J. W. S. Cassels, Arithmetic on curves of genus 1, IV. Proof of the Hauptvermutung.", J. Reine Angew. Math. 211 (1962), p. 95-112.
[8] , "Second Descents for Elliptic Curves", J. Reine Angew. Math. 494 (1998), p. 101127.
[9] J. W. S. Cassels \& E. V. Flynn, Prolegomena to a MiddleBrow Arithmetic of Curves of Genus 2, London Mathematical Society Lecture Note Series, vol. 230, Cambridge University Press, 1996.
[10] S. Donnelly, "Algorithms for the Cassels-Tate pairing", preprint, 2015.
[11] T. A. Fisher, "The Cassels-Tate pairing and the Platonic solids", J. Number Theory $\mathbf{9 8}$ (2003), no. 1, p. 105-155.
[12] -, "On binary quartics and the Cassels-Tate pairing", (2016), preprint.
[13] T. A. Fisher \& R. Newton, "Computing the Cassels-Tate pairing on the 3-Selmer group of an elliptic curve", J. Number Theory 10 (2014), no. 7, p. 18811907.
[14] E. V. Flynn, "Arbitrarily Large Tate-Shafarevich Group on Abelian Surfaces", J. Number Theory 186 (2018), p. 248-258.
[15] P. Gille \& T. Szamuely, Central Simple Algebras and Galois Cohomology, Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press, 2006.
[16] J. S. Milne, "Abelian Varieties", in Arithmetic geometry, Springer, 1986, p. 103-150.
[17] ——, Arithmetic Duality Theorems, 2nd ed., BookSurge, 2006, viii+339 pages.
[18] ——, Abelian Varieties, 2nd ed., 2008, 166+vi pages.
[19] B. Poonen \& M. Stoll, "The Cassels-Tate pairing on polarized abelian varieties", Ann. Math. 150 (1999), no. 3, p. 1109-1149.
[20] E. F. Schaefer, "2-Descent on the Jacobians of Hyperelliptic Curves", J. Number Theory 51 (1995), no. 2, p. 219-232.
[21] J.-P. Serre, Local Fields, Graduate Texts in Mathematics, vol. 67, Springer, 1979.
[22] K. Takashima \& R. Yoshida, "An algorithm for computing a sequence of Richelot isogenies", Bull. Korean Math. Soc. 46 (2009), no. 4, p. 789-802.
[23] J. Tate, "Duality theorems in Galois cohomology over number fields", in Proc. Int. Congr. Math., Stockholm 1962,, 1963, p. 288-295.
[24] J. Yan, "Computing the Cassels-Tate Pairing for Jacobian Varieties of Genus Two Curves", PhD Thesis, University of Cambridge, 2021.

Jiali Yan
95, Finborough Road
SW10 9DU, London, UK
E-mail: jialiyan.lele@gmail.com

[^0]: Manuscrit reçu le 23 janvier 2022, révisé le 5 juillet 2023, accepté le 12 juillet 2023.
 2020 Mathematics Subject Classification. 11N56, 14G42.
 Mots-clefs. Genus 2 Curve, Cassels-Tate Pairing, Richelot isogeny.

