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Asymptotic behavior of class groups and
cyclotomic Iwasawa theory of elliptic curves

par TOSHIRO HIRANOUCHTI et TATsuyaA OHSHITA

RESUME. Dans cet article, nous étudions une relation entre certains quotients
de groupes des classes d’idéaux et le module d’Iwasawa cyclotomique X, du
dual de Pontrjagin du groupe de Selmer fin d’une courbe elliptique E sur
Q. Nous considérons 'extension galoisienne K” de Q engendrée par les co-
ordonnées des points de p"-torsion de E et introduisons le quotient AZ du
p-Sylow du groupe des classes d’idéaux de KZ découpé par la représentation
galoisienne modulo p™ sur le groupe E[p™]. Nous décrivons le comportement
asymptotique des AE en utilisant le module d’Twasawa X.,. En particulier,
sous certaines conditions, nous obtenons une formule asymptotique a la Iwa-
sawa pour l'ordre de AZ en utilisant les invariants d’Twasawa de Xo.

ABSTRACT. In this article, we study a relation between certain quotients of
ideal class groups and the cyclotomic Iwasawa module X, of the Pontrjagin
dual of the fine Selmer group of an elliptic curve E defined over Q. We consider
the Galois extension field KZ of Q generated by coordinates of all p"-torsion
points of E, and introduce a quotient AZ of the p-Sylow subgroup of the ideal
class group of KF cut out by the modulo p™ Galois representation E[p"].
We describe the asymptotic behavior of AF by using the Iwasawa module
X In particular, under certain conditions, we obtain an asymptotic formula
as Iwasawa’s class number formula on the order of AX by using Iwasawa’s
invariants of X .

1. Introduction

Let E be an elliptic curve over Q. For each N € Z~, we denote by E[N]
the subgroup of E(Q) consisting of elements annihilated by N. Fix an odd
prime number p at which E has good reduction. For each n € Z~(, we put
KE .= Q(E[p"]), and h,, := ord, #(Cl(Ogr) ®z Zp), where ord,, denotes
the additive p-adic valuation normalized by ord,(p) = 1 and Cl(Okr) is the
ideal class group of the ring of integers O . In recent papers [6, 18, 19],
there has been renewal of interest in an asymptotic behavior of the class

numbers {h;, }n>0 along the tower of number fields KZ. It has been shown
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that an asymptotic inequality which gives a lower bound of {h,, } >0 in terms
of the Mordell-Weil rank rankz E(Q) of E (cf. Remark 1.12). For some
generalizations of these results including abelian varieties over a number
field, see [5] and [14]. In these works, the divisible part of the fine Selmer
group Sel,(Q, E[p*°]) (cf. Definition 5.3) plays important roles.

We define a quotient AZ of C1(O k=) ®7ZLp, which is cut out by the Galois
representation E[p"] (see (1.2) below). In this paper, we shall describe the
asymptotic behavior of AL by using the fine Selmer group Sel,(K,, E[p"]),
where we put K, := Q(u»). As an application of our result, we shall
show an asymptotic formula on the order of AZ using Iwasawa’s p and
A-invariants of the cyclotomic Iwasawa module associated with the fine
Selmer group of the elliptic curve E, as “Iwasawa’s class number formula”

([8])-

1.1. The statements of the main results. In order to state our main
results, let us introduce some notation. For each N € Z~(, we denote by
pun = py(Q) the group of N-th roots of unity. For each m € Zxq, we
define K, := Q(upm) (in particular, we put Ky := Q), and set Ko =
Um0 Km. For each my,ma € Z>o U {oo} with mg > mq, we set Gy m, =
Gal(Ky,, /K, ), and put A := Gy ~ (Z/pZ)*. For any m > 1, we have
Gm,0 = A X Gp, 1. We can regard Z,[A] as a subring of Z,[G,, 0]. We put
A := Hom(A, Z,'). For each x € A, we define Zp(x) = Zyp to be the Zy[A]-
algebra where A acts via x, and for a Zp[A]-module M, we set M, =
M ®z,1a1Zp(x). We have M = @Xez M, because p is odd. For each m,n €

Z>o, we define

R = L[p" L|Gm,0] = Lp/p" Lp|Gal(Ky, /Q)],
and put R, := R, . For each number field L, that is, a finite extension of

Q, and each n € Z>o U {oo}, let Sel(L, E[p"]) be the Selmer group in the
classical sense, and Sel, (L, E[p"]) the kernel of the localization map

Sel(L, Bp"]) — [ H' (L, E[p"))
vlp
which is called the fine Selmer group (for details, see Definition 5.3 and
Remark 5.6 later). For each m,n € Z>g, the group Sel,(K,,, E[p"]) becomes
an Ry, ,-module. For any n € Zsg, the field KX = Q(E[p"]) contains p,»
and hence K2 D K,, = Q(u,n) because of the Weil pairing E[p"] x E[p"] —
ppn ([24, Chapter III, Corollary 8.1.1]).
Let
o Gal(KE Q) — Auty, (E[p")) = GLy(Z/p"7)
be the natural left action of Gal(KZY/Q) on E[p"], and

(L) (pF)": Gal(KE/Q) — Auty, (E[p")Y) = GLa(Z/p"Z)
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be the right action of Gal(K”/Q) on the Pontrjagin dual
E[p"]" = Homg, (E[p"], Z/p"Z)
of E[p"]. We define an R,-module A” by

(1.2) Al = (My(Z/p"Z), (pF)") ®ziGal(rcE 1,y CUOK([1/p)),

where (Ms(Z/p"Z), (pE)Y) denotes the matrix algebra Mo(Z/p"Z) of de-
gree two over Z/p"Z equipped with the right action of Gal(KZ /Q) (for the
precise definition, see (6.28) in Section 6). We denote by

(Ay)" = Homgz, (A7, Z/p"Z)

the Pontrjagin dual of AZ. The following theorem is the main result of our
paper.
Theorem 1.1 (Theorem 6.16). Let E be an elliptic curve over Q, and p

an odd prime number where E has good reduction. Suppose that E satisfies

the following conditions (C1), (C2) and (C3).
(C1) The Galois representation

p¥: Gk = Gal(Q/Ks) — Autp, (E[p]) ~ GLa(F)p)

is absolutely irreducible over IF),.

(C2) For any n € Z>1 and any place v of K, where the base change
Ek, ., of E has potentially multiplicative reduction, we have
E(Kn,fu)[p} = 0.

(C3) If E has complex multiplication, the ring End(E) of endomorphisms
of E defined over Q is the maximal order of an imaginary quadratic
field.

Then, there exists a family of R,-homomorphisms
rn : Selp(Kn, E[p"]) 2 — (A7)Y

such that the kernel Ker(ry,) and the cokernel Coker(ry,) are finite with order
bounded independently of n.

Remark 1.2. As we see Proposition 4.1 below, the condition (C1) is sat-
isfied if the following condition (C1),, holds:

(C1)

The Galois representation

pE = pE’p: Ggo — AutZP(Tp(E)) o~ GLQ(ZP)

str

is surjective.

Note that if F does not have complex multiplication, then the map p¥ is
surjective for all but finitely many prime number p by Serre’s open image
theorem (][22, 4.4, Théoreme 3|, [23, p. IV-11]).
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Remark 1.3. In Section 4, we show that for any elliptic curve £ over Q,
there exists a quadratic twist E'/Q of E which satisfies the condition (C2)
(Proposition 4.2).

Remark 1.4. If the condition (C1) for E is satisfied, then the ring homo-
morphism Z,[Gk. ] = M2(F,) induced by p¥ = (p¥ mod p) is surjective,
where M (F,) is the matrix algebra of degree two over IF,. Hence, with
the aid of Nakayama’s lemma for finitely generated Z,-modules, the condi-
tion (C1) for E implies that the homomorphism

(o))" Zp[GR) — Ma(Z/p"2)

of Z,-algebras induced by (1.1) is surjective. Under the assumption of (C1),
we can regard AL as a quotient of Cl(Ogp).

Remark 1.5. For each n € Z>1, we define an R,,-module

S := Homg, Gayi g /1, (CUOk£[1/P]) @2 Zy, E[p")).

In Section 6, we prove Theorem 1.1 by constructing Gal(K,/Q)-homo-
morphisms

Sely(Kn, E[p"))®* — 572 «— (47)",
where the orders of the kernel and the cokernel of the former map are
bounded and the latter is an isomorphism.

Remark 1.6. In [16], under certain assumptions on (F,p), Prasad and
Shekhar studied a relation between Sel,(Q, E[p]) and

§ = HOHIZP(CI(OKlE) ®Z Fp? E[p])

Here, we give a remark on a relation between S and our AF. Let 1 € A
be the trivial character. Note that S 1 in the sense of Remark 1.5 is an
F,-subspace of S. Moreover, if E(Q,)[p] = {0}, then the natural injection
Si1 = S becomes an isomorphism. Indeed, in such case, for any f € S and
any prime ideal p of K¥, it follows from the comparison of the action of
the decomposition group at p in Gal(K¥/Q) that we have f([p] ® 1) = 0.
Hence by Remark 1.5, we deduce that if E(Q))[p] = {0}, then we have
APy ~ 592,

Here, we shall note that Theorem 1.1 gives a description of the asymp-
totic behavior of the higher Fitting ideals of the Z,-modules AE Let M be
a finitely generated Z,-module. For each i € Z>o, we denote by Fittz, ; (M)
the i-th Fitting ideal of M (cf. Definition 2.1), and put

(I)Z(M) = Ordp(Fitthi(M)) S ZZQ @] {OO}
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The sequence {®;(M)};>0 determines the isomorphism class of the Z,-
module M (see Remark 2.4). There is an equality (I)i(AE:X) = @i((AEX,l)V)

for any x € A because Afi y is non-canonically isomorphic to
(AEQ(_I )\/ = HOHIZP (Agyx_l 5 Z/an)

as a Zp-module. Similarly, we have ®;(AL) = &,((AL)V).

Let {ay}, and {b,}, be sequences of real numbers. we write a,, > by, if it
holds that lim inf, o (a, — b,) > —oo, namely, if the sequence {a,, — by }n
is bounded below. If a, > b, and b, = a,, then we write a,, ~ b,. For
a family of homomorphisms f,: M,, — M/ of finitely generated torsion
Zp-modules if the order of Ker(f,) and that of Coker(f,) are bounded
independently of n, then we have ®;(M,,) ~ ®;(M}) for any i € Z>( (Lem-
ma 2.8). Theorem 1.1 implies the following corollary:

Corollary 1.7. Let E be an elliptic curve over Q, and p an odd prime
number where E has good reduction. Suppose that E satisfies the condi-

tions (C1), (C2) and (C3). Then, for any i € Z>¢ and X € A, it holds

i(A7) = Du((A 1)) ~ i (Sely (Ko, Ep"))F2 ).

and moreover, we have ®;(AZ) = ®,((AZ)V) ~ ®; (Sel,(K,, E[p"])??).

1.2. Asymptotic formulas as Iwasawa’s class number formula. For
each y € A, we put hfix = ordp(#Afix), and hl = ord,(#AF) =
erﬁ h,{ix. Since A% is a quotient of Cl(Ogr) as noted in Remark 1.4,
we have
hp, = ordy(# Cl(Ogr) ® Zy) > hl;.

As we shall see below, Corollary 1.7 for ¢ = 0 gives a description of as-
ymptotic behavior of hZ like “Iwasawa’s class number formula” Let us
introduce Iwasawa theoretic notation. We put I' := G 1 = Gal(K/K7).
There is a non-canonical isomorphism I' ~ Z,, and fix a topological gener-
ator v € T. We set A := Z,[I']. There exists an isomorphism A — Z,[T]
of Zy-algebras sending v to 1 4+ T'. For each m,n € Z~, we define

Am,n = Z/an[gm,l] = A/(pn7’7pm71 - 1)7

and put A, := A, . Since we have G, 0 = A X G, 1, the equality R, ,, =
A n[A] holds. In the following, we introduce the Iwasawa module of the
Pontrjagin dual of the fine Selmer groups. Write

Sely (Koo, E[p™]) := lim Sel, (K, E[p™]).

For any m,n € Z>o U {oo}, define
X i= Selp(Km, E[p"])" := Homg,, (Sely (K, E[p"]), Qp/Zy)
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and put X,, := X, ,. It is known that the A-module X is finitely generated

and torsion ([9]). Take any y € A. The control theorem of the fine Selmer
groups (Corollary 5.10) implies that

(1.3) Po(Xooy On An) ~ @o(Xnx) ~ Do (Sely(Kn, Elp"])y1 ) -

Since X, is a finitely generated torsion A-module, we can define Iwa-
sawa’s p and A-invariants p(Xeo ) and A(Xs,y) of the A-module X
(for the definitions see Section 3). By Proposition 3.2 proved later, we have

(1.4) Do (Xooy @A An) ~ M(qux)pnil + M Xoox )7

The invariants ®¢, u and A satisfy the additivity property (cf. (2.4) in Sec-
tion 2). Corollary 1.7 for ¢ = 0 and the equations (1.3), (1.4) imply the
following.

Corollary 1.8. Let E be an elliptic curve over Q, and p an odd prime
number where E has good reduction. Suppose that E satisfies the conditions

(C1), (C2) and (C3). Then, for any x € A, we have
P~ 2 (1(Xoo s )P" ™! + M(XoopIn) |
and moreover, h¥ ~ 2 (u(Xo0)p" ™t + M Xoo)n) -

As we note below, by assuming the Iwasawa main conjecture for elliptic
curves, the constants p(Xs) and A(X) are described in terms of Kato’s
Euler systems. Let us recall the Iwasawa main conjecture (in the formula-
tion using Kato’s Euler systems). By using Euler systems of Beilinson—Kato
elements, Kato constructed a A-submodule Z of H!, where we set

HY = HY(T,(E)) := lim HY(K,,, T,(E))

for each ¢ € Z>( (or the construction of Z, see [9, Theorem 12.6] for the
Galois representation T' = T,(E) C Vg,(fr), where fg is the cuspform

attached to F). The Iwasawa main conjecture for (fg,p,x) with x € A
in the sense of [9, Conjecture 12.10] (combined with [9, Theorem 12.6])
predicts the equality

(1.5) charA(Hi) = charA(H;/ZX).
Since E has good reduction at p, for the left hand side of (1.5), we have
chary (Xoo,y) = charA(Hi) because of the following:

e By the limit of the Poitou—Tate exact sequence, our X, coincides
with

H*(T,,(E))o := Ker <H2 — Hi,. = Jim H2(QP(NP’”>7TP(E))>

m

(see, for instance, the proof of [15, Proposition 3.17]).
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e When F has good reduction at p, the local duality of the Galois
cohomology and Imai’s result [7] imply that the order of HZ  is
finite, and hence the index of H2(T,(E))o in H?(T,(E)) is finite.

By using the Euler systems, Kato proved that the half side of (1.5), that
is, the inclusion

CharA(H(%,X) 2 charA(H;/ZX)
holds for any y € A under the following condition which is satisfied when
(C1),,. holds:

The image of the Galois representation
PPl + Gro — Auty, (Ty(E)) ~ GLa(Zy)

contains SLy(Zy)

(See [9, Theorem 13.4]. Note that (C1),,, implies the assumption (3) in [9,
Theorem 13.4]). By summarizing all x-parts, the following corollary follows
from Corollary 1.8.

str

Corollary 1.9. Let E be an elliptic curve over Q, and p an odd prime
number where E has good reduction.

(1) Suppose that E satisfies the conditions (C1)
have

and (C2). Then, we

str

hE <2 (w(H/Z)p" " + \H/Z)n) |

(2) Suppose that E satisfies the conditions (C1), (C2) and (C3). Let

Xo € A. Then, if the Iwasawa main conjecture for (fz,p, Xo) holds,
we have

hE o ~ 2 (W(HY, /Zy,)p" ™" + AHL, /Zyo)n)

In particular, if the Iwasawa main conjecture for (fg,p, x) holds for
every x € A, then we have

hE ~ 2 (w(H/2)p"" + \H/Z)n) |

Let 1 € A be the trivial character. In [26], Skinner and Urban proved
the Iwasawa main conjecture for (fg,p,1) with the following conditions
(see [26, Theorem 3.33)):

e The pair (E,p) satisfies (C1)g,.
e The elliptic curve E has good ordinary reduction at p.
e There exists a prime number ¢y where E has multiplicative reduc-
tion.
These conditions are satisfied when F is semistable, and p is a prime number

of good ordinary reduction satisfying p > 11 (see [26, Theorem 3.34]). We
obtain the following corollary.
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Corollary 1.10. Suppose that E is semistable, and let p be a prime num-
ber with p > 11 where E has good ordinary reduction. If E satisfies the
condition (C2), then we have

hEy ~2 (p(H1/Z0)p" ! + AHY/Z1)n)

Let us see the relation between our results and previous works on the
asymptotic behavior of h,. By the arguments in [14, Section 4.1], for any
number field L, we have

corankgz,, Sel, (L, E[p>]) > rankz E(L) — [L : QJ.
(Indeed, the fine Selmer group Sel,(L, E[p™]) contains the kernel of

E(L) ®z, Qp/Zp — E(L 0] Qp) ®z @p/Zp = H E(Ly) ®z, @p/va

vlp

and we have corankz,, (I]y, E(Lv)®2Qp/Zp) = Xy,[Lo : Qp] = [L : Q].) By
the control theorem of fine Selmer groups (Corollary 5.10 and Remark 5.11),
we deduce that

AMXoo) = ranky E(Km) — ¢(p™)
for any m € Z>o, where ¢ denotes Euler’s totient function. Thus, Corol-
lary 1.8 implies the following.

Corollary 1.11. Let E be an elliptic curve over Q which has good reduction
at an odd prime p. Suppose that E satisfies the conditions (C1), (C2) and
(C3). Then, for any firted m € Z>q, we have

by > hf = 2(rm — (@™))n
as n — oo, where we put ry, = ranky E(Kp,).

Remark 1.12. The assertion of Corollary 1.11 for m = 0 implies the
“asymptotic parts” of the results by [6, 18, 19], and that for general m > 0
implies [14] for the p-adic representation T),(E) = m E [p"] of G, . (Here,
the “asymptotic parts” means the assertions without description of constant
error factors.) Our results, in particular Theorem 1.1 and Corollary 1.8, can
be regarded as a refinement of them in the following senses.
e Corollary 1.8 determines the quotient AY of the ideal class group
Cl(O Kf), whose growth is described by the fine Selmer groups.
e Theorem 1.1 describes not only the asymptotic behavior of the or-
der of AZ but also asymptotic behavior of the R,-module (and in
particular, Z,-module) structure.

Example 1.13. Let E be the elliptic curve over Q of the LMFDB label
5077.al (the Cremona label 5077al), which is defined by the equation

Yy +y=a°—Tz+6,
and set p := 7. It is known the following ([11]):
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(i) The elliptic curve E does not have CM, and (E, p) satisfies (C1),.
(ii) The conductor of E is 5077, which is a prime number, and E has
non-split multiplicative reduction at 5077.
(iii) The rank of E(Q) is 3.
(iv) Let X := Sel(Quo, E[7°°])" be the Iwasawa module of the Pontrjagin
dual of the classical Selmer group of E over the cyclotomic Zz-
extension field Qo of Q. We have p(X) =0, and A\(X) = 3.

The properties (iii) and (iv) imply that we have chary(X) = (y — 1)?A.
We further obtain chary (Xoo1) = (7—1)?A (see, for instance, [30, Proposi-
tion VI.10]). This implies that (X 1) = 0 and A(Xs,1) = 2. Moreover, we
can show that the pair (E,p) satisfies the condition (C2) (see Example 4.7
in Section 4.3). Therefore, we obtain

E
hn,l ~ 2n

Notation. Let L/F be a Galois extension with G = Gal(L/F), and M
a topological abelian group equipped with a Z-linear action of G. For
each i € Z>g, we denote by H'(L/F,M) = H¢ (G, M) the i-th con-
tinuous Galois cohomology group. If L is a separable closure of F', then
we write H'(F,M) = H'(L/F,M). When F is a non-archmedean local
field, we denote by F'' the maximal unramified extension of F'. We define
HL(F,M)=XKer(HY (F,M) — H*(F", M)) (cf. [17, Definition 1.3.1]).
For a Z,-module A, let Ag;y denote its maximal divisible subgroup. For
an abelian group M and an endomorphism f of M, we put M[f] := Ker(f).
In particular, if M is a module over a ring R, then, for each a € R, we set
M]a] := {x € M|ax = 0}. For an elliptic curve E over a field K and a field
extension L/K, we will denote by Er, := F ®k L the base change to L.

Acknowledgments. The authors thank to the referee for careful reading,
and many valuable suggestions to improve our manuscript.

2. The higher Fitting ideals

Definition 2.1 (cf. [4, Section 20.2]). Let R be a commutative ring, and
M a finitely presented R-module given by a presentation

(2.1) R™ 2 R — M —0

with m > n. We define the i-th Fitting ideal Fittg;(M) of the R-module
M to be the ideal of R generated by (n — i) x (n — i) minors (that is, the
determinants of the submatrices) of the matrix A. When i > n, we define
Fitt (M) := R.

Remark 2.2. The ideal Fittg;(M) in Definition 2.1 does not depend on
the choice of the presentation (2.1) ([4, Corollary-Definition 20.4]).
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Remark 2.3. The higher Fitting ideals are compatible with base change
in the following sense: Let R be a commutative ring, and M a finitely
presented R-module. Then, for any R-algebra S and any i € Z>(, we have
Fittg;(S ®r M) = Fittr;(M)S ([4, Corollary 20.5]).

Remark 2.4. Let R be a PID, and suppose that M is a finitely generated
R-module. By the structure theorem of finitely generated modules over a
PID, the R-module M is isomorphic to an elementary R-module R®" @

i_1 R/d; R with a sequence {d;}; C R~ R* satisfying d; | d;; for every
j. We have

{0} ifi<r,
(2.2) Fittri(M) = ([[jmioppa dy) R ifr <i<sr,
R ifi1>s+r.

In particular, the higher Fitting ideals {Fittr ;(M)}; determine the isomor-
phism class of the R-module M.

Remark 2.5. Let R be a commutative ring, and M an R-module with the
presentation (2.1). Let N be an R-submodule of M.
(1) For any ¢ € Zxq, we have Fittp;(M) C Fittr;(M/N). Indeed,

A
we have a presentation of M/N of the form R™tF AR,

M/N — 0 whose relation matrix is the augmented matrix (A | B)
of A and some n X k matrix B with some k. Every (n —i) x (n — 1)
minor of A becomes an (n — ¢) x (n — ¢) minor of (A |B).

(2) Suppose that R = Z,, and M is a torsion Z,-module. For any
finitely generated torsion Zp,-module L, we denote by LY =
Homy, (L,Q,/Zy) the Pontrjagin dual of L. The dual NV is a quo-
tient of MV, and there are non-canonical isomorphisms M ~ MV
and N ~ NV. By (1), we have

Fittgr;(M) = Fittg,,(M") C Fittg;(N") = Fittg,;(N)
for any 7 € Z>o.
As in Section 1, we introduce the following notation:

Definition 2.6. Let M be a finitely generated torsion Z,-module. For each
i € Z>0, we define

(I)l(M) = OI‘dp(FittZwi(M)) = min{m S ZZO |pm € Fittzp7i(M)}.
If M is a torsion Zp-module isomorphic to @7j_; Z,/p*Z, with a de-
creasing sequence {e;}; C Zxq, then
Z;:i+1ej 1f0§2<5,
0 if i > s,

(2.3) (M) = {
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immediately follows from (2.2). In particular, we have ®o(M) = ord,(#M).
The additivity of ®y holds:
(2.4) Oo(M & N) = Po(M) + Po(N)

for finitely generated torsion Z,-modules M and N. As noted in Section 1,
the isomorphism class of a finitely generated torsion Z,-module M is de-
termined by {®;(M)}; by (2.3).

Lemma 2.7. Let M be a finitely generated torsion Z,-module. Then, for
any i € Z>o, we have

Proof. By the structure theorem, we have M = @j_,(Z/p*“Z)mj, where
the sequence {e;} C Zs is decreasing. For any j € Z with 1 < j < s, the
annihilator of m; € M is p*Z,. Fix any ¢ € Z>o. If i = 0 or i > s, then
the assertion of Lemma 2.7 is clear. Now, we assume 1 < i < s — 1. Put
Ny = Zé-:l Zypmj. We have

ord,(#(M/Ny)) = ord, (#( é (Z/pejZ)mj>) = 28: e (23) D, (M).

j=i+1 j=i+1
Take any aq,...,a; € M, and put N := 23:1 Zipaj. In order to prove Lem-
ma 2.7, it suffices to show the following inequality
®;(M) < ord,(#(M/N)).

Let 7wy : Zf, —» N be the surjection given by the generators aj,...,a; € N,
and take a presentation

zk 278 ™ N 0
for some k > 1. By definition, the Z,-module M is torsion, so is N. We

can choose k = i. Since M/N is a torsion Z,-module, there is a square
presentation

0— 2z 2 2) — M/N —0
by the structure theorem. This gives a presentation
Zitt S 7t s M 0
with C' = (4 ). We obtain #(M/N) = det B € Fittg, ;(M/N). This
implies #(M/N) > ®;(M). O

Let {an}n and {b,}, be sequences of real numbers. We write a,, = b, if
it holds that lim inf,, o (an —by) > —00, namely, if the sequence {a, — by, }»
is bounded below. If a,, > b, and b, > a,, then we write a,, ~ b,.
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Lemma 2.8. Let {M,},>0 be a sequence of finitely generated torsion Z,-
modules, and suppose that for each n € Z>q, a Zy-submodule N,, of M, is
given. Then, the following hold.

(1) If {(M,, : Ny)}n>0 is bounded, then we have ®;(M,) ~ ®;(N,) for
any © € Zx>o.

(2) If {#Np}tn>0 is bounded, then we have ®;(M,) ~ ®;(M,/Ny,) for
any © € Zx>o.

Proof. Let us show the assertion (1). Suppose that there exists some B €
Z~o such that (M, : N,) < pP for any n € Z>¢. Since N, is a submodule
of M, by Remark 2.5(2), we have ®;(M,,) > ®;(N,,). In order to prove the
assertion (1), it suffices to show that ®;(M,,) < ®;(N,)+ B. By Lemma 2.7,
there exist aq,...,a; € N, such that

Ol‘dp (# (Nn/izpa]>> = (I)Z(Nn)

Since (M, : N,) < p?, Lemma 2.7 implies that

®;(M,) < ord, (# (Mn/ Z Zpaj>) < &;(N,)) + B.
j=1

Accordingly, we obtain ®;(M,) ~ ®;(NV,), and the assertion (1) is veri-
fied. By taking the Pontrjagin dual, the assertion (2) immediately follows
from (1). O

3. Iwasawa’s invariants and asymptotic behavior

As in Section 1, for each n € Z>g, we define K, = Q(pp») and Koo =
Up>o Kn- We put I' := Goo1 = Gal(K/K1). There is a non-canonical
isomorphism I' ~ Zy and fix a topological generator v € I'. We set A :=
Z,[T]. There exists an isomorphism A — Z,[T] of Z,-algebras sending
to 1+ T'. By this isomorphism, we identify A with Z,[T7]. For each m,n €
Z~q, we define
A = Z/p"ZGma] = A (0", 47" = 1),
where Gy,1 = Gal(K,,/K1). Finally, we put A, := A, ,. In this section,
let us study the asymptotic behavior of ®y(M ® A,,) for any finitely gener-
ated A-module M from the view point of the structure theorem of finitely
generated A-module (for instance, see [29, Theorem 13.12]).

First, let us recall the notion of pseudo-isomorphism. Let M and N be
finitely generated A-modules. We say that a homomorphism f: M — N of
A-modules is a pseudo-isomorphism if both the kernel and the cokernel of
f have finite order.
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Lemma 3.1. Let M and N be finitely generated torsion A-modules, and
t: M — N a pseudo-isomorphism of A-modules. Then, we have

(I)O(M XA An) ~ (PO(N ®A An)

Proof. Let t: M — N be a pseudo-isomorphism of A-modules. Since the
map ¢t: M — N is the composite of the surjection ¢: M — Im: and the
inclusion Im ¢ < N, we may consider the cases when ¢ is surjective, or when
¢ is injective.

First, suppose that ¢ is surjective. For any n € Z~y, we have an exact
sequence

(Kert) @5 Ap — M @5 Ay <2225 N @y A, — 0.

Since ¢ ® A, is a surjection, and since we have #((Ker ) @5 Ay,) < #(Ker o),
by Lemma 2.8, we obtain ®o(M @5 Ap) ~ Po(N @4 Ay).

Next, suppose that ¢ is injective. Take any n € Z~g. We have an exact
sequence

Tor{ (Coker ¢, A) — M @4 Ay B8 N®p A, — (Cokert)®@p A, — 0.

Clearly, we have # Coker(: @ Ay,) = #((Coker 1) @ A,,) < #(Coker ¢). Note
that Tor}(Cokert, A,,) is a subquotient of (Coker:)®? because we have a
projective resolution

(’Yp"*lnfl) (n -1 1)
0— AT A2 TN A=A 1)

of the A-module A,,. Consequently, we obtain # Ker(:® A,,) < #(Coker )2,
By Lemma 2.8, we deduce that ®o(M ®, A,) ~ Po(N @5 Ap). O

Let M be a finitely generated torsion A-module. By the structure theo-
rem (cf. [29, Theorem 13.12]), there exists a pseudo-isomorphism

s t
(3.1) M — (EB A/p"iA> ® (@A/fj(T)mjA>
=1 j=1
of A-modules for some s,t € Z>q, some ny,...,ng,Mmi,...,my € Z~o and
some distinguished polynomials fi(7T'),..., fi(T) € Zy|T] which are irre-
ducible over @Q,. (Recall that a non-constant polynomial f(7T') € Z,[T] is
said to be distinguished if f(T') is a monic polynomial satisfying f(7T) =
T8 /(1) mod pZ,[T].) The characteristic ideal chary(M) of the A-module
M is the principal ideal of A generated by

t
Zi:l i H fj (T)mj
j=1

We define the Iwasawa p-invariant p(M ) by w(M) := Y271 n;, and the
Twasawa A-invariant A(M) by M) : Z _1mjdeg f;j(T). Note that
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chary (M), w(M) and A\(M) are independent of the choice of the pseudo-
isomorphism (3.1).

Proposition 3.2. For any finitely generated torsion A-module M, we have
(3.2) Oo(M @p Ay) ~ p(M)p™~ 1 + X(M)n.
Proof. By the structure theorem, Lemma 3.1 and the additivity of @

(cf. (2.4)), we reduce the proof into the following three cases:
(i) the case when M = A/p™A for some m € Z-o,
(ii) the case when M = A/gq(1 + T)™A for some d,m € Zsq, where
9a(T) € Z,[T) denotes the p?-th cyclotomic polynomial, or
(iii) the case when M = A/f(T)™A for some m € Zs( and for some
distinguished polynomial f(T") € Zy[T] irreducible over Q, whose
roots in Q, are not of the form ¢ — 1 for p-power roots ¢ of unity.
Case (i). M = A/p™A for some m € Zsq. Take any n € Z>y,. Then, we
have

M@y Ay~ A/ A"
This implies that
(I)O(M ® An) = (I)O(An,m) = g ((Z/pmz)@pn_l> - ordp(pmp"_l) = mpnil-
The sequence {®o(M ® A,,) — mp™ 1}, is bounded so that

Do (M) ~ mp"~ 1,

Since we have pu(M) =m and A(M) = 0 in this case, we obtain (3.2).
Case (it). M = AN/ga(1+T)"A for some d,m € Zsg, where gq(T) € Zp[T|
denotes the p®-th cyclotomic polynomial. The cyclotomic polynomial g4(T)
has degree (p — l)pd_1.~We have (M) = 0 and A(M) = m(p — p?=t. We
put Oy = Zp[pia]. Set A := Oq @z, A = Og[T], and A;, := Oyg @z, An. The
cyclotomic polynomial g4(T) is decomposed into g4(7) = []¢c g (T'—¢) in

— 1) = Z/p"Z[Gal(Kp/K1)] = Anm.

1~\, where u;d denotes the set of primitive p?-th roots of unity in @p. We
have an injective homomorphism

L:Od®ZPMN/~\/< I1 (T—g+1)m>]\;> [T A/(T-¢+1)mA

CEN:d CEN:d

of K—modules, where the last homomorphism is given by the diagonal map-
ping. The cokernel of ¢ has finite order. In particular, the map ¢ is a pseudo-
isomorphism of A-modules. Hence, we obtain

Oo(M @z, M) ~ > @0 (A/(T = C+1)"A) @7 &) .

¢ Eu:d
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Since Oy is a free Zy,-module of rank #,u;d = (p—1)p® !, we have
Dy(Oq ®z, M) = (p— 1)p~'@o(M).

For each ¢ € py, put Mpe == (A(T = ¢ +1)™A) ®x An. In order to
prove (3.2) for our case, it suffices to show that
(3.3) D (M) ~ AM)n =m(p —1)p?~!

Fix any ¢ € u;d. We set wg:=C—1,and T :=T —wy =T — ( + 1. Note
that we have A = Od[[f]]. For each k € Z>(, we define the ideal I}, of A by

~ k k ~ k—1 k—1 ~ k—2 k—2 ~
Iy = (77" o pety T Pl T )
By definition, we have I;, = TP"A + wé’k]\ +pl_1.
Claim 1. For any k € Z>o, we have
(3.4) 1+T)Y —1€ 1,

Proof of Claim 1. For any k € Zq and any h(T) € I;,_;, we have ph(T) €
It,. For any f1(T), f2(T) € A, it holds that

K ~\P
(1+ AT + fo(T)hy + ph(T))
=1+ (T )pr L fT I)Peh o mod pli.

We show the claim by induction on k. For the case £k = 0, we have
(1+7T)—1=1T =T + wy and this is in Iy = (T, wq)z- We assume the
assertion for k > 0: (1+T)P" — 1 € I;. Thus, there exist f1(T), f2( ) e A
and h(T) € I_1 such that (1+T)P" — 1= fi(T)TP" + fo(T )wd + ph(T).
We have

A+ —1=(1+a+T - 1) -1
= (1+ f(T >Tp + p(Dywh +ph(D)) -1
= f(TPT" " + f(T)=” " mod ply.

k41

This implies the assertion (14+T7)P" —1 € Ij. O

Let N € Z~¢ be an integer satisfying that p’¥ > max{m, (p — 1)p?~1}.
Take any n € Z~ . Note that as we see below, for v € Z with0 <v <n—1,

n—1—v ~ _1_N .
€ (T, pn=1-N) .
1

e When 0 < v <n—1—N, we have TP~ € TP" A C T™A, and
Acpn 1- NA

—n—1—v
we have p?TP Pl

n—1l—v N, n—1-N—-v n—1—-N—v 7
p’/wp — pu(wp )p c pu+P
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e Whenn —1— N <v <n-—1, we clearly have

~ n—1—v n—1l—v

T prEt e p T NA

Consequently, it holds that I,,_; C (fm,p"_l_N)X. By (3.4) for k =n—1,
we obtain
Tm pn~t n m . n—N—1
(3.5) (T (1 +1) 1m)Kg@ﬂw )x
Obviously, we also have
Tm , n—1 Tm pn—l n
(3.6) (T )z e (T a1 = 1p7);
Since we have
My = (AT = ¢+ 1)) @5 Ay = &/ (T, 1+ TP = 1,p")<
by (3.5) and (3.6), we obtain
o (A/(T™,p " N)5) < o (Mag) < @0 (B/(T™,p" 1)) -

For any v € Z~, it holds that
m—1
o (A/(T™,p")5) = ( D (Oa/p"Oa)T > =m(p— 1)p* .
7=0
So, we obtain

m(p—1)p" (n = 1= N) < & (M) <mp—1)p*~(n—1).

Hence, the sequence {CIJO(Mn,g) — A(M)n}, is bounded, and hence (3.3)
holds. This completes the proof of (3.2) for the case (ii).

Case (iii). M = AN/f(T)"A for some m € Z~o and for some distinguished
polynomial f(T) € Z,[T] irreducible over Q, whose roots in Q, are not of
the form ¢ — 1 for p-power roots ¢ of unity. Put d := deg(f(T")). Note that
in this case, we have p(M) = 0, and A(M) = md. Let Ny € Z>2 be an
integer satisfying

(3.7) (p—1)p™ 7% > d = deg(f(T))

Take any n € Zs>p,. For each v € Z~o, we put O, := Zp[ppv], and fix
Cpv € ppv a primitive p”-th root of unity. Then, we have an injective homo-
morphism

en: AJ((L+TP " 1A= A/(1+T)" > — 1A x Op_;
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of Zy-modules which sends v = 1+T to (7, {yn-1). We set @Q,, := Coker(e,,).
Note that the order of Q,, is finite. We denote g,,—1(T") € Z,[T] by the p"~1-
th cyclotomic polynomial. Putting @, —1 := (yn-1 — 1, we have

Que A+ 1, gna(14T))
= (Mga+ 1) /(1P - 1)
~ On,_1 (Cg::f — 1)
= On—l/ H (Cp”71 - C)

Ceﬂzpn72

Yo, /@),

Here, the last equality (x) follows from the equalities ((n-1 — ()Op—1 =
(@n-1—((—1))On-1 = wn-10,1 for each ¢ € pyn-2. Let us consider the
following commutative diagram:

A e A
O — —n>- X On_ — n —> 0
(1+T)r 1) (1+T)P" 2 1) 1@
(3.9) l lemm < ()™
A en A
0— X Op1—=Qn—0.

(+TP " —1)  (A+1) > —1)

Since A = Z,[T] is a UFD, and since f(T') is prime to (1 + TY' ™ —1, we
have

() VO = (e % 0nnr ) U@ =0

By applying the snake lemma to the diagram (3.9), we obtain the exact
sequence

(3.10) 0 — Qu[f(T)™] — (L+ TP =1, f(T)™)

— A X On1 — Qn
(A +T)" =1, f(T)™)  (f(@n-1)™) F(T)mQy

Since the order of @, is finite, it holds that

Do(Qnlf (T)™]) = o(Qn/ f(T)"Qn).
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We put My, := A/((l + Ty — 1,f(T)m) for each k € Z~¢. By (3.10), we
obtain a recurrence formula:
Do (Mn-1) = o (Mn—2) + 0 (On-1/(f(@n-1)"))-
The distinguished polynomial
FT) =TT+ aq 1 T4 + -+ ag

_ n—2
satisfies p | a; and hence a; € pO,,—1 = w(p Lp Op_1for0<i<d-1.

n—1

By (3.7) combined with n > Nj, we have w(pfl)pn_ZOn,l Cwl 10, 1.1t

holds that f(w,_1)On_1 = @ 10,1, andnhelnce
Do (On—1/(f(@n-1)")) = md = A(M).

Therefore, we obtain
(3.11) o (Mp—1) = @0 (Mp—2) + A(M)
for any n > Nj. For each n € Z~¢, we have M ®p Ay, ~ M, _1/p"M,_1.
Let us show the following claim.
Claim 2. Let Ny € Z~p, be an integer satisfying pN2=2 > md, and ky, €
Z>qo be the integer satisfying that

Annp, (M, ®z, 01) = wlfNQ 01,

where we put wy = ¢, — 1 € O1 = Zp[pp). Then, for any n € Zsaon,, we

have kn,+n—1—N:
Ny tn—1-N3
Annp, (M,,—1 ®z, O1) Dwy ? O;.

Proof of Claim 2. Since O is flat over Z,, by taking (-) ®z, O1, the exact
sequence (3.10) induces an exact sequence
On-1®z, O1

0 — Qulf(T)"®z,01 — My—1®7,01 — My —2®7, 01X ——— :
(wn—l ® 1)

Qulf (1)) @2, O1 = (0w /(1)) @2, O

= (Ou (=)™

For p™"2=2 > md and n > Na, the O1-module Q,[f(T)™] ®z, O1 is annihi-
lated by wi. Hence, we obtain

Anng, (Mp—1 ®z, O1) 2 Anno, (Qn[f(T)™] ®z, O1)

By (3.8), we have Q,, ~ Op,_1/ (wﬁn_f) and thus

O,— O
.Anno1 (Mn_g ®Zp 01 X W)

(wid @ 1)
D (Annol (Mn_g Xz, 01) N w{nd(’h) .
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Note that kn, + n — 1 — Ny > md for any n € Z~2n,. By induction on n,
we obtain the assertion of Claim 2. U

Now, let us complete the proof of Proposition 3.2. Take Ny as in Claim 2,
and let N3 € Z~an, be an integer satisfying that (p — 1)N3 > ky, + N3 —
1 — Ns. By Claim 2 above, for any n € Z- N, it holds that

kN2 +n—1—N>
1

Annp, (M1 ®z, O1) 2 @ 01 2w MpNs 0 D p Oy,

and in particular p" € Anng, (M, _1). For any n € Z- n;, we have p"M,, 1 =
0 and this implies that M @5 A, ~ M, 1. By (3.11), we obtain

(I)o(M QA An) = (I)O(Mn—l) = (I)O<MN3—1) -+ (n — Ng)/\(M)
for any n > N3. Thus, the sequence
{@o(M @p An) = nA(M)}n
is bounded for the case (iii). This completes the proof of (3.2) O

4. The conditions (C1) and (C2)

Until the end of this note, we use the following notation: Fix an odd
prime number p. Let E be an elliptic curve over Q. We denote by Dg the
discriminant of the minimal Weierstrass model for E over Z. We define
the p-adic Tate module T,(E) by T,(E) := im E[p"], and put V,(E) :=
Qp®z, T,(E). As in Section 1, for each n € Z>q, we define K = Q(E[p"]),
and K, = Q(ppn). Put also KZ = ,»o KE and Ko = U, Kn.-

In this section, we review some results on the conditions (C1) and (C2)
referred in Theorem 1.1 under the additional assumption that E has good
reduction at p. First, we recall the conditions:

(C1) The restriction
pl' 1 Gk, — Autp, (E[p]) ~ GLy(F))

to Gk, of the mod p Galois representation pf' : Gg — Autg, (E[p])
is absolutely irreducible over [,

(C2) For any n € Z>; and any place v of K, with the base change
FEk,, of E has potentially multiplicative reduction, we have
E(Kn,fu)[p} =0.

4.1. Remarks on (C1) and (C2). In this paragraph, we shall show
some properties relating (C1) and (C2) mentioned in Section 1. First, let
us verify the following property, which is noted in Remark 1.2.

Proposition 4.1. The condition (C1) is satisfied if the Galois representa-
tion

pP: Gy — Autz, (T,(E)) ~ GL2(Zy)
18 surjective.
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Proof. Tt is enough to show that the image of p¥: Gx_ — GL2(F,) gener-
ates Endp, (E[p]) ~ M2(F,) over F,. By using the Weil pairing, the Galois
group G acts on /\%p T,(E) ~ T,(p) via the cyclotomic character x, where
Tp(p) :=Jm  pupn (cf. [24, Chapter V, Section 2]). We obtain the following
commutative diagram with exact rows:

0 Gr. Go Gal(Koo/Q) —= 0

L

0 — SLy(Z,) — GLy(Z,) — 2 > 7% 0.

The assumption implies that the image of the restriction p¥ |G, coincides
with SLy(Z,). By taking the mod p reduction, SLs(F,) = p¥(Gk.. ) and
this generates My (F,) over Fy,. O

Next, let us see the following property referred in Remark 1.3.

Proposition 4.2. There exists a quadratic twist E'/Q of E which satisfies
the condition (C2).

Proof. For each prime number ¢, put Ly := Qu(upe). Suppose that E is
defined by the Weierstrass equation y? = 23 + ax + b with a,b € Q, and
let S(F) be the set of all the prime numbers at which F has potentially
multiplicative reduction. As E has good reduction at p, we have p & S(FE).
For each ¢ € S(E), we fix an embedding t;: Q < Qy, and regard p,y as
a subgroup of @gx Note that under these notations, the elliptic curve F
satisfies the condition (C2) if and only if E(L,)[p] = 0 for any ¢ € S(E). In
order to show the assertion of Proposition 4.2, we may suppose that E does
not satisfy the condition (C2). In particular, the set S(E) is not empty. We
define

So(E) :={t € S(E)|E(Le)[p] # 0, 21 [Qe(pp) - QuI},

S1(E) :={t € S(E)|E(Le)[p] # 0, 2| [Qe(up) : Qel}
and put Ny := [[pcg, () (¢')", where for each odd prime number ¢, we write
TAES (—1)2_71& and put 2* := 2. For each odd ¢ € S(E) \ S1(E), we put

w= 11 (V).

0eS (E)

where (;) denotes the Legendre symbol modulo £. For each odd prime
¢ e S(E)\ Si(F), take a positive integer a; < ¢ such that

(ag>_ —ep if £ € Sy(E),
) e ifl¢ So(E).
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Furthermore, take a positive integer ag < 8 satisfying

N Imod8 if2¢€ S(E)~ (So(F)USi(E)),
a =
1T 15 mod 8 if 2 € So(E).

By the Chinese remainder theorem, there exists a positive integer gg such
that go = agy mod ¢ for any odd ¢ € Sy(E) and g9 = ag mod 8. Dirichlet’s

theorem on arithmetic progressions say that there exist infinitely many
primes ¢ such that

q = qo mod 8 H L.
LeS(E)NS1(FE),odd
As a result, there exists an odd prime number ¢ prime to p such that
— if E

(4.1) (q) _ e HLES(B),

14 g if 0 ¢ So(E),
for any odd ¢ € S(E) \ S1(E), and

N = 1mod8 if2e S(E) N (S@(E) U Sl(E)),
1 = 15 mod 8 if 2 € So(E).

In fact, if 2 ¢ Si(F) then Nf = 1 mod 4. This satisfies ¢ = 1 mod 4.
Take such a prime number ¢, and let E’ be a quadratic twist of E defined
by the Weierstrass equation ¢Niy? = 23 + ax + b. We have an equality
S(E'") = S(E) because E and E’ are isomorphic over the field Q(,/¢N7).

Let us show that E’ satisfies (C2). In the following, we prove E'(L;)[p] =
0 for any ¢ € S(E’). Take any ¢ € S(E').

The case £ & So(E)U S1(FE). First, we suppose that ¢ does not belong to
So(E) U S1(E).
Claim 1. The prime ¢ splits in Q(/qN7)/Q.
Proof of Claim 1. When ¢ is odd, the prime ¢ is split in Q(1/¢N;)/Q if and
only if (%) =1 ([12, Chapter 1, Proposition 8.5]). By (4.1), we have
aNi\ _ (a4 (NT _ (f')*> _
() =) (7)== I (5)=1
s, (B)

Next, consider the case { = 2. As £ € S1(FE) in this case, we know that Ny
is odd. Since ¢ N7 = 1 mod 8, the prime ¢ = 2 splits in Q(/¢N7)/Q. O

From the above claim, the completion of Q(,/¢N7y) at a place v above ¢
is Q¢ and the base change to the local field Qy, we obtain E(’@Z ~ Fg,. As a
result, we have

E'(L¢)[p] ~ Eg, (Le)p] ~ Eq,(Le)[p] ~ E(Le)[p] = 0.
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The case ¢ € Sy(E) U S1(E). Next, we suppose that ¢ belongs to So(F) U
S1(E). It holds that E(L/)[p] # 0 and fix a non-zero P € E(Ly)[p].

Claim 2. The action of G, on E[p] is unipotent.

Proof of Claim 2. Take a basis {P,Q} of E[p] as an Fp-vector space with
Q € E[p] ~\F,P. Recall that the Weil pairing e : E[p] x E[p] — p, is alter-
nating and Gp,-equivariant ([24, Chapter III, Section 8]). As p, C Ly,
we have o (e(P,Q)) = e(P,Q) for any ¢ € Gr,. On the other hand,
o(e(P,Q)) = e(cP,0Q) = e(P,0Q) implies e(P,0Q — Q) = 1. Here, the
element of the form 0@ — @ is in the kernel of E[p] — pp; T — e(P,T)
which is generated by P so that 0@ — @ = aP for some a € F,. Accord-
ing to the fixed basis above, the action of o is written as (} ¢) which is
unipotent. O

Claim 3. The extension Ly(\/qN7y)/Le is quadratic.

Proof of Claim 3. Let us show the claim by dividing into three cases.
(i) Suppose that £ € So(E), and ¢ is odd. The equalities

(), 1, ()

08y (E)

imply that the prime ¢ is inert in the extension Q(,/¢N;)/Q. For
the prime 2 does not divide [Qg(pp) : Q¢], we have Q;(\/gN7) € Ly.
Hence, the extension Lg(1/qN7)/Ly is non-trivial.

(ii) Suppose that ¢ = 2 € Sp(E). The extension Ly = Qa(pp)/Qo
does not contain quadratic extension fields of Qy. Since we have
gN{ =5 mod 8, the prime 2 is inert in the extension Q(/¢N7)/Q.
Thus, the extension La(+/gN7)/La is non-trivial.

(iii) Suppose that ¢ € So(E). Then ¢ € Si(F) and thus ¢ | Ny. This
implies that the prime ¢ is ramified in the extension Q(,/¢N7)/Q.
We also have L;(1/qN{) # Ly because L;/Qy is unramified.

In each case, the extension L,(1/qN7)/L, is quadratic. O

From Claim 2 above, there exists a basis {P,Q} of E[p] as [F,-vector
space such that Gp, acts trivially on F,P, and also E[p|/F,P which is
generated by the residue class represented by @ € E[p] \ F,P. We have an
isomorphism f: E[p|@F,(1)) — E'[p] of F,[G1,]-modules, where 1 denotes
the quadratic character attached to L¢(\/qN7)/Le. Take a lift o € Gy, of
the generator of Gal(L(\/qNy)/Le). This satisfies cP = P and 0@ — Q €
F,P. Thus, the element o acts by ¢¥(¢) = —1 on both F, f(P ® 1) C E'[p]
and E'[p|/Fpf(P ® 1). Therefore, for any ¢ € S(E') = S(E), we have
E'(Le)[p) = 0. O
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4.2. Equivalent conditions of (C2). For later use in the proof of our
main results, let us study some equivalent conditions of (C2).

Lemma 4.3. Suppose that E has potentially multiplicative reduction at ¢
(#p). Then, the elliptic curve EK{E has split multiplicative reduction at

every place of K¥ = Q(E[p]) above £.

Proof. We may assume that the j-invariant j(F) is not equal to 0 or 1728
because FE has potentially good reduction at all primes in such cases ([24,
Chapter VII, Proposition 5.5]). By [25, Chapter V, Lemma 5.2], there exist
elements ¢,y € Q; with ordy(q) > 0 such that Eq,(/7) has split multiplica-
tive reduction, and we have a Gg,-equivariant isomorphism

£+ Ep™] = (Q} /d") [p™] ®z, Zp(x),

where x: Gg, — Z, is the trivial character or the quadratic character
attached to the extension Q(/7)/Q¢. In order to prove the assertion, it is

sufficient to show that /4 € Qu(E(Qg)[p]). If x is trivial, then /4 € Q
and there is nothing to show. We may assume that y is non-trivial. Since
the Weil paring

E(Q¢)[p] x E(Q¢)[p] — 1,(Qe) = 1y

preserves the action of Gg,, we have 1, € Qu(E(Q)[p]). If /7 € pp, then

V7 € Qu(E(Qy)[p]). Suppose that /7 ¢ pp. The fields Fi := Qu(/7) and
Q¢ (pp) are linearly disjoint over QQp. Moreover, as p is odd, the fields F; and
Fy := Q¢(pp, ¥/q) are linearly disjoint over Q. Put F = Qe(p, ¥/, /) =
FyFy. By the isomorphism f, we have Q(E(Qy)[p], V) = F. Recall that
F/Qq(pp) is an abelian extension whose degree divides 2p, and p is odd. The
extension F'/Qq(y1,,) has only one subextension F” with [F : F'] = 2. Tt holds
that F, C Qu(E(Qe)[p]) because [F : Fy] =2 and [F : Qu(E(Q0)[p))] < 2.
Furthermore, by the isomorphism f, the group Gal(F'/F») (~ Gal(F1/Qy))
acts faithfully on E(Qy)[p]. This implies that Q(E(Q)[p]) = F, and espe-
cially /7 € Q¢(£(Q¢)[p]). Consequently, the elliptic curve EKIE has split

multiplicative reduction at every place of K{*. O

The following Lemma 4.4 gives some conditions equivalent to (C2).
Lemma 4.4. Let ¢ be a prime number. Suppose that E has potentially
multiplicative reduction at £. Then, the following are equivalent:

(a) The condition (C2) holds, i.e., for any n € Z>1 and any place v of
K, above ¢, we have E(K,,)[p] = 0.
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(b) For any n € Z>1 and any place w of KF above ¢ where the base
change Exe —of E has split multiplicative reduction, we have

1 (K ECGCE o) = 0.

Here, we denote by v the place of K, below w. (Note that the ab-
solute Galois group G, , acts on E(KEFu)[p™laiv because the ex-

tension KW /Ky, is Galois.)
(c) For anyn € Z>1 and any place w of KE above ¢ at where Exre has
split multiplicative reduction, we have

H (Koo, B>/ EE ) ™) =0,

where v denotes the place of K, below w.
(d) For any n € Z>1, any place v of K,, above { and any subquotient
Zy|Gk, ,]-module M of E[p™], we have

H° (K., M) = 0.

Remark 4.5. Recall that the condition (C2) holds if and only if for any
prime number ¢ with E has potentially multiplicative reduction, the con-
dition (a) in Lemma 4.4 holds. As we are assuming E has good reduction
at p, the prime number ¢ # p.

Proof of Lemma 4.4. (a) => (b). Suppose that the base change Exr has

split multiplicative reduction for n > 1 and a place w of K above ¢, we
have

HO(Kn,vyE(KfﬂEr)[poo]div) = E(Kn,v)[poo]div - E(Kn,v)[poo]
The latter group is trivial because of E(K,,,)[p] = 0.

(d) = (a). Take any n > 1, and any place v of K, above ¢. As E[p]
is a submodule of E[p™], the condition (d) implies E(K,,)p] =
H®(Kn,v, Ep]) = 0.

(b) <= (c). Suppose that w is a place of K where Egr has split multi-
plicative reduction, and let v be a place of K,, below w. The elliptic curve
E is isomorphic to a Tate curve G,,/¢% ([25, Chapter V, Theorem 3.1)).
Since ¢ # p and K, , is an extension of Qy, the extension Ky, ,(pe) is un-
ramified over K, , ([20, Chapitre IV, §4, Proposition 16]) so that we have
E(E) 0 ~ iy and

fipe X (g% @7, Z[1/p])
Hpoo X QzZu

E[p™)/E(K05) 0™ aiv =
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By the Weil pairing, we have a natural G, ,-equivariant isomorphism
E[p™]
E(Ky ") p™lai )[p] ~ Homy, ( [Pl >
(s "\EE) Pl

for any n € Z>1. As Gk, , acts trivially on p,, we deduce that (b) and (c)
are equivalent.

(b)&(c) = (a). Take any n > 1, and any place v of K,, above ¢. By Lem-
ma 4.3, the base change FE KE., of F has split multiplicative reduction for

some place w of KX above v. The short exact sequence
B
0 E KE,ur poo div E KE,ur 00 0
( n,w )[ ] 1 ( n,w )[p ] E(Kgul)lr)[poo]djv

induces the exact sequence

H (Ko, BOKES) [P )

E(KFmm)[p™] )
E(K,.,)[p> HO [ K, :
— Blnele™] = ( BT

by the equality HO(KnU,E(KE’“r)[ *]) = E(Kp)[p™]. From the condi-
tion (b), we have H° (KnU,E(KE “r)[poo]div) = 0. It is enough to show

Eur %)
HO (Kmv, M) = 0. As the functor H(K,,,,—) is left exact,

the condition (c¢) implies

E KE,ur Elp>
HO (Kn,va ( Enlff )[p ] > - HO (K’I’L,’U’ El[llrj ] > =0.
E<Kn,;u )[poo]div E(Kn,h} )[poo]div

We obtain E(K,,,)[p] C E(Ky)[p™] = 0 and this implies the condition (a).

(b)&(c) = (d). For any n > 1 and any place v of K,, above ¢, take any sub-
quotient Zy |G, ,]-module M of E[p>°]. From Lemma 4.3, the elliptic curve
Ege has split multiplicative reduction for some place w of K 5 above v. We
define a Z[Gk,, ,]-submodule M, of E[p] by My := (E(KFu")[p™]aw)[p),
and put

My = Ep] /My ~ (E[pw]/E(Kﬁab‘r)[pw]dw) .

Since M7 and M, are one dimensional vector spaces over Fp, the Z[G, |-
modules M; and My are simple, and the filtration 0 C M; C E[p| becomes
a Jordan-Hélder series of the Z,[G, ,]-module E[p]. The Jordan-Holder
theorem implies that for any N € Z-g, every simple subquotient of the
Zy|Gk, ,]-module Elp] is isomorphic to M; or My since the Z,[Gk, ,]-
module E[pV] is written as a successive extension of copies of E[p]. (For the
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Jordan-Holder theorem in an abelian category, in particular, for Z,[Gk,, ,]-
modules, see for instance, [27, Lemma 0FCK].) Hence every simple subquo-
tient of the Z,[Gk,, ,]-module E[p>] = lim o E[pN] is isomorphic to M;
or Ms. As M is a subquotient Z,|Gk, ,]-module of E[p™], every simple
subquotient of M is isomorphic to M; or Ms. The conditions (b) and (c)
imply (d). This completes the proof of Lemma 4.4 O

4.3. Example of (C2). It is obvious that if E has potentially good reduc-
tion everywhere, then (E, p) satisfies the condition (C2). Here, we introduce
an example of (E, p) satisfying (C2) such that E has multiplicative reduc-
tion at some primes. The following proposition is useful to find such a pair

(E,p).

Proposition 4.6. Let £ be a prime number distinct from p. Suppose that
E has non-split multiplicative reduction at £. We also assume that p =
3 mod 4, and —p is quadratic residue modulo £. Then, it holds that

E(Knﬂ))[p] =0
for any n € Z>o, and any place v of K, above £.

Proof. Fix any embedding Q <+ Qy, and regard py~ as a subgroup of @ZX
Let g, € Q¢ be as in the proof of Lemma 4.3. We have /7 ¢ Q; because
E has non-split multiplicative reduction at ¢. Let x: Gg, — Z, be the
quadratic character attached to Q(,/7)/Q¢. We have a Gg,-equivariant
isomorphism

f: Ep™] — (Q /4" [p™] @z, Zp(x)-

In order to prove Proposition 4.6, it suffices to show that
(4.2) H(Qu(pp=), (Q) /47) ™) ®2, Zp(x)) = 0.

It holds that /—p € Qy, because —p is quadratic residue modulo ¢. As
p = 3 mod 4, the extension degree [Qg(up) : Q¢] is odd. This implies that
Q¢(ppe) never contains any quadratic extension field of Q; because p is
odd. We obtain

HO(QE(NP‘X’)v ppee Kz, ZP(X)) = HO(QE(MP‘X’): (Qp/Zp)(X)> =0.
Suppose that (4.2) does not hold. There exists an element

P e H(Qulppe), (Q) /4%)[p™] @z, Zp(X))

of order p. Let ( be a primitive p-th root of unity, and o € GQz(upoo)
an element satisfying x(c) = —1. Note that in pye~ ®z, Zy(x), we have
o((®1) =(® (—1). By taking the Weil pairing e: E[p] x E[p] = p,p, we
obtain

e((®1,P)=0(e((®1,P)=c(c((®1),0P)=¢((®1,P)" L.
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As p is odd, this contradicts the fact that the Weil pairing e is non-
degenerate. Consequently, the assertion (4.2) holds. O

Example 4.7. Let (E,p) be as in Example 1.13. Then, the elliptic curve
FE has good reduction outside the prime 5077, and it has non-split multi-
plicative reduction at 5077. Since p = 7 = 3 mod 4, and —7 is a quadratic
residue modulo 5077, Proposition 4.6 implies that (E,p) satisfies the con-
dition (C2).

5. Selmer Groups

In this section, we shall recall the definition of the fine Selmer groups of
an elliptic curve, and introduce some preliminary results related to Selmer
groups. In Section 5.2, we shall review preliminary results in the Iwasawa
theoretical setting. We keep the notation and the assumptions in Section 4.

5.1. Definition of Selmer groups. Let K be a number field, that is,
a finite extension field of Q. First, let us recall Bloch-Kato’s finite local
conditions.

Definition 5.1 ([17, Definition 1.3.4, Remark 1.3.6]). Let v be any place
of K. We define H}(Kv, Vp(E)) to be the Q,-vector space

Hy, (Ko, Vo (E)) if v1p,
Ker (HY(K,, Vy(E)) = HY(Ky, Bais ®q, Vp(E))) if v |p,
0 if v | oo,

where Beis is Fontaine’s p-adic period ring and v | oo we mean that v is an
infinite place in K. We define

Hj(Ky, B[p™]) € H' (Ky, B[p™]) and H}(K,, T,(E)) C H' (K, T,(E))

to be the image and the inverse image, respectively, of H ch (Ky, Vp(E)) un-
der the natural maps H'(K,,T,(E)) — H'(K,,V,(E)) — H'(K,, E[p™)]).
For each n € Z-(, we define H}(KU,E[p”]) to be the inverse image of
H}(KU, E[p™]) by the natural map

(5.1) tny: HY(K,, Ep")) — HY(K,, E[p™)).

The subgroup H}(KU,E[p”]) coincides with the image of H}(KU,TP(E )
under the map H'(K,T,(E)) — H(K,,E[p"]) induced by T,(E) —
T,(E)/p"T,(E) ~ E[p"] ([17, Lemma 1.3.8]).

Remark 5.2. Let v be any finite place of K not above p. Suppose that
Ek has good reduction at v. The p-adic Tate module T,(F) is unrami-
fied at v (from the “easy” direction of the Néron—-Ogg—Shafarevich crite-
rion [24, Chapter VII, Theorem 7.1]) so that H}(KU, E[p"]) coincides with
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H} (K,,E[p"]) (cf. [17, Lemma 1.3.8]), for each n € Z~q U {oc}. Further-
more, the inflation-restriction exact sequence (e.g., [17, Proposition B.2.5])
gives a natural isomorphism

HY (K" Ky, E[p") = Hi(Ky, B[p").

Definition 5.3 (the fine Selmer group). For each n € Z~oU{oco}, we define
the fine Selmer group Sel, (K, E[p"]) to be the kernel of

H (K, E[p"])

1 n 1 n
10, Bl — [T 6 B0 < T ey

ulp vip
where v runs through all the places of K above p, and v runs through all
the places of K not above p.

Remark 5.4. When v is an infinite place of K, the cohomology group
HY(K,, E[p")) is annihilated by at most 2 for each n € Z>; U {oc}. Since
we are considering the odd prime p, we have H'(K,, E[p"]) = 0. Because
of this, we may not care about infinite places in the following.

Remark 5.5. We denote by Y the set of places of K above the prime
divisors of pDg and the all infinite places and by K, the maximal algebraic
extension field of K unramified outside X . Then, for each n € Z~oU {o0},
the kernel of the natural map

H'(K,, E[p"])

1 v Tl o]
HY(K,EPp") — ] H}(Ky, E[p")

”L)¢2K
coincides with H'(Kyx /K, E[p"]) ([17, Lemma 1.5.3]). The fine Selmer group
Sel, (K, E[p"]) can be regarded as a subgroup of H!'(Kx/K, E[p"]).

Remark 5.6. Here, we give a remark on the relation between Sel, (K, E[p™])
and the classical Selmer group. Take any n € Z~(. Recall that the classical
Selmer group Sel(K, E[p"]) is defined by

1 n

where v runs through all the finite places of K, and H}(K,, E[p"]) denotes
the image of the homomorphism

6no: B(K,) = H (K, E(K,)) — H'(K,, E[p"])

induced by the short exact sequence

v

0 — Ep"] = B(K,) =25 B(R,) — 0.
For any n € Z~g, there exists a short exact sequence

0 — E(K)®zZ/p"Z — Sel(K, E[p"]) — UI(Ex/K)[p"] — 0,
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where III(Ex/K) denotes the Tate-Shafarevich group of Ex /K. By the
well-known fact below (Proposition 5.7 which follows from the arguments
in [1, Example 3.11]), it holds that

Sel, (K, E[p"]) = Ker (Sel(K, Ep"]) — [[H" (K., E[p"])) :

v|p

Proposition 5.7. Let K be a number field. For any finite place v of K, it
holds that

(5.2) He (Ko, E[p"]) = Hj (Ko, E[p"]).
Proof. The short exact sequence
0 — T,(E) — Vp(E) — E(Ky)[p™] — 0
induces a natural isomorphism
01 B(I,)[p™] == H' (Ky, T(E))tor,

where H'(K,,T,(FE))tor denotes the torsion part of H'(K,,T,(E)) ([28,
(2.3) Proposition]). Note that we have H' (K, Tp(E))ior C H}(Ky, T,(E))
by definition. We also note that the diagram

E(K)[p™] ——2— H'(Ky, Ty(E))ior

(5.3) n1£ lm

E(K,) ®Z, HY(K,, E[p")

6n,v®Zp

commutes, where 77 and 7y are natural homomorphisms.
First, suppose that v lies above a prime number ¢ distinct from p. As
noted in [1, Example 3.11], we have

Hj(Ko, Vp(E)) = Hy (Ko, Vy(E))
&L HY (Gal(K Y/ K,), HOKS Vo(E))) = 0.
By the Weil pairing, we have
Homg, (V3 (E), Q) ®2z, %nupn) =~ Vp(E).
The local duality ([1, Proposition 3.8]) implies that
H' (Ko, Vp(E))/Hj (Ko, Vp(E)) = Hj (Ko, Vp(E)) = 0.

Therefore, we obtain H!(K,,V,(E)) = 0 and hence H(K,,T,(E)) is tor-
sion. This implies the equalities

Hl(vaTp(E))tor = H}(vaTp(E)) = Hl(Kva Tp(E))-
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Since F(K,) is a compact commutative ¢-adic Lie group of dimension [K,, :

Qy], the group F(K,) is isomorphic to the direct sum of 750 31 d a finite
g 1

abelian group. This implies that 7, in (5.3) becomes an isomorphism. Since
H}(K,, E[p"]) coincides with the image of H}(K,,T,(E)) under the map
HY(K,,T,(E)) B HY(K,,E[p"]) ([17, Lemma 1.3.8]), the commutative
diagram (5.3) above implies the equality (x) below

HY(Ky, E"]) = T (6,) = Im(0p.p © Z,) & Tm(ip) = HHK,, B[p").

Next, let us suppose that v lies above p. (Note that we do not use this
case in this manuscript, but for the sake of the readers’ convenience, we
give a proof.) We denote by H} (K, T,(E)) the image of

(Om)m: B(Ky) — lm H' (K, Ep™)) ~ H' (K, Ty(E)).

Claim. The group HY(K,,T,(E)) coincides with the inverse image of
Hcll(Kvan(E)) @z, Qp

via the natural mapping H'(K,, T,(E)) — HY(K,,T,(E)) @ Q,.

Proof. The torsion part H(}l(Kv,Tp(E))tor coincides with the image of

n (5.3). We have HY(Ky, T,(E))tor = HY(Ky, Tp(E))tor- There is a com-
mutative diagram

Hgl(Kvan(Eg) ®z, Z.|pZ

(0n,0)nQZ/PZ (inclusion)RZ/pZ
Y

H'(Ky, Ty(E)) ®z, Z/pZ
inclusion

E(Ky) ®z L]pL© H'(K,, E[p]).

61YU®Z/pZ

Note that in the above commutative diagram, the injectivity of 6, , ® Z/pZ

and the surjectivity of (0, )n ®Z/pZ imply that the vertical dotted arrow is
1

injective. By Nakayama’s lemma, a basis of the Z,-module %
tends to a basis of the Z,-module -/ {£n-Tp(E))

extenas to a basis O € Zip-module m
HY (Kv,Tp(E))

Hl(Kvan(E))tor

. Hence, the quotient
coincides with

H'(Ky, Ty(E))

HY(Ky, Ty(E))tor

The claim follows from this. O

(HA(K,, Ty(B)) @2, Qp) N
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The arguments in [1, Example 3.11] (the isomorphism 0 in commuta-
tive diagram (3.11.1) and the first equality in (3.11.2)) imply the equality
HY(Ky, Ty(E)) ®z, Qp = H}(Kv, Vp(E)). The above claim gives

Hgl(Kvan(E)) = H}(Kv’Tp(E))-
Both of the Z,-modules H}(K,, E[p"]) and H}(KU,E[p”]) coincide with
the image of H}(K,, T,(E)) and H}(K,, T,(E)) respectively under the map
HY(K,,T,(E)) = H*(K,, E[p"]). Hence, we obtain the equality (5.2). O
5.2. Preliminaries of Iwasawa theory. For each place v of Ki, we

denote by D, the decomposition subgroup of the Galois group I' := G 1 =
Gal(K /K1) at v, and define

E(Koo.w)[p™
s {AHDZPHD’UH (W((omw—)[l?[f'%]i\r)

ur E(K5 )[Pp™] .
AnanﬂDv]] (Hl (Koo,w/Koo,wv m)) lf v )[p,
where w is a place of K, above v. We set

Ay =[] AvZy[I].

U‘pDE

if v | p,

Recall that, for each m,n € Z>1, we have

A = Lfp"2UGma] = A/ (""" = 1),
where A = Zp[I'] and + is the fixed topological generator of I'. Write
Sely (Koo, E[p™]) := liﬂSelp(Km, E[p™)).
m

For any m,n € Z>o U {oc}, we put X, ,, := Sel,(Ky,, E[p"])Y and X, :=
Xnn-
Proposition 5.8 (Control theorem, [17, Proposition 7.4.4]). Suppose that

E satisfies the condition (C1l). Let m,n € Zxq be any integers. Then, the
following hold.

(1) The restriction map H* (K, E[p™®]) — HY (K, E[p™]) is injective.
(2) The natural map H (K, E[p™]) — HY (K, E[p>])[p"] is injective.
(3) The cokernel of the restriction map
Sel, (K, E[p™]) — H°(Kpm, Sely (Koo, E[p™)))

is finite, and annihilated by Aps.

(4) The cokernel of the natural map
Selp(Km, E[p"]) — Sely(Km, E[p™])[p"]
is finite, and independent of n.

Remark 5.9. In [17, Proposition 7.4.4], the following two additional as-
sumptions are assumed:
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e (Assumption 7.1.4) For every sub extension F' C K. with [F' :
Q] < o0, both Ap/char(X.)Ap and Xo ® Ap are finite, where
Ap = Z,[Gal(F/Q)].

e (Assumption 7.1.5) For every prime number ¢ dividing pDpg, the
decomposition group of £ contains an element +, with the property
that

Ty (B = = (T,(E)Y) =" =0

for every n > 0, where the superscript ) " = 1 stands for the fixed

part by ~; "
However, the arguments in the proof of [17, Proposition 7.4.4] do not need
Assumption 7.1.4. In our setting, it follows from Hasse—Weil’s theorem that
the Zy|Gk,]-module T),(E) satisfies Assumption 7.1.5. We also note that
(C1) for E implies

Aglob 1= Anng, 1) (E(Kx)) = Zp[I

(cf. [17, Definition 7.4.1]).

By Proposition 5.8, we immediately obtain the following corollary.

Corollary 5.10. There exists an integer vx such that for any m,n € Zq,
the orders of the kernel and the cokernel of Xoo @A Ay — X pn are at
most p¥x.

Remark 5.11. Recall that A = Gal(K;/Q). Take any n € Z~¢. Since the
order of A is prime to p, we have

HO(A, Sel, (K1, E[p"])) =~ Sel,(Q, E[p"]),

and hence (Xi,)1 ~ Xon, where 1 € A denotes the trivial character.
By Corollary 5.10, the orders of the kernel and the cokernel of

Xoo1 Op Ay — (Xin)1 > Xon

are at most p"X.

6. Proof of Main results

In this section, we shall prove our main results, in particular, Theo-
rem 1.1. We keep the notation in Section 4 and we suppose that the elliptic
curve F over Q has good reduction at an odd prime number p.

6.1. Boundedness of the order of Galois cohomology. In this para-
graph, let us prove the following Proposition 6.1, which is related to the
boundedness of the order of the kernel and the cokernel of the restriction
map

H'(Kn, E[p"]) — H'(K), E[p")).
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Proposition 6.1. Suppose that the elliptic curve E satisfies the conditions
(C1) and (C3). Then, for any i € {1,2}, the set

{#H' (K /Kn, E[p"]) }n0

s bounded.
In order to prove Proposition 6.1, we need the following lemmas.

Lemma 6.2. We assume the condition (Cl) and also E has complex mul-
tiplication by an order o of an imaginary quadratic field Q(v/—d). Then,
the fields Q(v/—d) and Ko are linearly disjoint over Q.

Proof. Assume Q(v/—d) C Ko for the contradiction. As E is defined
over Q, every endomorphism of E is defined over Q(v/—d) ([25, Chap-
ter II, Theorem 2.2 (b)]), hence over K. Recall that E[p] is a free o/po-
module of rank 1 ([25, Chapter II, Proposition 1.4]). The two dimen-
sional representation pf': Gk, — Autp,(E[p]) is given by a character
G, — Auteg,z,(E[p]) ~ (0/po)*. This contradicts (C1). O

Lemma 6.3. Suppose that E satisfies (C1) and (C3). Then, for any i €
Zso, it holds that H(KE /Ko, V,(E)) = 0.
Proof. The case non CM. First, suppose that E does not have complex
multiplication. Recall that Gg acts on /\%p T,(E) via the cyclotomic char-
acter (cf. [24, Chapter V, Section 2]). By Serre’s open image theorem ([22,
4.4, Théoreme 3|, [23, p. IV-11]), the image H of the Galois representation
pP: Gal(KE /Ky) — Autg, (T,(E)) ~ GLs(Z,)
becomes an open subgroup of SLy(Z,). There exists an open normal stan-
dard pro-p subgroup U of H ([2, 8.29 Theorem)), because H is a p-adic Lie
group. By [10, Chapter V, (2.4.9) Théoréme], we have
HY(U, Vp(E)) = H(Lie(U), V,(E))

for any ¢ > 0. Since Lie(U) is an open Lie-subalgebra of

sly(Zy) :={A € pM3(Zy) | Tr A = 0},

a matrix of the form (1+0p” _(13_1),1)) for some n belongs to Lie(U). By [21,
Théoreme 1], we obtain HY(Lie(U),V,(E)) = 0. Hence, the Hochschild-

Serre spectral sequence
B! = HP(H/U, H(U,V,(E))) = H""(H, V,(E))
implies that H(KZ /K, V,(E)) = H{(H,V,(E)) = 0 for any i > 0.

The case CM. Next, let us assume that E has complex multiplication. By
the assumption (C3), the ring End(F) of endomorphisms of E defined over
Q is the maximal order o of an imaginary quadratic field L := Q(v/—d).
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Put LE = LKE. Since E is defined over Q, every element of End(E) is de-
fined over L (25, Chapter II, Theorem 2.2 (b)]). Consider the representation
p: Gr, — Aut(T,(F)) which is arising from the action of G, on T,(E). This
factors through an injective homomorphism Gal(LZ /L) — Aut(T,(E))
which is also denoted by p. The Tate module T),(E) = im E [p"] is a free
0 ®z Zp-module of rank 1 because E[p"] is a free o/p"o-module of rank 1
([25, Chapter II, Proposition 1.4]). As we noted above, every endomorphism
of E is defined over L, the action of Gal(LZ /L) commutes with the scalar
multiplication by o0, and we obtain the commutative diagram

Gal(LE /L) ¢ 4 Aut(T,(E))

(6.1) \ j

AUto®zZp (TH(E)) =~ (0 ®z Zyp)™.

In particular, the extension L% /L is an abelian extension. The short exact
sequence

0 — Gal(LE /L) — Gal(LE /Q) — Gal(L/Q) — 0

induces the action of Gal(L/Q) to Gal(LZ /L). In fact, let ¢ be the unique
generator of Gal(L/Q) and take ¢ € Gal(LZ /Q) a lift of c. The action
of Gal(L/Q) on Gal(LE /L) is given by o — c¢oc¢!. The induced map
po preserves the action of Gal(L/Q). Let m,x: Auteg,z,(Tp(E)) = (0 ®z
Zp)* — (0 ®z Zp)*/0* be the natural surjection. We denote by H' the
image of p,, and by H’ that of m,x o p,. Let Lz, be the maximal subfield
of LE /L fixed by the kernel of m,x o p,. We have

Gal(LE /L)~ H' C (0 ®77Z,)*, and

(6.2) —
Gal(Lz, /L) ~ H' C (0 ®7 Zp)* /0™

Claim 1. The extension Ly, /L is the mazimal abelian extension unrami-
fied outside p.

Proof of Claim 1. The elliptic curve F is defined over Q so that the class
number of L is 1 ([25, Chapter II, Theorem 4.1]). We denote by Ly, be
the fixed field of LZ := L(E[p"]) by the kernel of the composition
Autogz/pmz(E[p"])
Aut(FE)

By the theory of complex multiplication ([25, Chapter II, Theorem 5.6]
Lz, is the ray class field of L modulo p"o. The claim follows from L,

)

Gal(Lyy /L) — Autogypnz (E[p"]) — ~ (o/p"0)"/0™.
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By the global class field theory, the above claim implies that the group
H' ~ Gal(Lg, /L) has a quotient isomorphic to ZIQ, (see, for instance, [29,
Chapter 13, Proposition 13.2 and Theorem 13.4]). The subgroup H' is open
in (0 ®zZp)*, and in particular, the complex conjugate ¢ acts non-trivially
on H'.

Claim 2. The field KE contains L = Q(v/—d).

Proof of Claim 2. If KE and L are linearly disjoint over Q, then the ex-
tension LY = LKZ /Q becomes abelian. Therefore, the complex conjugate
c acts on Gal(LE /L) trivially, and it acts on H' via p,. This contradicts
the fact that ¢ acts on H' non-trivially. O

From the above claim, we have LY = LKE = KE.

Claim 3. There exists a lift ¢ € Gal(KZ /Q) of ¢ whose order is two such
that
Gal(KZ /Q) = (&) x Gal(KE /L) ~ (&) x H'.

Proof of Claim 3. From Claim 2, we have KZ D L. Fix an embedding
we: KE < C. Consider the following short exact sequence:

0 — Gal(KZ /L) —— Gal(KE /Q) —— Gal(L/Q) — 0.
|~ H
H' ()
The embedding ¢c induces a splitting of this short exact sequence which
sends ¢ to the restriction ¢ € Gal(KZ /Q) of the complex conjugation after

regarding K2 as a subfield of C via c. This splitting gives Gal(KE /Q) ~
(¢) x H'. O

Claim 4. Putting Loo = LK, we have L, N Q2 = L.

Proof of Claim 4. By Lemma 6.2, the fields K+, and L = Q(v/—d) are lin-
early disjoint. The composition field Lo = KL is an abelian extension
of Q so that Lo, C Q3. The extension Koo = Q(pp=) = U, Q(ipn) of Q
is unramified outside p and hence the extension Lo, = K L/L is unram-
ified outside p. Let us show that Lz, N Q* = L. Claim 1 implies that
Lz N Q? D L because the extension L, /L is unramified outside p. Ac-
cordingly, it suffices to show that L, N Q2 C L. As E is defined over Q,
the class number of L is one. Put p* := (—1)®~1/2p. Lemma 6.2 implies
that Q(y/p*) and L are linearly disjoint over Q because Q(/p*) is contained
in K1 = Q(up). We deduce that p is unramified in L/Q. In fact, if p were
ramified in L/Q, the Hilbert class field of L would contain the quadratic
extension L(+/p*)/L. Since L is the imaginary quadratic field of class num-
ber one, there exists a unique prime g7, € {2,3,7,11,19,43,67,163} which
is ramified in L/Q.
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For each prime ¢, we denote by I, the inertia subgroup of Gal((Lz N
Q*")/Q) at £. We define L to be the subfield of Lz N Q2P fixed by I, and
Ly to be that fixed by I,,. The extension Lz, /L is unramified outside p,
and L has class number one. The extension (Lz, NQ*)/L does not contain
the proper extension field of L where every place above p is unramified. As
p is unramified in L/Q, we obtain L; = L. The field Ls coincides with the
maximal intermediate field of (L, N Q?")/Q unramified outside p because
the extension Ly, /Q is unramified outside {p,qr}. The inclusion Ly C
K holds, because K, /Q is the maximal abelian extension unramified
outside p. As a result, we obtain LiLy C L. Additionally, the extension
Lz N Q2P of L; = L is unramified outside p. In particular, the extension
(L7 NQ*)/Ly is unramified at gz. Because of this, we have

I,N 1, = Gal((Lg NQ*™)/L) NI, = {1}.
Consequently, we deduce that Lz, N Q2 = L1Ly C Leo. [l
By this Claim 4, the abelianization of the Galois group Gal(Lz,/Q) is
(6.3) Gal(Lz,/Q)* = Gal(Lz NQ*/Q) = Gal(Lw/Q).
The abelianization Gal(Lz,/Q)*" is the maximal quotient of Gal(Lz,/Q)
where ¢ acts trivially, and we have Gal(Lz,/Q) ~ (¢) x H' by Claim 3.
Therefore, we obtain
Gal(Loo/Q) ™ Gal(L 7,/ Q)™
~ (@ x H')/((@) x (1 = )H')
~ H'/(1-c)H'.
(Here, the group operation of H' is written in additive manner.) Let H’_ be

the inverse image of (1—c¢)H' by mox |+ H' C (0®7Zp)™ — (0@zZ,)* /0*.
By (6.2), we have

Gal(L,/Lso) ~ (1 — ¢)H', and
Gal(LE /L) ™ 2 Gal(KE /Loo) ~ H'..

By Lemma 6.2, the fields K, and L are linearly disjoint over Q. We obtain
an isomorphism Gal(Ls /K~ ) ~ Gal(L/Q) and an exact sequence

0 —— Gal(KZ /L) — Gal(KZ /K,) — Gal(Ls/Ks) — 0.

pﬂz ig

H, e}

There exists a lift & € Gal(KZ /K) of c. Note that ¢ and the isomorphism
Gal(KE /L) ~ H!, generate Gal(KE /K.), and we have (Gal(KZ /K ) :
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H ) =2

Claim 5. We have H., C H'[(1+ ¢)?]. Here, the (1 + c)?-torsion part of a
Z[Gal(L/Q)]-module M is denoted by M|[(1+ c)?].

Proof of Claim 5. Note that (1 — ¢)H' is contained in H'[1 + ¢] and 0%
is contained in H'[1 + ¢]. For any « € H., = m,.'((1 — ¢)H'), we have
Tox () € (1 —¢)H' C H'[1 +¢]. For (1 +¢)z € Ker(myx) = 0% C H'[1 + ],
we obtain (14 ¢)%x = (1 +¢)(1+ ¢)z = 0. O

Put V := (0 ®z Zp)* ®7 Q) ~ QZ. Since ¢ acts on V non-trivially, and
1+ p € V is a non-trivial element fixed by ¢, the eigenvalues of the action
of c on V are 1 and —1. The group (0 ®z Z,)*[(1 + ¢)?] has a subgroup
of finite index which is isomorphic to Z,. This implies that there exists
an element z € H/_ of infinite order such that the closure Hy, of (z)
has finite index in H . Fix an embedding ¢,: L < @Q,. The embedding
tp induces the ring homomorphism Z,: 0 ®z Z, — Q, sending a ® b to
tp(a)b. The eigenvalues of the action of 2 on V,(F) ®q, Q, are iy(x) and
Tp(c(x)) = Tp(z)~t. We obtain V,(E)[z — 1] = 0 and V,(E)/(1 — z) = 0.
Note that H is topologically generated by x. By [13, (1.7.7) Proposition]
combined with [28, (2.2) Corollary and (2.3) Proposition], it holds that
H9(Hy, V,(E)) = 0 for any ¢ > 0. Let us identify H’ with Gal(KZ/Ls).
We may regard Ho, as a normal subgroup of Gal(KZ /K.,) because c acts
on Hy by x — x~!. Hence, by the Hochschild-Serre spectral sequence

EY' = HY(Gal(KZ/ Koo) [ Hoo, HY(Hec, Vy(E)))
= Hp—’_q(KoEé/KOO: V}’(E>)7
we deduce that H(KE /K., V,(E)) = 0 for any i > 0. O

In the proof of Proposition 6.1, we use a corollary of the following well-
known lemma called topological Nakayama’s lemma.
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Lemma 6.4 (Topological Nakayama’s lemma). Let (R, m) be a Noetherian
complete local ring whose residue field is finite, and M a compact Hausdorff
R-module. Suppose that dimp n M/mM < oo. Then, the R-module M is

finitely generated.

Proof. Since M is compact, for any neighborhood U of 0 € M, there exists
an integer n € Zx¢ such that m"M C U. As M is Hausdorff, we obtain
N,>o "M = 0. By [4, Exercise 7.2], we deduce that M is finitely generated
over R if dimp/y M/mM < oo. (See [29, Lemma 13.16] for the proof of
Lemma 6.4 in the case when R = Z,[T].) O

Corollary 6.5. Let M be a torsion Z,-module satisfying dimg, M[p] < oco.
Then, it holds that M is a cofinitely generated Z,-module.

Proof. We regard M as a topological group equipped with the discrete
topology. By applying Lemma 6.4 to the Pontrjagin dual of M, we ob-
tain Corollary 6.5. d

Proof of Proposition 6.1. Take any i € {1,2}. Let j € Z be any integer
satisfying 0 < j < . The group Gal(KZ /K..) is topologically finitely
presented because it is isomorphic to a closed subgroup of GL2(Z,). This
implies that H/(KE /K., E[p]) is of finite order. The long exact sequence
arising from the short exact sequence
0 — E[p| — E[p>] 2 E[p™] — 0
induces the surjective homomorphism
HY (K3 /Koo, Blp]) —» H? (K3 /Koo, E[p™])[p).
In particular, we have
dimg, H (K% /Koo, E[p™))[p] < dimp, H (KL /Ko, Elp]) < co.
By Corollary 6.5, it holds that H/ (K% /K., E[p>]) is cofinitely generated
over Zp. Moreover, the short exact sequence

0 — T,(E) — Vp(E) — Ep>™] — 0
induces
HI (K5 Koo, Vp(E)) — H (K5 /Koo, E[p™])
— HITY KL [ Koo, Ty(E)).
From Lemma 6.3, we have H/(KE /K, V,(E)) = 0. Since the Z,-module
HITYKE /K, T,(E)) does not have a non-trivial divisible Z,-submodule
by [28, (2.1) Proposition], it follows from the above short exact sequence

that #H/(KE /Ko, E[p™]) < oo. Take any n € Zso. As Koo/K, is a
pro-cyclic extension, the Hochschild—Serre spectral sequence

B = HP (Koo Ky HY(KE | Koo, E[p™))) — HPU(KE K, E[p™))
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implies that

#H' (KL [, E[p™)) < [[{#HY(KL /Kw, Ep™))} < co.
q<i

Therefore, the sequence {#H*(KZ /K, E[p>™])}n>0 is bounded. The exact
sequence

H'Y(KZ /Ky, E[p™))
pn
implies that {#H"'(KZ/Kn, E[p"])}a>0 is bounded. The inflation map
HY (K [ Ko, Elp"]) — H' (Koo /Kn, E[p"])

— H'(K3 [ Kn, E[p"]) — H'(KZ/Kn, E[p™])[p"]

is injective ([17, Proposition B.2.5]). The assertion of Proposition 6.1 for
i = 1 follows from this. In order to prove Proposition 6.1 for ¢ = 2, by
considering the inflation-restriction sequence

HY(KEL/KY, Blp") S50 — B2(KE /K, Blp™)
— H*(K3/Kn, E[p")
([17, Proposition B.2.5(ii)]), it suffices to show that the order of
HO(Kn, Hom(Gal(KZ /Ky), E[p")))

is bounded. Put H,, , := H(K,,Hom(Gal(KZ /KF), E[p™])). The short
exact sequence

0 — E[p]| — E[p"] — E[p" '] — 0
induces an exact sequence
0 — Hy1 — Hpm — Hym—1.

The lemma below (Lemma 6.6) says that there exists an integer N such
that

H,1 = H(K,,Hom(Gal(KZ /KE), E[p])) = 0

for all n > N. Thus, we have a sequence of injective homomorphisms
Hym — Hyppm1 — -+ — Hp1.

The lemma below again implies H,, ; = 0. In particular, we have

Hppn = HY(K,,,Hom(Gal(KZ /KE), E[p"])) = 0
for all n > N. Therefore, the sequence

{#H°(K,, Hom(Gal(K3L/Ky), E[p"])) bnxo0

is bounded. g
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Lemma 6.6. Suppose that E satisfies (C1) and (C3). There exists an
integer N such that

H (K, Hom(Gal(KZ /K), E[p]) = 0
for any m € Z>n.
Proof. The case non-CM. First, suppose that F does not have complex
multiplication. The representation p”: Gg — Aut(T,(E)) ~ GL2(Z,) fac-
tors through Gal(KZ /Q) — GLa(Z,) and is also denoted by p¥. In this
non-CM case, Serre’s open image theorem ([22, 4.4, Théoréme 3|, [23,
p. IV-11]) implies that the group p”(Gal(KZ /Q)) is an open subgroup

of GL2(Z,). We can take an integer N € Z>; such that p¥(Gal(KZ/Q))
contains 1 + p™¥ My(Z,). Take any m € Zsx. As we have

Hom(Gal(KZ/Kyy), E[p)“%m = Homga (ks k) (Gal(K L /Ky, Elp]),

it is enough to show that there is no non-trivial Gal(KZ / K,,)-equivariant
homomorphism Gal(KZ /KE) — E[p]. The commutative diagram

Gal(KZ Q) " Aut(Ty(E)) ~ GLo(Z,)

| |

Gal(KZ /Q) = Aut(E[p"]) ~ GLa(Z/p"Z)
indicates that p¥(Gal(KZ/KE)) C 1+ p™Ms(Z,). As we have
1+ p"Ma(Zp) C 1+ p™ Ma(Zy) C p"(Gal(KZ/Q)),
it holds
PP (Gal(KE JKE)) = pP(Gal(KE /Q)) N (14 p" My (Z,)) = 1+ P Ma(Zy).
Hence, every group homomorphism Gal(KE /KE) — E[p] factors through
Gal(K£+1/K£) ~ gly(Fp) = Ma(Fp).

The group G = pf(Gal(KE/K,,)) C GL2(Z,) acts on Ms(F,) via the
conjugate action, and we have My(F,) = F, @ sly(F,) as [F,[G]-modules,
where we set

sly(F,) = {A € My(F,)| Tr A = 0}.

The condition (C1) for E implies that there is no non-trivial G-equivariant
homomorphism F,, — FE[p]. Now, we suppose that there is a non-trivial
G-equivariant homomorphism f: sly(F,) — E[p], and show that this as-
sumption leads to a contradiction. Put V := Ker(f). By (C1), we have
dimg, Im(f) = 2, and dimp, V = 1. Take any non-zero A € V.
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e First, let us suppose that A is nilpotent. In this case, there exists a
matrix P € GLy(F,) such that A = P(§})P~!. Since G acts via
the conjugate action on the space V = F,A, for any B € G there
exists a € [ such that BAB~! = aA. This implies that if v € IF]% is
an eigenvector of A, then Bv is also an eigenvector of A. As a result,

FX F

S ]Fg P~ of

GL3(F,). This implies that G acts on the subspace W C sly(F))

generated by P (§ %) P~!and A. In fact, for Q =P (25) P~' € G

with a,d € F) (ad # 0),b € Fp, we have

the group G is contained in the Borel subgroup P (

1 0 11 1 0 b
QP(O _1)P Q —P<0 _1)P + dAEW, and

QAQ~! = %A cW.

Since A € V = Ker(f), the image of W by f becomes a proper
G-stable Fp,-subspace of E[p]. This contradicts (C1).

e Next, suppose that A is not nilpotent. If we assume the matrix
A € sly(Fp) has one eigenvalue «, then 0 = TrA = 2a. Since
p is odd, we have @ = 0 and A is nilpotent. The matrix A has
two distinct eigenvalues a, —av in F). Since V is stable under the
conjugate action of G, for any B € G, there exists some a € F)
such that BAB~! = aA. For each eigenvalue 3 € {a, —a} of A, we

denote by Vg C IFT)Q the eigenspace associated with the eigenvalue
5. Take any non-zero v € V,. Note that Bv is also an eigenvector
of A, for we have BA = aAB. Suppose that Bv € V_,. The group
G acts on {V,,V_,} transitively, and G has a subgroup of index
2. This contradicts the fact that G is a pro-p-group. Because of
this, we obtain Bv € V,. This implies that V,, is G-stable. This
contradicts (C1).

Hence, there is no non-trivial G-equivariant homomorphism sly(F,) — E[p],
and the assertion for the non-CM case follows from this.

The case CM. Suppose that E has complex multiplication. By the assump-
tion (C3), the ring End(E) is the maximal order o of some imaginary qua-
dratic field L := Q(v/—d). As we shall see below, in this case, we can take
N := 1. Take any m € Z>1, and put G := Gal(KZ /K,,). Let H], be the
subgroup of (0 ®z Z,)* corresponding to Gal(KZ /L,,) by

P Gal(KZ /L) — Auteg,z, (Tp(E)) = (0 ©2 Z,)",

where L, = K, L (cf. (6.1)). Recall that L = Q(v/—d) and K are linearly
disjoint over Q (Lemma 6.2) and LKZ = KZ by Claim 2 in the proof
of Lemma 6.3. There exists a lift ¢,, € G = Gal(KZ /K,,) of the generator
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¢ € Gal(L/Q). Note that G is generated by ¢, and H] , and H,, is a normal
subgroup of G of index two.

Claim. There exists a non-trivial element of H), whose order is prime to p.

Proof of the Claim. Suppose that H/, has no non-trivial element whose or-
der is prime to p for the contradiction. Then H/, becomes a pro-p group,
and hence there exists a non-zero element a € E[p] fixed by H, (cf. [20,
Chapitre IX, §1, Lemme 2]).

e If a is an eigenvector of ¢,,, then a spans a proper G-stable F,-
subspace of E[p].
e Let us suppose that a is not an eigenvector of ¢,,. Note that H],
acts trivially on both a and ¢, (a), for H}, is a normal subgroup of
G. Since Elp) is spanned by {a, ¢y, (a)} over F,,, the action of H,, on
Elp] is trivial. The action of G on E[p| factors through the cyclic
group G/H], of order two, especially prime to p, generated by the
image of ¢,.
In any cases, it contradicts (C1). As a result, there exists a non-trivial
element H/, whose order is prime to p. O

Take any non-trivial element 2z € H/ whose order is prime to p. Since
(K, : K1) and [KL : KF] are powers of p, we may regard z as an element
of Gal(KE /K,,). Since the order of z € (0 ®z Z,)* is prime to p, we also
note that there is no non-trivial element of E[p] fixed by z. However, the
element z acts trivially on Gal(K%, ,/KL) because Gal(KE ,/KE) is a
subquotient of the abelian group H,, which contains x. This implies that
there is no non-trivial G-equivariant homomorphism Gal(KZ,,/KE) —
El[p]. This completes the proof of Lemma 6.6.

6.2. The kernel and the cokernel of the restriction maps. The goal
of this subsection is to show the following proposition which is a key of the
proof of Theorem 1.1.

Proposition 6.7. Suppose that E satisfies the conditions (C1), (C2) and
(C3). Let

res®: Sel, (K, E[p"]) — H(K,,Sel,(KZ, E[p"])).
be the restriction map. Then, the following hold.

(1) There exists a non-negative integer v such that

Ker

# Ker(res>l) < ptres
for any n € Z>p.
(2) There exists a non-negative integer v such that
Coker

# Coker(res>®) < plres
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for any n € Z>p.
In order to prove Proposition 6.7, we need the following theorem:

Theorem 6.8. Let £ be a prime number, and F/Qgiz finite extension. Fizan
embedding Q — F', and regard jip as a subset of F'. If £ is distinct from p,
suppose that EF(upn) has additive reduction for any n >1. Then the sequence

{F#E(F () [P 1} nz0

1s bounded.

Proof. For the case ¢ = p, this follows from Imai’s result [7]. Consider the
case ¢ # p. For every n > 1, put F,, := F(p,») and we denote by &y,
the residue field of F),. Following the notation in [24, Chapter VII, Sec-
tion 2], we denote by 7: Er, (F,) = EF, () the reduction map. We define
E‘Fn,ns to be the set of non-singular points in the reduction Epn and put
Er, o(Fpn) := 7 (Ep, ns(fin)) the group of rational points whose reduction
is non-singular. The reduction map 7 induces a short exact sequence

(6.4) 0 — Ep, 1(F,) — Ep, o(F,) — Ep, ns(fin) — 0,

where the left term EF, 1(F},) is defined by the exactness ([24, Chapter VII,
Proposition 2.1]). From the assumption that Er, has additive reduction,
the order of the quotient Er, (F,)/EF, o(Fy) is at most 4 ([24, Chapter VII,
Theorem 6.1]). Hence, it is enough to show that {#EF, o(F,)[p>]}n>0 is
bounded. The above sequence (6.4) induces

EFn,l (Fn)
meFn,l (Fn)
for any m > 1. Since Ef,, 1(F},) is written by the group associated to the for-
mal group law and has no non-trivial points of order p™ ([24, Chapter VII,
Proposition 3.1]), we obtain Ef, 1(F,)[p™] = Ep, 1(Fn)/p"Ep,1(Fy) = 0.
From the assumption that EF, has additive reduction again, it follows that
E‘Fn,ns(/@n) is isomorphic to the additive group x,, ([24, Chapter III, Exer-
cise 3.5]) so that Ep, ns(kin)[p™] = 0. The assertion follows from this. [

0 — Ep, 1(Fn)p™] — EFr, 0lp™] — Epmns(fin)[pm} —

Lemma 6.9. Suppose that E has potentially multiplicative reduction
at a prime number ¢ (distinct from p). Then, there exists an integer Ny
such that for any n € Z>n, and any place w of KE above ¢, we have
PrE(KY,)[p™] = 0.

Proof. Suppose that E has potentially multiplicative reduction at a prime £.

Claim. There exists a finite Galois extension field L of Q contained in KZ
satisfying the following conditions:

(a) The elliptic curve Ef, has split multiplicative reduction at every
place of L above £.
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(b) Ewvery place of L above ¢ is inert in Lo := L(jip)/L.
(c) There exists N € Z>1 such that Ky C L C Kﬁ,

Proof of the Claim. By Lemma 4.3, the base change EK{; has split multi-

plicative reduction at every place of K{ above ¢. Take any integer N € Z~g
satisfying p,n € Q¢(E(Q)[p]), and put L := K (p,~). As p,n C K, the
conditions (a) and (c) are satisfied. Note that Leg 1= K& (up=)/K¥ is
a (cyclotomic) Zy-extension, and our choice of N implies that the group
Gal(Lo/L) becomes a proper subgroup of the decomposition group of
Gal(Loo/K¥) at any place v of K¥ above £. The condition (b) is satis-
fied. O

In order to prove Lemma 6.9, it suffices to show that there exists an
integer N’ € Z~ such that for any n € Z> - and any place w of KE above
¢, it holds that E(KJ,,)[p™] = E[p"]. For the field L and N € Z> given
in the above claim, take any n € Z>y and any place w of KE above £. Let
u be the place of L below w. Since E7,, has split multiplicative reduction,
we have a G, -invariant isomorphism

(6.5) E(Eu) = Z;L( /qZ

for some ¢ € L,, with ord,(q) > 0. Recall that every place of L above ¢ is
inert in Loo/L. By the isomorphism (6.5), if n > Ny := N + ord,(q), then
we have E(ng)[p”] = E[p"], and E(Kﬁ;ﬁr)[poo] & fipoe X @ "t q" O

Lemma 6.10 ([1, Example 3.11]). For any prime number ¢ distinct from
p and any finite extension F/Qy, it holds that H} (F, E[p*>]) = 0.

For each n € Z>, we denote by X, , the set of all the finite places v of
K, above p, and X, paqa by the set of all the finite places v of K, where
FEk, , has bad reduction. We put %, := %, , U ¥, paq and define E% to be
the subset of X, paq consisting of all the places v which lies below some
w € Xy, for every m € Z>,. Namely, we have

6.6) XY= {v € Xy bad

for any m > 0, the elliptic curve }

Ek,, has bad reduction for some w | v

Since the elliptic curve E has good reduction at p, the set of places 3, , is
not contained in %0,

Proof of Proposition 6.7. In this proof, once we fix n € Z>¢ and simplify
the notation H'(F'/F, E[p"]) = H'(F'/F) for an extension F’/F. We de-
note by K, x, the maximal unramified extension of K, outside X,. As
noted in Remark 5.5, the fine Selmer group Sel, (K, E[p"]) is a subgroup
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of H'(K,x,/K,). The Hochschild-Serre spectral sequence gives the fol-
lowing commutative diagram with exact rows:

Jloc

Ker(res!o¢) & Coker(,) = Coker(:£)

T ! !

resy

HY(KE/K,) 2 HY (K, 5, [ Kn) "% HY(K,, 5, | KE)G5n —> H2(KE /K,

Lnj LE\]\ T
regSel

Ker(resh) & Sel, (K, E[p"]) —* Sel,(KE, E[p"])“&n —= Coker(res)).

The snake lemma induces the exact sequence

(6.7) 0 — Ker(res>®) — HYKF/K,) — Ker(res'®)
N Coker(res>®) — H*(KF/K,,).

By Proposition 6.1, the order of HY(KF/K,) = H'(KF/K,, E[p"]) is
bounded independently of n, and so is the kernel Ker(res>!). We obtain
the assertion (1).

Let us investigate the cokernel of res>®. By Proposition 6.1, the group
H*(KY/K,) = H*(KY/K,, E[p"]) is finite and its order is bounded inde-
pendently of n. From the exact sequence (6.7), to show the assertion (2) it
is enough to give a bound for {# Ker(res°°)},,>0.

For each finite place v in K,,, we define restriction maps

resi$ « H' (K, E[p"]) — H° (Kn 1T oYk}, E[p"])>,
wlv

res) ,

: H}(Km,, E[p"]) — H° (Kn 11 H}(Kﬁw, E[p”])>, and

wlv

rooe I Ean BB (KmH Hl(Kf,w?E[p”]))

"0 HY (K, Blp") LUHY(RE,, Blp)

These maps induce the following commutative diagram with exact rows:
0—H } (Knw)

f loc
Lresn,v 1€8n v Tesio,

Gk Gk Gk
n n Hl KE n
0— <HH}(K,§w))) — <HH1(K5,w)> - (HM> '

wlv wlv
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By applying the snake lemma to the above diagram, there is an exact
sequence

(6.8) Ker(resloc) — Ker(resloc) — Coker(resfl’v).

By the definition of the fine Selmer groups (Definition 5.3), we obtain
the commutative diagram

Kn v
Coker(ty) © oy H () % Tl ngKn ;
res)> i(reSf%)mp X (768,05, ) ot

1B \\GEn )\ G5
Coker( )(—> Hv|p (Hw\v H (Kn,w)) X Hv{p (Hw|v Hl(KE)) :

This diagram induces an injective homomorphism

(6.9) Ker(resl¢) —s H Ker resloc ) X HKer resloc)
vlp ofp
When FE¥g, has good reduction at a finite place v { p of K, then the Tate

module Ty(E) for the prime number ¢ with v | £ is unramified ([24, Chap-
ter VII, Theorem 7.1]). We have H}(Knp,v, E[p"]) = Hy(Kn.v, E[p"]) and

Hi(KY,, Elp"]) = Hy(KY,, E[p"]) (17, Lemma 1.3.8 (ii)]). Moreover, the
extension KY, /K, , is unramified for any w | v as E[p"] is unramified.
From the definition of the unramified cohomology (cf. Notation), we have
a commutative diagram

HY (K, ., Ep")) 7o [ (FAUE ) Gt
HY (Ko, B[p"]) ol \ (R B

. |

res Hw\u HI(KE ,ur E[pn])GK”.

naw

HY(EGY,, Elp))

n,v’

From the inflation-restriction sequence ([17, Proposition B.2.5(i)]), the ker-
nel of the bottom horizontal map res;)’, equals to
ﬂ Hl KE ur Kur E[pn]GK;{fv) =0

n,v)
w|v

is injective. In particular, we have Ker(resloc) = 0 for
loc )

and the map res;’,

any finite place v ¢ %,,. This implies that the order of Ker(Tes,2S) is bounded

independently of n for the case v { p and v ¢ ¥¥. From (6.9), in order to
prove Proposition 6.7 (2), it is left to show the following assertions.

loc )}n>0 is bounded.

loc )

e For v | p, the sequence {# Ker(resS

e For vt p, and v € XV, the sequence {# Ker(Tes,);,) }n>0 is bounded.
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By the exact sequence (6.8), these assertions follow from Lemma 6.11 below.

U
By definition (cf. (6.6)), we have

¥ = {E: prime number

for any m > 0, the elliptic curve }

Ex . has bad reduction at a place above ¢
We are assuming E has good reduction at p, so that p ¢ .

Lemma 6.11.
(1) For any prime number £ € ¥ (distinct from p), the set

{# Ker(res}fﬁ)) n>0,v | €}

is bounded.
(2) For the fized prime p, the set

{# Ker(resfﬁ,)

nZO,v[p}

is bounded.
3) For any prime number £ € X9 (distinct from p), the set
0

{# Coker(resfljv) n>0,v| 6}

is bounded.

Proof. First, we prove the following claim.

Claim 1. There exists a finite Galois extension field L of Q contained in
KE = Q(E[p™)) satisfying the following conditions.

(a) The elliptic curve Er, has semistable reduction everywhere.

(b) The elliptic curve Er, has split multiplicative reduction at every
place u of L above a prime number ¢ where E has potentially mul-
tiplicative reduction.

(c) Every place of L above every £ € ¥ is inert in Log := L(pupee)/L.

(d) There exists an integer N € Z>q such that Ky C L C K¥.

Proof of Claim 1. Let gy be a prime number where E has potentially good
additive reduction. Since qq is distinct from p, the order of the image of GQ%
in Autz, (T,(E)) is finite ([24, Chapter VII, Theorem 7.1]). This implies
that there exists an intermediate field F}SgO) of K /Q such that F}SgO) /Q
is a finite Galois extension, and F 12(a0) has good reduction at every place
above qo. Let s be the compositepcg)f the fields Fég) where ¢ runs all the
prime numbers where F has potentially good additive reduction. By Lem-
ma 4.3, the composite field L := F,; K¥ satisfies the conditions (a) and (b).
Moreover, take a sufficiently large N € Z, and replace L with L(j,~ ), the
additional conditions (c) and (d) follow from the similar arguments in the
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proof of Lemma 6.9. Note that L = F,, K (ppn) is a finite Galois extension
field of Q contained in KZ. O

Put L,, := L(pyn) for each n > 1. Take any prime number ¢ € XJ. Fix
a place wo, of KZ above £. For any m € Z>nN, denote by w,, the place of
KTE,L below ws, and by u,, the place of L,, below ws, respectively.

Let us prove the assertion (1). Take any n € Z>y, and let v = v,, be the
place of K, below w. For the fixed place wy,, by identifying G, , with the
decomposition subgroup of Gk, at v, we consider H 1(wan E[p"]) as an
Gk, ,-module and [T, H*(KE

n,w?
ule IndGK" "(HY(KPF, ,E[p"])). Shapiro’s lemma gives an isomorphism

n,Wp,?

wlv E[p"]) is isomorphic to the induced mod-

(6.10) H°<Kn,HH1 nw,E[p“])) H® (Ko, H(KY,, Elp"))

w|v

(cf. [13, (1.6.4) Proposition]). By the Hochschild-Serre exact sequence ([17,
Proposition B.2.5 (ii)]), we obtain the following commutative diagram whose
rows are exact:

Sy Gkn
0 Ker(resloc) Sy (lev Hl(ngD "
l (GAIO)iN
0 — H K}, [Kny) — H (Kp,) —— HY(KF,, )9

Here, we put H'(F'/F, E[p"]) = Hl(F’/F) for an extension F’/F. It holds
that

(6.11) Ker(resloc) = Hl(Kf’wn/Kn,U, E[p"]).
The order of Ker(resloc) depends only on the prime number ¢ and the
positive integer n (in particular, it is independent of the choice of the place

weo of K above the fixed prime number £). For any intermediate field M
of ngn /Ky which is Galois over K, ,,, we have an exact sequence

0 — Y, (M) — Ker(resloc) — Zn(M),
where we put

Ya(M) = H'(M/ Ky, EQD)[p"), and

Zn(M) := H(Kpp, H (K}, /M, E[p"])).

First, let us study the cases when /£ # p. Recall that Ey,, , has good or
split multiplicative reduction and Ff, , has bad reduction from the very
definition of X9.
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The case: Potentially good reduction with £ # p. Suppose that £ # p, and
FE has potentially good reduction at £. Let M,, be the maximal subfield of
wan which is unramified above K, ,,. As the extension M, /K, , is cyclic,
we have

H' (My ) Ky, E(Mp)[p"]) ~ ﬁ_l(Mn/Kn,va E(M,)[p"])

_ Ker (NMn/Kn,U: E(M,)[p"] = E(Ky,.)[p"])
(Forb, —1) ’

where H* stands for the Tate cohomology group, Ny, /k, , is the norm
map and Forb, is the Frobenius automorphism at v which is a generator
of the cyclic group Gal(M,, /K, ,) (cf. [20, Chapitre VIII, §4]). There are
(in)equalities below:

#Yn(My) = #Hl(Mn/Kn,m E(M,)[p"])
= #ﬁ_l(Mn/Kn,va E(M,)[p"])
<# (e, -1)
= #(E(My)[p"]) [Forb, —1]
= #E(Kn0)[p"]
< HE(Kno)[p™].
From Theorem 6.8, the sequence {#Y},(My)}n>0 is bounded. Let us study

Zn(My). Note that KE, /L., is unramified because Ef, ., has good
reduction. Since Kf,wn /M, is totally ramified, we have

K

n,Wny,

:My] = Ly, : Lnu, " Mp] < Ly, : Kno < [L: Ky).
This implies that

sup #7Z,(M,) < sup #Hl(wan/Mn,E[p”}) < o0.
n>N n>N

Consequently, the set {# Ker(res!¢)|n > 0,v | £} is bounded.

n,v

The case: Potentially multiplicative reduction with £#p. Suppose that ¢ #
p, and E has potentially multiplicative reduction at £. Put Y;, := Y, (Lp u,)
and Z,, := Z,(Lnu,)- Let u:=uy be the place of L below u,. The elliptic
curve Ep, is isomorphic to a Tate curve G,/ qZ; , and in particular, we have
a G, -equivariant isomorphism

(6.12) E[p™] ~ ppee x 2742,

This implies that Kfoywoo /Lo, is a totally ramified cyclic extension,
where s, is the place of Lo, below ws. Fix a topological generator 7 €
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Gal(KZ ... /Loous. )- Since Lo uy, /Ly is unramified, the homomorphism
Gal(KoEo woo/LOOKLLoo) — Gal( nwn/Ln un); o U|K£wn
is surjective. Firstly, we show that {#Y}, },>0 is bounded. We define
B, = (B ) ")
The isomorphism (6.12) implies that EJ, is isomorphic to u,n as a Zy[Gr, |-

module. Note that £}, is G, ,-stable as K’ B.ur "/ Kn, is a Galois extension.
We obtain an exact sequence

(6.13) Y, —Y, —Y/
where we put
Yy = H'(Lnu,/Kny, E}), and
Y) = Hl(Ln,un/Kn,va E(Lnu,)[0"]/Ey).

Let us study Y,”. Note that 7 acts on T),(E) non-trivially and unipotently.
Putting v, := ord,(#(Tp(E)/(T — 1))tor), we have

#(E(Ln,u, ) [P/ Ep) < #(E(Loo,us. ) [p™]/EL) = p*-

It follows that the sequence {#Y,’},,>¢ is bounded, because of the inequality
[Ln,un : Kn,v} < [L : @]

Let us consider Y,,. Recall that we have EJ, o~ p,» as Z,|Gp,]-modules.
We define H,, to be the maximal subgroup of Gal(Ly, 4, /Kn,) acting triv-
ially on EJ, and L], the maximal subfield of L, ,,, fixed by H,. Now, we
consider an exact sequence

0 — HY(L,/Kn., E) — Y, — H (L, /L, EL).

By (C2) for E, we know H°(K,,,, E!,) = 0 (Lemma 4.4). Since L}/ K, is
cyclic, we have

H' (L/n/Kn,m E7/1) = ﬁ_l(Lg/Kn,va E;z)

(cf. [20, Chapitre VIII, §4]). For E/, is finite, its Herbrand quotient is trivial
so that

#H (L), K, By) = #H(L), [ Ky, Ey,)
([20, Chapitre VIII, §4, Proposition 8]). Therefore, we have
#H (L)) K, By) = #H (L), /Koo, Ey) < #H (K, By) = 1.
Since Ly, 4, /L], is a cyclic extension whose order is at most [L : Q], we have
#H"(Lyu, /Ly, EY) = # Homg, (Gal(Ly,, /L), Z/p"Z) < [L : Q).

The sequence {#Y, },,>0 is bounded. This implies that {#Y,, },>0 is bounded
by (6.13).
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Secondly, let us show that {#Z,}n>0 is bounded. Recall that Z
Zn(Ln,) = H (Ko, HY(KE,, /Ly, , E[p"])). We have an exact sequence

(6.14) H°(L,,,, E [”]/E’)—>H(KE /L, EL)

n,Wn

— HY (K, /Lo, EP") — H' (K, /Lo, Blp"]/Ey).

n,Wny, n,Wny,

We put
7! .= H°(K,,, Coker(6,)), and
Z!" = HY (K, o, HY(KE,, /Lo, E[p"]/EL)).

n,Wnp,

In order to prove that {#Z,},>0 is bounded, considering the exact se-
quence (6.14) it suffices to show that

{#Z,}n>0 and  {#Z,}n>0
are bounded. Let us show that the sequence {#Z] },>0 is bounded. The
extensmn KFE 'wn/ Ln,u, 18 nON-trivial and totally ramified. The Galois group
Gal(KF,, /Lnu,) acts trivially on E},. By the We11 pairing, we have E/ ~

Hom (E[p"]/E},, pupn). The Galois group Gal(K[F, /Ly .,) also acts triv-
ially on E[p"]|/E! . It holds that
H(Lnu,, Elp")/ Ey) = Blp")/ B, ~ Z/p".
Put 7, := 7[ge_ . Note that 7, generates Gal(Kﬁwn/Ln,un). We have an
isomorphism
Hl(wan/Ln,qul) Hom(Gal(wan/Lmun)7E7/z) = B, [p""]
given by the evaluation at 7,, where M, := ordy([KE, : Lnu,]). We
denote by Ej, the image of Ej, in E[p"]/(r — 1). Its order is bounded as
#E! < p'". By definition, the coboundary map 4, is given by
on: E[p"]/E!, — E! [pM"]; (P mod E!) — (1 —1)P.
We obtain
#7) < # Coker(6,) < #E) < p’"
Finally, let us show that {#Z2/},>0 is bounded. Note that we have an
isomorphism
~ E[p"|/E]
H K E /L B/ ) = 2P0 — gy,

By (C2) for E and Lemma 4.4, it holds that Z! = H°(K,,,, E[p"]/E.,) = 0.
This implies that {#Z,},>0 is bounded. Hence, we deduce that
{# Ker(res;>)|n > 0,v | £} is bounded.

Now, suppose that ¢ # p, and let us show the assertion (3) of Lem-
ma 6.11. Again, take any n € Z>y, and let v = v, be the place of K,
below ws. The order of Coker(resfl,v) depends only on ¢ and n. By the
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short exact sequence 0 — E[p"] — E[p™] =2 E[p>] — 0, there is a short
exact sequence

) n ln,v n
0—>A2—>H1(KR,U,E[]) ]) Hl(KnmE[ ])[p ]v

where A), := E(K,)[p™] ®z, (Z/p"Z). Recall that H}(K, ., E[p"]) is de-
fined to be the inverse image of H}(Kn,v,E[poo]) by tne (cf. (5.1)). Thus,
the map ¢, , induces the short exact sequence 0 — A% — B9 — CY, where

BY = H}(KM, E[p"]), and C? := H}(KM, E[p™])[p"].

Furthermore, we obtain a commutative diagram

0 A9 BY o8
lan \Lbn lcn
0 AL B} c!
whose rows are exact, where
A, = H| K, [[ E(KE,)p™] @z, (Z/p"Z))
w|v

By, =H| K, [[H}( (KF ., Elp ])) ,

w|v

C}L::HO KTMHHf KfuﬂE[ ])[ ])7

wlv

and the arrows a, and ¢, are restriction maps, and b, = resﬁ}v. By Lem-
ma 6.10, we have C0 = C} = 0. In order to prove Lemma 6.11(3), it
suffices to show that the sequence {# Coker(ay,)},>n is bounded. By the
exact sequence

0 — p"E(K,) 0] — E(Ky,) 0] — E(K ) [p™)®z, (Z/p"Z) — 0,
using Shapiro’s lemma as in (6.10), we obtain an exact sequence
B(Kpo)[p™] = Ay — H' (KE/Km [T E( f,w)[Pw]) =: En.
wlv

In order to prove that {# Coker(ay) | n € Z>n} is bounded, it suffices to
show that {#%Z,}, is bounded. Fix a place wy, of K¥. We have

Ep Hl(Kr?,wn/Kmv?an(KE )[p>)).

n,Wn,
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For any intermediate field M of ngn/ K, , which is Galois over K, ,, we
have the inflation-restriction exact sequence
— — —/!
0—Z=,(M)— 5, — =, (M),
where we put

En(M) := H' (M/ Ky, H (M, p"E(Ky,, )[p™])), and

—n N, Wn
En(M) = H(Kny, H (KF,, /M,p"E(K}, )[p™]))-

Recall that K contains L, the elliptic curve Er has semistable reduction

n

everywhere. Let u,, be the place of L,, :== L(j,n) below wy,.

The case: Good reduction. Suppose that Er, , ~ has good reduction. Let
M,, be the maximal subfield of ngn which is unramified over K, ,. By
similar arguments of the boundedness of {#Y,,(M,,) }n>0 for The case: Po-
tentially good reduction with £ # p in the proof of (1), we have

=, (My) = #H' (M, /Ky o, p"E(KE,, ) [p™))

G

= #p"E(Kn)[p™]
< #E(Knw)[p™].

Theorem 6.8 implies that {#Z/,(M,)}n>0 is bounded. Moreover, as noted
in the proof of the boundedness of {#Z,,(M,,)}n>0 in The case: Potentially

good reduction with ¢ # p, the sequence {[KF : My,]},>n is bounded, and
hence {#Z/ (M) }n>n is bounded.

The case: Multiplicative reduction. Suppose that Ef, , —has multiplicative
= Zr = Z!'(Lnu,)- In this case, Lem-

reduction. Put =/ := =/ (L, ,,) and
" = 0 for sufficiently large n, and in

ma 6.9 implies that =/, = 0 and =
particular, the sequences {#Z/'},,>n and {#Z!},>n is bounded.

By the above arguments, we deduce that in any case, the set {#Z},>n
is bounded and so is {#ZE,, }n>n. Accordingly, the assertion Lemma 6.11(3)
is proved.

Let us show the assertion (2). Here, we study the case when ¢ = p. Recall
that by our assumption, the elliptic curve F has good reduction at p.

The case: Good ordinary reduction. Suppose that the elliptic curve E has
good ordinary reduction at p. In this case, there exists a Gg,-stable Z /"2~
submodule Fil E[p"] of E[p"] of rank one such that the inertia group Ig,
of Gg, acts via the cyclotomic character on Fil E[p"], and trivially on
E[p"]/ Fil E[p"™]. Fix a generator P, of the cyclic Z,-module Fil E[p"] and a
lift @, € E[p"] of a generator of the cyclic Z,-module Q,, € E[p"]/ Fil E[p"].
The pair (P, Q) becomes a basis of the free Z/p"Z-module of rank two.
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Let M,, be the maximal subfield of ngn which is unramified over K, ,,
and put I,, := Gal(K}, /M,). Since I, acts trivially on Fil E[p"] and
E[p"]/ Fil E[p"], the group I, is a cyclic group which is generated by an
element acting on E[p"] via a unipotent matrix

U= (é ﬁ”) € M(Z/p"Z)

under the basis (P, Q). Fix a lift 7 € Gal(KEwn/Kn,v) of the Frobenius
Forb, € Gal(M,, /K, ,). The filtration Fil E[p"] is stable under the action of
Gal(K},, /Knw), and the Weil pairing e: E[p"] x E[p"] = ppn is an alter-
native pairing preserving the action of Gal(K},, /Kn.) ([24, Chapter III,
Section 8]). Accordingly, the fixed lift 7 acts on E[p"] by a matrix

(6.15) A= (aon al:q) € My(Z/p"Z)

for some a,, € (Z/p"Z)* and b, € Z/p"Z. We can define a := (ap)n €

@ln(Z/an)X = Z,. Since E has good reduction at p, Theorem 6.8 im-

plies that a* # 1 for any k € Z~. In fact, if a* = 1, then for any m € Z>0,
the group Fil E[p™] of order p™ is contained in E(Qx(ppm)), and contra-
dicts Theorem 6.8. Here, we denote by Q,» the unramified extension field
of Q, of degree k. It holds that

2
(6.16) AUA™! = ((1) “"1”“’") = U,

By the short exact sequence
0 — FilE[p"] — E[p"] — E[p"]/FI1E[p"] — 0
and (6.11), we obtain an exact sequence
(6.17) Y, — Ker(resloc) — Zn,
where

Y, = HY(KY, /K., FilE[p"]), and

n,Wn,

Zn:=HYKE, /K., Ep"]/ Fil E[p").

n, W,

In order to show that {# Ker(res?$)}n>0 is bounded, it is sufficient to prove
that both {#Y,,}n>0 and {#2, }nZO are bounded.

First, let us study the order of Z,. Since I, acts trivially on the quotient
E[p"]/ Fil E[p"], we have an exact sequence

(6.18) 0— Z), — Zn — Z),
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where

Z! .= H' (M, /K., , E[p"]/ Fil E[p"]), and
Z) = H" (Ko, H (K}, /My, E[p"]/ Fil E[p"]))
= HY(K,, ., Hom(I,,, E[p"]/ Fil E[p"])).

Since a # 1, we have #(E[p™®]/ Fil E[p>°])[a~! — 1] < oo, and

/ E[p"]/ Fil E[p"]
# <4 ()
_ ., (Elp"l/Fil E[p"])
=# ( (a1 —1) )
= #(E[p"]/ F1E[p"])[a™" —1]
< #(E[p™]/ F1E[p™])[a~" —1].

The sequence {#Z] },>0 is bounded. Let us consider the order of Z/. The
matrix presentation (6.15) implies that the Galois group Gal(M,,/K, ,) =
(Forb,) acts on E[p"]/ Fil E[p"] via the character Forb, — a, !, and (6.16)
implies that Forb, € Gal(M,/K,,) acts on I,, via the character Forb, —

. Recall that a = (ap)n satisﬁes a® # 1 namely a? # a~!. There exists
an 1nteger mg € Z~o such that amo # a, . We have

7! € Hom(1,, E[pmo-l]/FﬂE[pmo-lD.

Since I,, is cyclic, the sequence {# Hom([I,, E[p™ ']/ Fil E[p™~1])},>0
is bounded and so is {#Z]},>0. As a result, the sequence {#Z,},>0 is
bounded from (6.18).

The boundedness of {#Y,,} follows from the arguments in the previous
paragraph just by replacing E[p"]/ Fil E[p"] with Fil E[p"], where the Ga-
lois group Gal(M,,/K,) = (Forb,) acts via the character Forb, — a.
By the short exact sequence (6.17) we deduce that {# Ker(resloc)}nzo is
bounded.

The case: Good supersingular reduction. Suppose that E has good super-
singular reduction at p. In order to prove that the sequence

{# Ker 1"es10C )jn > 0,v | p}

is bounded, by (6.11) it suffices to show that H(
for any n > 0. The short exact sequence

K, E[p"]) = 0

nwn/

0 — E[p] — Ep" ] = Ep™] — 0
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induces the exact sequence

HY (K, / K, Blp]) — H' (K, /Knw, E[p™)
— HY (K, /K, BlD™).

n,Wn,

By induction on m, it is enough to show that H'(KE, /Ky, E[p]) = 0.
We denote the inertia subgroup of Gg, by Ig, := Gal(Q,/Q}"), and the
wild inertia subgroup by I§ = Gal(Qy,/ Q) C Ig,, where Q™€ is the
maximal tamely ramified extension of Q. Let I, := Ig,/I§ =~ lim 7,
be the tame inertia group of Gg, (cf. [22, 1.3, Proposition 2]), and 1: I(t@p —
]F;2 the character induced by the natural projection lim Fpn — IFZQ. The
characters ¢ and 9P form the fundamental characters of level 2 (cf. [22,
1.7]). By [22, 1.11, Proposition 12], the following hold.

e The action of the wild inertia subgroup I& on Elp] is trivial, so
that the action of the inertia group Ig, of Gg, on E[p| factors
through I@p.

e The group E[p| has a structure of F2-vector space of dimension 1.

e The image of Iy, in Aut(E[p]) is a cyclic group of order p? — 1.

e The action of If@p on E[p] is given by the fundamental character v
of level 2.

Let us regard E[p] as an F)-vector space, and consider the F p2-vector space
E[p] ®r, F,2, which is the extension of scalar of E[p]. By the properties of
E[p] noted above, the action of Ipr on E[p] ®r, F,2 is given by the matrix

(6.19) (}f ﬁp)

after taking a suitable I 2-basis E[p] ®r, F,2 (cf. [22, 1.9, Corollaire 3], see
also [3, 2.6 Theorem] which is a result on modulo p Galois representations
attached to modular forms with coefficients in F,). Let F' be the maximal
unramified extension field of Q, contained in K lb?wr Put F, := F(uym). We
have the following inflation-restriction exact sequences:

(6.20) Hl(Fn/Qp(Mp")vHO(Fna E[p})) — Hl(Kf,wn/Kn,vv E[p])
— H'(K},, /Fn, Elp))

and

(6.21)  H'(K{ly, (pn)/ Fa, Blp)) — H' (K, / Fas Elp])

n,Wny,

— H' (K, /K, (), Elp) ™,
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where F) is the maximal abelian extension field of K 1E,w1 (ppn) contained in
Ky L . Note also that the last term in (6.21) is written as

Hl KE KT, (e ), Blp]) 9 = Homgg,, | (Gal(E, /KT, (kpn)), Elp))-

Claim 2. We have H°(F,, E[p]) = 0 and H (K, (tipn)/Fn, E[p]) = 0.

Proof of Claim 2. We may assume n > 1. Since F/Q, is unramified, the
ramification index of F,, /Qp is (p—1)p™~*, which is not divisible by [K{?, :
F] = p? — 1. This implies that the restrictions of 1 and " on Ig, N GE,
are non-trivial, and by (6.19), we have

HY(F,, E[p]) C H(F,,, E[p] ®F, F,2) = 0.

Furthermore, the extension K7’ “wy (pn )/ P is finite cyclic. By using the
Herbrand quotient of the Tate cohornology groups ([20, Chapitre VIII, §4,
Proposition 8]), we have

#H (KL, () Fo Elp]) = #H (KL, (1

_#HO(KIE,le(MP" /FnaE[p])
< #H°(Fy, E[p) = 1
Because of this, we obtain the claim. O

Applying Claim 2, the exact sequences (6.20) and (6.21) give
#H (K, [ Kn, Ep]) < #H (K, [ Fo, E[p])
< # Homyq,, |(Gal(F, /Ky, (1pn)), E[p]).
Now, we shall show that
(6.22) Homgq,, |(Gal(E, /KTy, (1)), Elp]) = 0.
For each m € Z with 1 < m < n, we define the subgroup
Fil™ C Gal(F), /KL, (1))
to be the image of Gal(K;, wn/ m wm( tpn)) by the natural map
Gal(K oy, /K, () — Gal(Fy /Ky, (1))

n,Wnp,

Note that the family {Fil™},, becomes a G, -stable descending filtration
of Gal(FT/L/K{ij1 (fpn)). In order to show (6.22), it suffices to show that

Homy,, |(Fil'™ / Fil"™ ™, E[p] ®z, Z,2) = 0.

Take an [F2-basis By of E[p] ®F, F,2 which gives the presentation of the
action of I@p by the matrix given in (6. 19) and for each m € Z with
2 < m < n, fix a basis By, of E[p™] ®z, Z,> which is a lift of Bj. Since
Gal(K JKE . )isanormal subgroup of Gal(KL it/ Qp)s it s

m+1 JWim41 m,Wm,
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stable under the conjugate action of GF, . Recall that we have a G, -stable

injection from Gal(KZ_, me/ w,,) into

Ker (Aut(E[pmH] ®z, L) —» Aut(Ep™] @z, ZPQ))
=1 —|—pmM2(Zp2/pm+1sz) ~ Mg(sz),
where the action of o € G, on Ma([F,2) is defined by the conjugate action

of the matrix .
(5 tn)

Since Fil™ /Fil™*! is a quotient of Gal(KE ., s (B )KL o (i) by
definition, and the restriction

Gal( m+1 Wyn41 (,Up )/ m wm (MP”)) — Gal( m+1 wm+1/ m wm)

is an injective homomorphism, we can regard Fil™ / Fil™ ! as a G, -stable
subquotient of Ms(F,2). Let us study the F,2[Gr]-module structure of
M3 (F,2). Take any o € GF,. It holds that

(5 )6 o)+ wweser
0 B D ) o)

and

(§ W) (85 wio) =i 3)

Note that 1 # ¢P~!, and ¢ # ' 7P, It holds that My(F,2) is a semisimple
F,2[GF,]-module, and there is no simple F2[GF,]-submodule of Ma([F,2)
which is isomorphic to an F2[GF, |-submodule of E[p]®z, Z,2. This implies

Homyc, (FiI™ / Fil"*', E[p] @z, Z,2) = 0,

(e=)

(=)

and we obtain (6.22). Consequently, we have

Ker(resloc) HYKE, /K .(up), E[p"]) = 0.

n,Wny,

By the above arguments, we deduce that {# Ker(reslrﬁcv)}nzo’mp is bounded.
This completes the proof of Lemma 6.11(2). O

6.3. Proof of Theorem 1.1. In this paragraph, we show our main the-
orem Theorem 1.1 (Theorem 6.16).

Recall that g paq denotes the set of prime numbers where E has bad
reduction. As E has good reduction at p the prime p does not belong to

20,bad-
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Lemma 6.12. Suppose that E satisfies (C2). Let { € X pada. For each
n € Zxo and i € {0,1,2}, we put

| | HY(KE,, Ep")
; y . Hl Kn I n,w? d
Hj(t,n) ( s, w najae, won ) "

i i Hy, (K, Ep"))
Hu(ln) = H (KHH (K. Elp"]) O HY(KE Elp"“)'

ww ur n,w? n,w?

Then, there exists an integer N, € Z>1 such that for any n € ZZNQ and
i € {0,1,2}, it holds that ’H}(ﬁ,n) =0 and H.,(¢,n) = 0.

Proof. The case: Potentially good reduction at £. First, suppose that E has

potentially good reduction at ¢. There exists an integer ng € Zx>; such

that Exre has good reduction at every place above ¢ ([25, Chapter IV,
no

Proposition 10.3]). For any n € Zs>,, and any place w of K, we have
H{(KY,, Elp"]) = Hy (K}, E[p"]) (cf. Remark 5.2). We obtain #%(¢,n) =

n,w? n,w’

0 and H (¢,n)= 0 for any n € Z>p, and i € {0,1,2}.

The case: Potentially multiplicative reduction at £. Next, suppose that F

has potentially multiplicative reduction at ¢. Let Ny € Z>1 be as in Lem-

ma 6.9. By Lemma 4.3, the base change F KE has split multiplicative re-
4

duction at every w | £. Take any n € Z>y,, and let v be any place of K,
above £. For any place w of Kf above v, Egre is isomorphic to a Tate

curve G,,/q%. By Shapiro’s lemma as in (6.10), for each F € {f,ur} and
i € {0,1,2}, we have

Hie(l,n) ~ H (K, Mr(w,n)),

where
HE (K}, E[p")
2 M = ’ '
(6.23) F(w,n) HYL(KE,, Elp"]) N H}(KE,, E[p"])

Let us show that 7—(7}(6, n) = 0 for each i. The natural surjective homo-
morphism T},(E) — T,(E)/p"T,(E) ~ E[p"] induces a map
Tt HY(KY . Ty(E)) — HY(KE,, E[p"]).

n,w? n,w?

We note that HL (K%, ,T,(E)) is contained in the inverse image of the

unramified cohomologéf H(KF ., E[p"]) by Tpw. By [17, Lemma 1.3.8],
the image of H}(KEW,TP(E)) by 7, coincides with H}(wa,E[p”])

From [17, Lemma 1.3.5(ii)], we have H. (KZF  T,(E)) C H}(KE T,(E))

n,w? n,w?
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with finite index. The map 7, ,, induces a surjection

| HY(KE,, T,(E))

(6.24) T n — My(w,n).
met HL(KE,, T,(E)) /

By [17, Lemma 1.3.5(iii)], we have
Forb,,=1
Hy(Kp,, Tp(E)  ( EEZP< ™
Hl}r(KrngTp(E)) E(Kf,;il}lr)[poo]dlv ’
where Forb,, € Gal(Kﬁﬁr/Kf’w) is the Frobenius automorphism. Note

that the Z,[Gk, ,]-module H}(KE T,(E))/HL(KE,, T,(E)) is written

n,w? n,w?

(6.25)

as a successive extension of copies of a simple Z[G,, ,]-module
B (K0 ™)
E(Kn'a") [Pl
Here, (6.26) is valid because of the inclusion E(KFu") 2 E[p"] and the
isomorphism E(KZ2)[p™®]aiv ~ pipee induced by (6.12). Since ml , is sur-

n,w
jective, all the (simple) quotients J;/J;—1 of a Jordan—-Hélder series

0:J0§J1§---§Jt::Mf(w,n)

as Zp|G, ,]-modules are isomorphic to (6.26) (cf. [27, Lemma 0FCK]). It
follows from the condition (C2) for F and Lemma 4.4 that

E KE,ur 00 E KE,ur (e's)
E(Kn,h} )[poo]div E<Kn,h) )[poo]div
By induction on i, we have H°(K,, ,, J;) = 0. In particular, we obtain
H (K, Jy) = H}(€,n) = 0.
By (6.24) and (6.25), the module M¢(w,n) defined in (6.23) is a sub-
quotient Zp[GKnm]—module of E[p*>]. The condition (C2) for E and Lem-
ma 4.4 ((a) = (d)) also imply the equality
HY (Kn,v,HomZp (My(w,n), ppn)) = 0.

By the local duality of the Galois cohomology ([13, (7.2.6) Theorem]), we
also have 7—[%(6 ,n) = 0. Moreover, as we have ¢ # p, the local Euler—Poincaré

characteristic
#HY (L, n)#HF (0, n)
FHL(Eon)
is equal to 1 ([13, (7.3.1) Theorem]). We obtain H}(Z, n) = 0.
Next, let us show that ! (¢,n) = 0 for each i. The inclusion E[p"] C
E[p*] induces a homomorphism

nw: HY(KE | E]p") — HYKE,, E[p™)).

n,w? n,w?

(6.26) ] = (1 % g% )/ (pp % 45).
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Recall that H}(KE E[p"]) is the inverse image of H}(KE E[p™>]) by the

n,w? n,w?
natural map ¢4, (cf. [17, Remark 1.3.9]). From Lemma 6.10, we have

(6.27) Hi(K],, E[p"]) = Ker(tnw)-

n,w?

By [17, Lemma 1.3.2(i)], we have

E(E7) "]

H&r(KE Elp"]) ~ m~

n,aw?
The latter group is isomorphic to E[p"] = E(K[,,)[p"] because of KF =
Q(E[p™)). The image of HL (K%, E[p"]) by tn.w is contained in

n,w?

E(K7) ™)

H&r(KE E[p™]) ~ ma

n,aw?

and we have

o (K, E[p])) = (W) "

(Forb,, —1) Pl

By (6.27), the map ¢y, ,, induces

Mor(,m) > <W> 7.

(Forb,, —1)

In particular, the Z,[G,, ,]-module My (w,n) is a subquotient of E[p*].
Therefore, by (C2) and Lemma 4.4, we have HO (¢, n) = 0. Moreover, simi-
lar to the proof of Hlf(ﬁ, n) = 0, by using the local duality theorem and the
local Euler-Poincaré characteristic formula, we deduce that HL (¢,n) =0
and H2,(¢,n) = 0. This completes the proof of Lemma 6.12. O

Corollary 6.13. Suppose that E satisfies (C2). Let £ be a prime number
(distinct from p) at which E has bad reduction. Then, there exists an integer
N, € Z>1 such that for any n € Z> Ny and any F € {f,ur}, the natural
map

GK GK
11 H' (K., Blp"]) "_) HHI(KEW,E[p”]) '
HN(KPE,,, Elp"))NHL(KE,, E[p"]) LUHE(KE, Blp)

wll n,ws n,w’ n,w>

is an isomorphism.

Proof. Take N; € Z>1 as in Lemma 6.12. For n > N;, to simplify the
notation, we put He, (KF,) == He(KF,. E[p"]) (F € {0,ur, f}). The
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short exact sequences
Hy(K) H'(K7,)
HNKE,) NHL(KE,)  HNKE,) N HL(KE,)
HY(KF
R

00—

for all place w above £ induce the cohomological long exact sequence

H'(KE,) o
HE(l,n) — (H HNKE, )mf}&r(wa))

w|l

w (g HUEED) O
SN (HHl(K’;;”)) — HE(l,n).

wll F n,w
Lemma 6.12 implies that the map h is an isomorphism. U

As we referred in Section 1, we introduce a quotient AZ of C1(O KkE)®zLyp
for each n € Z>; as follows: We fix a basis of the free Z/p"Z-module E[p"]
of rank 2, and identify E[p"] with the Z/p"Z-module

s = ()

consisting of column vectors of degree two. Via this identification, we can
identify the Pontrjagin dual E[p"]Y := Homg, (E[p"], Z/p"Z) of E[p"] with
the Z/p"7Z-module

Mo(Z/p"Z) = {(a b)|a,be Z/p"Z}

a,be Z/p"Z}

consisting of row vectors of degree two. Let
pE: Gal(KF/Q) — Autg, (E[p"]) = GLa(Z/p"Z)
be the natural left action of Gal(K2”/Q) on E[p"], and
(o))" Gal(K, /Q)" — Autg, (E[p"]") = GL2(Z/p"Z)

be the right action of Gal(K”/Q) on the Pontrjagin dual E[p"]Y. Note that
for each o € Gal(K}/Q), the automorphism (p7)V(c) € Autg, (E[p"]") is
given by

E[p"]Y = Mi5(Z/p"Z) 3 (a D) — (PE)V(U)((G b)) = (a b)p} (o).
We define AL by
(6.28) A7 = (Ma(Z/p" ), (pF)") @ziGa(rcE 1,y CUOKE([1/p])
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as a Zp-module, where (My(Z/p"Z),(pE)V) denotes the matrix algebra
My(Z/p"Z) = Ma2(Z/p™Z) of degree two over Z/p"Z equipped with the
right action of Gal(KZ/Q) given by

n a b (PE)V(U)((Q b)) _f(a b\ g
w222 (2 5) = (aioreay) = (¢ 8)F0)
We define a Z,-linear left action of Gg := Gal(Q/Q) on AL by
o(A®[a]) := Apy (07") @ o]

for each o € Gg, A € M2(Z/p"Z) and [a] € Cl(Okx[1/p]). Since every o €

G, acts trivially on AL, we may regard AZ as an R,-module, where R, =
Z/p"Z|Gal(K,/Q)]. As noted in Remark 1.4, under the condition (C1),
one can regard the R,-module A” as a quotient of the ideal class group
Cl(Okr). We denote by (AF)Y = Homy, (A5, Z/p"Z) the Pontrjagin dual
of AZ. We also define an R,,-module

Sy = Homy, cai(k2/k,) (CLUOkE[1/p]) ®z Zp, E[p"])

Lemma 6.14. For each n € Z>1, there exists a Gal(K,,/Q)-equivariant
isomorphism

(A7) = 8.7

Proof. By the fixed basis above, we identify the isomorphism FE[p"] ~
M 1(Z/p"7Z). Since we have a natural isomorphism

M (Z/p"Z) ~ Mo (Z/p" L) 2,
our identification induces a Gal(K% /Q)-equivariant isomorphism
(6.29) (M2(Z/p"L), py) = E[p"]*,

where (Ma(Z/p"7Z), p¥) denotes Mo(Z/p"7Z) equipped with the left action
of Gal(K%/Q) given by

w0 (¢ 8 (0 (3 i () - ¢ )

for each o € Gal(K” /Q). We have an isomorphism

(6.30)  Homg, ((Ma(Z/p"Z), (py))"), Z/p"L) — (Ma(Z/p"L), py))
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as Gal(KF /Q)-modules. We obtain Gal(K,,/Q)-equivariant isomorphisms
(A7)

650 Homz, (M2(2/9"2), (o1)") ©zicacs k) CUOks(1/p]), Z2/p"2)

adjioi;tHomzp[Gal(Kf/Kn)] <CI(OK,§ (1/p]) ®z Zp, (M2(Z/p"Z), PE))

& (6 30)

5@2
(6 29)

This shows the assertion. O

Lemma 6.15. There exists an integer N € Z>1 such that, for any n €
Z>N, we have an isomorphism

Sn = HO(KTH Selp(K'r?v E[pn]))

Proof. Let HE be the maximal subextension of the p-Hilbert class field of
K which is completely split at primes above p. From the global class field
theory, the ideal class group Cl(Ogr[1/p])®zZ,, is isomorphic to the Galois
group Gal(HE /KF). We have

Hom(CUOgp[1/p]) @z Zp, E[p"])

~ Hom(Gal(H, /K}), E[p"])
Hom(GKf ) E[pn])
= Ker E— HHOID(GKEw,E[pn]) X HHom(GKgir)E[pn])

wlp wip

HY (K, E[p")
=Ker| - [TH' (K, EW") < [TH' (KL Ep")
wlp wip

Therefore, the R,-module S, is isomorphic to
Homzp[cal(Kg/Kn)] (Gal(HnE/Kf), E[p")
~ Hom(Gal(HE /KE), E[p"])“xn
HY(KE, Blp") S
Gk,
= Rer (HH1 KEZ, Ep") x [] HY Kf;“,E[ﬁ]))
wip

By the very definition of H! , there exists an injective homomorphism

HY (K, BIp") [ Hoe (K, Blp") — H' (K730 Elp"])

n,w
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and hence we have
1 (K, Efp)) O
Gk,
(6.31) Sy, ~ Ker W(KE H'(K 7., EP™)
HH (K, E[p"]) % L (RE P
wip

It follows from Corollary 6.13 that, for each prime ¢ € ¥ 1aq, there exists
an integer N, € Z>; such that

I H\(KE,,, E[p") o [ U E7) e
HI(KE,, Bl ) H, (KE s Ep) Wmwe, zvy)

w‘ﬁ n,w? n,w?’
. H\(KE,,, E[p") o [ 0k Bl e
w‘ZHf(KfunE[ DﬂHl( nva[pn]) MHI (KEUNE[ ])

for any n > N;. We have an isomorphism

# e, Bp) (B B |
6\ me, 2w W &z, 20

’UJ‘Z n,w? n,w?

for any n > Nj. Now, we put N := max{N,|{ € Xgpaq}. For any n > N,
we have

Gk,
H(HHl Ko 10") HH1 w,Ef;])

E[p"))Crn

G
H HUKE. Blp) « ] 05D )
Kaw L (RE, D)

wip

(g) Ker

(6.31)

~
= n-

Here, the second equality () follows from (6.32) for a bad prime ¢ # p and
Remark 5.2 for a good prime £ # p. O

Theorem 6.16. Suppose that E satisfies the conditions (C1), (C2) and
(C3). Then, there exists a family of Ry,-homomorphisms

T Selp(Kn,E[pn])®2 — (AE)V

such that the kernel Ker(ry,) and the cokernel Coker(ry,) are finite with order
bounded independently of n.
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Proof. By Proposition 6.7 and Lemma 6.15, there exists N € Z>1, the order
of the kernel and that of the cokernel of the map

Sel ) D2
res; )

Sel,, (K, E[p"])®? <—> HO(K,,Sel,(KE E[p")))®? ~ §&2

are at most pQ”r]Eggr and le’r%gker respectively for all n > N. By Lemma 6.14,
there is an isomorphism S$? ~ (AZ)V. Since Sel, (K, E[p"])®? and (AL)Y

are finite for any n < N, this completes the proof of Theorem 6.16. O
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