Théorie des Nombres de BORDEAUX

anciennement Séminaire de Théorie des Nombres de Bordeaux

Jiali YAN

Computing the Cassels-Tate Pairing on the Selmer group of a Richelot Isogeny Tome 35, nº 3 (2023), p. 659-674.

https://doi.org/10.5802/jtnb.1259

© Les auteurs, 2023.

(CC) EVAND Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 4.0 FRANCE. http://creativecommons.org/licenses/by-nd/4.0/fr/

Le Journal de Théorie des Nombres de Bordeaux est membre du Centre Mersenne pour l'édition scientifique ouverte http://www.centre-mersenne.org/ e-ISSN : 2118-8572

Computing the Cassels-Tate Pairing on the Selmer group of a Richelot Isogeny

par Jiali YAN

RÉSUMÉ. Dans cet article, nous étudions l'accouplement de Cassels-Tate sur les jacobiennes des courbes de genre 2 possédant une isogénie dite de Richelot. Soit $\phi : J \to \hat{J}$ une isogénie de Richelot entre les jacobiennes de deux courbes de genre 2. Nous donnons une formule explicite et un algorithme pratique pour calculer l'accouplement de Cassels-Tate sur $\operatorname{Sel}^{\hat{\phi}}(\hat{J}) \times \operatorname{Sel}^{\hat{\phi}}(\hat{J})$ où $\hat{\phi}$ est l'isogénie duale de ϕ . Ces résultats sont obtenus sous l'hypothèse simplificatrice que tous les points de 2-torsion sur J sont définis sur K. Nous donnons un exemple explicite qui montre que nous pouvons transformer la descente par l'isogénie de Richelot en 2-descente en calculant l'accouplement de Cassels-Tate.

ABSTRACT. In this paper, we study the Cassels-Tate pairing on Jacobians of genus two curves admitting a special type of isogenies called Richelot isogenies. Let $\phi : J \to \hat{J}$ be a Richelot isogeny between two Jacobians of genus two curves. We give an explicit formula as well as a practical algorithm to compute the Cassels-Tate pairing on $\operatorname{Sel}^{\hat{\phi}}(\hat{J}) \times \operatorname{Sel}^{\hat{\phi}}(\hat{J})$ where $\hat{\phi}$ is the dual isogeny of ϕ . The formula and algorithm are under the simplifying assumption that all two-torsion points on J are defined over K. We also include a worked example demonstrating we can turn the descent by Richelot isogeny into a 2-descent via computing the Cassels-Tate pairing.

1. Introduction

For any principally polarized abelian variety A defined over a number field K, Cassels and Tate [6], [7] and [23] constructed a pairing

$$\mathrm{III}(A) \times \mathrm{III}(A) \to \mathbb{Q}/\mathbb{Z},$$

that is nondegenerate after quotienting out the maximal divisible subgroup of III(A). This pairing is called the Cassels-Tate pairing and it naturally lifts to a pairing on Selmer groups. One application of this pairing is in improving the bound on the Mordell-Weil rank r(A) obtained by performing a standard descent calculation. Suppose III(A) is finite, then carrying out an *n*-descent and computing the Cassels-Tate pairing on $Sel^n(A) \times Sel^n(A)$

2020 Mathematics Subject Classification. 11N56, 14G42.

Manuscrit reçu le 23 janvier 2022, révisé le 5 juillet 2023, accepté le 12 juillet 2023.

Mots-clefs. Genus 2 Curve, Cassels-Tate Pairing, Richelot isogeny.

gives the same bound as obtained from the n^2 -descent where $\operatorname{Sel}^{n^2}(A)$ needs to be computed. Since the kernel of the pairing equals the image of the n^2 -Selmer group in the *n*-Selmer group, the rank bound one gets is the same as that obtained by n^2 -descent (as shown in [24, Proposition 1.9.3]).

There have been many results on computing the Cassels-Tate pairing in the case of elliptic curves. For example, in addition to defining the pairing, Cassels also described a method for computing the pairing on $\operatorname{Sel}^2(E) \times$ $\operatorname{Sel}^2(E)$ in [8] by solving conics over the field of definition of a two-torsion point. Donnelly [10] then described a method that only requires solving conics over K and Fisher [12] used the invariant theory of binary quartics to give a new formula for the Cassels-Tate pairing on $\operatorname{Sel}^2(E) \times \operatorname{Sel}^2(E)$ without solving any conics. In [2, 3], van Beek and Fisher computed the Cassels-Tate pairing on the 3-isogeny Selmer group of an elliptic curve. For p = 3 or 5, Fisher computed the Cassels-Tate pairing on the *p*-isogeny Selmer group of an elliptic curve in a special case in [11]. In [13], Fisher and Newton computed the Cassels-Tate pairing on $\operatorname{Sel}^3(E) \times \operatorname{Sel}^3(E)$. We are interested in the natural problem of generalizing the different algorithms for computing the Cassels-Tate pairing for elliptic curves to computing the pairing for abelian varieties of higher dimensions.

In this paper, we study the Cassels-Tate pairing on Jacobians of genus two curves admitting a special type of isogeny called a Richelot isogeny. Let $\phi: J \to \hat{J}$ be a Richelot isogeny between Jacobians of two genus two curves. We will be working under the assumption that all two-torsion points on Jare defined over K. This simplifies the computation. Because computing the 2-Selmer group is cheap, the goal of this paper is not to improve the rank bound. Instead, the goal of this paper is to illustrate a method that explicitly computes the CT pairing in higher dimensions, which has not been done before. Consider the following long exact sequence (1.1)

$$0 \to J[\phi](\mathbb{Q}) \to J[2](\mathbb{Q}) \to \widehat{J}[\widehat{\phi}](\mathbb{Q}) \to \operatorname{Sel}^{\phi}(J) \to \operatorname{Sel}^{2}(J) \xrightarrow{\alpha} \operatorname{Sel}^{\widehat{\phi}}(\widehat{J}).$$

Let $\langle \cdot, \cdot \rangle_{CT}$ denote the Cassels-Tate pairing on $\operatorname{Sel}^{\hat{\phi}}(\hat{J})$. It is shown in Remark 3.4 that we can replace $\operatorname{Sel}^{\hat{\phi}}(\hat{J})$ with $\ker \langle \cdot, \cdot \rangle_{CT}$ and (1.1) remains exact. Although it is not the goal of the paper, this shows computing the pairing $\langle \cdot, \cdot \rangle_{CT}$ potentially improves the rank bound given by carrying out a descent by Richelot isogeny. Then later in the paper, we describe an explicit algorithm to compute the pairing $\langle \cdot, \cdot \rangle_{CT}$.

In Section 2, we give some background results needed for the later sections and we define a pairing on $\operatorname{Sel}^{\phi}(J) \times \operatorname{Sel}^{\phi}(J)$ following the Weil pairing definition of the Cassels-Tate pairing for the Richelot isogeny ϕ . In Section 3, we then give an explicit formula as well as a practical algorithm to compute the Cassels-Tate pairing on $\operatorname{Sel}^{\hat{\phi}}(\hat{J}) \times \operatorname{Sel}^{\hat{\phi}}(\hat{J})$ where $\hat{\phi}$ is the dual isogeny of ϕ and also a Richelot isogeny. In Section 4, we give some details of the explicit computation and show directly that the formula for the Cassels-Tate pairing is always a finite product with a computable bound. In Section 5, we include a worked example demonstrating we can turn the descent by Richelot isogeny into a 2-descent via computing the Cassels-Tate pairing. The content of this paper is based on Chapter 2 of the thesis of the author [24].

2. Preliminary Results

2.1. The set-up. In this paper, we are working over a number field K. For any field k, we let \overline{k} denote its algebraic closure and let $\mu_n \subset \overline{k}$ denote the n^{th} roots of unity in \overline{k} . We let G_k denote the absolute Galois group $\operatorname{Gal}(\overline{k}/k)$.

Let C be a general genus two curve defined over K with all Weierstrass points defined over K, which is a smooth projective curve and it can be given in the following hyperelliptic form:

(2.1)
$$C: y^2 = f(x) = G_1(x)G_2(x)G_3(x),$$

where $G_1(x) = \lambda(x-\omega_1); G_2(x) = (x-\omega_2)(x-\omega_3); G_3(x) = (x-\omega_4)(x-\omega_5)$ with $\lambda, \omega_i \in K, \omega_i$ pairwise distinct and $\lambda \neq 0$.

We let J denote the Jacobian variety of C, which is an abelian variety of dimension 2 defined over K that can be identified with $\operatorname{Pic}^{0}(C)$. We denote the identity element of J by \mathcal{O}_{J} and the point at infinity by ∞ . Via the natural isomorphism $\operatorname{Pic}^{2}(C) \to \operatorname{Pic}^{0}(C)$ sending $[P_{1}+P_{2}] \mapsto [P_{1}+P_{2}-2\infty]$, a point $P \in J$ can be identified with an unordered pair of points of C, $\{P_{1}, P_{2}\}$. This identification is unique unless $P = \mathcal{O}_{J}$, in which case it can be represented by any pair of points on C in the form $\{(x, y), (x, -y)\}$ or $\{\infty, \infty\}$. Moreover, $J[2] = \{\mathcal{O}_{J}, \{(\omega_{i}, 0), (\omega_{j}, 0)\}$ for $i \neq j, \{(\omega_{i}, 0), \infty\}\}$. Let $e_{2}: J[2] \times J[2] \to \mu_{2}$ denote the Weil pairing on J[2]. As described in [9, Chapter 3, Section 3], suppose $\{P_{1}, P_{2}\}$ and $\{Q_{1}, Q_{2}\}$ represent $P, Q \in J[2]$ where $P_{1}, P_{2}, Q_{1}, Q_{2}$ are Weierstrass points, then

(2.2)
$$e_2(P,Q) = (-1)^{|\{P_1,P_2\} \cap \{Q_1,Q_2\}|}.$$

2.2. Richelot isogenies. A *Richelot isogeny* is a polarized (2, 2)-isogeny between Jacobians of genus 2 curves. In particular, it is an isogeny $\phi : J \to \widehat{J}$ such that $J[\phi] \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and J, \widehat{J} are Jacobians of genus two curves.

A special case of [16, Proposition 16.8] and [5, Lemma 2.4] shows that the kernel of a Richelot isogeny is actually a maximal isotropic subgroup of J[2] with respect to the Weil pairing e_2 on $J[2] \times J[2]$. We have the following general proposition on Richelot isogenies from [9, Chapter 9 Section 2] and [14, Section 3]. In Remark 2.2, we give the extra details for the case where the hyperelliptic form of the underlying curve is of degree 5.

Proposition 2.1. Suppose the curve C is of the form

$$C: y^2 = f(x) = G_1(x)G_2(x)G_3(x)$$

where $G_j(x) = g_{j2}x^2 + g_{j1}x + g_{j0}$, with $g_{ji} \in K$. Let $\Delta = \det(g_{ij})$, which we assume to be non-zero. Then there is a Richelot isogeny ϕ from J, the Jacobian of C, to \hat{J} , the Jacobian of the following genus two curve:

(2.3)
$$\widehat{\mathcal{C}}: \Delta y^2 = L_1(x)L_2(x)L_3(x),$$

where each $L_i(x) = G'_j(x)G_k(x) - G_j(x)G'_k(x)$, for [i, j, k] = [1, 2, 3], [2, 3, 1], [3, 1, 2].

In addition, the kernel of ϕ consists of the identity \mathcal{O}_J and the 3 divisors of order 2 given by $G_i = 0$. We have a similar result for the dual isogeny $\hat{\phi}$.

Moreover, any genus two curve C that admits a Richelot isogeny with all the elements of the kernel K-rational is of the form $y^2 = f(x) = G_1(x)G_2(x)G_3(x)$ as above.

Remark 2.2. We exclude the case $\Delta = 0$ in the above proposition. In fact, by [9, Chapter 14], $\Delta = 0$ implies that the Jacobian of C is isogenous (via the Richelot isogeny) to a product of elliptic curves. It can be checked that the analogue of Δ for \hat{C} is $2\Delta^2$, so the corresponding condition for \hat{C} is automatically satisfied. Also, in the case where G_i is linear, say $G_i = a(x-b)$, then we say $\{(b,0),\infty\}$ is the divisor given by $G_i = 0$ which gives an element in ker ϕ .

We use the notation in Proposition 2.1 and denote the nontrivial elements in the kernel of ϕ by P_i corresponding to the divisors of order 2 given by $G_i = 0$ as well as denote the nontrivial elements in the kernel of $\hat{\phi}$ by P'_i . From [9, Chapter 9, Section 2] and [22, Section 3.2], we have the following description of the Richelot isogeny ϕ . Associated with a Weierstrass point $P = (\omega_1, 0)$ with $G_1(\omega_1) = 0$, for a generic $(x, y) \in \mathcal{C}, \phi : J \to \hat{J}$ is given explicitly as

$$\{(x,y),P\} \mapsto \{(z_1,t_1),(z_2,t_2)\},\$$

where z_1, z_2 satisfy

$$G_2(x)L_2(z) + G_3(x)L_3(z) = 0;$$

and (z_i, t_i) satisfies

$$yt_i = G_2(x)L_2(z_i)(x-z_i)$$

Denote the set of two points on C given by $G_i = 0$ by S_i for i = 1, 2, 3. From the explicit description above, we know that the preimages of P'_1 under ϕ are precisely $\{\{Q_1, Q_2\} \in J[2] \text{ such that } Q_1 \in S_2, Q_2 \in S_3\}$. Similarly we know the preimages of P'_2 and P'_3 .

Computing the Cassels-Tate Pairing on the Selmer group of a Richelot Isogeny 663

2.3. The Weil pairing for the Richelot isogeny. Let J and \hat{J} be Jacobian varieties of genus two curves defined over K. Assume there is a Richelot isogeny $\phi: J \to \hat{J}$ with $\hat{\phi}$ being its dual, i.e. $\phi \circ \hat{\phi} = [2]$. Then we have the Weil pairing

$$e_{\phi}: J[\phi] \times \widehat{J}[\widehat{\phi}] \to \overline{K}^*,$$

where $e_{\phi}(P,Q) = e_{2,J}(P,Q')$ for any $Q' \in J[2]$ such that $\phi(Q') = Q$. The image of e_{ϕ} is in fact $\mu_2(\overline{K^*}) \subset \overline{K^*}$. Recall $J[\phi]$ is isotropic with respect to $e_{2,J}$ as discussed in Section 2.2. This implies that $e_{2,J}(P,Q') = e_{2,J}(P,Q'')$ if $\phi(Q') = \phi(Q'')$ and hence e_{ϕ} is well-defined. By (2.2) and the end of Section 2.2, $e_{\phi}(P_i, P'_i) = 1$ for any i = 1, 2, 3 and $e_{\phi}(P_i, P'_j) = -1$ for any $i \neq j$. Furthermore, given any $P \in J[2], Q \in \widehat{J}[2]$, we know $e_{2,J}(P, \widehat{\phi}(Q)) = e_{2,\widehat{J}}(\phi(P), Q)$ by [18, Proposition 13.2(a)], which implies that $e_{\phi}(P, Q) = e_{\widehat{\phi}}(Q, P)$ for any $P \in J[\phi], Q \in \widehat{J}[\widehat{\phi}]$.

2.4. Definition of the Cassels-Tate pairing in the case of a Richelot isogeny. In this section, we give the definition of the Cassels-Tate pairing in the case of a Richelot isogeny. There are four equivalent definitions of the Cassels-Tate pairing stated and proved in [19]. The compatibility of the definition below with the Weil Pairing definition of the Cassels-Tate pairing on $\operatorname{Sel}^2(J) \times \operatorname{Sel}^2(J)$ is shown in [24, Proposition 2.1.6].

Let J and \widehat{J} be Jacobian varieties of genus two curves defined over a number field K such that there exists a Richelot isogeny $\phi : J \to \widehat{J}$ with $\widehat{\phi} : \widehat{J} \to J$ being its dual isogeny and all points in $J[\phi]$ are defined over K. The following lemma shows that for any $b \in \operatorname{Sel}^{\phi}(J)$, there exists $b_1 \in$ $H^1(G_K, \widehat{J}[2])$ mapping to b under the map induced by $\widehat{J}[2] \xrightarrow{\phi} J[\phi]$.

Lemma 2.3. Let J and \hat{J} be Jacobian varieties of genus two curves such that there exists a Richelot isogeny $\phi : J \to \hat{J}$ with $\hat{\phi} : \hat{J} \to J$ being its dual isogeny. Suppose all points in $J[\phi]$ are defined over K, We have the following:

- (i) The map $H^2(G_K, J[\phi]) \xrightarrow{res} \prod_v H^2(G_{K_v}, J[\phi])$ is injective.
- (ii) For any $b \in \operatorname{Sel}^{\phi}(J)$, there exists $b_1 \in H^1(G_K, \widehat{J}[2])$ mapping to b.

Proof. Since $J[\phi] \cong (\mu_2)^2$ over K and $\operatorname{Br}(K)[2] \cong H^2(G_K, \mu_2)$, we have $H^2(G_K, J[\phi]) \cong (H^2(G_K, \mu_2))^2 \cong (\operatorname{Br}(K)[2])^2$ and similarly $H^2(G_{K_v}, J[\phi]) \cong (\operatorname{Br}(K_v)[2])^2$. Hence, via the injection of $\operatorname{Br}(K) \to \bigoplus_v \operatorname{Br}(K_v)$, we have $H^2(G_K, J[\phi]) \xrightarrow{res} \prod_v H^2(G_{K_v}, J[\phi])$ is injective, which is (i). Note that by the formula in Proposition 2.1, all points in $\widehat{J}[\phi]$ are also defined over K, therefore $H^2(G_K, \widehat{J}[\phi]) \to \prod_v H^2(G_{K_v}, \widehat{J}[\phi])$, is also injective.

Now, consider the following commutative diagram of short exact sequences.

We then obtain the following commutative diagram of long exact sequences along the rows by taking Galois cohomology.

$$\begin{array}{cccc} H^{1}(G_{K},\widehat{J}[2]) & \stackrel{\hat{\phi}}{\longrightarrow} & H^{1}(G_{K},J[\phi]) & \longrightarrow & H^{2}(G_{K},\widehat{J}[\widehat{\phi}]) \\ & & & \downarrow^{b\mapsto c} & & \downarrow^{=} \\ H^{1}(G_{K},\widehat{J}) & \stackrel{\hat{\phi}}{\longrightarrow} & H^{1}(G_{K},\widehat{J}) & \longrightarrow & H^{2}(G_{K},\widehat{J}[\widehat{\phi}]) \\ & & \downarrow^{res} & & \downarrow^{inj} \\ \Pi_{v} & H^{1}(G_{K_{v}},\widehat{J}) & \stackrel{\hat{\phi}}{\longrightarrow} & \Pi_{v} & H^{1}(G_{K_{v}},J) & \longrightarrow & \Pi_{v} & H^{2}(G_{K_{v}},\widehat{J}[\widehat{\phi}]) \end{array}$$

Since $b \in \operatorname{Sel}^{\phi}(J)$, its image $c \in H^1(G_K, \widehat{J})$ is locally trivial. Hence, its image is also trivial in $\prod_v H^2(G_{K_v}, \widehat{J}[\widehat{\phi}])$. Via the injectivity of the map $H^2(G_K, \widehat{J}[\widehat{\phi}]) \to \prod_v H^2(G_{K_v}, \widehat{J}[\widehat{\phi}])$, we get that $b \mapsto 0 \in H^2(G_K, \widehat{J}[\widehat{\phi}])$. Thus b has a lift $b_1 \in H^1(G_K, \widehat{J}[2])$. Hence (ii) holds. \Box

The definition of the pairing

Let $a, a' \in \operatorname{Sel}^{\phi}(J)$. Let $a_1 \in H^{\widehat{1}}(G_K, \widehat{J}[2])$ be an element that maps to $a \in \operatorname{Sel}^{\phi}(J) \subset H^1(G_K, J[\phi])$ under the map induced by $\widehat{J}[2] \xrightarrow{\hat{\phi}} J[\phi]$, which exists by Lemma 2.3.

Let v be a place of K. Let $P_v \in \widehat{J}(K_v)$ be a lift of $a_v \in H^1(G_{K_v}, J[\phi])$. Consider the commutative diagram below.

$$\begin{aligned}
\widehat{J}(K_v) & \xrightarrow{\widehat{\phi}} J(K_v) \xrightarrow{\delta_{\widehat{\phi}}} H^1(G_{K_v}, \widehat{J}[\widehat{\phi}]) \\
= & \downarrow & \downarrow \downarrow \rho_v \mapsto \delta_2(P_v) - a_{1,v} \\
\widehat{J}(K_v) & \xrightarrow{2} \widehat{J}(K_v) \xrightarrow{\delta_2} H^1(G_{K_v}, \widehat{J}[2]) \\
& \widehat{\phi} \downarrow & = \downarrow & \widehat{\phi} \downarrow \delta_2(P_v) \mapsto a_v \ a_{1,v} \mapsto a_v \\
& J(K_v) & \xrightarrow{\phi} \widehat{J}(K_v) \xrightarrow{P_v \mapsto a_v} H^1(G_{K_v}, J[\phi])
\end{aligned}$$

Then $\delta_2(P_v)$ and $a_{1,v}$ in $H^1(G_{K_v}, \widehat{J}[2])$ both map to a_v . Hence, we choose $\rho_v \in H^1(G_{K_v}, \widehat{J}[\widehat{\phi}])$ a lift of $\delta_2(P_v) - a_{1,v}$ and define $\eta_v = \rho_v \cup_{\widehat{\phi}, v} a'_v \in H^2(G_{K_v}, \overline{K_v}^*)$. Here $\cup_{\widehat{\phi}, v}$ denotes the cup product $H^1(G_{K_v}, \widehat{J}[\widehat{\phi}]) \times$

Computing the Cassels-Tate Pairing on the Selmer group of a Richelot Isogeny 665

 $H^1(G_{K_v}, J[\phi]) \to H^2(G_{K_v}, \overline{K}^*)$ associated to $e_{\hat{\phi}}$. The Cassels-Tate pairing is defined by

$$\langle a, a' \rangle_{CT} := \sum_{v} \operatorname{inv}_{v}(\eta_{v}).$$

We sometimes refer to $\operatorname{inv}_v(\eta_v)$ above as the local Cassels-Tate pairing between $a, a' \in \operatorname{Sel}^{\phi}(J)$ for a place v of K, noting that this depends on the choice of the global lift a_1 .

Remark 2.4. The Weil pairing definition of the Cassels-Tate pairing is proved to be independent of the choices made in the definition in [19] and more details are given in [24, Proposition 1.8.4]. Since the above pairing is compatible with the Weil pairing definition as in [24, Proposition 2.1.6], we know it is also independent of the choices we make.

3. Computation of the Cassels-Tate Pairing

Recall that we are working with a genus two curve C in the form (2.1) and we fix a choice of Richelot isogeny $\phi: J \to \hat{J}$ where J is the Jacobian of Cand \hat{J} is the Jacobian of the genus two curve defined by (2.3). We write $\hat{\phi}$ for the dual of ϕ . This implies that all points in J[2] are defined over K and all points in $\hat{J}[\hat{\phi}]$ are defined over K by Proposition 2.1. Recall, we denote the nontrivial elements in $J[\phi]$ by P_1, P_2, P_3 where P_i corresponds to the divisor given by $G_i = 0$ and the nontrivial elements in $\hat{J}[\hat{\phi}]$ by P'_1, P'_2, P'_3 where P'_i corresponds to the divisor given by $L_i = 0$ as in the same Proposition. In this section, we will give a practical formula for the explicit computation for the Cassels-Tate pairing in the case of Richelot isogenies.

3.1. Explicit embeddings of H^1(G_K, J[\phi]) and H^1(G_K, J[2]). In order to give the formula for the Cassels-Tate pairing, we first describe some well-known embeddings that are useful for the explicit computation.

Recall all points in J[2] and $\widehat{J}[\widehat{\phi}]$ are defined over K. From the exact sequence

$$0 \to J[\phi] \xrightarrow{w_{\phi}} (\mu_2)^3 \xrightarrow{N} \mu_2 \to 0,$$

where $w_{\phi}: P \mapsto (e_{\phi}(P, P'_1), e_{\phi}(P, P'_2), e_{\phi}(P, P'_3))$ and $N: (a, b, c) \mapsto abc$, we get

$$H^{1}(G_{K}, J[\phi]) \xrightarrow{inj} H^{1}(G_{K}, (\mu_{2})^{3}) \cong (K^{*}/(K^{*})^{2})^{3}$$
$$\xrightarrow{N_{*}} H^{1}(G_{K}, \mu_{2}) \cong K^{*}/(K^{*})^{2},$$

where \cong denotes the Kummer isomorphism derived from Hilbert's Theorem 90 and N_* is induced by N. The induced map $H^1(G_K, J[\phi]) \rightarrow$ $H^1(G_K, (\mu_2)^3)$ is injective as the map $(\mu_2)^3 \xrightarrow{N} \mu_2$ is surjective. Furthermore, the image of this injection contains precisely all the elements with norm a square by the exactness of the sequence above, i.e. $H^1(G_K, J[\phi]) \cong$

 $\ker((K^*/(K^*)^2)^3 \xrightarrow{N_*} K^*/(K^*)^2).$ We have a similar embedding for $H^1(G_K, \widehat{J}[\widehat{\phi}]).$

Also, from the exact sequence

$$0 \to J[2] \xrightarrow{w_2} (\mu_2)^5 \xrightarrow{N} \mu_2 \to 0,$$

where $w_2 : P \mapsto (e_2(P, \{(\omega_1, 0), \infty\}), \dots, e_2(P, \{(\omega_5, 0), \infty\}))$ and $N : (a, b, c, d, e) \mapsto abcde$, we get

$$H^{1}(G_{K}, J[2]) \xrightarrow{inj} H^{1}(G_{K}, (\mu_{2})^{5}) \cong (K^{*}/(K^{*})^{2})^{5}$$
$$\xrightarrow{N_{*}} H^{1}(G_{K}, \mu_{2}) \cong K^{*}/(K^{*})^{2},$$

where \cong denotes the Kummer isomorphism derived from Hilbert's Theorem 90 and N_* is induced by N. Again the induced map $H^1(G_K, J[2]) \rightarrow$ $H^1(G_K, (\mu_2)^5)$ is injective as the map $(\mu_2)^5 \xrightarrow{N} \mu_2$ is surjective. Furthermore, the image of this injection also contains precisely all the elements with norm a square from the exact sequence above. In particular, we have

$$H^1(G_K, J[2]) \cong \ker((K^*/(K^*)^2)^5 \xrightarrow{N} K^*/(K^*)^2)$$

3.2. Explicit Formula. Using the embeddings described in Section 3.1, we can now state and prove the explicit formula for the Cassels-Tate pairing in the case of a Richelot isogeny.

Proposition 3.1. Under the embeddings of $H^1(G_K, J[\phi])$ and $H^1(G_K, \widehat{J}[\widehat{\phi}])$ in $(K^*/(K^*)^2)^3$ as described in Section 3.1, we get that the cup product \cup_{ϕ} induced by e_{ϕ} is

$$H^{1}(G_{K}, J[\phi]) \times H^{1}(G_{K}, \widehat{J}[\widehat{\phi}]) \to \operatorname{Br}(K)[2]$$

((a₁, b₁, c₁), (a₂, b₂, c₂)) \mapsto (a₁, a₂) + (b₁, b₂) + (c₁, c₂)

where (\cdot, \cdot) represents the quaternion algebra and also its equivalence class in Br(K)[2].

Proof. Recall that the embedding $J[\phi] \rightarrow (\mu_2)^3$ is given by sending $P \in J[\phi]$ to

 $(e_{\phi}(P, P_1'), e_{\phi}(P, P_2'), e_{\phi}(P, P_3'))$

and the embedding $\widehat{J}[\widehat{\phi}] \to (\mu_2)^3$ is given by sending $Q \in \widehat{J}[\widehat{\phi}]$ to

$$(e_{\phi}(P_1,Q), e_{\phi}(P_2,Q), e_{\phi}(P_3,Q)).$$

It can be checked, via the end of the discussion of Section 2.2, that we have the following commutative diagram:

Computing the Cassels-Tate Pairing on the Selmer group of a Richelot Isogeny 667

where f sends $((-1)^a, (-1)^b, (-1)^c), ((-1)^{a'}, (-1)^{b'}, (-1)^{c'})$ to $(-1)^{aa'+bb'+cc'}$ with $a, b, c \in \{0, 1\}$.

Consider the natural pairing $\phi: \mu_2 \times \mu_2 \to \mu_2$ sending $((-1)^a, (-1)^b)$ to $(-1)^{ab}$. This gives a cup product pairing

$$H^{1}(G_{K},\mu_{2}) \times H^{1}(G_{K},\mu_{2}) \longrightarrow H^{2}(G_{K},\mu_{2}) \cong Br(K)[2]$$
$$([\sigma \mapsto a_{\sigma}], [\tau \mapsto b_{\tau}]) \longmapsto [(\sigma,\tau) \mapsto \phi(a_{\sigma},b_{\tau})].$$

By Hilbert's Theorem 90, we can identify $H^1(G_K, \mu_2)$ with $K^*/(K^*)^2$. Under this identification, the image of $(a, b) \in K^*/(K^*)^2 \times K^*/(K^*)^2$ is precisely the equivalence class of the quaternion algebra (a, b) by [21, Chapter XIV, Section 2, Proposition 5] and [15, Corollary 2.5.5(1), Proposition 4.7.3].

Therefore, we get that the induced cup product is

$$H^{1}(K, J[\phi]) \times H^{1}(K, \widehat{J}(\widehat{\phi})) \longrightarrow Br(K)[2]$$

((a_1, b_1, c_1), (a_2, b_2, c_2)) \longmapsto (a_1, a_2) + (b_1, b_2) + (c_1, c_2). \square

Proposition 3.2. Under the embeddings of $H^1(G_K, J[\phi])$ and $H^1(G_K, J[2])$ in $(K^*/(K^*)^2)^3$ and $(K^*/(K^*)^2)^5$ as described in Section 3.1, the map Ψ : $H^1(G_K, J[\phi]) \to H^1(G_K, J[2])$ induced from the inclusion $J[\phi] \to J[2]$ is given by

$$(a, b, c) \longmapsto (1, c, c, b, b).$$

Proof. Recall the embedding of $H^1(G_K, J[2])$ in $(K^*/(K^*)^2)^5$, and the embedding of $H^1(G_K, J[\phi])$ in $(K^*/(K^*)^2)^3$ are induced from the short exact sequences in the following commutative diagram:

Suppose $P \in J[\phi]$ maps to (α, β, γ) via w_{ϕ} . Then $e_{\phi}(P, P'_1) = \alpha$, $e_{\phi}(P, P'_2) = \beta$, $e_{\phi}(P, P'_3) = \gamma$. By definition, $e_{\phi}(P, \phi(Q)) = e_2(P, Q)$ for any $Q \in J[2]$. From the explicit description of ϕ in Section 2.2, we know $\alpha = e_2(P, \{(\omega_2, 0), (\omega_4, 0)\}), \beta = e_2(P, \{(\omega_1, 0), (\omega_5, 0)\})$ and $\gamma = e_2(P, \{\infty, (\omega_3, 0)\})$. Recall that $J[\phi]$ is isotropic with respect to e_2 . This implies that $w_2(P) = (1, \gamma, \gamma, \beta, \beta)$. Therefore, we define $\psi(\alpha, \beta, \gamma) = (1, \gamma, \gamma, \beta, \beta)$, which makes the above diagram commute.

Now consider $\Psi : H^1(G_K, J[\phi]) \to H^1(G_K, J[2])$ which, via the embedding in Section 3.1, is the map $H^1(G_K, (\mu_2)^3) \to H^1(G_K, (\mu_2)^5)$ induced by ψ . Therefore, we can verify that $\Psi(a, b, c) = (1, c, c, b, b)$.

Proposition 3.3. Under the embeddings of $H^1(G_K, \widehat{J}[\widehat{\phi}])$ and $H^1(G_K, J[2])$ in $(K^*/(K^*)^2)^3$ and $(K^*/(K^*)^2)^5$ as described in Section 3.1, the map Φ : $H^1(G_K, J[2]) \to H^1(G_K, \widehat{J}[\widehat{\phi}])$ induced from $J[2] \xrightarrow{\phi} \widehat{J}[\widehat{\phi}]$ is given by $(a_1, a_2, a_3, a_4, a_5) \longmapsto (a_1, a_2a_3, a_4a_5).$

Proof. Consider the following commutative diagram whose rows are exact sequences

Suppose $P \in J[2]$ maps to $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$ via w_2 . Then $\alpha_i = e_2(P, \{(\omega_i, 0), \infty\})$. Recall that $e_{\hat{\phi}}(\phi(P), P_i) = e_2(P, P_i)$ by the discussion at the end of Section 2.3. This implies that $\phi(P)$ maps to $(\alpha_1, \alpha_2\alpha_3, \alpha_4\alpha_5)$ via $w_{\hat{\phi}}$. Therefore, we can verify that the induced map $\Phi : H^1(G_K, J[2]) \to H^1(G_K, \widehat{J}[\hat{\phi}])$ under the embeddings in Section 3.1 is given by

$$(a_1, a_2, a_3, a_4, a_5) \longmapsto (a_1, a_2 a_3, a_4 a_5).$$

Remark 3.4. We observe that, under the assumption of this section, we have the following short exact sequence:

$$0 \longrightarrow H^1(G_K, J[\phi]) \longrightarrow H^1(G_K, J[2]) \longrightarrow H^1(G_K, \widehat{J}[\widehat{\phi}]) \longrightarrow 0.$$

Since the Galois action on J[2] is trivial, all linear subspaces are submodules. This implies that the short exact sequence of Galois modules splits (every linear subspace has a complement), which directly implies that all connecting maps are zero. More explicitly the injectivity of the map $H^1(G_K, J[\phi]) \to H^1(G_K, J[2])$ is due to the surjectivity of $J(K)[2] \xrightarrow{\phi} \hat{J}(K)[\hat{\phi}]$. For surjectivity of $H^1(G_K, J[2]) \to H^1(G_K, \hat{J}[\hat{\phi}])$, observe that the element in $H^1(G_K, \hat{J}[\hat{\phi}])$ represented by (a, b, c) has a preimage in $H^1(G_K, J[2])$ represented by (a, 1, b, 1, c) by Proposition 3.3.

Remark 3.5. Let v be a place of K. We also have the explicit embeddings of $H^1(G_K, J[\phi])$ and $H^1(G_K, J[2])$ described in Section 3.1 as well as the explicit maps given in this section if we replace K with K_v or K_v^{nr} .

Using the above three propositions, we now have the explicit formula for the Cassels-Tate pairing in the case of a Richelot isogeny.

Theorem 3.6. Let J be the Jacobian variety of a genus two curve defined over a number field K. Suppose all points in J[2] are defined over K and there exists a Richelot isogeny $\phi : J \to \hat{J}$ where \hat{J} is the Jacobian variety of another genus two curve. Let $\hat{\phi}$ be the dual isogeny of ϕ . Consider $a, a' \in$ $\operatorname{Sel}^{\hat{\phi}}(\widehat{J})$. Suppose $(\alpha'_1, \alpha'_2, \alpha'_3) \in (K^*/(K^*)^2)^3$ represents a'. For any place v, we let $P_v \in J(K_v)$ denote a lift of $a_v \in H^1(G_{K_v}, \widehat{J}[\widehat{\phi}])$ and suppose $\delta_2(P_v) \in H^1(G_{K_v}, J[2])$ is represented by $(x_{1,v}, x_{2,v}, x_{3,v}, x_{4,v}, x_{5,v}) \in (K_v^*/(K_v^*)^2)^5$. Then we have

$$\langle a, a' \rangle_{CT} = \prod_{v} (x_{2,v} x_{4,v}, \alpha'_1)_v (x_{4,v}, \alpha'_2)_v (x_{2,v}, \alpha'_3)_v,$$

where $(\cdot, \cdot)_v$ represents the Hilbert symbol. Note that here we identify $\frac{1}{2}\mathbb{Z}/\mathbb{Z}$ with μ_2 .

Proof. Suppose a is represented by $(\alpha_1, \alpha_2, \alpha_3) \in (K^*/(K^*)^2)^3$. Then it has a preimage $a_1 \in H^1(G_K, J[2])$ represented by $(\alpha_1, 1, \alpha_2, 1, \alpha_3)$ by Proposition 3.3. So following the definition of $\langle a, a' \rangle_{CT}$, we need to compute $\rho_v \cup_{\phi, v} a'_v \in H^2(G_{K_v}, \overline{K_v}^*)$ where $\rho_v \in H^1(G_{K_v}, J[\phi])$ is a lift of $\delta_2(P_v) - a_{1,v}$ and $\cup_{\phi,v}$ is the cup product induced by e_{ϕ} . We know that $\delta_2(P_v) - a_{1,v}$ is in the image of $H^1(G_{K_v}, J[\phi])$, which implies (by Proposition 3.2) that $x_{1,v}/\alpha_1 = 1, x_{2,v} = x_{3,v}/\alpha_2$ and $x_{4,v} = x_{5,v}/\alpha_3$. Since $\delta_2(P_v) - a_{1,v}$ is represented by $(x_{1,v}/\alpha_1, x_{2,v}, x_{3,v}/\alpha_2, x_{4,v}, x_{5,v}/\alpha_3) = (1, x_{2,v}, x_{2,v}, x_{4,v}, x_{4,v})$, by Proposition 3.2, ρ_v is represented by $(x_{2,v}x_{4,v}, x_{4,v}, x_{2,v})$. Hence, by Proposition 3.1, we know $\langle a, a' \rangle_{CT} = \sum_v \operatorname{inv}((x_{2,v}x_{4,v}, \alpha'_1) + (x_{4,v}, \alpha'_2) + (x_{2,v}, \alpha'_3)) = \prod_v (x_{2,v}x_{4,v}, \alpha'_1)_v (x_{4,v}, \alpha'_2)_v (x_{2,v}, \alpha'_3)_v$.

4. Computational details

In this section, we will describe some further details for the explicit computation of the Cassels-Tate pairing using the formula in Theorem 3.6.

4.1. Embedding of $\widehat{J}(\mathbf{K})/\phi(\mathbf{J}(\mathbf{K}))$ and $\mathbf{J}(\mathbf{K})/2\mathbf{J}(\mathbf{K})$. As discussed in [14, Section 3] [9, Chapter 10 Section 2], the composition of the connecting map $\delta_{\phi} : \widehat{J}(K)/\phi(J(K)) \to H^1(G_K, J[\phi])$ and the embedding described above $H^1(G_K, J[\phi]) \to (K^*/(K^*)^2)^3$ can be given explicitly as follows. We have

$$\mu^{\phi}: \qquad \widehat{J}(K)/\phi(J(K)) \longrightarrow K^*/(K^*)^2 \times K^*/(K^*)^2 \times K^*/(K^*)^2 \\ \{(x_1, y_1), (x_2, y_2)\} \longmapsto (L_1(x_1)L_1(x_2), L_2(x_1)L_2(x_2), L_3(x_1)L_3(x_2))$$

Similarly we have the injection: (4.1)

$$\mu^{\hat{\phi}} : \quad J(K)/\hat{\phi}(\hat{J}(K)) \longrightarrow K^*/(K^*)^2 \times K^*/(K^*)^2 \times K^*/(K^*)^2 \\ \{(x_1, y_1), (x_2, y_2)\} \longmapsto (G_1(x_1)G_1(x_2), G_2(x_1)G_2(x_2), G_3(x_1)G_3(x_2)) \}$$

Note the following special cases. When x_j is a root of G_i , then $G_i(x_j)$ should be taken to be $\prod_{l \in \{1,2,3\} \setminus \{i\}} G_l(x_j)$. We have a similar solution when x_j is a root of L_i , which is replacing $L_i(x_j)$ with $\Delta \prod_{l \in \{1,2,3\} \setminus \{i\}} L_l(x_j)$. When $(x_j, y_j) = \infty$, then $G_i(x_j)$ is taken to be 1. In the case where one of L_i is linear and $(x_j, y_j) = \infty$, then $L_i(x_j)$ is taken to be 1.

On the other hand, we have a standard injection, which is the composition of the connecting map $\delta_2 : J(K)/2J(K) \to H^1(G_K, J[2])$ and the embedding described above $H^1(G_K, J[2]) \to (K^*/(K^*)^2)^5$. This can also be found in [14, Section 3] [9, Chapter 10 Section 2].

$$\mu: \quad J(K)/2J(K) \longrightarrow (K^*/(K^*)^2)^5 \\ \{(x_1, y_1), (x_2, y_2)\} \longmapsto ((x_1 - \omega_1)(x_2 - \omega_1), \dots, (x_1 - \omega_5)(x_2 - \omega_5))^{-1}$$

Note the following special cases. When $(x_j, y_j) = (\omega_i, 0)$, then $x_j - \omega_i$ should be taken to be $\lambda \prod_{l \in 1,2,3,4,5 \setminus \{i\}} (\omega_i - \omega_l)$. When $(x_j, y_j) = \infty$, then $x_j - \omega_i$ is taken to be λ .

Observe the images of the maps μ^{ϕ} and $\mu^{\hat{\phi}}$ are both contained in the kernel of $(K^*/(K^*)^2)^3 \xrightarrow{N} K^*/(K^*)^2$. Similarly, the image of μ is contained in the kernel of $(K^*/(K^*)^2)^5 \xrightarrow{N} K^*/(K^*)^2$.

4.2. Bounding the set of bad primes. The contribution to the formula coming from places outside the finite set of places S for the local Cassels-Tate pairing of $a, a' \in \operatorname{Sel}^{\hat{\phi}}(\hat{J})$ in Theorem 3.6 vanishes, where $S = \{ \text{places of bad reduction for } \mathcal{C} \} \cup \{ \text{places dividing } 2 \} \cup \{ \text{infinite places} \}.$ This is explained as follows.

By [17, Chapter I, Section 6] [20, Section 3], we have

$$\operatorname{Sel}^{\phi}(J) \subset H^{1}(G_{K}, J[\phi]; S) = \ker \left(H^{1}(G_{K}, J[\phi]) \to \prod_{v \notin S} H^{1}(G_{K_{v}^{nr}}, J[\phi]) \right).$$

Similarly, $\operatorname{Sel}^{\hat{\phi}}(\widehat{J}) \subset H^1(G_K, \widehat{J}[\widehat{\phi}]; S)$ and $\operatorname{Sel}^2(J) \subset H^1(G_K, J[2]; S)$. It can be shown that $\ker \left(K^*/(K^*)^2 \to \prod_{v \notin S} K_v^{nr*}/(K_v^{nr*})^2\right) = K(S,2)$, where K(S,2) is defined to be $\{x \in K^*/(K^*)^2 : \operatorname{ord}_v(x) \text{ is even for all } v \notin S\}$. So $\alpha_i, \alpha'_i \in K(S, 2)$ for all *i*, where $(\alpha_1, \alpha_2, \alpha_3), (\alpha'_1, \alpha'_2, \alpha'_3) \in (K^*/(K^*)^2)^3$ represent a, a' respectively. Suppose $v \notin S$. Since $a \in H^1(G_K, J[\phi])$ is a global Selmer element, it has a representation where valuation outside Sis even, therefore from the explicit formula given in Proposition 3.3, we know there exists a representation of the image of $a_{1,v}$ in $(K_v^*/(K_v^*)^2)^5$ such that all its coordinates have valuation 0. Since $J(K_v^{nr}) \xrightarrow{2} J(K_v^{nr})$ is surjective by [1, Lemma 3.4], the map $H^0(G_{K_n^{nr}}, J) \to H^1(G_{K_n^{nr}}, J[2])$ is the zero map and hence the image of P_v is trivial in $H^1(G_{K_{v}^{nr}}, J[2])$. This implies that $\delta_2(P_v) \in H^1(G_{K_v}, J[2]) \subset (K_v^*/(K_v^*)^2)^5$ has a representation such that all its coordinates have valuation 0. This implies that $\delta_2(P_v)$ – $a_{1,v} \in H^1(G_{K_v}, J[2]) \subset (K_v^*/(K_v^*)^2)^5$ has a representation such that all its coordinates have valuation 0. Then, by the formula in Proposition 3.2, $\rho_v \in H^1(G_{K_v}, \widehat{J}[\widehat{\phi}]) \subset (K_v^*/(K_v^*)^2)^3$ also has a representation such that all its coordinates have valuation 0. From the first part of the theorem, we know computing $\langle a, a' \rangle_{CT}$ requires computing the Hilbert symbol. It is

well-known that the Hilbert symbol between x and y is trivial when the valuations of x, y are both 0 and the local field has odd residue characteristic (for a detailed proof see [24, Lemma 1.4.18]). Hence, the local Cassels-Tate pairing is trivial for all but finitely many places contained in the set S.

5. Worked Example

We explicitly compute the Cassels-Tate pairing in an example where this improves the rank bound obtained via descent by Richelot isogeny. We will be using the same notation as in Section 2.4 to compute $\langle \cdot, \cdot \rangle_{CT}$ on $\operatorname{Sel}^{\hat{\phi}}(\hat{J}) \times \operatorname{Sel}^{\hat{\phi}}(\hat{J})$. Our base field K is the field of the rationals, \mathbb{Q} .

Let us consider the following genus two curve which is obtained by taking k = 113 in [14, Theorem 1]

$$\mathcal{C}: y^2 = (x + 2 \cdot 113)x(x - 6 \cdot 113)(x + 113)(x - 7 \cdot 113),$$

with
$$G_1 = (x + 2 \cdot 113), G_2 = x(x - 6 \cdot 113), G_3 = (x + 113)(x - 7 \cdot 113)$$
 and

$$\Delta = \begin{bmatrix} 2 \cdot 113 & 1 & 0 \\ 0 & -6 \cdot 113 & 1 \\ -7 \cdot 113^2 & -6 \cdot 113 & 1 \end{bmatrix} = -7 \cdot 113^2,$$

$$L_1 = G'_2 G_3 - G'_3 G_2 = -14 \cdot 113^2 (x - 3 \cdot 113),$$

$$L_2 = G'_3 G_1 - G'_1 G_3 = (x + 5 \cdot 113)(x - 113),$$

$$L_3 = G'_1 G_2 - G'_2 G_1 = -(x + 6 \cdot 113)(x - 2 \cdot 113)$$

So we have a Richelot isogeny ϕ from J, the Jacobian variety of C, to \hat{J} , the Jacobian variety of the following curve.

 $\hat{\mathcal{C}}: y^2 = -2(x-3\cdot 113)(x+5\cdot 113)(x-113)(x+6\cdot 113)(x-2\cdot 113)$

It can be shown, using MAGMA [4], that:

$$\begin{aligned} &\text{Sel}^{\hat{\phi}}(\hat{J}) \\ (5.1) &= \langle (2 \cdot 113, -14 \cdot 113, -7), (113, 7, 7 \cdot 113), (113, 113, 1), (2, 2, 1), (1, 7, 7) \rangle \\ &\subset (\mathbb{Q}^*/(\mathbb{Q}^*)^2)^3 \\ &\text{Sel}^{\phi}(J) \\ (5.2) &= \langle (113, -7 \cdot 113, -7), (2 \cdot 113, 7, 14 \cdot 113), (113, 1, 113) \rangle \\ &\subset (\mathbb{Q}^*/(\mathbb{Q}^*)^2)^3. \end{aligned}$$

Now we will compute the Cassels-Tate pairing matrix on $\operatorname{Sel}^{\hat{\phi}}(\widehat{J}) \times \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$. Since $(2 \cdot 113, -14 \cdot 113, -7), (113, 7, 7 \cdot 113)$ are images of elements $\{(0,0), (-2 \cdot 113, 0)\}$ and $\{(-2 \cdot 113, 0), (-113, 0)\}$ in $J(\mathbb{Q})/\hat{\phi}(\widehat{J}(\mathbb{Q}))$ via $\mu^{\hat{\phi}}$ in (4.1), they are in the kernel of the Cassels-Tate pairing. So

it is sufficient to look at the pairing on $\langle (113, 113, 1), (2, 2, 1), (1, 7, 7) \rangle \times \langle (113, 113, 1), (2, 2, 1), (1, 7, 7) \rangle$.

Since the primes of bad reduction are $\{2, 3, 7, 113\}$, by Section 4.2, we know these are the only primes which we need to consider in the formula for the Cassels-Tate pairing as in Theorem 3.6. The tables below give details of the local computations at these primes.

Let $a = (113, 113, 1) \in \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$. By the formula given in Proposition 3.3, it has a lift $a_1 = (113, 1, 113, 1, 1) \in H^1(G_K, J[2])$. Then for the local calculation, we have the following table:

place v	∞	2	3	7	113
P_v	id	id	$\{(0,0),(-113,0)\}$	id	$\{(0,0), (-2 \cdot 113, 0)\}$
$\delta_2(P_v)$	id	id	(-1, 3, -3, -1, -1)	id	$(113,3\cdot\!113,3,1,1)$
$a_{1,v}$	id	id	(-1, 1, -1, 1, 1)	id	(113,1,113,1,1)
$\delta_2(P_v) - a_{1,v}$	id	id	(1, 3, 3, -1, -1)	id	(1, 3.113, 3.113, 1, 1)
$ ho_v$	id	id	(-3, -1, 3)	id	$(3 \cdot 113, 1, 3 \cdot 113)$

Now let $a = (2, 2, 1) \in \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$. By the formula given in Proposition 3.3, it has a lift $a_1 = (2, 1, 2, 1, 1) \in H^1(G_K, J[2])$. Then for the local calculation, we have the following table:

\parallel place v	$ \infty $	2	3	7	113
P_v	id	$\{(0,0), (-2 \cdot 113, 0)\}$	$\{(0,0),(-113,0)\}$	id	id
$\delta_2(P_v)$	id	(2, 6, 3, -1, -1)	(-1, 3, -3, -1, -1)	id	id
$a_{1,v}$	id	(2,1,2,1,1)	(-1, 1, -1, 1, 1)	id	id
$\delta_2(P_v) - a_{1,v}$	id	(1, 6, 6, -1, -1)	(1, 3, 3, -1, -1)	id	id
ρ_v	id	(-6, -1, 6)	(-3, -1, 3)	id	id

Lastly let $a = (1, 7, 7) \in \operatorname{Sel}^{\hat{\phi}}(\widehat{J})$. By the formula given in Proposition 3.3, it has a lift $a_1 = (1, 1, 7, 1, 7) \in H^1(G_K, J[2])$. Then for the local calculation, we have the following table:

place v	$ \infty$	2	3	7	113
P_v	id	$\{(-2 \cdot 113, 0), (-113, 0)\}$	id	$\{(-2 \cdot 113, 0), (-113, 0)\}$	id
$\delta_2(P_v)$	id	(1, 2, -2, -2, 2)	id	(1, 1, 7, 7, 1)	id
$a_{1,v}$	id	(1, 1, -1, 1, -1)	id	(1, 1, 7, 1, 7)	id
$\delta_2(P_v) - a_{1,v}$	id	(1, 2, 2, -2, -2)	id	(1, 1, 1, 7, 7)	id
ρ_v	id	(-1, -2, 2)	id	(7, 7, 1)	id

Following the explicit algorithm for computing the Cassels-Tate pairing, we get that the Cassels-Tate pairing between (113, 113, 1) and (2, 2, 1) is the only nontrivial one.

Therefore, we get the 5 × 5 Cassels-Tate pairing matrix from the 5 generators of $\operatorname{Sel}^{\hat{\phi}}(\hat{J})$. More specifically, the ij^{th} entry of the matrix is the Cassels-Tate pairing between the i^{th} and the j^{th} generators of $\operatorname{Sel}^{\hat{\phi}}(\hat{J})$,

where the generators are in the same order as listed in the Selmer group $\operatorname{Sel}^{\hat{\phi}}(\widehat{J})$ (5.1).

Remark 5.1. From the computation above, we have shown that the kernel of the Cassels-Tate pairing has dimension 3. We make the following observations:

• Let $r = \operatorname{rank}(J(\mathbb{Q}))$. We know

$$2^{r} = \frac{|\widehat{J}(\mathbb{Q})/\phi(J(\mathbb{Q}))| \times |J(\mathbb{Q})/\widehat{\phi}(\widehat{J}(\mathbb{Q}))|}{|J(\mathbb{Q})[\phi]| \times |\widehat{J}(\mathbb{Q})[\widehat{\phi}]|}.$$

In a standard descent by Richelot isogeny, we have $|\widehat{J}(\mathbb{Q})/\phi(J(\mathbb{Q}))| \leq |\operatorname{Sel}^{\phi}(J)|$ and $|J(\mathbb{Q})/\widehat{\phi}(\widehat{J}(\mathbb{Q}))| \leq |\operatorname{Sel}^{\widehat{\phi}}(\widehat{J})|$. Therefore, we get $r \leq 4$. However, after computing the Cassels-Tate pairing, we can bound r via bounding $|J(\mathbb{Q})/\widehat{\phi}(\widehat{J}(\mathbb{Q}))|$ by $|\operatorname{ker}\langle \cdot, \cdot \rangle_{CT}| = 2^3$ instead of $|\operatorname{Sel}^{\widehat{\phi}}(\widehat{J})| = 2^5$. This improves the rank bound of $J(\mathbb{Q})$ from 4 to 2.

• Consider the exact sequence (1.1). It can be shown that Im α is contained inside ker $\langle \cdot, \cdot \rangle_{CT}$, the kernel of the Cassels-Tate pairing on $\operatorname{Sel}^{\hat{\phi}}(\hat{J}) \times \operatorname{Sel}^{\hat{\phi}}(\hat{J})$. Indeed, if $a \in \operatorname{Sel}^{\hat{\phi}}(\hat{J})$ is equal to $\alpha(b)$, where $b \in \operatorname{Sel}^2(J)$, then following the earlier notations, we can let $a_1 = b$. Then we can pick $P_v \in J(\mathbb{Q}_v)$ to be the lift of $a_{1,v}$. Therefore, $\delta_2(P_v) - a_{1,v} = 0 \in H^1(G_{\mathbb{Q}_v}, J[2])$ which implies, $a \in \ker\langle \cdot, \cdot \rangle_{CT}$. Hence, we can always bound $|\operatorname{Sel}^2(J)|$ using $\ker\langle \cdot, \cdot \rangle_{CT}$, and this bound will be sharp when $\operatorname{Im} \alpha = \ker\langle \cdot, \cdot \rangle_{CT}$.

We used MAGMA to compute the size of $\text{Sel}^2(J)$, which is equal to 2^6 , and we have the exact sequence:

$$0 \to J[\phi](\mathbb{Q}) \to J[2](\mathbb{Q}) \to \widehat{J}[\widehat{\phi}](\mathbb{Q}) \to \operatorname{Sel}^{\phi}(J) \to \operatorname{Sel}^{2}(J) \xrightarrow{\alpha} \ker\langle \cdot, \cdot \rangle_{CT} \to 0.$$

size = 2^2 size = 2^4 size = 2^2 size = 2^3 size = 2^6 size = 2^3

So for this example, we have turned the descent by Richelot isogeny into a 2-descent via computing the Cassels-Tate pairing.

Acknowledgments. I express my sincere and deepest gratitude to my PhD supervisor, Tom Fisher, for his patient guidance and insightful comments at every stage during my research.

References

- A. AGASHE & W. STEIN, "Visibility of Shafarevich-Tate Groups of Abelian Varieties", J. Number Theory 97 (2002), no. 1, p. 171-185.
- [2] M. VAN BEEK, "Computing the Cassels-Tate Pairing", PhD Thesis, University of Cambridge, 2015.
- [3] M. VAN BEEK & T. A. FISHER, "Computing the Cassels-Tate pairing on 3-isogeny Selmer groups via cubic norm equations", Acta Arith. 185 (2018), no. 4, p. 367-396.
- [4] W. BOSMA, J. CANNON & C. PLAYOUST, "The Magma algebra system. I. The user language", J. Symb. Comput. 24 (1997), no. 3-4, p. 235-265.
- [5] N. BRUIN & K. DOERKSEN, "The Arithmetic of Genus Two Curves with (4,4)-Split Jacobians", Can. J. Math. 63 (2011), no. 5, p. 992-1024.
- [6] J. W. S. CASSELS, "Arithmetic on Curves of Genus 1. I. On a conjecture of Selmer", J. Reine Angew. Math. 202 (1959), p. 52-99.
- [7] —, "J. W. S. Cassels, Arithmetic on curves of genus 1, IV. Proof of the Hauptvermutung.", J. Reine Angew. Math. 211 (1962), p. 95-112.
- [8] —, "Second Descents for Elliptic Curves", J. Reine Angew. Math. 494 (1998), p. 101-127.
- [9] J. W. S. CASSELS & E. V. FLYNN, Prolegomena to a MiddleBrow Arithmetic of Curves of Genus 2, London Mathematical Society Lecture Note Series, vol. 230, Cambridge University Press, 1996.
- [10] S. DONNELLY, "Algorithms for the Cassels–Tate pairing", preprint, 2015.
- [11] T. A. FISHER, "The Cassels-Tate pairing and the Platonic solids", J. Number Theory 98 (2003), no. 1, p. 105-155.
- [12] , "On binary quartics and the Cassels–Tate pairing", (2016), preprint.
- [13] T. A. FISHER & R. NEWTON, "Computing the Cassels-Tate pairing on the 3-Selmer group of an elliptic curve", J. Number Theory 10 (2014), no. 7, p. 18811907.
- [14] E. V. FLYNN, "Arbitrarily Large Tate-Shafarevich Group on Abelian Surfaces", J. Number Theory 186 (2018), p. 248-258.
- [15] P. GILLE & T. SZAMUELY, Central Simple Algebras and Galois Cohomology, Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press, 2006.
- [16] J. S. MILNE, "Abelian Varieties", in Arithmetic geometry, Springer, 1986, p. 103-150.
- [17] , Arithmetic Duality Theorems, 2nd ed., BookSurge, 2006, viii+339 pages.
- [18] —, Abelian Varieties, 2nd ed., 2008, 166+vi pages.
- [19] B. POONEN & M. STOLL, "The Cassels-Tate pairing on polarized abelian varieties", Ann. Math. 150 (1999), no. 3, p. 1109-1149.
- [20] E. F. SCHAEFER, "2-Descent on the Jacobians of Hyperelliptic Curves", J. Number Theory 51 (1995), no. 2, p. 219-232.
- [21] J.-P. SERRE, Local Fields, Graduate Texts in Mathematics, vol. 67, Springer, 1979.
- [22] K. TAKASHIMA & R. YOSHIDA, "An algorithm for computing a sequence of Richelot isogenies", Bull. Korean Math. Soc. 46 (2009), no. 4, p. 789-802.
- [23] J. TATE, "Duality theorems in Galois cohomology over number fields", in Proc. Int. Congr. Math., Stockholm 1962,, 1963, p. 288-295.
- [24] J. YAN, "Computing the Cassels-Tate Pairing for Jacobian Varieties of Genus Two Curves", PhD Thesis, University of Cambridge, 2021.

Jiali YAN 95, Finborough Road SW10 9DU, London, UK *E-mail*: jialiyan.lele@gmail.com