
Jiali YAN

Computing the Cassels-Tate Pairing on the Selmer group of a Richelot
Isogeny
Tome 35, no 3 (2023), p. 659-674.

https://doi.org/10.5802/jtnb.1259

© Les auteurs, 2023.

Cet article est mis à disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 4.0 FRANCE.
http://creativecommons.org/licenses/by-nd/4.0/fr/

C EN T R E
MER S ENN E

Le Journal de Théorie des Nombres de Bordeaux est membre du
Centre Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/
e-ISSN : 2118-8572

https://doi.org/10.5802/jtnb.1259
http://creativecommons.org/licenses/by-nd/4.0/fr/
http://www.centre-mersenne.org/


Journal de Théorie des Nombres
de Bordeaux 35 (2023), 659–674

Computing the Cassels-Tate Pairing on the
Selmer group of a Richelot Isogeny

par Jiali YAN

Résumé. Dans cet article, nous étudions l’accouplement de Cassels-Tate sur
les jacobiennes des courbes de genre 2 possédant une isogénie dite de Riche-
lot. Soit ϕ : J → Ĵ une isogénie de Richelot entre les jacobiennes de deux
courbes de genre 2. Nous donnons une formule explicite et un algorithme pra-
tique pour calculer l’accouplement de Cassels-Tate sur Selϕ̂(Ĵ) × Selϕ̂(Ĵ) où
ϕ̂ est l’isogénie duale de ϕ. Ces résultats sont obtenus sous l’hypothèse sim-
plificatrice que tous les points de 2-torsion sur J sont définis sur K. Nous
donnons un exemple explicite qui montre que nous pouvons transformer la
descente par l’isogénie de Richelot en 2-descente en calculant l’accouplement
de Cassels-Tate.

Abstract. In this paper, we study the Cassels-Tate pairing on Jacobians of
genus two curves admitting a special type of isogenies called Richelot isogenies.
Let ϕ : J → Ĵ be a Richelot isogeny between two Jacobians of genus two
curves. We give an explicit formula as well as a practical algorithm to compute
the Cassels-Tate pairing on Selϕ̂(Ĵ) × Selϕ̂(Ĵ) where ϕ̂ is the dual isogeny of
ϕ. The formula and algorithm are under the simplifying assumption that all
two-torsion points on J are defined over K. We also include a worked example
demonstrating we can turn the descent by Richelot isogeny into a 2-descent
via computing the Cassels-Tate pairing.

1. Introduction

For any principally polarized abelian variety A defined over a number
field K, Cassels and Tate [6], [7] and [23] constructed a pairing

X(A) × X(A) → Q/Z,
that is nondegenerate after quotienting out the maximal divisible subgroup
of X(A). This pairing is called the Cassels-Tate pairing and it naturally
lifts to a pairing on Selmer groups. One application of this pairing is in
improving the bound on the Mordell-Weil rank r(A) obtained by performing
a standard descent calculation. Suppose X(A) is finite, then carrying out
an n-descent and computing the Cassels-Tate pairing on Seln(A) × Seln(A)
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gives the same bound as obtained from the n2-descent where Seln2(A) needs
to be computed. Since the kernel of the pairing equals the image of the n2-
Selmer group in the n-Selmer group, the rank bound one gets is the same
as that obtained by n2-descent (as shown in [24, Proposition 1.9.3]).

There have been many results on computing the Cassels-Tate pairing in
the case of elliptic curves. For example, in addition to defining the pairing,
Cassels also described a method for computing the pairing on Sel2(E) ×
Sel2(E) in [8] by solving conics over the field of definition of a two-torsion
point. Donnelly [10] then described a method that only requires solving
conics over K and Fisher [12] used the invariant theory of binary quartics
to give a new formula for the Cassels-Tate pairing on Sel2(E) × Sel2(E)
without solving any conics. In [2, 3], van Beek and Fisher computed the
Cassels-Tate pairing on the 3-isogeny Selmer group of an elliptic curve.
For p = 3 or 5, Fisher computed the Cassels-Tate pairing on the p-isogeny
Selmer group of an elliptic curve in a special case in [11]. In [13], Fisher and
Newton computed the Cassels-Tate pairing on Sel3(E) × Sel3(E). We are
interested in the natural problem of generalizing the different algorithms
for computing the Cassels-Tate pairing for elliptic curves to computing the
pairing for abelian varieties of higher dimensions.

In this paper, we study the Cassels-Tate pairing on Jacobians of genus
two curves admitting a special type of isogeny called a Richelot isogeny. Let
ϕ : J → Ĵ be a Richelot isogeny between Jacobians of two genus two curves.
We will be working under the assumption that all two-torsion points on J
are defined over K. This simplifies the computation. Because computing
the 2-Selmer group is cheap, the goal of this paper is not to improve the
rank bound. Instead, the goal of this paper is to illustrate a method that
explicitly computes the CT pairing in higher dimensions, which has not
been done before. Consider the following long exact sequence
(1.1)

0 → J [ϕ](Q) → J [2](Q) → Ĵ [ϕ̂](Q) → Selϕ(J) → Sel2(J) α−→ Selϕ̂(Ĵ).

Let ⟨ · , · ⟩CT denote the Cassels-Tate pairing on Selϕ̂(Ĵ). It is shown in
Remark 3.4 that we can replace Selϕ̂(Ĵ) with ker⟨ · , · ⟩CT and (1.1) remains
exact. Although it is not the goal of the paper, this shows computing the
pairing ⟨ · , · ⟩CT potentially improves the rank bound given by carrying out
a descent by Richelot isogeny. Then later in the paper, we describe an
explicit algorithm to compute the pairing ⟨ · , · ⟩CT .

In Section 2, we give some background results needed for the later sec-
tions and we define a pairing on Selϕ(J)×Selϕ(J) following the Weil pairing
definition of the Cassels-Tate pairing for the Richelot isogeny ϕ. In Sec-
tion 3, we then give an explicit formula as well as a practical algorithm to
compute the Cassels-Tate pairing on Selϕ̂(Ĵ) × Selϕ̂(Ĵ) where ϕ̂ is the dual
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isogeny of ϕ and also a Richelot isogeny. In Section 4, we give some de-
tails of the explicit computation and show directly that the formula for the
Cassels-Tate pairing is always a finite product with a computable bound.
In Section 5, we include a worked example demonstrating we can turn the
descent by Richelot isogeny into a 2-descent via computing the Cassels-Tate
pairing. The content of this paper is based on Chapter 2 of the thesis of
the author [24].

2. Preliminary Results

2.1. The set-up. In this paper, we are working over a number field K.
For any field k, we let k denote its algebraic closure and let µn ⊂ k denote
the nth roots of unity in k. We let Gk denote the absolute Galois group
Gal(k/k).

Let C be a general genus two curve defined over K with all Weierstrass
points defined over K, which is a smooth projective curve and it can be
given in the following hyperelliptic form:

(2.1) C : y2 = f(x) = G1(x)G2(x)G3(x),

where G1(x) = λ(x−ω1);G2(x) = (x−ω2)(x−ω3);G3(x) = (x−ω4)(x−ω5)
with λ, ωi ∈ K, ωi pairwise distinct and λ ̸= 0.

We let J denote the Jacobian variety of C, which is an abelian variety of
dimension 2 defined over K that can be identified with Pic0(C). We denote
the identity element of J by OJ and the point at infinity by ∞. Via the
natural isomorphism Pic2(C) → Pic0(C) sending [P1+P2] 7→ [P1+P2−2∞],
a point P ∈ J can be identified with an unordered pair of points of C,
{P1, P2}. This identification is unique unless P = OJ , in which case it
can be represented by any pair of points on C in the form {(x, y), (x,−y)}
or {∞,∞}. Moreover, J [2] = {OJ , {(ωi, 0), (ωj , 0)} for i ̸= j, {(ωi, 0),∞}}.
Let e2 : J [2]×J [2] → µ2 denote the Weil pairing on J [2]. As described in [9,
Chapter 3, Section 3], suppose {P1, P2} and {Q1, Q2} represent P,Q ∈ J [2]
where P1, P2, Q1, Q2 are Weierstrass points, then

(2.2) e2(P,Q) = (−1)|{P1,P2}∩{Q1,Q2}|.

2.2. Richelot isogenies. A Richelot isogeny is a polarized (2, 2)-isogeny
between Jacobians of genus 2 curves. In particular, it is an isogeny ϕ : J →
Ĵ such that J [ϕ] ∼= Z/2Z×Z/2Z and J, Ĵ are Jacobians of genus two curves.

A special case of [16, Proposition 16.8] and [5, Lemma 2.4] shows that the
kernel of a Richelot isogeny is actually a maximal isotropic subgroup of J [2]
with respect to the Weil pairing e2 on J [2] × J [2]. We have the following
general proposition on Richelot isogenies from [9, Chapter 9 Section 2]
and [14, Section 3]. In Remark 2.2, we give the extra details for the case
where the hyperelliptic form of the underlying curve is of degree 5.
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Proposition 2.1. Suppose the curve C is of the form

C : y2 = f(x) = G1(x)G2(x)G3(x),

where Gj(x) = gj2x
2 + gj1x + gj0, with gji ∈ K. Let ∆ = det(gij), which

we assume to be non-zero. Then there is a Richelot isogeny ϕ from J , the
Jacobian of C, to Ĵ , the Jacobian of the following genus two curve:

(2.3) Ĉ : ∆y2 = L1(x)L2(x)L3(x),

where each Li(x) = G′
j(x)Gk(x)−Gj(x)G′

k(x), for [i, j, k] = [1, 2, 3], [2, 3, 1],
[3, 1, 2].

In addition, the kernel of ϕ consists of the identity OJ and the 3 divisors
of order 2 given by Gi = 0. We have a similar result for the dual isogeny ϕ̂.

Moreover, any genus two curve C that admits a Richelot isogeny with
all the elements of the kernel K-rational is of the form y2 = f(x) =
G1(x)G2(x)G3(x) as above.

Remark 2.2. We exclude the case ∆ = 0 in the above proposition. In
fact, by [9, Chapter 14], ∆ = 0 implies that the Jacobian of C is isogenous
(via the Richelot isogeny) to a product of elliptic curves. It can be checked
that the analogue of ∆ for Ĉ is 2∆2, so the corresponding condition for
Ĉ is automatically satisfied. Also, in the case where Gi is linear, say Gi =
a(x− b), then we say {(b, 0),∞} is the divisor given by Gi = 0 which gives
an element in kerϕ.

We use the notation in Proposition 2.1 and denote the nontrivial elements
in the kernel of ϕ by Pi corresponding to the divisors of order 2 given by
Gi = 0 as well as denote the nontrivial elements in the kernel of ϕ̂ by P ′

i .
From [9, Chapter 9, Section 2] and [22, Section 3.2], we have the following
description of the Richelot isogeny ϕ. Associated with a Weierstrass point
P = (ω1, 0) with G1(ω1) = 0, for a generic (x, y) ∈ C, ϕ : J → Ĵ is given
explicitly as

{(x, y), P} 7→ {(z1, t1), (z2, t2)},
where z1, z2 satisfy

G2(x)L2(z) +G3(x)L3(z) = 0;

and (zi, ti) satisfies
yti = G2(x)L2(zi)(x− zi).

Denote the set of two points on C given by Gi = 0 by Si for i = 1, 2, 3. From
the explicit description above, we know that the preimages of P ′

1 under ϕ
are precisely {{Q1, Q2} ∈ J [2] such that Q1 ∈ S2, Q2 ∈ S3}. Similarly we
know the preimages of P ′

2 and P ′
3.
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2.3. The Weil pairing for the Richelot isogeny. Let J and Ĵ be
Jacobian varieties of genus two curves defined over K. Assume there is a
Richelot isogeny ϕ : J → Ĵ with ϕ̂ being its dual, i.e. ϕ ◦ ϕ̂ = [2]. Then we
have the Weil pairing

eϕ : J [ϕ] × Ĵ [ϕ̂] → K∗,

where eϕ(P,Q) = e2,J(P,Q′) for any Q′ ∈ J [2] such that ϕ(Q′) = Q. The
image of eϕ is in fact µ2(K∗) ⊂ K∗. Recall J [ϕ] is isotropic with respect to
e2,J as discussed in Section 2.2. This implies that e2,J(P,Q′) = e2,J(P,Q′′)
if ϕ(Q′) = ϕ(Q′′) and hence eϕ is well-defined. By (2.2) and the end of
Section 2.2, eϕ(Pi, P ′

i ) = 1 for any i = 1, 2, 3 and eϕ(Pi, P ′
j) = −1 for any

i ̸= j. Furthermore, given any P ∈ J [2], Q ∈ Ĵ [2], we know e2,J(P, ϕ̂(Q)) =
e2,Ĵ(ϕ(P ), Q) by [18, Proposition 13.2(a)], which implies that eϕ(P,Q) =
eϕ̂(Q,P ) for any P ∈ J [ϕ], Q ∈ Ĵ [ϕ̂].

2.4. Definition of the Cassels-Tate pairing in the case of a Richelot
isogeny. In this section, we give the definition of the Cassels-Tate pairing
in the case of a Richelot isogeny. There are four equivalent definitions of
the Cassels-Tate pairing stated and proved in [19]. The compatibility of the
definition below with the Weil Pairing definition of the Cassels-Tate pairing
on Sel2(J) × Sel2(J) is shown in [24, Proposition 2.1.6].

Let J and Ĵ be Jacobian varieties of genus two curves defined over a
number field K such that there exists a Richelot isogeny ϕ : J → Ĵ with
ϕ̂ : Ĵ → J being its dual isogeny and all points in J [ϕ] are defined over
K. The following lemma shows that for any b ∈ Selϕ(J), there exists b1 ∈

H1(GK , Ĵ [2]) mapping to b under the map induced by Ĵ [2] ϕ̂−→ J [ϕ].

Lemma 2.3. Let J and Ĵ be Jacobian varieties of genus two curves such
that there exists a Richelot isogeny ϕ : J → Ĵ with ϕ̂ : Ĵ → J being its
dual isogeny. Suppose all points in J [ϕ] are defined over K, We have the
following:

(i) The map H2(GK , J [ϕ]) res−−→
∏
vH

2(GKv , J [ϕ]) is injective.
(ii) For any b ∈ Selϕ(J), there exists b1 ∈ H1(GK , Ĵ [2]) mapping to b.

Proof. Since J [ϕ] ∼= (µ2)2 over K and Br(K)[2] ∼= H2(GK , µ2), we
have H2(GK , J [ϕ]) ∼= (H2(GK , µ2))2 ∼= (Br(K)[2])2 and similarly
H2(GKv , J [ϕ]) ∼= (Br(Kv)[2])2. Hence, via the injection of Br(K) →⊕

v Br(Kv), we haveH2(GK , J [ϕ]) res−−→
∏
vH

2(GKv , J [ϕ]) is injective, which
is (i). Note that by the formula in Proposition 2.1, all points in Ĵ [ϕ̂] are
also defined over K, therefore H2(GK , Ĵ [ϕ̂]) →

∏
vH

2(GKv , Ĵ [ϕ̂]), is also
injective.
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Now, consider the following commutative diagram of short exact se-
quences.

0 Ĵ [ϕ̂] Ĵ [2] J [ϕ] 0

0 Ĵ [ϕ̂] Ĵ J 0

=

ϕ̂

inc inc

ϕ̂

We then obtain the following commutative diagram of long exact sequences
along the rows by taking Galois cohomology.

H1(GK , Ĵ [2]) H1(GK , J [ϕ]) H2(GK , Ĵ [ϕ̂])

H1(GK , Ĵ) H1(GK , Ĵ) H2(GK , Ĵ [ϕ̂])

∏
vH

1(GKv , Ĵ)
∏
vH

1(GKv , J)
∏
vH

2(GKv , Ĵ [ϕ̂])

ϕ̂

b7→c =

ϕ̂

res res inj

ϕ̂

Since b ∈ Selϕ(J), its image c ∈ H1(GK , Ĵ) is locally trivial. Hence, its
image is also trivial in

∏
vH

2(GKv , Ĵ [ϕ̂]). Via the injectivity of the map
H2(GK , Ĵ [ϕ̂]) →

∏
vH

2(GKv , Ĵ [ϕ̂]), we get that b 7→ 0 ∈ H2(GK , Ĵ [ϕ̂]).
Thus b has a lift b1 ∈ H1(GK , Ĵ [2]). Hence (ii) holds. □

The definition of the pairing
Let a, a′ ∈ Selϕ(J). Let a1 ∈ H1(GK , Ĵ [2]) be an element that maps to

a ∈ Selϕ(J) ⊂ H1(GK , J [ϕ]) under the map induced by Ĵ [2] ϕ̂−→ J [ϕ], which
exists by Lemma 2.3.

Let v be a place of K. Let Pv ∈ Ĵ(Kv) be a lift of av ∈ H1(GKv , J [ϕ]).
Consider the commutative diagram below.

Ĵ(Kv) J(Kv) H1(GKv , Ĵ [ϕ̂])

Ĵ(Kv) Ĵ(Kv) H1(GKv , Ĵ [2])

J(Kv) Ĵ(Kv) H1(GKv , J [ϕ])

ϕ̂

=
δϕ̂

ϕ ι ρv 7→δ2(Pv)−a1,v

2

ϕ̂

δ2

= ϕ̂ δ2(Pv) 7→av a1,v 7→av

ϕ δϕ

Pv 7→av

Then δ2(Pv) and a1,v in H1(GKv , Ĵ [2]) both map to av. Hence, we choose
ρv ∈ H1(GKv , Ĵ [ϕ̂]) a lift of δ2(Pv) − a1,v and define ηv = ρv ∪ϕ̂,v a

′
v ∈

H2(GKv ,Kv
∗). Here ∪ϕ̂,v denotes the cup product H1(GKv , Ĵ [ϕ̂]) ×
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H1(GKv , J [ϕ]) → H2(GKv ,K
∗) associated to eϕ̂. The Cassels-Tate pair-

ing is defined by
⟨a, a′⟩CT :=

∑
v

invv(ηv).

We sometimes refer to invv(ηv) above as the local Cassels-Tate pairing
between a, a′ ∈ Selϕ(J) for a place v of K, noting that this depends on the
choice of the global lift a1.

Remark 2.4. The Weil pairing definition of the Cassels-Tate pairing is
proved to be independent of the choices made in the definition in [19] and
more details are given in [24, Proposition 1.8.4]. Since the above pairing is
compatible with the Weil pairing definition as in [24, Proposition 2.1.6], we
know it is also independent of the choices we make.

3. Computation of the Cassels-Tate Pairing

Recall that we are working with a genus two curve C in the form (2.1) and
we fix a choice of Richelot isogeny ϕ : J → Ĵ where J is the Jacobian of C
and Ĵ is the Jacobian of the genus two curve defined by (2.3). We write ϕ̂ for
the dual of ϕ. This implies that all points in J [2] are defined over K and all
points in Ĵ [ϕ̂] are defined over K by Proposition 2.1. Recall, we denote the
nontrivial elements in J [ϕ] by P1, P2, P3 where Pi corresponds to the divisor
given by Gi = 0 and the nontrivial elements in Ĵ [ϕ̂] by P ′

1, P
′
2, P

′
3 where P ′

i

corresponds to the divisor given by Li = 0 as in the same Proposition. In
this section, we will give a practical formula for the explicit computation
for the Cassels-Tate pairing in the case of Richelot isogenies.

3.1. Explicit embeddings of H1(GK, J[ϕ]) and H1(GK, J[2]). In or-
der to give the formula for the Cassels-Tate pairing, we first describe some
well-known embeddings that are useful for the explicit computation.

Recall all points in J [2] and Ĵ [ϕ̂] are defined over K. From the exact
sequence

0 → J [ϕ]
wϕ−−→ (µ2)3 N−→ µ2 → 0,

where wϕ : P 7→ (eϕ(P, P ′
1), eϕ(P, P ′

2), eϕ(P, P ′
3)) and N : (a, b, c) 7→ abc, we

get

H1(GK , J [ϕ]) inj−−→ H1(GK , (µ2)3) ∼= (K∗/(K∗)2)3

N∗−−→ H1(GK , µ2) ∼= K∗/(K∗)2,

where ∼= denotes the Kummer isomorphism derived from Hilbert’s The-
orem 90 and N∗ is induced by N . The induced map H1(GK , J [ϕ]) →
H1(GK , (µ2)3) is injective as the map (µ2)3 N−→ µ2 is surjective. Further-
more, the image of this injection contains precisely all the elements with
norm a square by the exactness of the sequence above, i.e. H1(GK , J [ϕ]) ∼=
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ker((K∗/(K∗)2)3 N∗−−→ K∗/(K∗)2). We have a similar embedding for
H1(GK , Ĵ [ϕ̂]).

Also, from the exact sequence

0 → J [2] w2−→ (µ2)5 N−→ µ2 → 0,
where w2 : P 7→ (e2(P, {(ω1, 0),∞}), . . . , e2(P, {(ω5, 0),∞})) and N :
(a, b, c, d, e) 7→ abcde, we get

H1(GK , J [2]) inj−−→ H1(GK , (µ2)5) ∼= (K∗/(K∗)2)5

N∗−−→ H1(GK , µ2) ∼= K∗/(K∗)2,

where ∼= denotes the Kummer isomorphism derived from Hilbert’s Theo-
rem 90 and N∗ is induced by N . Again the induced map H1(GK , J [2]) →
H1(GK , (µ2)5) is injective as the map (µ2)5 N−→ µ2 is surjective. Further-
more, the image of this injection also contains precisely all the elements
with norm a square from the exact sequence above. In particular, we have

H1(GK , J [2]) ∼= ker((K∗/(K∗)2)5 N−→ K∗/(K∗)2)

3.2. Explicit Formula. Using the embeddings described in Section 3.1,
we can now state and prove the explicit formula for the Cassels-Tate pairing
in the case of a Richelot isogeny.

Proposition 3.1. Under the embeddings of H1(GK,J [ϕ]) and H1(GK, Ĵ [ϕ̂])
in (K∗/(K∗)2)3 as described in Section 3.1, we get that the cup product ∪ϕ
induced by eϕ is

H1(GK , J [ϕ]) ×H1(GK , Ĵ [ϕ̂]) → Br(K)[2]
((a1, b1, c1), (a2, b2, c2)) 7→ (a1, a2) + (b1, b2) + (c1, c2),

where ( · , · ) represents the quaternion algebra and also its equivalence class
in Br(K)[2].

Proof. Recall that the embedding J [ϕ]→(µ2)3 is given by sending P ∈J [ϕ]
to

(eϕ(P, P ′
1), eϕ(P, P ′

2), eϕ(P, P ′
3))

and the embedding Ĵ [ϕ̂] → (µ2)3 is given by sending Q ∈ Ĵ [ϕ̂] to
(eϕ(P1, Q), eϕ(P2, Q), eϕ(P3, Q)).

It can be checked, via the end of the discussion of Section 2.2, that we
have the following commutative diagram:

J [ϕ] × Ĵ [ϕ̂] (µ2)3 × (µ2)3

µ2 µ2,

inj

eϕ f

=
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where f sends ((−1)a, (−1)b, (−1)c), ((−1)a′
, (−1)b′

, (−1)c′) to (−1)aa′+bb′+cc′

with a, b, c ∈ {0, 1}.
Consider the natural pairing ϕ : µ2 × µ2 → µ2 sending ((−1)a, (−1)b) to

(−1)ab. This gives a cup product pairing

H1(GK , µ2) ×H1(GK , µ2) −→ H2(GK , µ2) ∼= Br(K)[2]
([σ 7→ aσ], [τ 7→ bτ ]) 7−→ [(σ, τ) 7→ ϕ(aσ, bτ )].

By Hilbert’s Theorem 90, we can identify H1(GK , µ2) with K∗/(K∗)2. Un-
der this identification, the image of (a, b) ∈ K∗/(K∗)2 × K∗/(K∗)2 is pre-
cisely the equivalence class of the quaternion algebra (a, b) by [21, Chap-
ter XIV, Section 2, Proposition 5] and [15, Corollary 2.5.5(1), Proposi-
tion 4.7.3].

Therefore, we get that the induced cup product is

H1(K,J [ϕ]) ×H1(K, Ĵ(ϕ̂)) −→ Br(K)[2]
((a1, b1, c1), (a2, b2, c2)) 7−→ (a1, a2) + (b1, b2) + (c1, c2). □

Proposition 3.2. Under the embeddings of H1(GK,J [ϕ]) and H1(GK,J [2])
in (K∗/(K∗)2)3 and (K∗/(K∗)2)5 as described in Section 3.1, the map Ψ :
H1(GK , J [ϕ]) → H1(GK , J [2]) induced from the inclusion J [ϕ] → J [2] is
given by

(a, b, c) 7−→ (1, c, c, b, b).

Proof. Recall the embedding of H1(GK , J [2]) in (K∗/(K∗)2)5, and the em-
bedding of H1(GK , J [ϕ]) in (K∗/(K∗)2)3 are induced from the short exact
sequences in the following commutative diagram:

0 J [ϕ] (µ2)3 µ2 0

0 J [2] (µ2)5 µ2 0.

wϕ

inc

N

ψ =
w2 N

Suppose P ∈ J [ϕ] maps to (α, β, γ) via wϕ. Then eϕ(P, P ′
1) = α,

eϕ(P, P ′
2) = β, eϕ(P, P ′

3) = γ. By definition, eϕ(P, ϕ(Q)) = e2(P,Q)
for any Q ∈ J [2]. From the explicit description of ϕ in Section 2.2, we
know α = e2(P, {(ω2, 0), (ω4, 0)}), β = e2(P, {(ω1, 0), (ω5, 0)}) and γ =
e2(P, {∞, (ω3, 0)}). Recall that J [ϕ] is isotropic with respect to e2. This
implies that w2(P ) = (1, γ, γ, β, β). Therefore, we define ψ(α, β, γ) =
(1, γ, γ, β, β), which makes the above diagram commute.

Now consider Ψ : H1(GK , J [ϕ]) → H1(GK , J [2]) which, via the embed-
ding in Section 3.1, is the map H1(GK , (µ2)3) → H1(GK , (µ2)5) induced
by ψ. Therefore, we can verify that Ψ(a, b, c) = (1, c, c, b, b). □
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Proposition 3.3. Under the embeddings of H1(GK, Ĵ [ϕ̂]) and H1(GK,J [2])
in (K∗/(K∗)2)3 and (K∗/(K∗)2)5 as described in Section 3.1, the map Φ :
H1(GK , J [2]) → H1(GK , Ĵ [ϕ̂]) induced from J [2] ϕ−→ Ĵ [ϕ̂] is given by

(a1, a2, a3, a4, a5) 7−→ (a1, a2a3, a4a5).

Proof. Consider the following commutative diagram whose rows are exact
sequences

0 J [2] (µ2)5 µ2 0

0 Ĵ [ϕ̂] (µ2)3 µ2 0.

w2

ϕ

N

ψ =
wϕ̂ N

Suppose P ∈ J [2] maps to (α1, α2, α3, α4, α5) via w2. Then αi =
e2(P, {(ωi, 0),∞}). Recall that eϕ̂(ϕ(P ), Pi) = e2(P, Pi) by the discussion
at the end of Section 2.3. This implies that ϕ(P ) maps to (α1, α2α3, α4α5)
via wϕ̂. Therefore, we can verify that the induced map Φ : H1(GK , J [2]) →
H1(GK , Ĵ [ϕ̂]) under the embeddings in Section 3.1 is given by

(a1, a2, a3, a4, a5) 7−→ (a1, a2a3, a4a5). □

Remark 3.4. We observe that, under the assumption of this section, we
have the following short exact sequence:

0 −→ H1(GK , J [ϕ]) −→ H1(GK , J [2]) −→ H1(GK , Ĵ [ϕ̂]) −→ 0.
Since the Galois action on J [2] is trivial, all linear subspaces are sub-
modules. This implies that the short exact sequence of Galois modules
splits (every linear subspace has a complement), which directly implies
that all connecting maps are zero. More explicitly the injectivity of the
map H1(GK , J [ϕ]) → H1(GK , J [2]) is due to the surjectivity of J(K)[2] ϕ−→
Ĵ(K)[ϕ̂]. For surjectivity of H1(GK , J [2]) → H1(GK , Ĵ [ϕ̂]), observe that
the element in H1(GK , Ĵ [ϕ̂]) represented by (a, b, c) has a preimage in
H1(GK , J [2]) represented by (a, 1, b, 1, c) by Proposition 3.3.

Remark 3.5. Let v be a place of K. We also have the explicit embeddings
of H1(GK , J [ϕ]) and H1(GK , J [2]) described in Section 3.1 as well as the
explicit maps given in this section if we replace K with Kv or Knr

v .

Using the above three propositions, we now have the explicit formula for
the Cassels-Tate pairing in the case of a Richelot isogeny.

Theorem 3.6. Let J be the Jacobian variety of a genus two curve defined
over a number field K. Suppose all points in J [2] are defined over K and
there exists a Richelot isogeny ϕ : J → Ĵ where Ĵ is the Jacobian variety of
another genus two curve. Let ϕ̂ be the dual isogeny of ϕ. Consider a, a′ ∈
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Selϕ̂(Ĵ). Suppose (α′
1, α

′
2, α

′
3) ∈ (K∗/(K∗)2)3 represents a′. For any place v,

we let Pv ∈ J(Kv) denote a lift of av ∈ H1(GKv , Ĵ [ϕ̂]) and suppose δ2(Pv) ∈
H1(GKv , J [2]) is represented by (x1,v, x2,v, x3,v, x4,v, x5,v) ∈ (K∗

v/(K∗
v )2)5.

Then we have
⟨a, a′⟩CT =

∏
v

(x2,vx4,v, α
′
1)v(x4,v, α

′
2)v(x2,v, α

′
3)v,

where ( · , · )v represents the Hilbert symbol. Note that here we identify 1
2Z/Z

with µ2.

Proof. Suppose a is represented by (α1, α2, α3) ∈ (K∗/(K∗)2)3. Then it has
a preimage a1 ∈ H1(GK , J [2]) represented by (α1, 1, α2, 1, α3) by Propo-
sition 3.3. So following the definition of ⟨a, a′⟩CT , we need to compute
ρv∪ϕ,va′

v ∈ H2(GKv ,Kv
∗) where ρv ∈ H1(GKv , J [ϕ]) is a lift of δ2(Pv)−a1,v

and ∪ϕ,v is the cup product induced by eϕ. We know that δ2(Pv) − a1,v is
in the image of H1(GKv , J [ϕ]), which implies (by Proposition 3.2) that
x1,v/α1 = 1, x2,v = x3,v/α2 and x4,v = x5,v/α3. Since δ2(Pv) − a1,v is rep-
resented by (x1,v/α1, x2,v, x3,v/α2, x4,v, x5,v/α3) = (1, x2,v, x2,v, x4,v, x4,v),
by Proposition 3.2, ρv is represented by (x2,vx4,v, x4,v, x2,v). Hence, by
Proposition 3.1, we know ⟨a, a′⟩CT =

∑
v invv((x2,vx4,v, α

′
1) + (x4,v, α

′
2) +

(x2,v, α
′
3)) =

∏
v(x2,vx4,v, α

′
1)v(x4,v, α

′
2)v(x2,v, α

′
3)v. □

4. Computational details

In this section, we will describe some further details for the explicit com-
putation of the Cassels-Tate pairing using the formula in Theorem 3.6.

4.1. Embedding of Ĵ(K)/ϕ(J(K)) and J(K)/2J(K). As discussed
in [14, Section 3] [9, Chapter 10 Section 2], the composition of the connect-
ing map δϕ : Ĵ(K)/ϕ(J(K)) → H1(GK , J [ϕ]) and the embedding described
above H1(GK , J [ϕ]) → (K∗/(K∗)2)3 can be given explicitly as follows. We
have
µϕ : Ĵ(K)/ϕ(J(K)) −→ K∗/(K∗)2 ×K∗/(K∗)2 ×K∗/(K∗)2

{(x1, y1), (x2, y2)} 7−→ (L1(x1)L1(x2), L2(x1)L2(x2), L3(x1)L3(x2))
.

Similarly we have the injection:
(4.1)
µϕ̂ : J(K)/ϕ̂(Ĵ(K)) −→ K∗/(K∗)2 ×K∗/(K∗)2 ×K∗/(K∗)2

{(x1, y1), (x2, y2)} 7−→ (G1(x1)G1(x2), G2(x1)G2(x2), G3(x1)G3(x2))
.

Note the following special cases. When xj is a root of Gi, then Gi(xj) should
be taken to be

∏
l∈{1,2,3}\{i}Gl(xj). We have a similar solution when xj is

a root of Li, which is replacing Li(xj) with ∆
∏
l∈{1,2,3}\{i} Ll(xj). When

(xj , yj) = ∞, then Gi(xj) is taken to be 1. In the case where one of Li is
linear and (xj , yj) = ∞, then Li(xj) is taken to be 1.
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On the other hand, we have a standard injection, which is the compo-
sition of the connecting map δ2 : J(K)/2J(K) → H1(GK , J [2]) and the
embedding described above H1(GK , J [2]) → (K∗/(K∗)2)5. This can also
be found in [14, Section 3] [9, Chapter 10 Section 2].

µ : J(K)/2J(K) −→ (K∗/(K∗)2)5

{(x1, y1), (x2, y2)} 7−→ ((x1 − ω1)(x2 − ω1), . . . , (x1 − ω5)(x2 − ω5))
.

Note the following special cases. When (xj , yj) = (ωi, 0), then xj−ωi should
be taken to be λ

∏
l∈1,2,3,4,5\{i}(ωi − ωl). When (xj , yj) = ∞, then xj − ωi

is taken to be λ.
Observe the images of the maps µϕ and µϕ̂ are both contained in the

kernel of (K∗/(K∗)2)3 N−→ K∗/(K∗)2. Similarly, the image of µ is contained
in the kernel of (K∗/(K∗)2)5 N−→ K∗/(K∗)2.

4.2. Bounding the set of bad primes. The contribution to the for-
mula coming from places outside the finite set of places S for the local
Cassels-Tate pairing of a, a′ ∈ Selϕ̂(Ĵ) in Theorem 3.6 vanishes, where S =
{places of bad reduction for C} ∪ {places dividing 2} ∪ {infinite places}.
This is explained as follows.

By [17, Chapter I, Section 6] [20, Section 3], we have

Selϕ(J) ⊂ H1(GK , J [ϕ];S) = ker

H1(GK , J [ϕ]) →
∏
v/∈S

H1(GKnr
v
, J [ϕ])

 .

Similarly, Selϕ̂(Ĵ) ⊂ H1(GK , Ĵ [ϕ̂];S) and Sel2(J) ⊂ H1(GK , J [2];S). It can
be shown that ker

(
K∗/(K∗)2 →

∏
v/∈SK

nr∗
v /(Knr∗

v )2)
= K(S, 2), where

K(S, 2) is defined to be {x ∈ K∗/(K∗)2 : ordv(x) is even for all v /∈ S}.
So αi, α′

i ∈ K(S, 2) for all i, where (α1, α2, α3), (α′
1, α

′
2, α

′
3) ∈ (K∗/(K∗)2)3

represent a, a′ respectively. Suppose v /∈ S. Since a ∈ H1(GK , J [ϕ]) is a
global Selmer element, it has a representation where valuation outside S
is even, therefore from the explicit formula given in Proposition 3.3, we
know there exists a representation of the image of a1,v in (K∗

v/(K∗
v )2)5

such that all its coordinates have valuation 0. Since J(Knr
v ) 2−→ J(Knr

v ) is
surjective by [1, Lemma 3.4], the map H0(GKnr

v
, J) → H1(GKnr

v
, J [2]) is

the zero map and hence the image of Pv is trivial in H1(GKnr
v
, J [2]). This

implies that δ2(Pv) ∈ H1(GKv , J [2]) ⊂ (K∗
v/(K∗

v )2)5 has a representation
such that all its coordinates have valuation 0. This implies that δ2(Pv) −
a1,v ∈ H1(GKv , J [2]) ⊂ (K∗

v/(K∗
v )2)5 has a representation such that all

its coordinates have valuation 0. Then, by the formula in Proposition 3.2,
ρv ∈ H1(GKv , Ĵ [ϕ̂]) ⊂ (K∗

v/(K∗
v )2)3 also has a representation such that

all its coordinates have valuation 0. From the first part of the theorem,
we know computing ⟨a, a′⟩CT requires computing the Hilbert symbol. It is
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well-known that the Hilbert symbol between x and y is trivial when the
valuations of x, y are both 0 and the local field has odd residue characteristic
(for a detailed proof see [24, Lemma 1.4.18]). Hence, the local Cassels-Tate
pairing is trivial for all but finitely many places contained in the set S.

5. Worked Example

We explicitly compute the Cassels-Tate pairing in an example where
this improves the rank bound obtained via descent by Richelot isogeny. We
will be using the same notation as in Section 2.4 to compute ⟨ · , · ⟩CT on
Selϕ̂(Ĵ) × Selϕ̂(Ĵ). Our base field K is the field of the rationals, Q.

Let us consider the following genus two curve which is obtained by taking
k = 113 in [14, Theorem 1]

C : y2 = (x+ 2 · 113)x(x− 6 · 113)(x+ 113)(x− 7 · 113),
with G1 = (x+ 2 · 113), G2 = x(x− 6 · 113), G3 = (x+ 113)(x− 7 · 113) and

∆ =

 2 · 113 1 0
0 −6 · 113 1

−7 · 1132 −6 · 113 1

 = −7 · 1132,

L1 = G′
2G3 −G′

3G2 = −14 · 1132(x− 3 · 113),
L2 = G′

3G1 −G′
1G3 = (x+ 5 · 113)(x− 113),

L3 = G′
1G2 −G′

2G1 = −(x+ 6 · 113)(x− 2 · 113).

So we have a Richelot isogeny ϕ from J , the Jacobian variety of C, to Ĵ ,
the Jacobian variety of the following curve.

Ĉ : y2 = −2(x− 3 · 113)(x+ 5 · 113)(x− 113)(x+ 6 · 113)(x− 2 · 113)
It can be shown, using MAGMA [4], that:

Selϕ̂(Ĵ)
= ⟨(2 ·113,−14 ·113,−7),(113,7,7 ·113), (113,113,1),(2,2,1),(1,7,7)⟩
⊂ (Q∗/(Q∗)2)3

(5.1)

Selϕ(J)
= ⟨(113,−7 · 113,−7), (2 · 113, 7, 14 · 113), (113, 1, 113)⟩
⊂ (Q∗/(Q∗)2)3.

(5.2)

Now we will compute the Cassels-Tate pairing matrix on Selϕ̂(Ĵ) ×
Selϕ̂(Ĵ). Since (2 · 113,−14 · 113,−7), (113, 7, 7 · 113) are images of ele-
ments {(0, 0), (−2 · 113, 0)} and {(−2 · 113, 0), (−113, 0)} in J(Q)/ϕ̂(Ĵ(Q))
via µϕ̂ in (4.1), they are in the kernel of the Cassels-Tate pairing. So
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it is sufficient to look at the pairing on ⟨(113, 113, 1), (2, 2, 1), (1, 7, 7)⟩ ×
⟨(113, 113, 1), (2, 2, 1), (1, 7, 7)⟩.

Since the primes of bad reduction are {2, 3, 7, 113}, by Section 4.2, we
know these are the only primes which we need to consider in the formula for
the Cassels-Tate pairing as in Theorem 3.6. The tables below give details
of the local computations at these primes.

Let a = (113, 113, 1) ∈ Selϕ̂(Ĵ). By the formula given in Proposition 3.3,
it has a lift a1 = (113, 1, 113, 1, 1) ∈ H1(GK , J [2]). Then for the local
calculation, we have the following table:

place v ∞ 2 3 7 113
Pv id id {(0, 0), (−113, 0)} id {(0, 0), (−2 · 113, 0)}

δ2(Pv) id id (−1, 3,−3,−1,−1) id (113, 3 ·113, 3, 1, 1)
a1,v id id (−1, 1,−1, 1, 1) id (113, 1, 113, 1, 1)

δ2(Pv) − a1,v id id (1, 3, 3,−1,−1) id (1, 3 ·113, 3 ·113, 1, 1)
ρv id id (−3,−1, 3) id (3·113, 1, 3·113)

Now let a = (2, 2, 1) ∈ Selϕ̂(Ĵ). By the formula given in Proposition 3.3,
it has a lift a1 = (2, 1, 2, 1, 1) ∈ H1(GK , J [2]). Then for the local calculation,
we have the following table:

place v ∞ 2 3 7 113
Pv id {(0, 0), (−2 · 113, 0)} {(0, 0), (−113, 0)} id id

δ2(Pv) id (2, 6, 3,−1,−1) (−1, 3,−3,−1,−1) id id
a1,v id (2, 1, 2, 1, 1) (−1, 1,−1, 1, 1) id id

δ2(Pv) − a1,v id (1, 6, 6,−1,−1) (1, 3, 3,−1,−1) id id
ρv id (−6,−1, 6) (−3,−1, 3) id id

Lastly let a = (1, 7, 7) ∈ Selϕ̂(Ĵ). By the formula given in Proposition 3.3,
it has a lift a1 = (1, 1, 7, 1, 7) ∈ H1(GK , J [2]). Then for the local calculation,
we have the following table:

place v ∞ 2 3 7 113
Pv id {(−2 · 113, 0), (−113, 0)} id {(−2 · 113, 0), (−113, 0)} id

δ2(Pv) id (1, 2,−2,−2, 2) id (1, 1, 7, 7, 1) id
a1,v id (1, 1,−1, 1,−1) id (1, 1, 7, 1, 7) id

δ2(Pv) − a1,v id (1, 2, 2,−2,−2) id (1, 1, 1, 7,7) id
ρv id (−1,−2, 2) id (7, 7, 1) id

Following the explicit algorithm for computing the Cassels-Tate pairing,
we get that the Cassels-Tate pairing between (113, 113, 1) and (2, 2, 1) is
the only nontrivial one.

Therefore, we get the 5 × 5 Cassels-Tate pairing matrix from the 5 gen-
erators of Selϕ̂(Ĵ). More specifically, the ijth entry of the matrix is the
Cassels-Tate pairing between the ith and the jth generators of Selϕ̂(Ĵ),
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where the generators are in the same order as listed in the Selmer group
Selϕ̂(Ĵ) (5.1). 

1 1 1 1 1
1 1 1 1 1
1 1 1 −1 1
1 1 −1 1 1
1 1 1 1 1


Remark 5.1. From the computation above, we have shown that the ker-
nel of the Cassels-Tate pairing has dimension 3. We make the following
observations:

• Let r = rank(J(Q)). We know

2r = |Ĵ(Q)/ϕ(J(Q))| × |J(Q)/ϕ̂(Ĵ(Q))|
|J(Q)[ϕ]| × |Ĵ(Q)[ϕ̂]|

.

In a standard descent by Richelot isogeny, we have |Ĵ(Q)/ϕ(J(Q))|≤
| Selϕ(J)| and |J(Q)/ϕ̂(Ĵ(Q))| ≤ | Selϕ̂(Ĵ)|. Therefore, we get r ≤ 4.
However, after computing the Cassels-Tate pairing, we can bound
r via bounding |J(Q)/ϕ̂(Ĵ(Q))| by | ker⟨ · , · ⟩CT | = 23 instead of
| Selϕ̂(Ĵ)| = 25. This improves the rank bound of J(Q) from 4 to 2.

• Consider the exact sequence (1.1). It can be shown that Imα is
contained inside ker⟨ · , · ⟩CT , the kernel of the Cassels-Tate pairing
on Selϕ̂(Ĵ) × Selϕ̂(Ĵ). Indeed, if a ∈ Selϕ̂(Ĵ) is equal to α(b), where
b ∈ Sel2(J), then following the earlier notations, we can let a1 = b.
Then we can pick Pv ∈ J(Qv) to be the lift of a1,v. Therefore,
δ2(Pv) − a1,v = 0 ∈ H1(GQv , J [2]) which implies, a ∈ ker⟨ · , · ⟩CT .
Hence, we can always bound | Sel2(J)| using ker⟨ · , · ⟩CT , and this
bound will be sharp when Imα = ker⟨ · , · ⟩CT .

We used MAGMA to compute the size of Sel2(J), which is equal
to 26, and we have the exact sequence:

0→J [ϕ](Q)→J [2](Q)→ Ĵ [ϕ̂](Q)→Selϕ(J)→Sel2(J) α−→ker⟨ · , · ⟩CT →0.

size = 22 size = 24 size = 22 size = 23 size = 26 size = 23

So for this example, we have turned the descent by Richelot isogeny
into a 2-descent via computing the Cassels-Tate pairing.
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